

The Influence of Site Conditions on *Senecio sylvaticus* Seasonal Abundance, Soil Moisture Dynamics, and Douglas-fir Seedling Water Stress

Reed J. Cowden^{1,2}, Maxwell G. Wightman²*, Carlos A. Gonzalez-Benecke²

1. Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 30, 2630 Taastrup Denmark.
2. Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR 97331, USA.

*Correspondence: maxwell.wightman@oregonstate.edu

Received: date; Accepted: date; Published: date

Abstract

9 Competition for soil water resources between newly planted Douglas-fir seedlings and
10 aggressive early-seral plants, such as *Senecio sylvaticus* [L.] (Senecio), can create drought
11 conditions that impact tree seedling physiology, growth, and likelihood of mortality. However, the
12 specific impact of Senecio on soil moisture dynamics and inducement of water stress in newly
13 planted tree seedlings across varying site conditions has not been quantified. This study quantified
14 these interactions at three contrasting sites across the U.S. Pacific Northwest: the Coastal Range,
15 the Cascade foothills, and the fringe of south-central valley of Western Oregon. We tested whether
16 competition between Senecio and Douglas-fir seedlings for soil water resources in areas of high
17 Senecio abundance caused increased water stress in the tree seedlings. Senecio demonstrated a
18 high degree of plasticity across sites increasing its lifespan and shoot:root in response to increased
19 soil water resources. Senecio also had more than twice the root area of influence as Douglas-fir.
20 Overall, greater Senecio abundance was associated with greater soil moisture depletion and this
21 soil moisture depletion was correlated with increased Douglas-fir water stress. The magnitude of
22 this response varied across sites; the dry site had the greatest shifts in Senecio biomass partitioning,
23 the highest observable water depletion, and the greatest amount of Douglas-fir water stress. The
24 presented results can be useful for determining effective forest vegetation management regimes by

25 considering the impact of *Senecio* presence on Douglas-fir seedling drought stress across different
26 site conditions.

27

28 **Keywords:** Vegetation Management · Invasive Species · Water Stress · Competition ·
29 Reforestation

30

31 **Declarations**

32 **Funding:** This research was funded by the Vegetation Management Research Cooperative at
33 Oregon State University, Corvallis, Oregon.

34 **Conflicts of interest/Competing interests:** authors claim no conflict of interest.

35 **Availability of data and material:** Data may be made available upon request.

36

37 **Introduction**

38 The use of forest vegetation management (FVM) is an important component of
39 reforestation programs in the United States Pacific Northwest (PNW). The PNW has a
40 Mediterranean climate and competition between tree seedlings and vegetation can be intense
41 during the annually occurring prolonged summer drought (Newton and Preest 1988; Dinger and
42 Rose 2010). Competition for soil water resources between newly planted tree seedlings and
43 aggressive early-seral plants can create drought conditions that impact tree seedling physiology,
44 growth, and likelihood of mortality. Dinger and Rose (2010) demonstrated that at least one pre-
45 planting fall site preparation (FSP) or post-planting spring release (SR) herbicide application
46 improved Douglas-fir seedling growth, soil moisture levels, and water potential values compared
47 with the controls. Gonzalez-Benecke and Dinger (2018) showed that, for each reduction of 0.01

48 $\text{cm}^3 \text{ cm}^{-3}$ in soil moisture during mid-August, Douglas-fir seedling volume growth was reduced by
49 5.6% in the first growing season, and 7.7% in the second growing season. Additionally, research
50 has shown that these FVM treatments applied during stand establishment can have long-term
51 impacts on the growth and biomass accumulation of Douglas-fir stands (Newton and Preest 1988;
52 Rose et al. 2006; Maguire et al. 2009; Dinger and Rose 2010; Goracke 2010; Flamenco et al. 2019;
53 Wightman et al. 2019). The magnitude of this response, however, often varies with site conditions
54 such as climate, soil type and vegetation community.

55 *Senecio sylvaticus* [L.] (Senecio) is one of the most widespread and aggressive plant
56 colonizers of recently harvested sites in the PNW (West and Chilcote 1968; Dyrness 1973).
57 Senecio is an invasive annual species that was introduced from Eurasia to the U.S. in the 1920s in
58 Humboldt County, California (West and Chilcote 1968). This species has adapted to short term
59 dominance during the early stages of secondary succession and rapidly colonizes forest sites
60 following anthropogenic disturbances such as fire or clearcutting. It has a life history which
61 predisposes it to successfully colonize disturbed sites with ruderal allocation features such as rapid
62 completion of its lifecycle and production of a large wind-vectored seed bank. Senecio can produce
63 190,000 seeds m^{-2} which are generally wind dispersed during the dry period of the year from
64 around July 15th to September 1st (Hanson 1998; West and Chilcote 1968). Senecio has no
65 perennially persistent seed bank, as the population is only maintained by wind-dispersed seeds
66 (Ernst and Nelissen 1979).

67 Many commercially available pre-emergent herbicides do not effectively control Senecio
68 which then rapidly colonizes treated sites where other forms of vegetation have been controlled.
69 For example, in a study conducted by the Vegetation Management Research Cooperative (VMRC)
70 at Oregon State University, plots treated with a FSP herbicide application had 50-60% total

71 vegetation cover the summer after planting, 30-35% of which consisted of Senecio (Wightman et
72 al. 2020). This is a common situation for operational forest lands in the PNW; however, the impacts
73 of Senecio abundance on soil moisture dynamics and planted Douglas-fir seedling performance
74 has not been well documented despite a high potential for growth limitation or seedling mortality.

75 This study was installed by the VMRC in the spring of 2019 to investigate competition
76 dynamics between newly planted Douglas-fir seedlings and Senecio across a range of site
77 conditions. The specific objectives were: 1) evaluate seasonal dynamics of Senecio cover and
78 height across different environments, 2) develop a function to convert Senecio cover and height to
79 biomass, and 3) determine the interactive effect of Senecio presence and site conditions on
80 seasonal soil moisture dynamics and Douglas-fir drought stress.

81

82 **Methods**

83 *Site Selection*

84 Three sites with varying climates and soils across Western Oregon were selected for the
85 study. The study areas were located in newly planted Douglas-fir plantations that had received a
86 FSP treatment. The specific tank mixtures are listed at the end of each of the corresponding site
87 description paragraphs below. Within each site, a 0.3 ha study area was identified and excluded
88 from any further herbicide application. By excluding these areas from any post-planting herbicide
89 treatments, a large amount of Senecio was expected at each site.

90 The first site is situated on a plateau near a steep slope overlooking the town of Sweet
91 Home, OR (SH). This study site is located at 44°22'00.9"N 122°42'29.7"W in the central Cascade
92 Range of Oregon at approximately 320 m above sea level at 109 km from of the Pacific Ocean.
93 The site has an annual mean temperature and total rainfall of 10.8°C and 1170 mm, respectively,

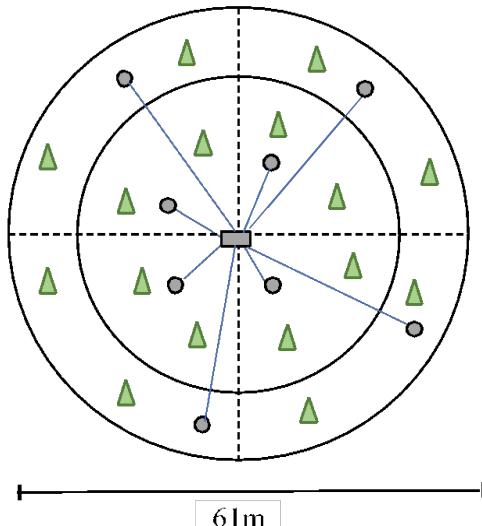
94 and summer mean temperature and total rainfall of 17.8°C and 90 mm, respectively (Wang et al.
95 2012). Soils corresponds to Peavine and Kilchis-Harrington series defined as silty clay loam with
96 stony loam (Soil Survey Staff 2019). Measurements from the upper 20 cm of soil at the site
97 estimated the particle size distribution to be 31% sand, 33% silt, and 36% clay. Observations also
98 indicate that the soil has some areas that contained significant gravel and coarse material. The site
99 was planted in January 2019 with bareroot plug+1 Douglas-fir seedlings (50 cm height). The tank
100 mix used in the FSP herbicide application included 4.66 liters of glyphosate, 1.17 liters of
101 imazapyr, 0.3 liters of Oust Extra and 0.58 liters of MSO per ha. This was applied in September
102 2018.

103 The second site is located on a steep SE facing slope near Burnt Woods, OR (BW). This
104 study site is located at 44°35'14.2"N 123°40'57.0"W in the Oregon Coastal Range and is
105 approximately 410 m above sea level and 35 km from the Pacific Ocean. The site received a
106 broadcast prescribed burn before planting, has an annual mean temperature and total rainfall of
107 10.2°C and 2070 mm, respectively, and summer mean temperature and total rainfall of 16.8°C and
108 84 mm, respectively (Wang et al. 2012). Soils correspond to the Preacher-Bohannon-Slickrock
109 complex defined as a loam weathered from sedimentary rock types, loam from sandstone, and
110 Slickrock gravelly loam (Soil Survey Staff 2019). Measurements from the upper 20 cm of soil at
111 the site estimated the particle size distribution to be 36% sand, 33% silt, and 31% clay. The site
112 was planted in February 2019 with styro 20 containerized Douglas-fir seedlings (30 cm height)
113 and the tank mix used for the FSP herbicide application included 3.51 liters of glyphosate-5.4, 0.58
114 liters of Imazapyr 4SL, 0.22 liters of Oust Extra, and 0.44 liters of Syl-Tac per ha. This was applied
115 in August 2018.

