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1 Introduction

Large-dimensional optimization problems arise in various modern applications of signal processing, machine
learning, control, communication, and many other areas. First-order methods are widely used for solving such
large-scale problems as their iterations involve only function/gradient calculations and simple vector operations.
However, they can require many iterations to achieve the given accuracy level. Therefore, developing efficient
first-order methods has received great interest, which is the main motivation of this paper. In particular, this paper
targets the decrease in the gradient for smooth convex minimization, under the initial bounded condition on the
cost function value. This paper uses the performance estimation problem (PEP) in [1] and constructs a new method
called OGM-G.

Among first-order methods for smooth convex minimization, Nesterov’s fast gradient method (FGM) [2, 3]
has been used widely because its worst-case cost function inaccuracy bound (i.e., the cost function efficiency)
is optimal up to a constant, under the initial bounded distance condition [3, 4]. Recently, the optimized gradient
method (OGM) [5] (that was numerically first identified in [1] using PEP) has been found to exactly achieve the
optimal worst-case rate of decreasing the smooth convex cost functions [6], leaving no room for improvement
in the worst-case. On the other hand, first-order methods that decrease the gradient at an optimal rate in [4] are
yet unknown, even up to a constant. The proposed OGM-G method has such an optimal rate under the initial
bounded function condition. After the initial version of this paper was posted online [7], a simple method using
OGM-G was constructed in [8] that also has an optimal rate under the initial bounded distance condition.

Gradient rate analysis is useful both in theory (e.g., for a dual approach [9] and a matrix scaling problem [10])
and in practice (e.g., can be used as a stopping criterion). In addition, unlike smooth convex minimization, a
worst-case gradient inaccuracy and an initial bounded function condition are standard choices for analyzing gra-
dient methods for smooth nonconvex minimization [11]. Therefore, this work can provide a step towards better
understanding the convergence behavior of gradient methods for nonconvex minimization.
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There is recent interest in developing accelerated methods for decreasing the gradient (in convex minimization)
[9, 10, 12—14]. The best known worst-case gradient rate is achieved by FGM with a regularization technique
in [9] that is optimal up to a logarithmic factor. However, a practical limitation of that method is that it requires
knowledge of a bound on a value such as the distance between the initial and optimal points. In [14] we used
PEP to derive efficient first-order methods that do not need knowledge of such unavailable values. However,
the methods in [14] are far from achieving the optimal rate (not even up to a logarithmic factor), due to strict
relaxations introduced to PEP in [14]. The methods in [9, 13-16] also achieve a similar nonoptimal rate. Thus,
there is still room to improve the worst-case gradient convergence bound of the first-order methods for smooth
convex minimization.

This paper optimizes the step coefficients of first-order methods in terms of the worst-case gradient decrease
using PEP [1, 17], yielding OGM-G. The new analysis avoids the (unnecessary) strict relaxations on PEP in [14].
This paper then shows that OGM-G has an equivalent efficient form that is similar to OGM, and thus has an
inexpensive per-iteration computational complexity. OGM-G attains the optimal bound of the worst-case gradient
norm up to a constant under the initial bounded function condition [4]. On the way, this paper also provides a new
exact worst-case gradient bound for the gradient method (GM).

The initial bounded condition on the distance between initial and optimal points is a standard assumption,
whereas the initial condition on the cost function value of interest in this paper is less popular. However, sometimes
a constant for the latter bounded condition is known, while a constant for the former condition is either not known
or difficult to compute, making the latter condition more useful. In addition, there are cases where the latter
initial bounded function condition holds, but the former condition does not. One such example is an unregularized
logistic regression of an overparameterized model for separable datasets [18, 19], which does not have any finite
minimizer. Therefore, this paper’s analysis under the initial bounded condition has value for such cases.

Section 2 reviews a smooth convex problem and first-order methods. Section 3 reviews the efficiency of first-
order methods and its lower bound. Section 4 studies the PEP approach [1] and provides relaxations for analyzing
the worst-case gradient decrease. Section 5 uses the relaxed PEP to provide the exact worst-case gradient bound
for GM. Section 6 optimizes the step coefficients of the first-order methods using the relaxed PEP, and develops
an efficient first-order method named OGM-G under the initial function condition. Section 7 concludes the paper.

2 Problems and Methods
2.1 Smooth Convex Problems

We are interested in efficiently solving the following smooth and convex minimization problem:

fei= inf f(x), (M)
xeR!

where we assume that the function f : R — R is a convex function of the type CL]’] (RY), i.e., its gradient V £ (x)
is Lipschitz continuous:

IVA(x) =Vl < Lllx—yll, vxyeR? (1)
with a Lipschitz constant L > 0, where || - || denotes the standard Euclidean norm.
Definition 2.1 The class of smooth convex functions satisfying the two above conditions is denoted by .7 (R%).

Definition 2.2 The optimal set of f is defined by
X.(f) = argminf(x) = {x e R? : f(x) = £.}. @

xcRY
We further assume one of the following two initial conditions, where the latter is especially useful when (M) does
not have a finite minimizer, i.e., X.(f) = 0.

Assumption 1 IFC) The set X..(f) is nonempty, and an initial point x satisfies
f(xo)— fx < %LR2 for a constant R > 0. (IFC)
Assumption 2 (IFC') An initial point xo and the Nth iterate xy of a given method satisfy
f(xo) — flxn) < %LRIQV for a constant Ry > 0. (IFC)

Note that f(xo) — f(xn) < f(x0) — f« for any xy.



2.2 First-Order Methods

To solve a large-dimensional problem (M), we consider first-order methods that iteratively gain first-order infor-
mation, i.e., values of the cost function f and its gradient Vf at any given point in R?. The computational effort
for acquiring those values depends mildly on the problem dimension. We are interested in developing a first-order
method that efficiently generates a point xy after NV iterations (starting from an initial point xo) that minimizes the
worst-case absolute gradient inaccuracy under the initial function condition (IFC).

