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Momentum-Net: Fast and convergent
iterative neural network for inverse problems
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and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Iterative neural networks (INN) are rapidly gaining attention for solving inverse problems in imaging, image processing, and
computer vision. INNs combine regression NNs and an iterative model-based image reconstruction (MBIR) algorithm, often leading to
both good generalization capability and outperforming reconstruction quality over existing MBIR optimization models. This paper
proposes the first fast and convergent INN architecture, Momentum-Net, by generalizing a block-wise MBIR algorithm that uses
momentum and majorizers with regression NNs. For fast MBIR, Momentum-Net uses momentum terms in extrapolation modules, and
noniterative MBIR modules at each iteration by using majorizers, where each iteration of Momentum-Net consists of three core
modules: image refining, extrapolation, and MBIR. Momentum-Net guarantees convergence to a fixed-point for general differentiable
(non)convex MBIR functions (or data-fit terms) and convex feasible sets, under two asymptomatic conditions. To consider data-fit
variations across training and testing samples, we also propose a regularization parameter selection scheme based on the “spectral
spread” of majorization matrices. Numerical experiments for light-field photography using a focal stack and sparse-view computational
tomography demonstrate that, given identical regression NN architectures, Momentum-Net significantly improves MBIR speed and
accuracy over several existing INNs; it significantly improves reconstruction quality compared to a state-of-the-art MBIR method in
each application.

Index Terms—Iterative neural network, deep learning, model-based image reconstruction, inverse problems, block proximal
extrapolated gradient method, block coordinate descent method, light-field photography, X-ray computational tomography.
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1 INTRODUCTION

D EEP regression neural network (NN) methods have
been actively studied for solving diverse inverse prob-

lems, due to their effectiveness at mapping noisy signals
into clean signals. Examples include image denoising [1]–
[4], image deconvolution [5], [6], image super-resolution
[7], [8], magnetic resonance imaging (MRI) [9], [10], X-
ray computational tomography (CT) [11]–[13], and light-
field (LF) photography [14], [15]. However, regression NNs
with a greater mapping capability have increased overfit-
ting/hallucination risks [16]–[19]. An alternative approach
to solving inverse problems is an iterative NN (INN) that
combines regression NNs – called “refiners” or denoisers –
with an unrolled iterative model-based image reconstruc-
tion (MBIR) algorithm [20]–[27]. This alternative approach
can regulate overfitting of regression NNs, by balancing
physical data-fit of MBIR and prior information estimated
by refining NNs [16], [18]. This “soft-refiner” approach
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has been successfully applied to several extreme imaging
systems, e.g., highly undersampled MRI [20], [25], [28]–[30],
low-dose or sparse-view CT [16], [19], [24], [27], [31], and
low-count emission tomography [18], [32]–[34].

1.1 Notation
This section provides mathematical notations. We use
f(x; y) to denote a function f of x given y. We use ‖·‖p
to denote the `p-norm and write 〈·, ·〉 for the standard inner
product on CN . The weighted `2-norm with a Hermitian
positive definite matrix A is denoted by ‖ · ‖A = ‖A 1

2 (·)‖2.
The Frobenius norm of a matrix is denoted by ‖ · ‖F. (·)T ,
(·)H , and (·)∗ indicate the transpose, complex conjugate
transpose (Hermitian transpose), and complex conjugate,
respectively. diag(·) denotes the conversion of a vector into
a diagonal matrix or diagonal elements of a matrix into
a vector. For (self-adjoint) matrices A,B ∈ CN×N , the
notation B � A denotes that A − B is a positive semi-
definite matrix.

1.2 From block-wise optimization to INN
To recover signals x ∈ CN from measurements y ∈ Cm,
consider the following MBIR optimization problem:

argmin
x∈X

F (x; y, z), F (x; y, z) , f(x; y) +
γ

2
‖x− z‖22,

(P0)

where X is a set of feasible points, f(x; y) is data-fit func-
tion, γ is a regularization parameter, and z ∈ CN is some
high-quality approximation to the true unknown signal x.
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The data-fit f(x; y) measures deviations of model-based
predictions of x from data y, considering models of imaging
physics (or image formation) and noise statistics in y. In
(P0), the signal recovery accuracy increases as the quality
of z improves [17, Prop. 3]; however, it is difficult to obtain
such z in practice. Alternatively, there has been a growing
trend in learning sparsifying regularizers (e.g., convolu-
tional regularizers [24], [35]–[38]) from training datasets and
applying the trained regularizers to the following block-
wise MBIR problem: argminx∈X f(x; y) + minζ r(x, ζ;O).
Here, a learned regularizer minζ r(x, ζ;O) quantifies con-
sistency between x and refined sparse signal ζ via some
learned operatorsO. Recently, we have constructed INNs by
generalizing the corresponding block-wise MBIR updates
with regression NNs without convergence analysis [25],
[27]. In existing INNs, two major challenges exist: conver-
gence and acceleration.