116 The third site is located near Veneta, OR (VN). This study site is located at 43°56'25.3"N
117 123°23'58.3"W in the south-central valley and is approximately 266 m above sea level and is 65
118 km from the Pacific Ocean. It has an annual mean temperature and total rainfall of 11.0°C and
119 1422 mm, respectively, and summer mean temperature and total rainfall of 18.4°C and 54 mm,
120 respectively (Wang et al. 2012). Soils corresponds to Peavine series defined as a silty clay loam
121 (Soil Survey Staff 2019). Measurements from the upper 20 cm of soil at the site estimated the
122 particle size distribution to be 31% sand, 38% silt, and 31% clay. The site was planted in January
123 2019 with bareroot plug+1 Douglas-fir seedlings (50 cm height) and the tank mix used in FSP
124 included 5.26 liters of glyphosate-5.4, 0.3 liters of Oust XP and 0.07 liters of MSM 60 per ha. This
125 was applied in August 2018.

126 *Soil Moisture and Weather*

127 In order to assess soil moisture dynamics associated with varying abundance levels of
128 Senecio, soil volumetric water content (VWC, $\text{cm}^3 \text{cm}^{-3}$) was measured using 30 cm long vertically
129 inserted time-domain reflectometry (TDR) soil moisture sensors (CS650, Campbell Scientific)
130 during the 2019 growing season. At each site, a circular study area of 0.3 ha was identified with
131 uniform terrain and varying abundance of Senecio. The study area was divided into two rings: the
132 inner ring had a radius of 21.5 m and the outer ring had a radius of 30.5 m. Both of these rings
133 were divided into four quadrants, resulting in eight octants of equal area (Figure 1). One TDR
134 probe was installed in each octant at a random azimuth and distance from the central point (Figure
135 1). By randomly selecting the location of the 8 soil moisture probes, we expect our sensor locations
136 represented the range of Senecio covers found across the study area at each of the sites. At the
137 central point of the 0.3 ha circular plot at each site, a weather station and datalogger (CR300,
138 Campbell Scientific) was installed to measure and collect all soil moisture and weather


139 information; all data was recorded at 30-minute intervals. Weather measurements included solar
140 global radiation (CS301, Apogee Instruments), air temperature and relative humidity (HMP60,
141 Vaisala), and rainfall (TE525MM, Texas Electronics). Given an operational spacing of 3 x 3 m,
142 there were about 310 Douglas-fir seedlings per study area at each site.

143 VWC data from the TDR sensors was expressed as fractional available soil water (FASW)
144 by analyzing the upper and lower limits of wetting and drying of the soil throughout the entire
145 study period. Drained upper limits (DUL, $\text{cm}^3 \text{ cm}^{-3}$) and lower limits of water extraction (LL, cm^3
146 cm^{-3}) were determined for each probe and FASW was calculated using the formula proposed by
147 Ritchie (1981):

$$148 \quad \text{FASW} = 1 - \frac{(DUL - VWC)}{(DUL - LL)} \quad (1)$$

149 where FASW is fractional available soil water, DUL is drained upper limit, VWC is volumetric
150 water content, and LL is the lower limit of water extraction.

151 Additionally, measurements of soil VWC were taken adjacent to 16 Douglas-fir seedlings
152 (15 cm from the stem; two measurements per seedling) at each site on each of the water potential
153 measurement dates described below using a handheld TDR soil moisture sensor (HS2, Campbell
154 Scientific; 20 cm probe length) to correlate soil moisture and seedling water potential. Readings
155 from the handheld TDR probe were calibrated with *in situ* gravimetric measurements of volumetric
156 water content using 8 soil cores taken from each site (AMS, bulk density soil sampling kit).

157

158 **Fig. 1** Diagram of sensors deployment in the study area (0.3 ha) at each site. Soil moisture sensors
 159 were deployed in two rings with the same area. The central grey rectangle represents the weather station
 160 with a datalogger. Gray circles represent the soil moisture sensors. Green triangles represent the Douglas-
 161 fir seedlings where soil moisture and water potential were assessed

162 *Senecio and Douglas-fir Xylem Water Potential*

163 Within the circular plot at each site, 16 Douglas-fir seedlings, that were surrounded by
 164 varying amounts of Senecio, were selected for monthly measurements of predawn (Ψ_{PD}) and
 165 midday (Ψ_{MD}) xylem water potential between June and September (Figure 1). Additionally, five
 166 Senecio plants within the study area were randomly selected on each measurement date for Ψ_{PD}
 167 and Ψ_{MD} measurements. Xylem water potential measurements were conducted using a pressure
 168 chamber (Model 600, PMS Instrument Co.) and Ψ_{PD} measurements were taken approximately two
 169 hours before dawn while Ψ_{MD} measurements were taken during solar noon on each measurement
 170 date. For both Ψ_{PD} and Ψ_{MD} measurements, one live branchlet from each seedling was excised with
 171 a razor and put into a foil-laminated zip-lock bag and measurements were taken within 2 minutes
 172 of branchlet excision.

173 Additionally, at each site, for both Douglas-fir and Senecio, we computed water stress
 174 integral (WSI, MPa day) following work by Myers (1988). WSI is the summation of xylem water
 175 potential (Ψ_{PD} or Ψ_{MD}) for each day over the sampling period. We used 4 measurements (June-

176 September) for each site, each with corresponding time-steps as the number of days between
 177 measurements, to calculate WSI using the following formula:

178 $WSI = \sum(\Psi_{i,i+1} - c) \cdot n$ (2)

179 where $\Psi_{i,i+1}$ is the mean Ψ for the interval $i,i+1$; c is the datum value or maximum (least negative)
 180 Ψ measured; and n is the number of days per interval. We computed WSI using both, Ψ_{PD} (WSI_{PD})
 181 and Ψ_{MD} (WSI_{MD}).

182 *Senecio Cover and Biomass Dynamics*

183 Assessments of Senecio cover and height were carried out at every soil moisture probe
 184 location ($n=8$) and sampled tree ($n=16$) at each site every two to three weeks during the growing
 185 season of 2019 (between May and late September). Vegetation cover and height were estimated
 186 visually at each location using a 1x1 m square frame. Cover was defined as the visual obfuscation
 187 of the soil by plant vegetative matter on a 2-dimensional plane; the amount of soil that was covered
 188 was noted as a % of the 1x1 m square frame. If the cover of non-Senecio species was greater than
 189 5% in any vegetation survey area, or the areas surrounding the tree seedlings, that non-Senecio
 190 vegetation was removed by hand. Additionally, at each site, three clip plots with an area of 1 m²
 191 were selected and sampled every two to three weeks during the study period to develop equations
 192 to convert Senecio cover percent and height (% m) to biomass (Mg ha⁻¹). Clip plot locations
 193 represented the range of Senecio abundance found across the study area at each of the three sites.
 194 The cover and height of Senecio in these clip plots was first estimated visually before cutting all
 195 the live above-ground biomass. All Senecio material from each clip plot was put into paper bags
 196 and dried for 72 hours at 65°C before being weighed. A power model was selected to describe the
 197 relationship between Senecio biomass and cover %:

198 $SB = a \cdot (CxH)^b$ (3)

199 where SB is the aboveground biomass (Mg ha^{-1}), C is the cover (%), H is height (cm) of *Senecio*,
 200 and a and b are regression parameters. This model was selected after testing several linear and
 201 non-linear equations.

202 To quantify individual plant allometry, during September 2019, 10 complete *Senecio* and
 203 Douglas-fir individuals at each site were excavated and taken back to the laboratory for
 204 morphology and biomass measurements. Photos were taken of each fresh sample's root system
 205 and used to measure the number of root tips using WinRHIZO image analysis system (WinRHIZO
 206 Pro, Regent Instruments). Measurements were taken of the total stem height (H, cm), the number
 207 of root tips larger than 1 mm (NTips), longest vertical root length (VRL, cm), and two horizontal
 208 root lengths (HRL, cm). The HRL included the longest horizontal root length and the longest
 209 horizontal root on the opposite side of the root system. The root volume (RV, cm^3) of each
 210 individual was also measured using the water displacement method (Harrington et al., 1994). After
 211 these initial measurements, all plants were oven-dried at 65°C for 72 hours and weighed to get
 212 aboveground (AGB, g) and belowground (BGB, g) dry mass. Using HRL data, the area of
 213 influence for root absorption (AI, cm^2) was estimated for each sampled Douglas-fir and *Senecio*
 214 plant using the following equation:

$$215 \quad \text{AI} = \pi \cdot \left(\frac{HRL}{2} \right)^2 \quad (4)$$

216 where AI is the area of influence for root absorption (cm^2) and HRL is the horizontal root length
 217 (cm).