Definition 2.3 The gradient efficiency is defined as the worst-case absolute gradient inaccuracy

sup ||V £ (xw)| P 3)
feFL(RY)

For simplicity in Sects. 4, 5 and 6 that use the PEP approach (as in [1]), we consider the following fixed-step
first-order methods (FSFOM):

1 ¢ ,
xi+1:xi_zzhi+l,kvf(xk) i=0,....,N—1, 4)
=0

where h:= {h;11;} € RNWV+D/2 ig a tuple of fixed-step coefficients that do not depend on f, xo and R (or Ry).
This FSFOM class includes (fixed-step) GM (i.e., h;11 x = 0 for k < i), (fixed-step) FGM [2,3] (see [1]), OGM [5],
and the proposed OGM-G, but excludes line-search approaches, such as a backtracking version of FGM in [20]
and an exact line-search version of OGM in [21].

3 Efficiency of First-Order Methods

This paper seeks to improve the efficiency of first-order methods, where the efficiency consists of the following two
parts: the computational effort for selecting a search point (e.g., computing x; | in (4) given x; and {Vf (xk)}j;zo),
and the number of evaluations of the cost function value and gradient at each given search point to reach a given
accuracy. This paper considers both parts of the efficiency, particularly focusing on the latter part, as also detailed
in this section. Regarding the former aspect of the efficiency, we later show that the proposed method has an
efficient form, similar to (fixed-step) FGM and OGM, requiring computational effort comparable to that of a
(fixed-step) GM.

An efficiency estimate of an optimization method is defined by the worst-case absolute inaccuracy. One popular
choice of the worst-case absolute inaccuracy is the worst-case absolute cost function inaccuracy.

Definition 3.1 The cost function efficiency is defined as the worst-case absolute cost function inaccuracy

sup  f(xy) — fe. 5)

feZL(RY)
When analyzing the cost function efficiency, we usually consider the following initial condition.

Assumption 3 (IDC) The set X.(f) is nonempty, and an initial point x satisfies
[lxo —x.|| <R foraconstant R >0, (IDC)

for some x, € X.(f).

Under (IDC), GM has an O(1/N) cost function efficiency (5) [3], and this rate was improved to O(1/N?) rate by
FGM [2,3]. This efficiency was further optimized by OGM [1, 5], which was shown to exactly achieve the optimal
efficiency in [6].

Compared to the worst-case cost function inaccuracy (5), the worst-case absolute gradient inaccuracy (3) has
received less attention [4, 9, 17,22]. For the initial distance condition (IDC), GM has an O(1/N?) gradient effi-
ciency [9], while FGM with a regularization technique [9] that requires the knowledge of (practically unavailable)
R achieves O(1/N*) up to a logarithmic factor. This is the best known rate, where the rate O(1/N*) is the optimal
gradient efficiency for given (IDC) [4]. On the other hand, the papers [9, 13—16] studied first-order methods that
do not require knowing R and that have O(1/N?) gradient efficiency, but none of them (including [9]) have the
optimal efficiency (even up to a constant).



On the other hand, gradient efficiency with the initial function condition (IFC) has received even less attention
[4,22]. It is known to have O(1/N?) optimal efficiency [4]. Section 5 provides the exact O(1/N) rate of GM, which
was studied numerically for the more general nonsmooth composite convex problems in [22]. The paper [12]
discusses that FGM with a regularization technique [9] with (IFC) also achieves the optimal worst-case gradient
rate O(1/ NZ) up to a logarithmic factor. This is the best previously known rate, and this paper provides a better
rate.

In short, none of the existing first-order methods achieve the optimal rate for the gradient inaccuracy even
up to a constant, and thus this paper focuses on optimizing the gradient efficiency of first-order methods for
smooth convex minimization with (IFC) and (IFC’). Table 1 summarizes the efficiency of first-order methods and
illustrates that the proposed OGM-G attains the optimal worst-case gradient rate O(1/N?) with (IFC) and (IFC).

Remark 3.1 After the initial version of this paper was posted online [7], the paper [8, Remark 2.1] constructed
a simple method using OGM-G that achieves O(1/N*) under the initial distance condition (IDC). The method
runs an accelerated method such as Nesterov’s FGM and OGM for the first half of the iterations and then runs
OGM-G for the rest. That approach (built upon the proposed OGM-G) further closes the open problem of devel-
oping an optimal method for decreasing the gradient, under the initial distance condition (IDC).

Table 1 Summary of the efficiency of first-order methods discussed in SNect. 31[3,4,9,12,22]; The rates of the proposed OGM-G and a method
in [8, Remark 2.1] using OGM-G (see Remark 3.1) are also presented. O(-) is a big-O notation that ignores a logarithmic factor.

. Initial GM Best known rate OGM-G [8] Optimal
Efficiency — —
cond. rate w/o R or R ‘ w/ R or R rate rate rate
Cost func. (5) | (IDC) | O(1/N) O(1/N?) . . O(1/N?)
anc) | o(1/N?) | o(1/N* | O(1/N*) . O(1/N*) | O(1/N*)
Gradient (3) | (IFC) | O(1/N) O(1/N) O(1/N?) | O(1/N?) . O(1/N?)
(FC’) | O(1/N) : : O(1/N?)

As Table 1 demonstrates, worst-case rates of any given method and optimal worst-case rates depend dramat-
ically on the initial condition. In particular, the worst-case gradient rates for (IFC) tend to be slower than those
for (IDC). At first glance, this situation might hinder one’s interest on the initial function condition (IFC) studied
in this paper. However, one should also consider the constants R and R for a fair comparison of the worst-case
rates. In particular, consider a problem instance (f,xo) where f € .Z(R¢) and X, (f) # 0. Then, choose R and R
such that

1 _
f(xo)*f*ZELRz and ||X()fx*||:R (©6)

for some x.. € X, (f). Using the inequality f(xo) — £ < &[[xo —x.||?

the relationship:

due to the smoothness of f in (1), we have

R<R. (N

For any optimization method, including GM and OGM-G, the ratio R/R can be in the order of N or beyond, for a
given N, and should not be neglected. Section 6.5 gives one such example.