1.3 Challenges in existing INNs: Convergence
Existing convergence analysis has some practical limita-
tions. The original form of plug-and-play (PnP [23], [39]–
[41]) is motivated by the alternating direction method of
multipliers (ADMM [42]), and its fixed-point convergence
has been analyzed with consensus equilibrium perspectives
[23]. However, similar to ADMM, its practical convergence
depends on how one selects ADMM penalty parameters.
For example, [22] reported unstable convergence behaviors
of PnP-ADMM with fixed ADMM parameters. To moder-
ate this problem, [41] proposed a scheme that adaptively
controls the ADMM parameters based on relative residuals.
Similar to the residual balancing technique [42, §3.4.1], the
scheme in [41] requires tuning initial parameters. Regu-
larization by Denoising (RED [22]) is an alternative that
moderates some such limitations. In particular, RED aims
to make a clear connection between optimization and a de-
noiserD, by defining its prior term by (scaled) xT (x−D(x)).
Nonetheless, [43] showed that many practical denoisers do
not satisfy the Jacobian symmetry in [22], and proposed a
less restrictive method, score-matching by denoising.

The convergence analysis of the INN inspired by the re-
laxed projected gradient descent (RPGD) method in [31] has
the least restrictive conditions on the regression NN among
the existing INNs. This method replaces the projector of a
projected gradient descent method with an image refining
NN. However, the RPGD-inspired INN directly applies an
image refining NN to gradient descent updates of data-fit;
thus, this INN relies heavily on the mapping performance of
a refining NN and can have overfitting risks, similar to non-
MBIR regression NNs, e.g., FBPConvNet [12]. In addition, it
exploits the data-fit term only for the first few iterations [31,
Fig. 5(c)]. We refer the perspective used in RPGD-inspired
INN and its related works [26], [44] as “hard-refiner”:
different from soft-refiners, these methods do not use a
refining NN as a regularizer. More recently, [26] presented
convergence analysis for an INN inspired by a proximal
gradient descent method. However, their analysis is based
on noiseless measurements, which is typically impractical.

Broadly speaking, existing convergence analysis largely
depends on the (firmly) nonexpansive property of image
refining NNs [22], [23], [43], [31, PGD], [26]. However, ex-
cept for a single-hidden layer convolutional NN (CNN), it is

yet unclear which analytical conditions guarantee the non-
expansiveness of general refining NNs [27]. To guarantee
convergence of INNs even when using possibly expansive
image refining NNs, we proposed a method that normalizes
the output signal of image refining NNs by their Lipschitz
constants [27]. However, if one uses expansive NNs that
are identical across iterations, it is difficult to obtain “best”
image recovery with that normalization scheme. The spec-
tral normalization based training [45], [46] can ensure the
non-expansiveness of refining NNs by single-step power
iteration. However, similar to the normalization method in
[27], refining NNs trained with the spectral normalization
method [46] degraded the image reconstruction accuracy for
an INN using iteration-wise refining NNs [19]. In addition,
there does not yet exist theoretical convergence results when
refining NNs change across iterations, yet iteration-wise
refining NNs are widely studied [20], [21], [25], [28]. Finally,
existing analysis considers only a narrow class of data-fit
terms: most analyses consider a quadratic function with a
linear imaging model [26], [31] or more generally, a convex
cost function [23], [43], [46] that can be minimized with a
practical closed-form solution. No theoretical convergence
results exist for general (non)convex data-fit terms, iteration-
wise NN denoisers, and a general set of feasible points.

1.4 Challenges in existing INNs: Acceleration
Compared to non-MBIR regression NNs that do not exploit
the data-fit f(x; y) in (P0), INNs require more computation
because they consider the imaging physics. Computation
increases as the imaging system or image formation model
becomes larger-scale, e.g., LF photography from a focal
stack, 3D CT, parallel MRI using many receive coils, and
image super-resolution. Thus, acceleration becomes crucial
for INNs.