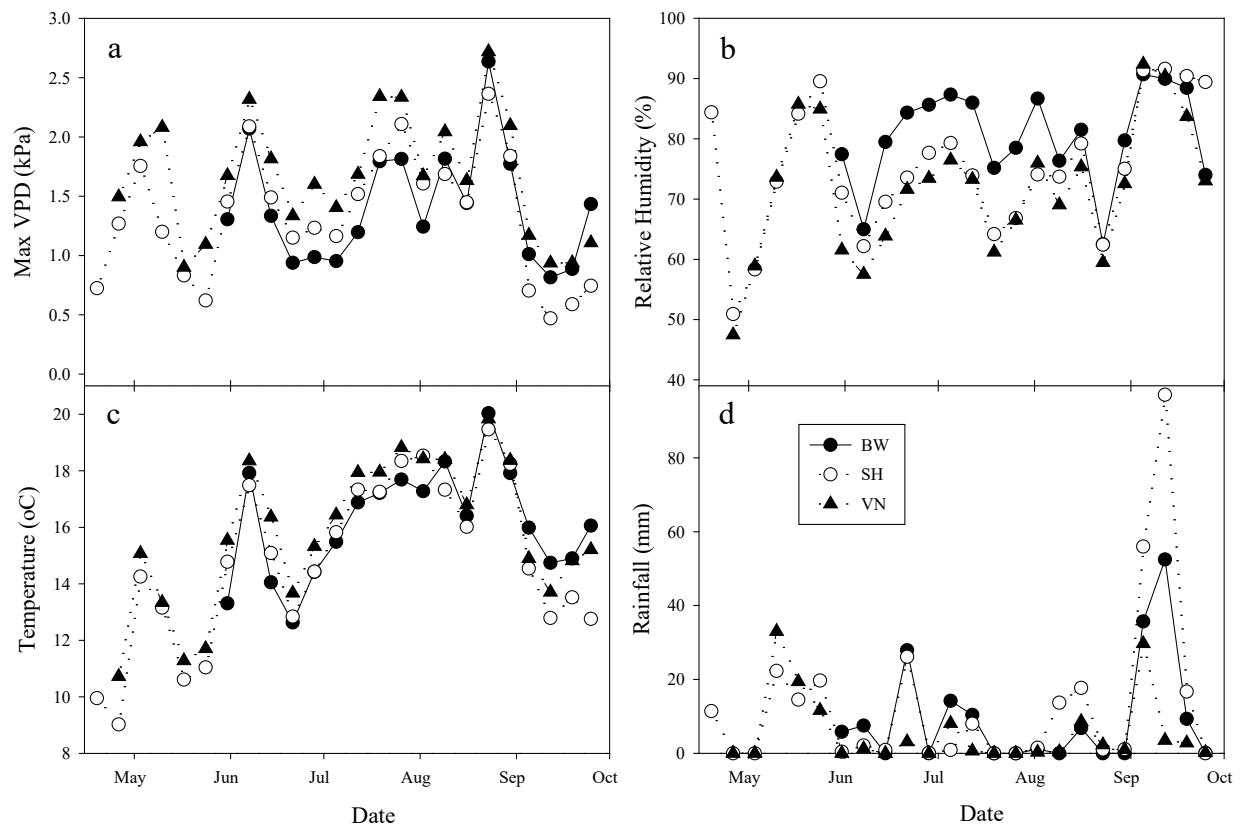
218 *Soil Water Depletion by Senecio*

219 VWC data from TDR sensors was transformed to soil water content (SWC, mm) using the
 220 inference length of the TDR sensors (i.e. 30 cm); it is assumed that changes in SWC can be used
 221 as a proxy of the water depletion by *Senecio* growing in the sensor's inference area. At each site,

222 for each soil moisture measurement point, daily changes in SWC (or soil water depletion by
223 Senecio) was calculated as the reduction in SWC from one day to the next. We excluded days with
224 more than 0.1 mm rain, and the following day. Senecio data (cover % and height measured every
225 two to three weeks) was estimated for each day at each sampling point using linear interpolation
226 between measurement dates and was then merged with soil water and climate data.

227 *Statistical Analysis*

228 Model development and statistical tests were performed using SAS version 9.4 (PROC
229 GLM and PROC NLIN). Several models (linear and non-linear) were tested to correlate Senecio
230 cover x height with other response variables: Linear models were used to correlate Senecio cover
231 x height with cumulative soil water depletion and Douglas-fir Ψ_{PD} . Non-linear model fitting was
232 used to estimate Senecio biomass from cover x height. Linear regression was also used to calibrate
233 handheld TDR VWC readings with values from the soil cores. Two-Way Analysis of Variance
234 (ANOVA) with Tukey Post-Hoc tests were used to determine the effect of species, site, and the
235 interaction of species by site on Douglas-fir and Senecio Ψ_{PD} , Ψ_{MD} , morphology, and biomass.
236 Repeated measures analysis was used to analyze time series data. Several covariance structures
237 were tested for the time series analysis and the variance component structure was selected as it
238 showed the lowest Bayesian information criterion (Littell et al. 1996). All significance tests used
239 $\alpha = 0.05$. SigmaPlot version 14 (Systat Software, Inc.) was used to make all figures.

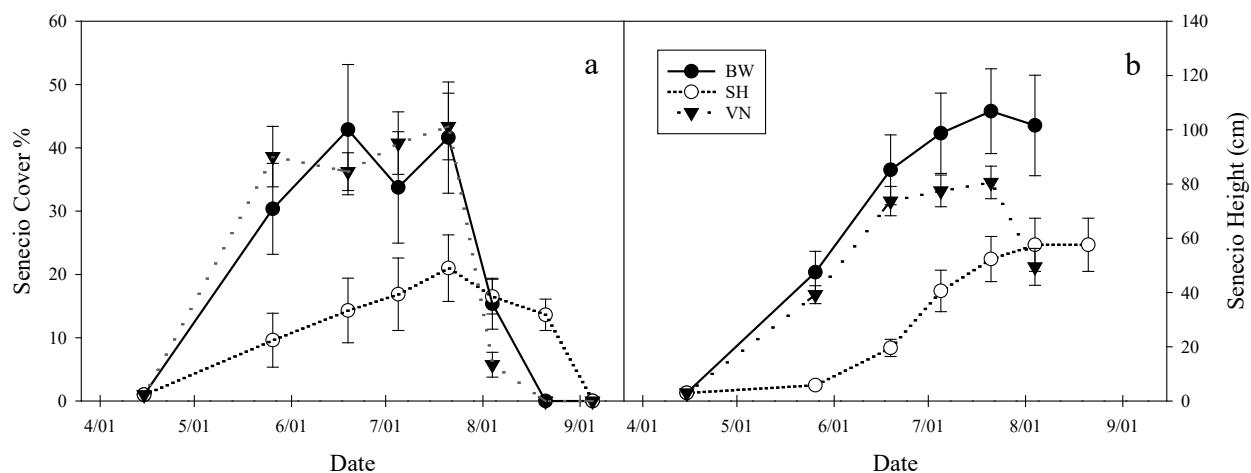

240

241 **Results**

242 *Weather Conditions*

243 Weather variables differed among the sites from April to late September (weekly mean
244 values are shown in Figure 2). The VN site had the highest VPD and temperature and lowest

245 relative humidity and rainfall, with little-to-no rain from the first of June until the beginning of
 246 September. The SH and BW sites had more precipitation events than the VN site, especially in
 247 June which recharged soil moisture and helped to reduce the length and intensity of the seasonal
 248 drought. Over the shared measurement period (5/31- 9/27), the VN site had 62 mm of rain, while
 249 the SH and BW sites had 227 mm and 171 mm of rainfall, respectively (Figure 2d). The mean RH
 250 was 72, 75 and 81% for the VN, SH and BW sites, respectively (Figure 2b). The mean growing
 251 season temperature for VN, SH and BW sites was 16.8, 16.1, and 16.2 °C, respectively (Figure
 252 2c).
 253

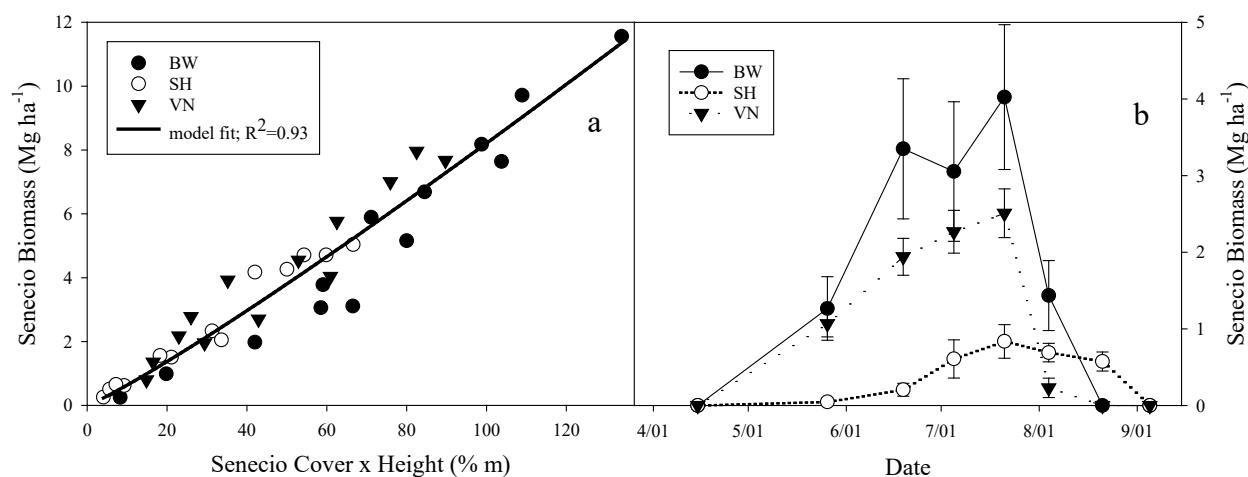


254 **Fig. 2** Weekly: a) mean maximum daily VPD, b) mean daily relative humidity, c) mean daily air
 255 temperature and d) total rainfall, for the BW (filled circle), SH (open circle) and VN (filled triangle) sites

256 *Seasonal Dynamics of Senecio Cover and Height*

257 Within a 1 m² area, trees had lower average amounts of Senecio than soil moisture probes

258 (data not shown). This is likely due to the presence of the planted Douglas-fir seedlings. Therefore,
 259 because of the Douglas-fir seedling presence influencing *Senecio* dynamics, results for seasonal
 260 vegetation dynamics are only presented for the probe centered surveys. At the start of the study,
 261 there was little-to-no *Senecio* at the sites. *Senecio* florets were only a few centimeters wide and
 262 tall by late April; however, as the growing season progressed, these florets grew rapidly achieving
 263 heights of over 100 cm in July at the BW site (Figure 3).