4 Performance Estimation Problem (PEP) for the Worst-Case Gradient Decrease

This section studies PEP [1] and its relaxations for the worst-case gradient analysis under the condition (IFC).



4.1 Exact PEP

The papers [1, 17] suggest that for any given step coefficients h := {h;} of a FSFOM, total number of iterations
N, problem dimension d, and constants L, R, the exact worst-case gradient bound under (IFC) is given by

1
Pp(h,N,d,L,R) := max max  ——||Vf(xn)|? P)
p( ) X, X eIVl

Xio1 =Xi— t b ohi1 VF(x), i=0,... ,N—1,
flxo) = f« < %LRZ, x. € X.(f) #0,

where ||V £ (xy)]||* is multiplied by ﬁ for convenience in later analysis. However, as noted in [1], it is intractable

to solve (P) due to its infinite-dimensional function constraint. Thus the next section employs relaxations intro-
duced in [1].

4.2 Relaxing PEP

As suggested by [1, 17], to convert (P) into an equivalent finite-dimensional problem, we replace the infinite-
dimensional constraint f € .%; (RY) by a finite set of inequalities satisfied by f € .%; (R¢) [3, Theorem 2.1.5]:

2—1L||Vf(xi) = V)P < flx) = £(x) = (VF(x5), % — x5) ®)

on each pair (i, j) for i, j = 0,...,N, . For simplicity in the proofs, we further narrow down the set' of inequali-
ties (8), specifically the pairs {(i—1,i) : i=1,....,N}, {(N,i) : i=0,...,N — 1} and {(N, )}.? This relaxation
leads to

. T T
Fpi(hNod) = max Tr{G uNuNG} (P1)
ScRN+! '
Tr GTA,»,U-(h)G} <& 1 -8 i=1,...,N,
S.t. Tr GTBNyi(h)G} < Oy — 5,', i=0,....N—1

T{GTCrG <oy, &<,

) 3

where we define

1",

8= Lva(xi)a i:()v"'aNa G:= [g()v--.agN
8= (f(xi)—f), i=0,...,N, &8:=[b,...,0n]",

L )
wi=[0,...,0, 1 ,0,...,0T RN, ;=0,.. N,
—
(i+ 1)th entry
and
Airi(h) = (uioy —wi) (o —wi) "+ 3 X0 O hig(win] +wen]), i=1,...N,
Byi(h):= % (uy —ui)(uy —ui) " — 3 X0 5 Y o]+ wen] ), (10)

i=0,...,N—1,
1 T
CN.— EuNuN.

I We found that the set of constraints in (P1) is sufficient for the exact worst-case gradient analysis of GM and OGM-G for (IFC), as
illustrated in later sections. In other words, the resulting worst-case rates of GM and OGM-G in this paper are tight with our specific choice of
the set of inequalities. Note that this relaxation choice in (P1) differs from the choice in [1, Problem (G)].

2 The inequality (8) for the pair {(N,x)} simplifies to - ||Vf(xn)|[> < f(xn) — f. under the condition X, (f) # 0. Such inequality is not
used under the assumption (IFC’) in Corollaries 5.1 and 6.1.



As in [17], we further relax (P1) by introducing the Gram matrix Z := GG' as

By (h,N,d) := max Tr{uNuNz} (P2)
ZESN+1
SGJRN“

Tr{Aifl,i(h)Z}SSifl*Si; iil,...,N,
s.t. Tr{BN,i(h)Z} <oy—06;, i=0,....N—1,
Tr{CnZ} <3y, G <1

This problem has the following Lagrangian dual:

1
PBp(h,N) = min D
p(h.N) (ab.c.e)c RN 2¢ ®

. S(h,a,b,c) =0, —aj+by+e=0, ay—YN,'bi—c=0,
ai—ajr1+b;=0, i=1,....N—1.

where
N1
S(h,a,b,c) Za, i—1,i(h)+ Z biBy i(h) + cCn(h) 7141\/14; 1rn
i=0
1 N - 1N7] - 1 -
=3 Y ai(wi—wi) (i —w) "+ 3 Y bi(uy —wi)(uy —w;) " + E(C*Z)MNMN
i=1 i=0
| N il | N=IN-1 N . .
+§Z aihi (i +wu]) Z Z Y | (wiw ).
i=1k=0 i=0 k= - max{i+1,}
ket 1

For given h and N, a semidefinite programming (SDP) problem (D) can be solved numerically using an SDP
solver (e.g., CVX [23,24]). The next two sections analytically specify feasible points of (D) for GM and OGM-G,
which were numerically first identified to be solutions of (D) for each method by the authors. These feasible points
provide the exact worst-case analytical gradient bounds for GM and OGM-G.

5 Applying the Relaxed PEP to GM

Inspired by the numerical solutions of (D) for GM using CVX [23,24], we next specify a feasible point of (D) for
GM.

Lemma 5.1 For GM, i.e. the FSFOM with hi, ; having 1 for k = i and 0 otherwise, the following set of dual
variables:

_ 2(N+i) _ _N+i _
4i = W=+ D) 2N+ N-i11¢ = 1N,
2 1 _
b — N(2N+1) — NG 1 O’ (12)
’ 2 i=1,...,N—1
N=D(N=i+1)’ =L ;

_ 2
C=€=3N71>

is a feasible point of (D).

Proof Obviously, (12) satisfies the equality conditions of (D), and the rest of proof shows the positive semidefinite
condition of (D).