First, consider the existing methods motivated by
ADMM or block coordinate descent (BCD) method: ex-
amples include PnP-ADMM [23], [41], RED-ADMM [22],
[43], MoDL [30], BCD-Net [16], [18], [25], etc. These meth-
ods can require multiple inner iterations to balance data-
fit and prior information estimated by trained refining
NNs, increasing total MBIR time. For example, in solv-
ing such problems, each outer iteration involves x(i+1) =
argminx F (x; y, z(i+1)), where F is given as in (P0) and
z(i+1) is the output from the ith image refining NN. For
LF imaging system using a focal stack data [47], solving
the above problem requires multiple iterations, and the total
computational cost scale with the numbers of photosensors
and sub-aperture images. In addition, nonconvexity of the
data-fit term f(x; y) can break convergence guarantees of
these methods, because in general, the proximal mapping
argminx f(x; y)+γ‖x−z(i+1)‖22 is no longer nonexpansive.

Second, consider the existing works motivated by gra-
dient descent methods [21], [26], [28], [31]. These methods
resolve the inner iteration issue; however, they lack a sophis-
ticated step-size control or backtracking scheme that influ-
ences convergence guarantee and acceleration. Accelerated
proximal gradient (APG) methods using momentum terms
can significantly accelerate convergence rates for solving
composite convex problems [48], [49], so we expect that INN
methods in the second class have yet to be maximally accel-
erated. The work in [44] applied PnP to the APG method
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[49]; [50] applied PnP to the primal-dual splitting (PDS)
algorithm [51]. However, similar to RPGD [31], these are
hard-refiner methods using some state-of-the-art denoisiers
(e.g., BM3D [52]) but not trained NNs. Those methods lack
convergence analyses and guarantees may be limited to
convex data-fit function.

1.5 Contributions and organization of the paper

This paper proposes Momentum-Net, the first INN architec-
ture that aims for fast and convergent MBIR. The architec-
ture of Momentum-Net is motivated by applying the Block
Proximal Extrapolated Gradient method using a Majorizer
(BPEG-M) [24], [35] to MBIR using trainable convolutional
autoencoders [24], [25], [37]. Specifically, each iteration of
Momentum-Net consists of three core modules: image re-
fining, extrapolation, and MBIR. At each Momentum-Net
iteration, an extrapolation module uses momentum from
previous updates to amplify the changes in subsequent
iterations and accelerate convergence, and an MBIR module
is noniterative. In addition, Momentum-Net resolves the con-
vergence issues mentioned in §1.3: for general differentiable
(non)convex data-fit terms and convex feasible sets, it guar-
antees convergence to a point that satisfies fixed-point and
critical point conditions, under some mild conditions and
two asymptotic conditions, i.e., asymptotically nonexpansive
paired refining NNs and asymptotically block-coordinate mini-
mizer.

The remainder of this paper is organized as follows.
§2 constructs the Momentum-Net architecture motivated by
BPEG-M algorithm that solves MBIR problem using a learn-
able convolutional regularizer, describes its relation to ex-
isting works, analyzes its convergence, and summarizes the
benefits of Momentum-Net over existing INNs. §3 provides
details of training INNs, including image refining NN archi-
tectures, single-hidden layer or “shallow” CNN (sCNN) and
multi-hidden layer or “deep” CNN (dCNN), and training
loss function, and proposes a regularization parameter se-
lection scheme to consider data-fit variations across training
and testing samples. §4 considers two extreme imaging
applications: sparse-view CT and LF photography using a
focal stack. §4 reports numerical experiments of applications
where the proposed Momentum-Net using extrapolation
significantly improves MBIR speed and accuracy, over the
existing INNs, BCD-Net [22], [25], [30], Momentum-Net us-
ing no extrapolation [21], [28], ADMM-Net [20], [23], [41], and
PnP-PDS [50] using refining NNs. Furthermore, §4 reports
numerical experiments where Momentum-Net significantly
improves reconstruction quality compared to a state-of-the-
art MBIR method in each application.