264 **Fig. 3** Seasonal dynamics of: a) cover (%) and b) height (cm) for *Senecio* growing at the BW (filled
 265 circle), SH (open circle) and VN (filled triangle) sites. Error bars represent standard error. Measurements
 266 were centered on soil moisture probes (n=8)

267 There was a significant site by measurement date interaction for *Senecio* cover ($P=0.003$)
 268 indicating that the growth dynamics of *Senecio* during the 2019 growing season were different
 269 across the sites (Figure 3a). *Senecio* cover at BW and VN did not differ at any date ($P>0.216$) and
 270 increased rapidly reaching maximum values of 43% cover in mid-June. This cover was maintained
 271 until mid-July after which senescence decreased the average cover to 15.4% at BW and 5.8% at
 272 VN by early August. The development of *Senecio* cover at the SH site was slower than the other
 273 sites with values of cover steadily increasing and not reaching the maximum average of 21% cover
 274 until mid-July (Figure 3a). *Senecio* cover was lower at SH than the other sites from late-May to
 275 mid-July ($P=0.031$); however, senescence also began to occur at SH after Mid-July resulting in no

276 significant difference among the sites in Senecio cover in August ($P=0.167$). There was a
 277 marginally significant site by measurement date interaction for Senecio height ($P=0.056$)
 278 indicating differences in height development among the sites (Figure 3b). Senecio height at BW
 279 and VN increased over time until mid-July after which height decreased due to senescence. At SH
 280 Senecio height increased over time and did not reach maximum values until August. Senecio
 281 height did not decrease at SH, showing no evidence of senescence. Maximum height of Senecio
 282 differed among the sites ($P=0.007$), averaging 107, 58 and 81 cm, for BW, SH and VN sites,
 283 respectively.

284 *Senecio Aboveground Biomass per Unit Ground Area*

285 There was a strong relationship ($P<0.001$, $R^2=0.93$) between Cover x Height (CxH, % m)
 286 and aboveground biomass (AGB-SESY, $Mg\ ha^{-1}$) of Senecio, which was shared across sites using
 287 the following function: $AGB\text{-SESY} = 0.0495 \cdot (CxH)^{1.110}$ (Figure 4a). Using the function presented
 288 in Figure 4a and data presented in Figure 3 we were able to calculate the seasonal dynamics of
 289 Senecio aboveground biomass at the sites (Figure 4b). Senecio aboveground biomass dynamics
 290 followed a similar trend to that of Senecio cover.

292 **Fig. 4** a) relationship between cover x height (% m) and aboveground biomass ($Mg\ ha^{-1}$) and b)
293 seasonal dynamics of aboveground biomass ($Mg\ ha^{-1}$) for *Senecio* growing at the BW (filled circle), SH
294 (open circle) and VN (filled triangle) sites. Error bars represent standard error.

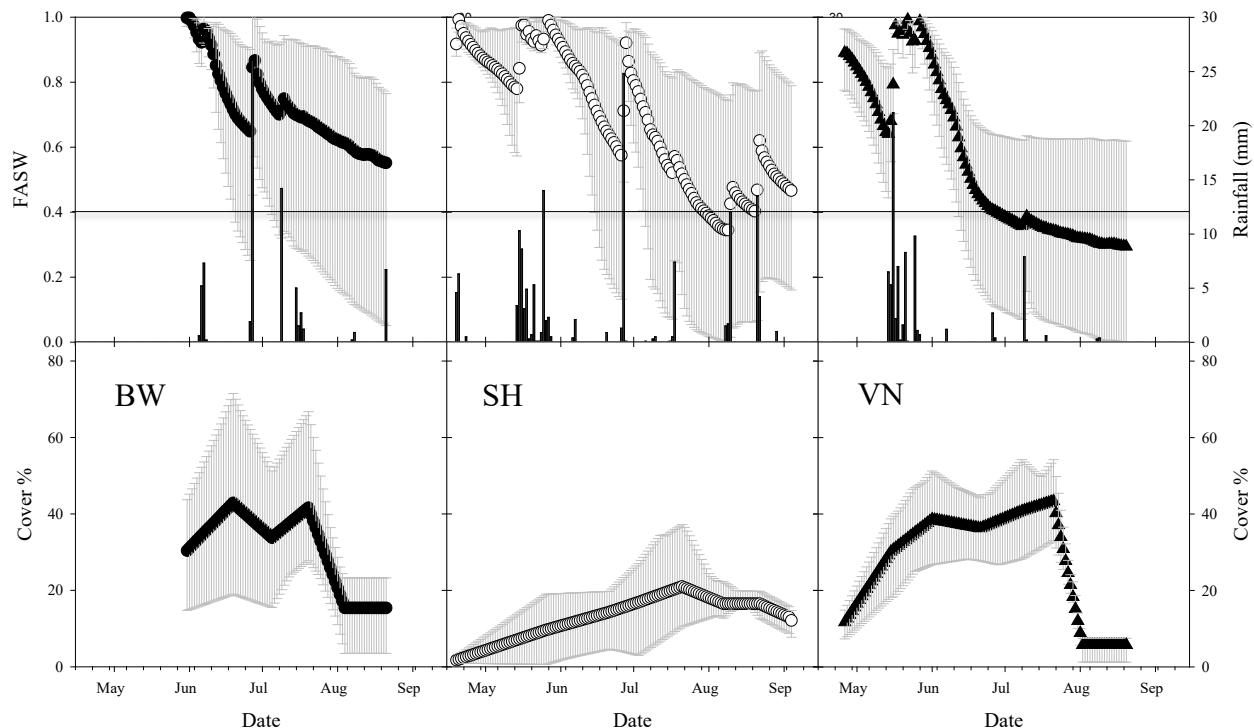
295 *Senecio and Douglas-fir Biomass and Root Architecture*

296 Table 1 provides mean values and P-values from a two-way ANOVA for biomass and root
297 architecture measured for Douglas-fir and *Senecio* at the three study sites. There were significant
298 interactions between species and site for BGB and shoot:root ratio ($P=0.002$ and 0.031 ,
299 respectively), implying that the species responded differently to the site conditions for these
300 variables. There were also differences between sites within species; for example, Douglas-fir
301 seedlings growing at the SH site had two times more BGB than those growing at the BW site
302 ($P<0.001$), likely due to differences in stock type. BGB of *Senecio* plants was not different across
303 sites ($P=0.370$). *Senecio* shoot:root ratio was the highest at BW and this difference was significant
304 when compared to VN ($P=0.009$), and nearly so when compared to SH ($P=0.087$). However, for
305 Douglas-fir, the shoot:root ratio did not significantly differ across sites. There were also significant
306 differences in Ntips (>1 mm) between species ($P=0.020$).

307 *Senecio* had significantly higher root volume than Douglas-fir ($P=0.004$); *Senecio* had an
308 average of $30.3\ cm^3$, while Douglas-fir had an average of $15.2\ cm^3$. However, Douglas-fir had a
309 much higher average root biomass of $21.5\ g$, while *Senecio* average root biomass was $5.9\ g$
310 (Table 1). It is worth noting that although Douglas-fir had more BGB, the RHL was significantly
311 lower than that of *Senecio* ($P<0.001$; Table 1). The average RHL of Douglas-fir was $14.6\ cm$ and
312 *Senecio* average RHL was $29.3\ cm$ ($P<0.001$, Table 1). On the other hand, RVL was not
313 significantly different across species or sites ($P=0.780$, Table 1) averaging 25.1 and $24.5\ cm$ for
314 Douglas-fir and *Senecio*, respectively.