Forany h and (a,b,c,e) € A, the (i, j)th entry of the symmetric matrix (11) can be rewritten as

[2S(h,a,b,6)]ij (13)
ar+bo (125 hyp), i=0,j=1i,
ai+ai+l+bi(1722;v:[+1hl,i)7 lzlvaila.]:la
ay+ YN b +e—2=2(ay—1), i=N, j=i

_ Jailhii =) = biX e = b N g, i= 1 N1 =i
aN(hN,Nfl_l)_bela l:Na.]:l_]a
aihij—bi L)y b= b X0 o, i=2,....,N—-1,
Jj=0,...,i—=2,
aNhNyj—bj, i:N,j:O,...,i—Z.
Substituting the step coefficients h for GM and the dual variables (12) in (13) yields
—by=ce, i=0,j=1i,
+ai 1 —bi=2a;, i=1,....N—1,j=i
[Zs(h,a,b,C)]ij _ al+al+1 i ai, l ) . ) . y J L (14)
2(ay—1), i=N, j=i,
—bj, i=1,...,N, j=0,...;,i—1,

The matrix (14) has nonnegative diagonal entries, and thus showing the diagonal dominance of the matrix (14)
implies its positive semidefiniteness.
A sum of absolute values of nondiagonal elements for each row is

Nb07 l:O,
b N—-1)b =1
Zyzshabc)],,\ ot W=Dby —i=1, as)
Yiobi+(N—ib; i=2,....N—1,
Hél ZIJV ()lb i=N,
2 .
2N+17 4(N+]) l:o;
2 —
_ N(2N+l)+N N(2N+l) e i=1,
o 2 N+i _
N(2N+])+N F N(+N)t+1 ey (=2 N-1,
2 _ 2(2N-1
(2N+1)+2 N = TaNt1 0 =N,
ea l:O,
_ 2(N+i) .
= wrn® =L N1
2(2N€—1), l:Na

and this satisfies [28(h,a,b,c)]; = ): 0‘ [2S(h,a,b,c ,]‘ for all i, i.e., the matrix (14) is diagonally dominant,
J#l

and this concludes the proof. a

The next theorem provides the worst-case convergence gradient bound of GM.

Theorem 5.1 Assume that f € F1(RY), X.(f) #0, and f(x¢) — f. < %LR2 (IFC). Let xg, ..., xny € R? be gener-
ated by GM, i.e., the FSFOM with h;_1 ; having 1 for k = i and O otherwise. Then, for any N > 1,

L’R?
V£GP < 55— (16)
Proof Using Lemma 5.1 for the step coefficients h of GM, we have
% 2 <I’R*%p(h,N) < *R* ——.
[IVf(xn)[” < Pp(h,N) < INEI
O



The PEP proof of Theorem 5.1, using Lemma 5.1, can be used to construct a conventional proof that derives
inequality (16) by a weighted sum of the inequalities (8). Specifically, one can use a weighted sum of inequalities
using the dual variables (a, b, c,e) in (12) as weights:

1
Z||Vf(x,~,,)—Vf(x,»)||2gf(xi,l)—f(x,-)—<Vf(x,»),x,~,, —-X) 1 oq (17
ZLL||VJC()‘N)*Vf(xi)||2 <flen) = fxi) = (Vf(xi),xn —xi)  : b
V)< ) o ¢ e
f(x0) = fi < %LR2 L e,

which simplifies to

1 5 N i—1 bj ) LRZ
IV en) o+ £ 3 5790 =t | = 5 9

and this yields (16).
We next show that the bound (16) is exact by specifying a certain worst-case function. This implies that the
feasible point in (12) is an optimal point of (D) for GM.

Lemma 5.2 For the following Huber function in F1(R?) for all d > 1:

LR LR? R
9o(x) = LVZN“”xH —mv W= T (19)
312, otherwise,

GM exactly achieves the bound (16) with xg satisfying ¢ (xo) — ¢ = %LRZ.

Proof Starting from xy = \/%RV that satisfies ¢ (x9) — ¢ = %LR2 (IFC) for any unit-norm vector V, the iterates

of GM are as follows:

1= N+1 i )
xi=xo—— Y Vo(xp)= — Rv, i=0,...,N,
=70 Lkg(’) 0 (x) (\/ZN—H V2N 11
where all the iterates stay in the affine region of the function ¢ (x) with the same gradient V¢ (x;) = JzLAl/eﬁv’ i=
0,...,N. Therefore, after N iterations of GM, we have ||V (xy)||* = %7 which concludes the proof. O

Remark 5.1 For f € Z(RY), and for some x, € X,(f) and ||xo — x.|| < R (IDC), the Nth iterate xy of GM has
the following exact worst-case cost function bound [1, Theorems 1 and 2]:

2

Flon) — fx) < 5ot (0)

2N +1)’

where this exact upper bound is equivalent to the exact worst-case gradient bound (16) of GM up to a constant
52
R

57z A similar relationship appears in [22, Table 3] for nonsmooth composite convex minimization.

The preceding results in this section assume that there is a finite minimizer. There are applications that do not
have a finite minimizer x, € X,.(f), e.g., an unregularized logistic regression of an overparameterized model for
separable datasets [18, 19]. The following corollary extends the analysis to such cases.

Corollary 5.1 For f € F1(RY), letxy,...,xy € RY be generated by GM. Assume that f(xy) — f(xn) < %LR,ZV (IFC).
Then, forany N > 1,

LR,

VeI < &

21



Proof Equation (18) consists of a weighted sum of the third and fourth inequalities of (17), scaled by c = e =
in (12):

2
2N+1

S IV ()| + e (x0) = f (o) < S LR,

The third inequality of (17) assumes X, (f) # 0 (see footnote 2), so we derive a bound without the above inequality.
Replacing the above inequality in the weighted summation for deriving (18) by (IFC') scaled by c, c¢(f(xo) —
f(xn)) < SLRY, yields

2 LR3,
T2N+1

L) s+ ) Z |19 fx) - V1 ()|

i=1j=0

which concludes the proof. a

6 Optimizing FSFOM Using the Relaxed PEP

This section optimizes the step coefficients of FSFOM using the relaxed PEP (D) to develop an efficient first-order
method for decreasing the gradient of smooth convex functions.