2 MOMENTUM-NET: WHERE BPEG-M MEETS
NNS FOR INVERSE PROBLEMS

2.1 Motivation: BPEG-M algorithm for MBIR using
learnable convolutional regularizer

This section motivates the proposed Momentum-Net archi-
tecture, based on our previous works [24], [37]. Consider the
following approach for recovering signal x from measure-

ments y (see the setup of block multi-(non)convex problems
in §A.1.1):

argmin
x∈X

f(x; y) + γ

(
min
{ζk}

r(x, {ζk}; {hk})
)
,

r(x, {ζk}; {hk}) ,
K∑
k=1

1

2
‖hk ∗x− ζk‖22 + βk‖ζk‖1, (1)

where X is a closed set, f(x; y) + γr(x, {ζk}; {hk}) is
a (continuosly) differentiable (non)convex function in x,
min{ζk} r(x, {ζk}; {hk}) is a learnable convolutional regu-
larizer [24], [36], {ζk :k=1, . . . ,K} is a set of sparse features
that correspond to {hk ∗x}, {hk∈CR :k=1, . . . ,K} is a set
of trainable filters, andR andK denote the size and number
of trained filters, respectively.

Problem (1) can be viewed as a two-block optimization
problem in terms of the image x and the features {ζk}. We
solve (1) using the recent BPEG-M optimization framework
[24], [35] that has attractive convergence guarantee and
rapidly solved several block optimization problems [24],
[35], [53]–[55]. BPEG-M has the following key ideas for each
block optimization problem (see details in §A.1):

• Mb-Lipschitz continuity for the gradient of the bth block
optimization problem, ∀b:

Definition 1 (M -Lipschitz continuity [24]). A function
g : Rn → Rn is M -Lipschitz continuous on Rn if there
exists a (symmetric) positive definite matrix M such that

‖g(u)− g(v)‖M−1 ≤ ‖u− v‖M , ∀u, v ∈ Rn.

Definition 1 is a more general concept than the classical
Lipschitz continuity.

• A sharper majorization matrix M that gives a tighter
bound in Definition 1 leads to a tighter quadratic ma-
jorization bound in the following lemma:

Lemma 2 (Quadratic majorization via M -Lipschitz con-
tinuous gradients [24]). Let f(u) : Rn → R. If ∇f is
M -Lipschitz continuous, then

f(u)≤f(v)+〈∇uf(v),u−v〉+ 1

2
‖u−v‖2M , ∀u,v∈R

n.

Having tighter majorization bounds, sharper majoriza-
tion matrices tend to accelerate BPEG-M convergence.

• The majorized block problems are “proximable”, i.e.,
proximal mapping of majorized function is “easily”
computable depending on the properties of bth block
majorizer and regularizer, Mb and rb, where the proxi-
mal mapping operator is defined by

ProxMb
rb

(z) , argmin
u

1

2
‖u− z‖2Mb

+ rb(u), ∀b. (2)

• Block-wise extrapolation and momentum terms to accel-
erate convergence.

Suppose that 1) gradient of f(x; y) + γr(x, {ζk}; {hk})
is M -Lipschitz continuous at an extrapolated point x́(i+1),
∀i; 2) filters in (1) satisfy the tight-frame (TF) condition,∑K
k=1 ‖hk ∗u‖22 = ‖u‖22, ∀u, for some boundary conditions
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Fig. 1. Architectures of different INNs for MBIR. (a–b) The architectures of Momentum-Net and BCD-Net [25] are constructed by generalizing BPEG-
M and BCD algorithms that solve MBIR problem using a convolutional regularizer trained via convolutional analysis operator learning (CAOL) [24],
[36], respectively. (a) Removing extrapolation modules (i.e., setting the extrapolation matrices {E(i+1) : ∀i} as a zero matrix), Momentum-Net
specializes to the existing gradient-descent-inspired INNs [21], [28]. When the MBIR cost function F (x; y, z(i+1)) in (P1) has a sharp majorizer
M̃(i+1), ∀i, Momentum-Net (using ρ≈1) specializes to BCD-Net; see Examples 5–6. (b) BCD-Net is a general version of the existing INNs in [20],
[22], [23], [30], [39]–[41] by using iteration-wise image refining NNs, i.e., {Rθ(i+1) : ∀i}, or considering general convex data-fit f(x; y).