315

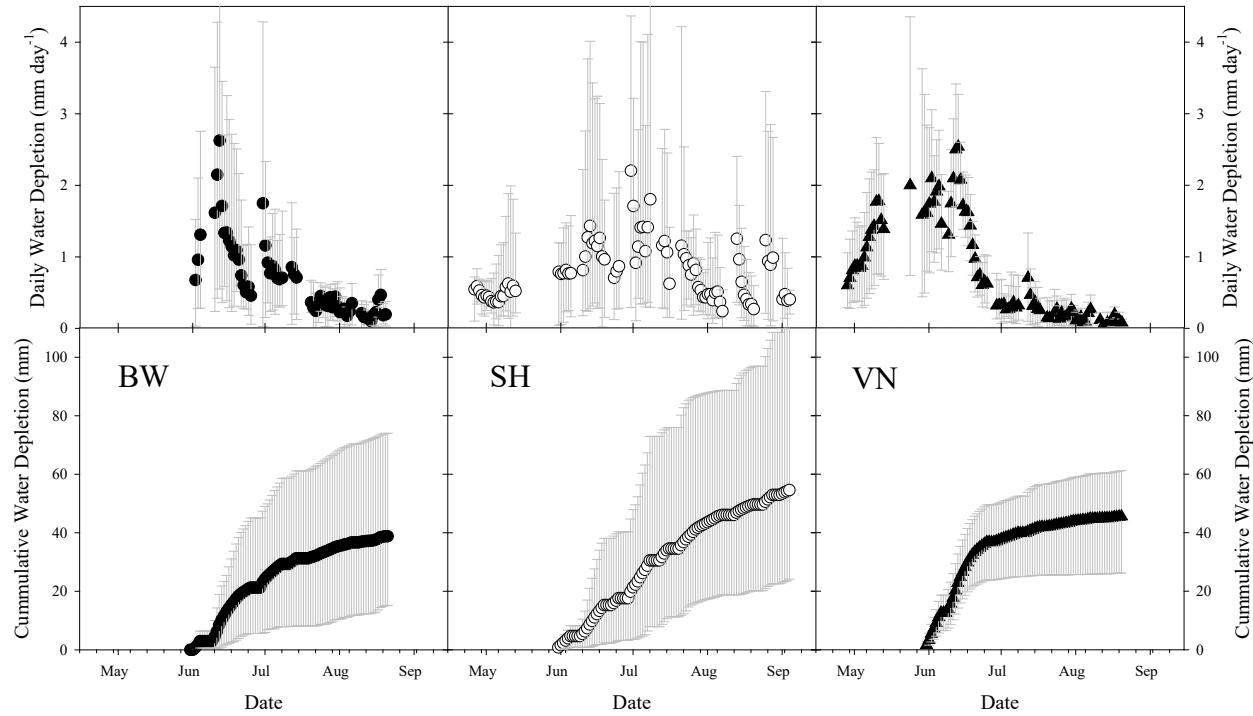
316 **Table 1** Mean values \pm standard error of aboveground biomass (AGB, g), belowground biomass (BGB, g),
 317 shoot to root ratio (shoot:root, g g $^{-1}$), number of root tips larger than 1 mm (NTips), root volume (RV, cm 3),
 318 root horizontal length (RHL, cm), root vertical length (RVL, cm) and area of influence for water extraction
 319 (AI, cm 2) for Douglas-fir seedlings and individual Senecio plants growing at the BW, SH and VN sites in
 320 Western Oregon. Summary of ANOVA P-values for the main effects of site, species, and their interaction
 321 is also provided for each variable.


Species	Site	AGB g	BGB g	shoot:root g g $^{-1}$	NTips	RV cm 3	RHL cm	RVL cm	AI cm 2
Douglas-fir	BW	19.9 \pm 2.2	14.9 \pm 2.2	1.5 \pm 0.2	28.2 \pm 2.1	16.1 \pm 2.6	11.9 \pm 1.6	29.2 \pm 1.4	241.7 \pm
	SH	46.9 \pm 5.5	31 \pm 3.0	1.6 \pm 0.1	40.5 \pm 4.2	16.2 \pm 3.3	19.4 \pm 2.1	24.2 \pm 1.8	512.2 \pm
	VN	27.9 \pm 3.1	18.5 \pm 2.0	1.5 \pm 0.1	30.1 \pm 3.4	13.4 \pm 2.8	12.6 \pm 1.7	21.8 \pm 1.4	268.7 \pm
Senecio	BW	52.6 \pm 14.3	4.1 \pm 1.1	12.4 \pm 1.4	13.1 \pm 2.0	25.3 \pm 6.4	29.4 \pm 4.9	24.15 \pm 3.4	620.8 \pm
	SH	51.3 \pm 12.0	6.0 \pm 1.7	10.6 \pm 1.4	9.9 \pm 1.8	30.5 \pm 6.4	28 \pm 4.6	21.7 \pm 2.4	774.9 \pm
	VN	53.6 \pm 10.8	7.5 \pm 1.5	7.7 \pm 0.9	10.1 \pm 2.1	35.0 \pm 6.1	30.6 \pm 3.7	27.7 \pm 3.4	639.9 \pm
ANOVA P>F*	Factor								
	Site	0.371	<0.001	0.030	0.716	0.760	0.653	0.320	0.97
	Species	0.008	<0.001	<0.001	0.004	<0.001	<0.001	0.784	<0.001
	Site*Species	0.285	0.002	0.031	0.066	0.449	0.299	0.073	0.75

322 Overall, Senecio across all sites had approximately 2 times the root area of influence per
 323 individual plant compared to Douglas-fir (P<0.001, Table 1). The average area of influence for
 324 Douglas-fir roots was 341 cm 2 , which makes it 2 times smaller than Senecio's average root area
 325 of influence of 679 cm 2 .

326 *Soil Water Dynamics*

327 There was a consistent pattern across the sites where FASW values were reduced as the
 328 magnitude of Senecio abundance increased (Figure 5). At each site during the beginning of the
 329 growing season, maximum values of FASW (when VWC is equal to DUL) were achieved, but
 330 values of FASW quickly separated as the dry season progressed with probes surrounded by higher
 331 levels of Senecio having faster reduction in FASW (Figure 5). This effect was most pronounced
 332 at the dry site (VN) which indicates the interactive effect of Senecio and environmental conditions
 333 on FASW.

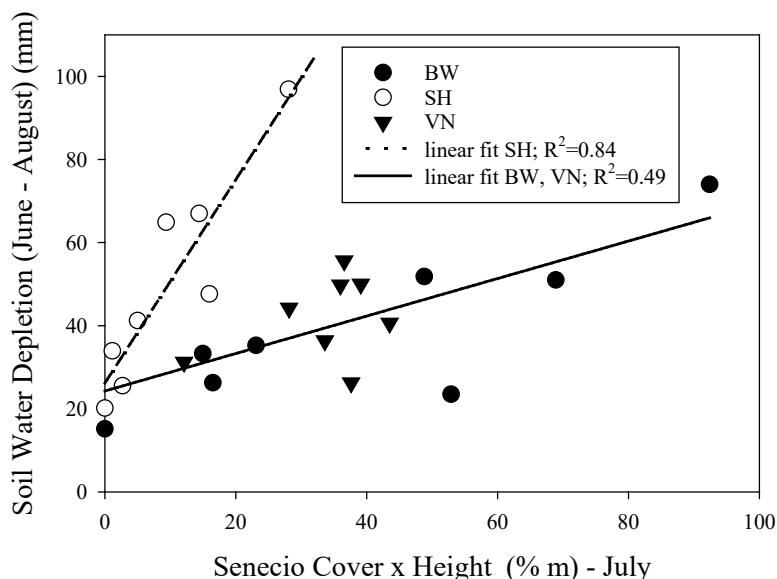

334

335 **Fig. 5** Seasonal dynamics of soil moisture (expressed as fractional available soil water of 0-30 cm
 336 soil depth, FASW; upper panel) and *Senecio* abundance (expressed as cover %; lower panel) at the BW
 337 (left, filled circle), SH (center, open circle) and VN (right, filled triangle) sites. Error bars represent the
 338 range of maximum and minimum observed values. On the top panels, bars depict daily rainfall (mm)

339 Independent of site, at some point during the growing season FASW was reduced to 0 in
 340 areas with high abundance of *Senecio* (Figure 5). Furthermore, each site had probes that were at
 341 or lower than 0.4 FASW during the summer from July until the end of the measurement period.
 342 The driest site (VN), was consistently below 0.4 FASW from July 1st until the end of the
 343 measurement period (Figure 5). The probe with the highest % *Senecio* cover at VN was below
 344 20% FASW from 6/14 to the end of the growing season. This extended the drought period by about
 345 a month compared to the other sites, both of which did not drop below 20% FASW in areas of
 346 high *Senecio* cover until the middle of July (SH: 7/7; BW: 7/10). Rainfall events also recharged
 347 FASW multiple times over the drought period at the BW and SH sites (Figures 2 and 5) and is the
 348 main reason the soil moisture at these sites did not reach low values of FASW for as long as the