6.1 Numerically Optimizing FSFOM Using the Relaxed PEP
To optimize the step coefficients of A of FSFOM for each given N, we are interested in solving
h:= argmin %p (h,N), (HD)
h
which is nonconvex. However, the problem (HD) is bi-convex over h and (a,b,c,e,7), so for each given N we

numerically solved (HD) by an alternating minimization approach using CVX [23,24]. Inspired by those numerical
solutions, the next section specifies a feasible point of (HD).

6.2 A Feasible Point of the Relaxed PEP
The following lemma specifies a feasible point of (HD).

Lemma 6.1 The following step coefficients of FSFOM:

akgkill‘:liJrl,kJrla k:07"'7i_27
hivix= "kg;‘(iz,ﬂﬁl), k=i—1, (22)

1+ 29'“ k=i,

and the following set of dual variables:

a; = i=1,....,N, b= , i1=0,....N—1, c=e=

067,

1
. 23
7 (23)

constitute a feasible point of (HD) for the parameters:

141/1+862 | iz 0
- Y

2 )
0. — 52
0; = 1+/1+462 |

1, i=N.

(24)



Proof The appendix first derives properties of the step coefficients h= {iz,',k} (22) that are used in the proof:

62(26,— 1
ij:M, i=2,...,N, j=0,...,i—2, (25)
' 6,62
JYj+1
N %‘(90""1)) i=0,j=1i
Zill,j: 9,;,4 i=1,....N—1, j=i, (26)
[=i+1 6,1 _ - _
i éjéj?“, 1=1, WN—1,7j=0,...;i—1
By definition of 6; (24), we also have
< 6;+26%,, i=0
- {020k -0 @
6;+67,, i=1,....N—1.

Obviously, (23) satisfies the equality conditions of (D), and the rest of proof shows the positive semidefinite
condition of (D). Substituting the step coefficients h (22) and the dual variables (23) with their properties (25), (26)
and (27) in (13) yields

28(h.a,b,c)];;
1 1 A P
g_]2+goglz(1*(90+1))a i=0,j=1i
52 . 6_a2
1 1 1 ~ 6'+l+6i79i . . .
=4+t (1=-20)=L % ;=1...N—1,j=i
6; 6:'2+1 6i 9i2+1 ( 1) 9i29i2+1 ’ ’ ’ »J ’
1 .
Z(é—zfl , i=N,j=I,
y g (261—1)6,— 62— 62

1 26;—1 1 61 1§ — o )%=0, 70 _ L
= =2 _ L —— e — i=1,...N—1,j=i—1

_) 06 0L, 0.7 6,07 660 T T ’
1261 1 AN i
0 Ov1 BBy L*NaJ*l L, o o
1 6726-1) 1 8%, 4 0 — (26,—1)6;—(6i—1)%67-6? i=2 N1
— == e = ——0;, = o =2,...
6;'2 6; ]2+1 6i6,'2+1 6; 9]'2+1 6; 9]'2+1 6; 6]2+16i ’ ’ ’ ’

j=0,...,i—=2,

1 1 1 .
e — = i=N,j=0 i—2
1%/6.i9/'2+1 9'6]2“7 ’ ’ ’ ’

:0,

which concludes the proof. a

The next theorem provides the worst-case convergence gradient bound of FSFOM with step coefficients (22).

Theorem 6.1 Assume that f € Z(RY), X.(f) # 0, and f(xo) — f < 3LR? (IFC). Let xo, ..., xy € RY be gener-
ated by FSFOM with step coefficients (22). Then, for any N > 1,

L*R* _ 21°R?
Vi) < = < —. 28
Proof Using Lemma 6.1, we have ||V f(xy)||* < L?R*%p(h,N) < Lszé. We can easily show that 6; (24) satis-
. - o
fies 6; > w fori=1,... N by induction, and this then yields 6y > %, which concludes the proof. a

Similar to (18), the PEP proof of Theorem 6.1, using Lemma 6.1, can be used to construct a conventional proof
by a weighted sum of inequalities (17) using the dual variables (a,b,c,e) in (23) as weights. This weighted sum
leads to
LR?

~ 2
52 (29)

LV s <

and yields (28).

The bound (28) of FSFOM with (22) is optimal up to a constant because Nemirovsky shows in [4] that the
worst-case rate for the gradient decrease of large-dimensional convex guadratic function is O(1/N?) under (IFC).
This result fills in Table 1, improving upon best known rates.

The following corollary examines the rate of FSFOM with (22) for cases where a finite minimizer might not
exist.
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Corollary 6.1 For f € Z1(R?), let xo,...,xy € R be generated by FSFOM with step coefficients (22). Assume

that f(xo) — f(xy) < 1LR? (IFC'). Then, for any N > 1,

L*R}

V)| < =52
6y — 1

Proof Equation (29) consists of a weighted sum of the third and fourth inequalties of (17), scaled by ¢ = e = %
in (23):

ST VA G| P+ e(f(xo0) = flaw) < LR 31)

The third inequality of (17) assumes X, (f) # 0 (see footnote 2), so we derive a bound without the above inequality.
Replacing the above inequality in the weighted summation for deriving (29) by (IFC') scaled by c, c(f(x0) —
F(xn)) < SLR3, yields

LR,

(1=3) Vs < 5.

0

1
L
which concludes the proof. a

The per-iteration computational complexity of the FSFOM with (22) would be expensive if implemented
directly via (4), compared to GM, FGM and OGM, so the next section provides an efficient form.

6.3 An Efficient Form of the Proposed Optimized Method: OGM-G

This section develops an efficient form of FSFOM with the step coefficients (22), named OGM-G. This form is
similar to that of OGM [5], which is further studied in Sect. 6.6.

OGM-G
Input: f € .Z1(R?), xo =y, € R, N> 1.