[24]. Applying the BPEG-M framework (see Algorithm A.1)
to solving (1) leads to the following block updates:

z(i+1) =

K∑
k=1

flip(h∗k)∗Tβk (hk∗x(i)), (3)

x́(i+1) =x(i) +E(i+1)(x(i)−x(i−1)), (4)

x(i+1) = ProxM̃
(i+1)

IX

(
x́(i+1)−

(
M̃ (i+1))−1∇F (x́(i+1);y,z(i+1))

)
,

(5)

where E(i+1) is an extrapolation matrix that is given in (8)
or (9) below, M̃ (i+1) is a (scaled) majorization matrix for
∇F (x; y, z(i+1)) that is given in (7) below, ∀i, the proximal
operator ProxM̃

(i+1)

IX (·) in (5) is given by (2), and IX (x) is the
characteristic function of set X (i.e., IX equals to 0 if x ∈ X ,
and∞ otherwise).

Proximal mapping update (3) has a single-hidden layer
convolutional autoencoder architecture that consists of en-
coding convolution, nonlinear thresholding, and decoding
convolution, where flip(·) flips a filter along each dimension,
and the soft-thresholding operator Tα(u) : CN → CN is
defined by

(Tα(u))n ,

{
un − α · sign(un), |un| > α,

0, otherwise, (6)

for n = 1, . . . , N , in which sign(·) is the sign function.
See details of deriving BPEG-M updates (3)–(5) in §A.1.4.
The BPEG-M updates in (3)–(5) guarantee convergence to a
critical point, when MBIR problem (1) satisfies some mild
conditions, e.g., lower-boundedness and existence of critical
points; see Assumption S.1 in §A.1.3.

The following section generalizes the BPEG-M updates
in (3)–(5) and constructs the Momentum-Net architecture.

2.2 Architecture

This section establishes the INN architecture of Momentum-
Net by generalizing BPEG-M updates (3)–(5) that solve (1).
Specifically, we replace the proximal mapping in (3) with

Algorithm 1 Momentum-Net

Require: {Rθ(i) : i = 1, . . . , Niter}, ρ ∈ (0, 1), γ > 0, x(0) =
x(−1), y
for i = 0, . . . , Niter−1 do

Calculate M̃ (i+1) by (7), and E(i+1) by (8) or (9)
Image refining:

z(i+1) = (1− ρ)x(i) + ρRθ(i+1)

(
x(i)

)
(Alg.1.1)

Extrapolation:
x́(i+1) = x(i) + E(i+1)

(
x(i) − x(i−1)

)
(Alg.1.2)

MBIR:
x(i+1)

= ProxM̃
(i+1)

IX

(
x́(i+1)−

(
M̃ (i+1)

)−1∇F (x́(i+1);y,z(i+1))
)

(Alg.1.3)
end for

a general image refining NN Rθ(·), where θ denotes the
trainable parameters. To effectively remove iteration-wise
artifacts and give “best” signal estimates at each iteration,
we further generalize a refining NN Rθ(·) to iteration-wise
image refining NNs {Rθ(i+1)(·) : i= 0, . . . , Niter−1}, where
θ(i+1) denotes the parameters for the ith iteration refining
NN Rθ(i+1) , and Niter is the number of Momentum-Net
iterations. The iteration-wise NNs are particularly useful
for reducing overfitting risks in regression, because Rθ(i+1)

is responsible for removing noise features only at the ith
iteration, and thus one does not need to greatly increase
dimensions of its parameter θ(i+1) [16], [18]. In low-dose CT
reconstruction, for example, the refining NNs at the early
and later iterations remove streak artifacts and Gaussian-
like noise, respectively [16].

Each iteration of Momentum-Net consists of 1) image re-
fining, 2) extrapolation, and 3) MBIR modules, correspond-
ing to the BPEG-M updates (3), (4), and (5), respectively.
See the architecture of Momentum-Net in Fig. 1(a) and
Algorithm 1. At the ith iteration, Momentum-Net performs
the following three processes:
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• Refining: The ith image refining module gives the “re-
fined” image z(i+1), by applying the ith refining NN,
Rθ(i+1) , to an input image at the ith iteration, x(i) (i.e.,
image estimate from the (i − 1)th iteration). Different
from existing INNs, e.g., ADMM-Net [20], PnP-ADMM
[23], [41], RED [22], MoDL [30], BCD-Net [25] (see
Fig. 1(b)), TNRD [21], [28], we apply ρ-relaxation with
ρ ∈ (0, 1); see (Alg.1.1). The parameter ρ controls the
strength of inference from refining NNs, but does not
affect the convergence guarantee of Momentum-Net.
Proper selection of ρ can improve MBIR accuracy (see
§A.10).