349 VN site did.

350

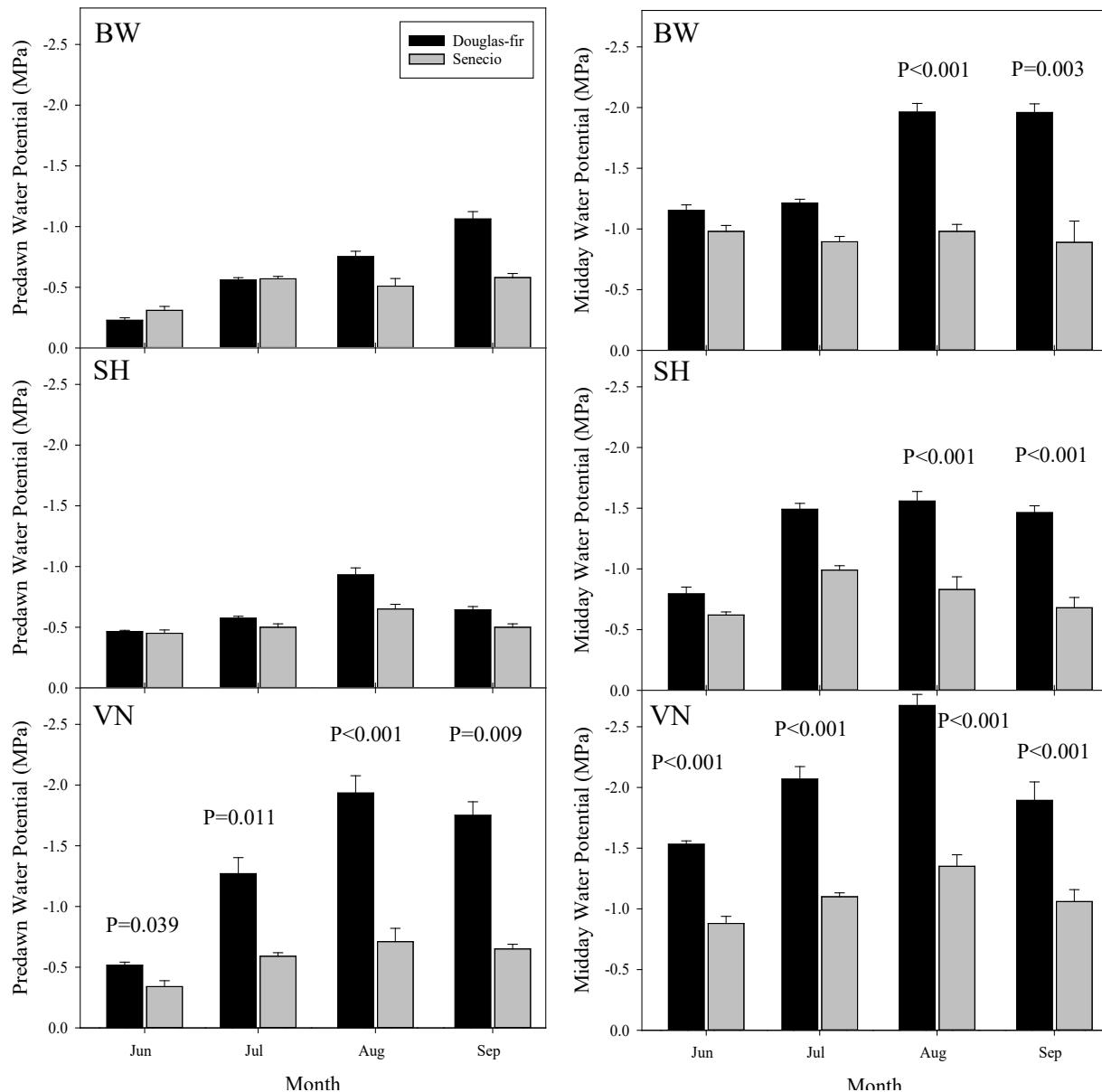

351 **Fig. 6** Seasonal dynamics of daily water depletion (mm day^{-1}) and cumulative water depletion (mm)
 352 of the top 30 cm of soil at the BW (left, filled circle), SH (center, open circle) and VN (right, filled triangle)
 353 sites. Error bars represent the range of maximum and minimum observed values

354 Figure 6 illustrates the different amounts of cumulative water depletion of the top 30 cm
 355 of soil at each site as a result of *Senecio*'s presence. There was an interactive effect of time (day
 356 of the year) and site on cumulative water depletion ($P<0.001$), meaning that the water use of
 357 *Senecio* was different across sites at different dates during the growing season. This analysis was
 358 conducted with data between 6/1 and 8/22 as all *Senecio* had senesced at the VN and BW sites by
 359 8/22. At SH, there was still a large living *Senecio* population into September.

360 Cumulative water depletion was greater at VN than at SH from 6/14 through 7/3 ($P<0.042$)
 361 and VN was greater than BW from 6/17 through 6/30. There were no other significant differences
 362 among the sites in cumulative soil water depletion between 6/1 and 8/22, but *Senecio* at SH
 363 survived later into the growing season and continued to deplete soil water through the last

364 measurement on 09/04. This resulted in a steadier and prolonged reduction in soil water at SH than
 365 the other sites. In contrast, the effect of *Senecio* senescence in July at VN and BW sites resulted
 366 in a reduction in the rate of soil water depletion during July which persisted through August (Figure
 367 6). Across all soil moisture measurement points, the average total soil water depletion was 46, 55
 368 and 38 mm at the VN, SH and BW sites, respectively. The number of days of effective data
 369 recorded was 64, 60 and 46 days, giving an average water depletion of 0.7, 0.9 and 1.3 mm day⁻¹
 370 on days without rainfall at the VN, SH and BW sites, respectively. During the period of peak
 371 *Senecio* abundance (6/3-6/22) soil water depletion rates were higher averaging 1.6, 1.0 and 1.3 mm
 372 day⁻¹ for the VN, SH and BW sites, respectively. At this time, the average *Senecio* cover was 37,
 373 13 and 36% at the VN, SH and BW sites, respectively.

374 Figure 7 shows the relationship between peak *Senecio* abundance in July and cumulative
 375 soil water depletion between 6/1 and 8/30. In general, higher soil water depletion was observed in
 376 areas with higher *Senecio* abundance. This relationship differed across sites ($P<0.001$) such that
 377 the effect of *Senecio* cover on soil water depletion was much more dramatic at SH than at BW and
 378 VN which did not differ.



380 **Fig. 7** Relationship between *Senecio* cover by height (% m, measured in July), and cumulative
381 soil water depletion (mm, from June 1 to August 30), at the BW (filled circle), SH (open circle) and VN
382 (filled triangle) sites

383 *Senecio and Douglas-fir Xylem Water Potential*

384 Seasonal variation in xylem water potential is shown in Figure 8 (from 06/01 to 09/05).

385 There was an interactive effect of time (month) and site on Ψ_{PD} ($P=0.026$) and Ψ_{MD} ($P=0.071$)
386 across species, meaning that the water status was different between Douglas-fir and *Senecio* for
387 the different sites at different dates during the growing season. For example, at the BW and SH
388 sites there were no significant differences in Ψ_{PD} between species at any time during the growing
389 season, but at the VN site during late summer (August and September) there were significant
390 differences, with Douglas-fir seedlings having lower Ψ_{PD} than *Senecio* ($P<0.001$ and $P=0.009$,
391 respectively). There were differences between species Ψ_{MD} at all the sites and this effect was
392 strongest at the end of the summer. The BW and SH sites showed significant differences in Ψ_{MD}
393 between species for August and September ($P<0.003$), but not for Ψ_{PD} . It is interesting to note
394 that at the VN site, the species significantly differed for every single measurement date
395 ($P<0.001$).

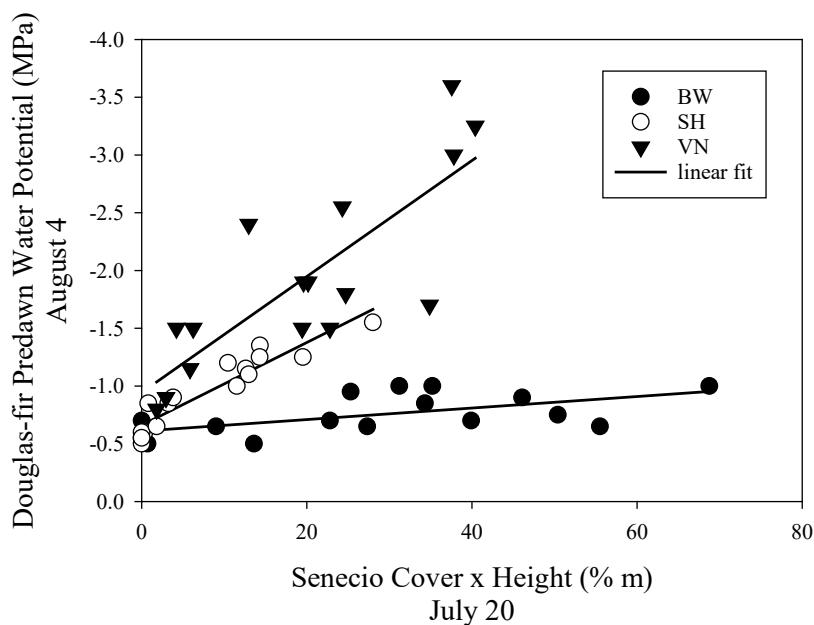
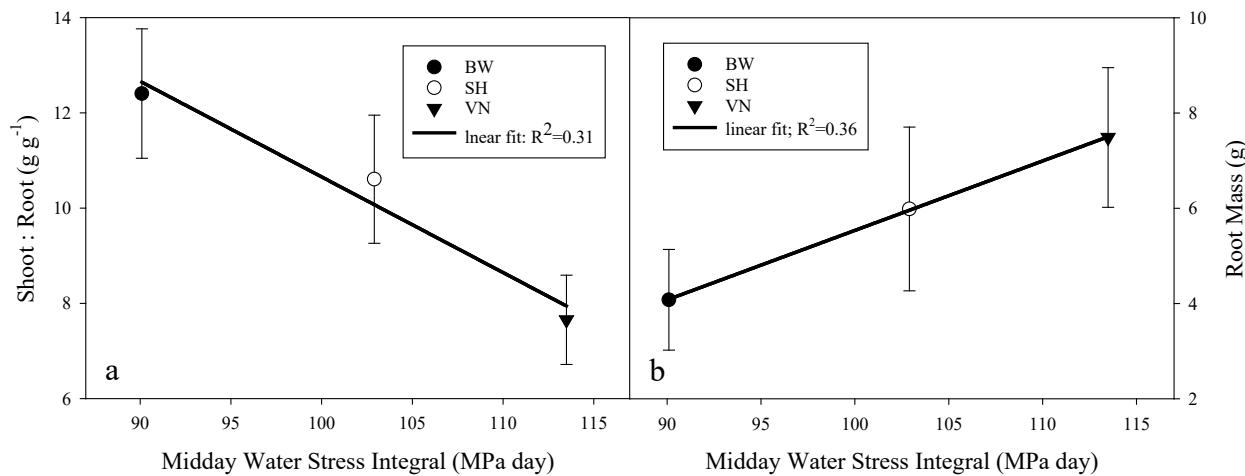

396
397
398
399
400

Fig. 8 Predawn (left) and midday (right) xylem water potential of Douglas-fir (black bar) and Senecio (grey bar) growing at the BW (upper panel), SH (middle panel) and VN (lower panel) sites. Error bars represent standard error. P-values for significant differences between species are shown on top of each pair of columns

401
402
403
404

There was a strong relationship between Senecio abundance and Douglas-fir water stress, and that relationship was different across sites (Figure 9). For the VN site for every increase of 10 CxH (% m) of Senecio, Douglas-fir Ψ_{PD} decreased by 0.5 MPa ($P<0.001$; $R^2 = 0.66$; Figure 9). At the SH site, for every increase of 10 CxH (% m) of Senecio, Douglas-fir Ψ_{PD} decreased by 0.35

405 MPa ($P<0.001$; $R^2 = 0.88$; Figure 9). On the other hand, at the BW site, the relationship was weak,
 406 showing for every increase of 10 CxH (% m) of Senecio, Douglas-fir Ψ_{PD} decreased by 0.05 MPa
 407 ($P=0.017$; $R^2 = 0.34$; Figure 9). In sites such as VN, which experienced limited rainfall during the
 408 growing season, having 30% cover of 1 m tall Senecio will result in the Douglas-fir seedlings
 409 having Ψ_{PD} of -2.4 MPa.