1+,/1+4862,
v = 0,

2 )
0; = { 1+/1+462
TR
——— i=1,...,N—1,
1, i=N,

Fori=0,...,N—1,

1
Yip1 =Xi — va(xi),
(6:—1)(26,41 — 1)
é,'(zé,'— 1)

20,11 —1
26— 1

Xit1 =Yip1 T+ Yi1—y)+ (YPig1 —Xi)-

Proposition 6.1 The sequence {xo,...,xy} generated by FSFOM with (22) is identical to the corresponding
sequence generated by OGM-G.

Proof We first show that the step coefficients {/:’IH,]’[(} (22) are equivalent to

(0= 1)(20i1—1) 7/ _ .
i ~i(29i;+ll) ik k=0,...,i—2,
7 6i—1)(26i,—1 .
Hig= P =), k=i, (32)
14 2=l k=i
Obviously, ili+],i = fzgﬂ’i, i=0,...,N—1, and we have
- 61 C(Bi—1)(261—-1)  (6i—1)(26,,1—1)26,— 1
hiy1i-1 = = (hiy1,—1) = —— = ~—— ~
i1 0,16 0;(26,—1) 01
(é,*l)(ZéH]—l) 7! 7!
= /T ) =k
9,'(29,'—1) ( ii—1 ) i+1,i—1

11



fori=1,... N—1.
We next use induction by assuming hiyy , = h;H Jori=0,....n—1,k=0,...,i. We then have

. Ot —1- 1oL, —1) -
Mgk = LN hn+1,k+1<H#> (hpg1n—1)

Ok =k O

n=2 4 g 7

6.1—1)\ - 6,—1h —1
_ H l+£ (hn,nfl B 1) n ~n+1,n
j=k 91 01 hn,nfl -1
il 9~ (2é~n+1~_1)én71 _ (énil)(?éwrl_])v _ 7
6,1 0,26,—1) 0,(26,—1) kTt
for k=0,. — 2, where the fourth equality uses the definition of En,k. This proves the first claim that the step

coefficients {h,+1 k) (22) and {h L o (32) are equivalent.
We finally use induction to show the equivalence between the generated sequences of FSFOM with (32) and
OGM-G. For clarity, we use the notation xy, ..., xy and y,,...,yy for OGM-G. Obviously, xo = x;, and we have

1- 1 26
xlzxo—zh’,,OVf(xo):xo—z(l—i— ;0 )Vf(xo)

oy 126-1(26-1)

_yl_L 90(29071) Vf(xo)

1/ (6—1)(26,—-1) 2é,1>
/ /
=y —— —— +— Vfxg) =x
i L( 80260 — 1) 2601 f(xo) 1
Assuming x; = x| fori =0,...,n, we have

1.
Xn+1 =Xy — Zh;ﬂ,nvf(xn) h/+1 — Vf(xa-1) Z h, n+l, WV (xx)

L 20, 16,1 ><zen+1—>
- (1+ 6, )Vf(x”) L 6,26,—1)

(;’n,nfl —1)Vf(x,-1)

Z hn ka xk)

51 (”%) V()
(é’l_])(2~n+1_1) 1 1 1n71~
+ én(zén —1) <_va(xn) + sz(xn—l) 7 kzohn,ka(xk)>
6, —1)(26, 1, 28,1 -1,
iynjul —+ ( é ()2(9 _+11) )( n+l Yn) 2%7]_]()’,&1 x ) xth]

6.4 Two Worst-Case Iterative Behaviors of OGM-G

This section specifies two worst-case problem instances for OGM-G, associated with Huber and quadratic func-
tions respectively, that make the bound (28) exact. These examples imply that the feasible point in (23) is an
optimal point of (D) for OGM-G.

Lemma 6.2 For the following Huber and quadratic functions in 7 (R?):
rled —& k= E L
px=qp " % YT and g(x) = 3|, (33)
5 11x||%, otherwise,
foralld > 1, OGM-G exactly achieves the bound (28) with an initial point xq satisfying ¢1(xo) — @1« = ¢2(x0) —
02 = LLR.

12



90+l

Proof We first consider ¢ (x). Starting from an initial point xy = RV that satisfies 1 (xp) — ¢1 « = %LR2 (IFC)

for any unit-norm vector vV, we have

0+1 67-1
XN = x—— thka <0., -0 )RV,
;kzo ’ 260 260

since
N j—1 N71~ 1 . . 1 -
9+1 0;=—(6)+1+20f—-2)==(65—1
]2::; 0 )+ j;J 2(0 1 ) 2(0 )

that uses (26) and (27). Here, all the iterates stay in the affine region of the function ¢;(x) with the same gradient
Vo (x) = %V, i=0,...,N. Therefore, after N iterations of OGM-G, we have ||V, (xy)||* = LZRZ.

We next consider ¢2(x) Starting from an initial point xy = RV that satisfies ¢2(X0) — 2.+ = %LR2 (IFC) for
any unit-norm vector vV, we have

126, — 291 1
X =— V X —— X)),
1 L G f(x0) = 5w
and we have
126, — 2041 — 1 201
X; 7V x)=——>——2xi=(—1)———x;, i=1,...,N—1,
i+1 = L 26— 1 f( l) 26,—1 i ( ) 26, — 1 1
usingy; =0, i =1,...,N. Therefore, we have ||V (xy)||* = L*||xn||> = éRz. O

The iterates of OGM-G for the Huber worst-case function ¢; stay in one side of the affine region of the func-
tion, while those for the quadratic worst-case function ¢, always overshoot the optimum. These are extreme cases,
and it is notable that some other first-order methods also have two such worst-case iterative behaviors. Specifically,
in [17,25], first-order methods that have such two types of worst-case iterative behaviors in Lemma 6.2, associated
with Huber and quadratic functions, respectively, were found to have an optimal worst-case bound among a certain
subset of first-order methods. This leads us to conjecture that the exact worst-case bound (28) of OGM-G may be
optimal, but proving it remains an open problem.

6.5 Worst-Case Rate Behaviors of OGM-G under Initial Distance Condition
This section further studies the worst-case rate behaviors of OGM-G under initial distance condition (IDC). Table 2

presents exact numerical worst-case rates of OGM-G (under a large-dimensional condition), using the performance
estimation toolbox, named PESTO? [28], based on PEP [1,17].