• Extrapolation: The ith extrapolation module gives the
extrapolated point x́(i+1), based on momentum terms
x(i)−x(i−1); see (Alg.1.2). Intuitively speaking, momen-
tum is information from previous updates to amplify
the changes in subsequent iterations. Its effectiveness
has been shown in diverse optimization literature, e.g.,
convex optimization [48], [49] and block optimization
[24], [35].

• MBIR: Given a refined image z(i+1) and a measurement
vector y, the ith MBIR module (Alg.1.3) applies the
proximal operator ProxM̃

(i+1)

IX (·) to the extrapolated gra-
dient update using a quadratic majorizer of F (x; y, z(i+1)),
where F is defined in (P0). Intuitively speaking, this
step solves a majorized version of the following MBIR
problem at the extrapolated point x́(i+1):

min
x∈X

F (x; y, z(i+1)), (P1)

and gives a reconstructed image x(i+1). In Momentum-
Net, we consider (non)convex differentiable MBIR cost
functions F withM -Lipschitz continuous gradients, and
a convex and closed set X . For a wide range of large-
scale inverse imaging problems, the majorized MBIR
problem (Alg.1.3) has a practical closed-form solution
and thus, does not require an iterative solver, depending
on the properties of practically invertible majorization
matrices M (i+1) and constraints. Examples of M (i+1)-
X combinations that give a noniterative solution for
(Alg.1.3) include scaled identity and diagonal matrices
with a box constraint and the non-negativity constraint,
and matrices decomposable by unitary transforms, e.g.,
a circulant matrix [56], [57], with X = CN . The updated
image x(i+1) is the input to the next Momentum-Net
iteration.

The followings are details of Momentum-Net in Algo-
rithm 1. A scaled majorization matrix is

M̃ (i+1) = λ ·M (i+1) � 0, λ ≥ 1, (7)

where M (i+1) ∈ RN×N is a symmetric positive definite
majorization matrix of ∇F (x; y, z(i+1)) in the sense of M -
Lipschitz continuity (see Definition 1). In (7), λ = 1 and
λ > 1 for convex and nonconvex F (x; y, z(i+1)) (or convex
and nonconvex f(x; y)), respectively. We design the extrap-
olation matrices as follows:

for convex F ,

E(i+1) = δ2m(i) ·
(
M (i+1)

)− 1
2
(
M (i)

) 1
2 ; (8)

for nonconvex F ,

E(i+1) = δ2m(i) · λ−1

2(λ+1)
·
(
M (i+1)

)− 1
2
(
M (i)

)1
2 , (9)

for some δ < 1 and {0 ≤ m(i) ≤ 1 : ∀i}. We update
the momentum coefficients {m(i+1) : ∀i} by the following
formula [24], [35]:

m(i+1) =
θ(i) − 1

θ(i+1)
, θ(i+1) =

1 +
√

1 + 4(θ(i))2

2
; (10)

if F (x; y, z(i+1)) has a sharp majorizer, i.e., ∇F (x; y, z(i+1))
has M (i+1) such that the corresponding bound in Defini-
tion 1 is tight, then we set m(i+1) = 0, ∀i. §A.11 lists
parameters of Momentum-Net, and summarizes selection
guidelines or gives default values.

2.3 Relations to previous works
Several existing MBIR methods can be viewed as a special
case of Momentum-Net:

Example 3. (MBIR model (1) using convolutional autoen-
coders that satisfy the TF condition [24]). The BPEG-
M updates in (3)–(5) are special cases of the modules
in Momentum-Net (Algorithm 1), with {Rθ(i+1)(·) =∑K
k=1 flip(h∗k)∗Tβk(hk ∗(·)) : ∀i} (i.e., single hidden-layer

convolutional autoencoder [24]) and ρ ≈ 1. These give a
clear mathematical connection between a denoiser (3) and
cost function (1). One can find a similar relation between
a multi-hidden layer CNN and a multi-layer convolutional
regularizer [24, Appx.].

Example 4. (INNs inspired by gradient descent method,
e.g., TNRD [21], [28]). Removing extrapolation modules, i.e.,
setting {E(i+1) = 0 : ∀i} in (Alg.1.2), and setting ρ ≈ 1,
Momentum-Net becomes the existing INN in [21], [28].