410

411 **Fig. 9** Relationship between Cover x Height (% m) of Senecio in July and Predawn Water Potential
 412 (MPa) of Douglas-fir seedlings in August at BW (filled circle), SH (open circle) and VN (filled triangle)
 413 sites

414 There was a significant interaction between species and site for WSI_{PD} at the end of the
 415 evaluation period ($P<0.001$). Douglas-fir seedlings growing at the VN site had a WSI_{PD} 2.4 times
 416 larger than seedlings growing at the BW and SH sites (140 vs. 57 and 58 MPa day, respectively),
 417 while Senecio WSI_{PD} was not affected by site. There was, however, a strong relationship between
 418 WSI_{MD} measured at the end of the growing season and the shoot:root ratio and root mass of Senecio
 419 across the three study sites (Figure 10). These results indicate that as the cumulative seasonal water
 420 stress (WSI_{MD}) increased, Senecio shoot:root ratio decreased and root mass increased. This

421 response was not seen for Douglas-fir which had similar shoot:root across sites: 1.62 for SH, 1.51
 422 for VN, and 1.51 for BW (Table 1).

423

424 **Fig. 10** Relationship between midday water stress integral (WSI_{MD}, MPa day) a) and shoot to root
 425 ratio (g g⁻¹) and b) root mass (g) at the end of the growing season for Senecio plants growing at the BW
 426 (filled circle), SH (open circle) and VN (filled triangle) sites

427

428 Discussion

429 This study demonstrated that growth and competition dynamics of Senecio varies across
 430 sites in the United States PNW and that Senecio presence can reduce soil water availability and
 431 increase water stress of newly planted Douglas-fir seedlings. The weather conditions at the three
 432 sites varied such that the summer drought was more intense at the VN site than the BW and SH
 433 sites as reflected in lower rainfall and higher VPD (Figure 2). The SH site had higher rainfall than
 434 the other sites, especially during August. These differences in weather produced differences in
 435 Senecio growth dynamics with BW and VN having a seasonal pattern of Senecio abundance that
 436 can be described as undergoing rapid early growth plateauing early in the summer followed by
 437 rapid senescence in late July (Figure 3). In contrast, growth dynamics at the SH site showed a
 438 slower Senecio colonization rate with values of cover and height gradually increasing throughout
 439 the growing season followed by the germination of a second cohort of Senecio in August. This

440 plasticity of *Senecio* allows it to grow well on sites with varying climates and soils and is one of
441 the features that makes it such a strong competitor throughout the region (West and Chilcote 1968;
442 Hanson 1998).

443 The *Senecio* biomass function developed in this paper used the simple inputs of cover and
444 height to predict *Senecio* aboveground biomass. Interestingly, this function was shared across all
445 three sites despite differences in the seasonal dynamics and abundance of *Senecio*. Using this
446 function we calculated seasonal biomass dynamics with peak values in mid-July averaging 3.8,
447 1.0 and 2.9 Mg ha⁻¹ for the BW, SH, and VN sites, respectively. A different study conducted by
448 the VMRC reported that forb biomass averaged 1.1 and 1.4 Mg ha⁻¹ in areas without herbicide
449 application during the first two years following timber harvest at two sites in Western Oregon
450 (Guevara et al. 2021). When other growth habits were included, they reported total vegetation
451 biomass averaged 4.3 and 5.2 Mg ha⁻¹. Considering that our study sites received a FSP herbicide
452 application, the levels of biomass at the BW and VN sites are high. This reflects *Senecio*'s ability
453 to rapidly occupy a site, often growing at a density of 22 individuals per m² (Dinger 2012).

454 The seasonal pattern of *Senecio* water use, reflected in soil water depletion, differed among
455 sites due to differences in weather and *Senecio* growth dynamics (Figures 2, 3, 5 and 6). The rate
456 of soil water depletion at the VN site early in the growing season was much higher than the SH or
457 BW sites even though the BW site had similar *Senecio* cover. This difference can be explained by
458 the higher evaporative demand at the VN site which had an average VPD that was 29% higher
459 than BW during June (Figure 2). The VN site also only had 4.3 mm of rainfall during June
460 compared to 41.2 mm at BW. Soil water depletion leveled off at the VN and BW sites around mid-
461 July as *Senecio* senesced. This seasonal pattern of soil water depletion was contrasted by the SH
462 site which showed similar rates of water depletion as the BW site early in the growing season but

463 did not demonstrate the same leveling off during mid-summer. This is likely due to weather
464 conditions at SH allowing for a longer *Senecio* lifespan and second flush of *Senecio* during late
465 summer.

466 There was a strong relationship between the amount of *Senecio* and the reduction in soil
467 moisture (Figures 5 and 7). This result is not surprising as the water use of vegetation has been
468 demonstrated to be directly correlated to vegetation cover, and, therefore, leaf area (Hoff et al.
469 2003; Netzer et al. 2009; Palmer et al. 2010; Thriplleton et al. 2018). Figure 7 illustrates this point,
470 but the slope of the relationship differed among sites with SH having a steeper slope than BW and
471 VN. This difference in the relationship between *Senecio* cover and water use is likely due to the
472 longer lifespan and second flush of *Senecio* at the SH increasing cumulative soil water depletion
473 (Figure 6).

474 Average *Senecio* water use during the peak of *Senecio* abundance (6/3 to 6/22) ranged from
475 1.0 mm day⁻¹ at BW to 1.63 mm day⁻¹ at VN. This rate of water use is within the range of average
476 transpiration rate of invasive annual and native perennial species in California, with values of 0.84
477 mm day⁻¹ and 0.81 mm day⁻¹, respectively (Everard et al. 2010). Everard et al. (2010) found that
478 the maximum transpiration rate was 2.6 mm day⁻¹ for invasive annuals and 0.81 mm day⁻¹ for native
479 perennials. Our maximum daily transpiration rate for *Senecio* was seen at BW with a value of 2.67
480 mm day⁻¹ (Figure 5). These results demonstrate that *Senecio* is highly competitive for soil water
481 with transpiration rates near the maximum values reported for other herbaceous species.

482 The impact of *Senecio* water use on the drought stress of Douglas-fir seedlings varied
483 across sites and time. For instance, Douglas-fir seedlings at VN had a WSI_{pd} approximately 2.4
484 times higher than the other sites. Douglas-fir Ψ_{MD} was also below -2.0 MPa for much of the
485 growing season at VN which can have negative consequences on seedling performance and growth

486 as Douglas-fir has been shown to start closing stomata at -1.0 MPa and completely close stomata
487 at -2.0 MPa (Lassoie 1982). Domec et al. (2004) reported that below a threshold Ψ_{MD} of -1.7 MPa,
488 a sharp increase in root embolism was associated with stomatal closing for Douglas-fir trees and
489 that Douglas-fir roots can lose over 60% of maximum hydraulic conductance at a xylem water
490 potential of -2.0 MPa. Shainsky and Radosevich (1992), reported that stem growth of Douglas-fir
491 seedlings stopped at a Ψ_{PD} of -1.6 MPa. The Ψ_{PD} of Douglas-fir at the VN site averaged -1.3 MPa
492 at the start of July and -1.9 MPa at the start of August. These results demonstrate that the rapid
493 depletion of soil water by Senecio at the VN site produced intense drought stress on the Douglas-
494 fir seedlings. The impact of Senecio on Douglas-fir drought stress was less pronounced at the BW
495 and SH sites where seedling Ψ_{PD} averaged near or below -1.0 MPa throughout the entire growing
496 season. This is likely due to the higher rainfall and lower evaporative demand at these sites
497 increasing soil water availability. For example, FASW never averaged less than 0.55 at BW while
498 this value was reached at the VN site by mid-June and continued to drop to 0.39 by the end of June
499 (Figure 5). The BW site was the most costal site, had the highest RH, and experienced frequent
500 fog events which may help explain the contrasting FASW dynamics at BW and VN despite having
501 similar amounts of Senecio.