=2
Table 2 Exact values of the reciproca]s of the worst-case cost function inaccuracy (W) in (5) and the worst-case gradient inaccuracy

252 2 "
(HVIL,:N)HZ, HV;(Z;*N‘ T or HV o) ”2) in (3) of OGM-G under one of the conditions (IDC), (IFC) or (IFC").
. Initial Number of iterations
OGM-G Efficiency

cond. 1 2 4 10 20 30 40 50

Cost func. (5) (IDC) | 8.0 | 100 | 9.7 8.9 8.5 8.3 8.3 8.2
(IDC) | 4.0 | 8.1 19.5 | 79.5 | 262.5 | 547.8 | 934.6 | 1422.6
Gradient (3) (IFC) | 40 | 8.1 19.5 | 79.5 | 262.5 | 547.8 | 934.6 | 1422.6
(IFC’) | 3.0 | 7.1 185 | 78.5 | 261.5 | 546.8 | 933.6 | 1421.6

Table 2 illustrates that the worst-case gradient rates of OGM-G are equivalent numerically under both (IDC)
and (IFC). This is because the worst-case problem instance of OGM-G in Lemma 6.2 associated with the quadratic
function under (IFC) also serves as a worst-case of OGM-G under (IDC), as formally discussed next.

3 In PESTO toolbox [28], we used the SDP solver SeDuMi [26] interfaced through Yalmip [27]. The OGM-G method is implemented in
the PESTO toolbox.
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Corollary 6.2 Let x,...,xy € R? be generated by OGM-G. Then, for any N > 1,

L’R’ ,
— < min _||Vf(xy)|]*. (34)
6 rezm),
xeX.(f).
[lxo—x:||<R

Proof Consider the quadratic function ¢,(x) = %||x||* in Lemma 6.2 associated with the initial point xo = RV

or any unit-norm vector V. This initial point xq satisfies ||xg — x«|| = R as well as ¢>(xg) — ¢ = LLR? which
Jfor any p 0 0 0 s =7

implies the inequality (34) based on Lemma 6.2. a

We conjecture that the lower bound (34) of OGM-G under (IDC) is exact, based on numerical evidence in
Table 2. This is a bit disappointing, because it appears that a method that is optimal under one initial condition
is far from optimal for another initial condition. It is also unfortunate that OGM-G has a poor worst-case rate
for decreasing the cost function under (IDC). An open problem is finding a method that achieves optimal rates
invariant to worst-case rate measures and initial conditions.

In addition, we study how the worst-case rate under (IFC) transfers to that under (IDC) for given problem
instance (f,xp). We particularly focus on two worst-case problem instances of OGM-G in Lemma 6.2, while
similar analysis can be done for the worst-case problem instance of GM in Lemma 5.2. For the worst-case of
OGM-G associated with the Huber function ¢; (x), the constants R and R in (IFC) and (IDC) have the following
relationship:

62 +1 O 1
ot lps bop N1, (35)
26, 2 2V/2

We can then show the following upper bound associated with R after N iterations of OGM-G:

R=|lxo—x.|| =

I2R2  2I2R®  16I°R°
||V¢1(xN)||2: 2 < 7 = )
@ CWNFI12 SN+

(36)

yielding O(1/N*), instead of the OGM-G rate O(1/N?), expressed by using R instead of R. On the other hand, for
the worst-case of OGM-G associated with the quadratic function ¢, (x) in Lemma 6.2, we have the relationship
R =R, as mentioned in Corollary 6.2. These examples illustrate that comparing the worst-case rates under different

initial conditions is subtle, and it would be incomplete to treat R and R as just arbitrary constants (unrelated to N)
in Table 1.

6.6 Related Work: OGM

This section shows that the proposed OGM-G has a close relationship with the following OGM [5] (that was
numerically first identified in [1]).

OGM [5]
Input: f € Z1(RY), xo=y, € R, N> 1, 6p = 1.
Fori=0,....N—1,
1
Yiyr =Xi— 7 Vf(xi),
02
R 1+\/;+46i P<N_1,

i1 = —~ (37)
l+\/;+86i Ci=N-1,
6;,—1 0;
Xit1 =Yt +T](Yi+1 7)’1’)+é.—ll(yi+1 —X;).
i+ i+

We can easily notice the symmetric relationship of the parameters

0, =6y_i, i=0,...,N, (38)
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and the fact that OGM and OGM-G have forms that differ in the coefficients of the terms y; , ; —y; and y;, | — x;.
For f € Z1(RY), x. € X.(f) and ||xo — x.|| < R (IDC), the final Nth iterate xy of OGM has the following
exact worst-case cost function bound [5, Theorems 2 and 3]:

LR LR’

263~ (N+ 1)

where this exact upper bound is equivalent to the exact worst-case gradient bound (28) of OGM-G up to a constant
52

2157‘ This equivalence is similar to the relationship between the exact worst-case bounds (16) and (20) of GM

discussed in Remark 5.1. The worst-case rate (39) of OGM is exactly optimal for large-dimensional smooth convex

minimization [6].

OGM is equivalent to FSFOM with the step coefficients [5, Proposition 4]:

fley) = f(x:) < (39)

‘gfllizi‘k, k=0,...,i—2,
Vit :
hiv1 = —q"fl(hi,ifl—l), k=i—1, (40)
Y
26;—1 .
1+T+1’ k=i.

for i =0,...,N — 1. The following proposition shows the symmetric relationship between the step coefficients
{hit1 .} (40) and {hi1 1 1} (22) of OGM and OGM-G, respectively.