502 The seasonal pattern of Ψ_{PD} and Ψ_{MD} differed between Senecio and Douglas-fir reflecting
503 their different life histories. While Douglas-fir water potential tended to decrease throughout the
504 growing season, Senecio Ψ_{PD} and Ψ_{MD} remained relatively stable (Figure 8). This was particularly
505 apparent at the dry VN site where Senecio Ψ_{PD} and Ψ_{MD} were stable, and less than that of Douglas-
506 fir on all measurement dates. This difference between species is almost certainly due to differences
507 in root architecture. The Douglas-fir seedlings in this study were grown in a nursery (containerized
508 and bareroot) and planted at the sites the winter prior to study installation and therefore began with

509 dense roots inserted into the planting hole. In contrast to this, *Senecio* developed from seed and
510 produced root systems with a distinct pattern of horizontal development, increasing the exploitative
511 efficiency of the root system. As Turner and Kramer (1980) noted, emphasis on root area over root
512 density is key for increasing access to water in dry soils, as the total exploitable area vastly
513 increases with the former allocation. *Senecio* showed this by having an average area of influence
514 2 times larger than that of Douglas-fir despite there being no differences between the species in
515 mean root vertical length (Table 1). Our study areas represent operational plantations and although
516 the BW site was planted with smaller containerized seedlings compared to the larger bareroot
517 seedlings at the other sites, we believe this difference in seedling morphology did not have a
518 significant effect on seedling physiology although further research is needed in this area.

519 *Senecio* not only produced more far-reaching root systems but was also more responsive
520 to environmental conditions. The reported relationship between *Senecio* WSI_{md} and shoot:root
521 demonstrates that *Senecio* allocated proportionally more resources to root development as drought
522 stress increased, while Douglas-fir shoot:root was unaffected by WSI_{md} (Figure 10). Changes in
523 plant biomass allocation in response to drought has been reported by others (Newton and Preest
524 1988; Chan et al. 2003). For instance, Eziz et al. (2017) conducted a meta-analysis on plant
525 biomass allocation with data from 164 published papers and reported an average increase in root
526 mass fraction of 9% in response to drought. In this study, *Senecio* root mass fraction increased by
527 5% from the wettest (SH, 7%) to the driest (VN, 12%) sites. The contrasting plasticity of the
528 species may also be related to their life histories: *Senecio* being an aggressive annual species that
529 rapidly captures resources and produces seed before senescing while Douglas-fir is a long-lived
530 slower growing species that preferentially allocates resources in a different manner. The
531 combination of a more expansive root system, higher plasticity, and annual life history resulted in

532 Senecio having a Ψ_{PD} that was almost a third of that of Douglas-fir at the VN site during August
533 despite growing under the same weather conditions.

534 This study demonstrated that a given abundance of Senecio does not always have the same
535 impact on Douglas-fir. The high biomass values at BW, for instance, did not correspond to the
536 highest levels of Douglas-fir drought stress. The results from this study can help inform
537 management decisions on a site-specific context when determining the appropriate amount of
538 control and tolerated abundance of competing vegetation. Senecio's depletion of soil water and
539 induction of Douglas-fir drought stress can likely be mitigated operationally by prioritizing a
540 spring release treatment at sites which have been, or are at risk of, being invaded by high
541 abundances of Senecio and have conditions similar to those at the VN site. For example, Dinger
542 and Rose (2009) found that a single post planting herbicide application significantly increased
543 seedling growth. These type of release treatments limit or even eliminate the impact of Senecio on
544 early Douglas-fir growth allowing the seedlings to better capture site resources which can produce
545 long-term effects on stand development (Flamenco et al. 2019; Wightman et al. 2019).

546 **References**

547 Chan SS, Radosevich S R, Grotta AT (2003) Effects of contrasting light and soil moisture
548 availability on the growth and biomass allocation of Douglas-fir and red alder. Can J
549 Forestry Res 33:106-117

550 Dinger EJ, Rose R (2009) Integration of Soil Moisture, Xylem Water Potential, and Fall-Spring
551 Herbicide Treatments to Achieve the Maximum Growth Response in Newly Planted
552 Douglas-Fir Seedlings. Can. J. For. Res. 39:1401–1414

553 Dinger EJ, Rose R (2010) Initial autumn-spring vegetation management regimes improve moisture
554 conditions and maximize third-year Douglas-fir seedling growth in a Pacific Northwest
555 plantation. New Zeal J For Sci 40:93-108

556 Dinger EJ (2012) Characterizing early-seral competitive mechanisms influencing Douglas-fir
557 seedling growth, vegetation community development, and physiology of selected weedy
558 plant species. Dissertation, Oregon State University

559 Domec, JC, Warren JM, Meinzer F, Brooks JR, Coulombe R (2004) Native root xylem embolism
560 and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic
561 redistribution. *Oecologia* 141:7-16

562 Dyrness CT (1973) Early stages of plant succession following logging and burning in the western
563 Cascades of Oregon. *Ecology* 54:57-69

564 Ernst WH, Nelissen HJM (1979) Growth and mineral nutrition of plant species from clearing on
565 different horizons of an iron-humus podzol profile. *Oecologia* 41:175-82

566 Everard K, Seabloom EW, Harpole WS, De Mazancourt C (2010) Plant water use affects
567 competition for nitrogen: why drought favors invasive species in California. *Am Nat*
568 175:85-97

569 Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J (2017) Drought effect on plant biomass allocation:
570 A meta-analysis. *Ecol Evol* 7:11002-11010

571 Flamenco, Gonzalez-Benecke (2019) Long-Term Effects of Vegetation Management on Biomass
572 Stock of Four Coniferous Species in the Pacific Northwest United States. *Forest Ecol*
573 *Manag* 432:276-285

574 Guevara, C, Gonzalez-Benecke, C, Wightman, M (2021) Ground Cover—Biomass Functions for
575 Early-Seral Vegetation. *Forests* 12:1272

576 Gonzalez-Benecke CA, Dinger EJ (2018) Use of water stress integral to evaluate relationships
577 between soil moisture, plant water stress and stand productivity in young Douglas-fir trees.
578 *New Forest* 49:775-789

579 Goracke HSR (2010) Temporal effect of vegetation management on growth and wood quality of
580 conifers in a western Oregon plantation. Dissertation, Oregon State University

581 Hanson D (1998) Population dynamics of three early seral herb species in Pacific Northwest
582 forests. Dissertation, Oregon State University

583 Harrington JT, Mexal JG, Fisher JT (1994) Volume displacement provides a quick and accurate
584 way to quantify new root production. *Tree Planters' Notes* 45:121-124

585 Hoff C, Rambal S (2003) An examination of the interaction between climate, soil and leaf area
586 index in a *Quercus ilex* ecosystem. *Ann For Sci* 60:153-161

587 Lassoie JP (1982) Physiological activity of Douglas-fir. In: Edmonds RL Analysis of coniferous
588 forest ecosystems in the western United States. US/IBP Synthesis Series Number 14.
589 Dowden, Hutchinson, and Ross, Pennsylvania, pp 126-185

590 Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models

591 Maguire DA, Mainwaring DB, Rose R, Garber SM, Dinger EJ (2009) Response of coastal
592 Douglas-fir and competing vegetation to repeated and delayed weed control treatments
593 during early plantation development. *Can J For Res* 39:1208-1219

594 Myers BJ (1988) Water stress integral—a link between short-term stress and long-term growth.
595 *Tree Phys* 4:315-323

596 Netzer Y, Yao C, Shenker M, Bravdo BA, Schwartz A (2009) Water use and the development of
597 seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis
598 system. *Irrigation Sci* 27:109-120

599 Newton M, Preest DS (1988) Growth and Water Relations of Douglas Fir (*Pseudotsuga menziesii*)
600 Seedlings under Different Weed Control Regimes. *Weed Sci* 36:653-662

601 Palmer AR, Fuentes S, Taylor D, Macinnis-Ng C, Zeppel M, Yunusa I, Eamus D (2010) Towards
602 a spatial understanding of water use of several land-cover classes: an examination of
603 relationships amongst pre-dawn leaf water potential, vegetation water use, aridity and
604 MODIS LAI. *Ecohydrology* 3:1-10

605 Ritchie JT (1981) Soil water availability. *Plant Soil*: 327-338

606 Rose R, Haase D (2006) Guide to Reforestation in Oregon. College of Forestry, Oregon State
607 University, Corvallis pp, 1-52

608 Shainsky LT, Radosevich SR (1992) Mechanisms of competition between Douglas-fir and red
609 alder seedlings. *Ecology* 73:30-45

610 Soil Survey Staff, Natural Resources Conservation Service, United States Department of
611 Agriculture. Web Soil Survey. Available online at the following link:
612 <https://websoilsurvey.sc.egov.usda.gov/>. Accessed 11/11/2019

613 Thriplleton, T., Bugmann, H., Folini, M. et al. (2018) Overstorey–Understorey Interactions
614 Intensify After Drought-Induced Forest Die-Off: Long-Term Effects for Forest Structure
615 and Composition. *Ecosystems* 21:723–739.

616 Turner NC, Kramer PJ (1980) Adaptation of Plants to Water Stress and High Temperature Stress.
617 Wiley, New York

618 Wang TA, Hamann D, Spittlehouse TN, Murdock (2012) ClimateWNA – High-resolution spatial
619 climate data for western North America. *Journal of Applied Meteorology and Climatology*
620 61:16-29

621 West N, Chilcote W (1968) *S. sylvaticus* in Relation to Douglas-Fir Clear-Cut Succession in the
622 Oregon Coast Range. *Ecology* 49:1101-1107

623 Wightman MG, Gonzalez-Benecke CA, Dinger EJ (2019) Interactive Effects of Stock Type and
624 Forest Vegetation Management Treatments on Douglas-Fir Seedling Growth and Survival-
625 Ten-Year Results. *Forests* 11:1002

626 Wightman MG, Guevara CA, Gonzalez-Benecke CA (2020) A Comparison of Three CoSInE Tier
627 I Sites: First Year Results. *Vegetation Management Research Cooperative annual report*,
628 College of Forestry, Oregon State University, pp 35-56

629

630