Proposition 6.2 The step coefficients {/:\IH,]’[(} (40) and {/:’IH,]’[(} (22) of OGM and OGM-G, respectively, have the
following relationship

hivix=hyn-is1, i=0,....,N—1,k=0,...,i. 41)

Proof We use induction. Obviously, lAz],o = izN,N,l. Then, assuming lAz,'JrLk = }NzN,k,N,,',l fori=0,....,n—1, we
have

On_n—17

#h}v,k’]\],”, k:07"'an_27
N é _a—1/7
Mgk = Hon (thrH»len_])z k=n—1,

6N—n—J

20y_,—1 _
1+ éan—] ’ kin’
= hN—kN—n—1

O

Building upon the relationships (38) and (41) between OGM and OGM-G, we numerically study the mo-
mentum coefficient values ; and ¥ of OGM and OGM-G in the following form, to characterize the convergence
behaviors of the methods.

Accelerated First-Order Method
Input: f € Z1(RY), xo=y, € RY, N > 1.
Fori=0,...,N—1,

1
Yig1 = Xi — va(xi),

Xit1 = Y1 +BiVic1 — Y1) + % (Vi1 — Xi)-

Figure 1 compares the momentum coefficients (f3;, ;) of OGM and OGM-G for N = 100. It is notable that
having increasing values of (B;, ¥;) as i increases, except for the last iteration, yields the optimal (fast) worst-case
rate for decreasing the cost function, whereas having decreasing values of (J;, ¥;), except for the first iteration,
yields the fast worst-case rate (that is optimal up to a constant) for decreasing the gradient. We leave further
theoretical study on such choices of coefficients as future work.

We next compare OGM and OGM-G with their other equivalent efficient forms. Similar to [5, Algorithm
OGM2] one can easily show that the last line of OGM is equivalent to

{Zi+l =Y+ (éi* D —y) + éi(yi+1 —Xxi),

_ 1 1
Titl = (1 TG )Y T g

(42)
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N =100
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o
04 r OGM: 3;
= = =0GM: v,
0.2 —f— OGM-G: p;

= = =O0OGM-G: v;

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Iteration (i)

Fig. 1 Comparison of momentum coefficients (f;,%) of OGM and OGM-G.

while that of OGM-G is equivalent to

Zir1 = Yip1 + (0= 1) (¥ips — i) + 0i(yiy1 —Xi),
= (1 Bt Yy B @)
i+1 526—1) ) Yit1 T 561 %it!
This interpretation stems from a variant of FGM [29] that involves a convex combination of two points as above.
[5] already showed that similar interpretation is possible for OGM, and the expression here also implies that
decreasing gradient can be achieved via some convex combination of two points. Further analysis is left as future
work.

7 Conclusions

This paper developed a first-order method named OGM-G that has an inexpensive per-iteration computational
complexity and achieves the optimal worst-case bound for decreasing the gradient of large-dimensional smooth
convex functions up to a constant, under the initial bounded function condition. A simple method in [8], using the
OGM-G, also achieves the optimal worst-case gradient bound up to a constant, under the initial bounded distance
condition. The OGM-G was derived by optimizing the step coefficients of first-order methods in terms of the
worst-case gradient bound using the performance estimation problem (PEP) approach [1]. On the way, the exact
worst-case gradient bound for a gradient method was studied.

A practical drawback of OGM-G is that one must choose the number of iterations N in advance. Finding
a first-order method that achieves the optimal worst-case gradient bound (up to a constant), but that does not
depend on selecting N in advance, remains an open problem. In addition, extending the approaches based on PEP
in this paper to the initial bounded distance condition (IDC) will be interesting future work; this PEP approach
with a strict relaxation (unlike this paper) has been studied in [14]. Further extensions of this paper to nonconvex
problems and composite problems are also of interest.
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Appendix: Proof of Egs. (25) and (26)

This proof shows the properties (25) and (26) of the step coefficients {/; i} (22).
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We first show (25). We can easily derive

i (6.1 —1)(26;, - 1) _ 62(26,—1)
o i1 6,267 |

6;_»6,

fori=2,...,N using (27). Again using the definition of (22) and (27), we have

~ é'+]—1~ =2 é]—l ~ il él—l 2@,‘—1
hi;= JT hijvg == i hijio= -~ -t
Y 6 (11.71| 01 )" I 01 i1

1=j+1

1 1 6i—1 G3-1,- < 20,1
= T AT G, 1) (G — 1)
i 0j+1 Bj42 02 ;-1

fori=2,...,N, j=0,...,i—3, which concludes the proof of (25). B
We next prove the first two lines of (26) using the induction. For N = 1, we have 6; = 1 and

. 26, -1 6? 1(03-8) 1.
ho=1+——=1+==14+——"—>=-(60+1),
10 A B & 5 (Go+1),
where the third equality uses (27). For N > 1, we have
. 26y -1 82 B2 Oy -
hvy-1=1+— =14+ =——=14+ "= =06y_1,
Oy_1 On-_1 Oy_1

where the third equality uses (27). Assuming Z;V:HI l~11,j = éj for j=n,....N—1landn> 1, we get

N 28,-1 6,-1 - 0,1 ¥
Y g =1+ =—+ —F— (1 — 1) + =
I=n 0p—1 0p—1 0p—1 1=n+2
é)l*l+én+(én71)étl o

=14+ ~én + éffl i ill.n _ énil +é;$
61 On—1 I=n+1 On—1 On—1

_ %(éoJrl), n=0,
0., n=1,....N—1,

where the last equality uses (27), which concludes the proof of the first two lines of (26).
We finally prove the last line of (26) using the induction. For i > 1, we have

N N - - 28— 1 0 —1)2 o4
Y A=Y i —hii1 =01 — (1+ = ) - G- O
=

flerail] 0,1 61 6,107’
- g4
where the third and fourth equalities use (27). Then, assuming Zf’:i“ hyj= % fori=n,....N—1,j=0,...,i—1 withn > 1, we get:
7%+
ifl i P 62, N 02(20,—1)  62(5,—1)>+62(26,—1) o
1j = 1,j nj = 3 A A = A =3 )

I=n I=n+1 919,+1 919;2+| 9j9,'2+1 919,2+1

where the second and third equalities use (25), which concludes the proof. 0
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