Example 5. (BCD-Net for image denoising [25]). To obtain a
clean image x ∈ RN from a noisy image y ∈ RN corrupted
by an additive white Gaussian noise (AWGN), MBIR prob-
lem (P1) considers the data-fit f(x; y) = 1

2‖y−x‖
2
W with the

inverse covariance matrix W = 1
σ2 I , where σ2 is a variance

of AWGN, and the box constraint X = [0, U ]N with an
upper bound U > 0. For this f(x; y), the MBIR module
(Alg.1.3) can use the exact majorizer {M̃ (i+1) = ( 1

σ2 + γ)I}
and one does not need to use the extrapolation module
(Alg.1.2), i.e., {E(i+1) = 0}. Thus, Momentum-Net (with
ρ ≈ 1) becomes BCD-Net.

Example 6. (BCD-Net for undersampled single-coil MRI
[25]). To obtain an object magnetization x ∈ RN from a
k-space data y ∈ Cm obtained by undersampling (e.g., com-
pressed sensing [58]) MRI, MBIR problem (P1) considers
the data-fit f(x; y) = 1

2‖y − Ax‖
2
W with an undersampling

Fourier operator A (disregarding relaxation effects and con-
sidering Cartesian k-space), the inverse covariance matrix
W = 1

σ2 I , where σ2 is a variance of complex AWGN [59],
and X = CN . For this f(x; y), the MBIR module (Alg.1.3)
can use the exact majorizer {M̃ (i+1) = FHdisc(

1
σ2P+γI)Fdisc}

that is practically invertible, where Fdisc is the discrete
Fourier transform and P is a diagonal matrix with either
0 or 1 (their positions correspond to sampling pattern in k-
space), and the extrapolation module (Alg.1.2) uses the zero
extrapolation matrices {E(i+1) = 0}. Thus, Momentum-Net
(with ρ ≈ 1) becomes BCD-Net.
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Fig. 2. Convergence behavior of Momentum-Net’s dCNNs refiners
{Rθ(i)} in different applications (θ(i) denotes the parameter vector of
the ith iteration refiner Rθ(i) , for i= 1, . . . , Niter; see details of {Rθ(i)}
in (19) and §4.2.1; Niter = 100). Sparse-view CT (fan-beam geometry
with 12.5% projections views): Rθ(i) quickly converges, where ma-
jorization matrices of training data-fits have similar condition numbers.
LF photography using a focal stack (five detectors and reconstructed
LFs consists of 9×9 sub-aperture images): Rθ(i) has slower conver-
gence, where majorization matrices of training data-fits have largely
different condition numbers.

The following section analyzes the convergence of
Momentum-Net.

2.4 Convergence analysis

In practice, INNs, i.e., “unrolled” or PnP methods using
refining NNs, are trained and used with a specific number of
iterations. Nevertheless, similar to optimization algorithms,
studying convergence properties of INNs with Niter → ∞
[23], [31], [46] is important; in particular, it is crucial to
know if a given INN tends to converge as Niter increases.
For INNs using iteration-wise refining NNs, e.g., BCD-Net
[25] and proposed Momentum-Net, we expect that refin-
ers converge, i.e., their image refining capacity converges,
because information provided by data-fit function f(x; y)
in MBIR (e.g., likelihood) reaches some “bound” after a
certain number of iterations. Fig. 2 illustrates that dCNN
parameters of Momentum-Net tend to converge for different
applications. (The similar behavior was reported for sCNN
refiners in BCD-Net [16].) Although refiners do not com-
pletely converge, in practice, one could use a refining NN
at a sufficiently large iteration number, e.g., Niter = 100 in
Momentum-Net, for the later iterations.

There are two key challenges in analyzing the conver-
gence of Momentum-Net in Algorithm 1: both challenges
relate to its image refining modules (Alg.1.1). First, image re-
fining NNsRθ(i+1) change across iterations; even if they are
identical across iterations, they are not necessarily nonex-
pansive operators [60], [61] in practice. Second, the iteration-
wise refining NNs are not necessarily proximal mapping
operators, i.e., they are not written explicitly in the form of
(2). This section proposes two new asymptotic definitions to
overcome these challenges, and then uses those conditions
to analyze convergence properties of Momentum-Net in
Algorithm 1.

2.4.1 Preliminaries

To resolve the challenge of iteration-wise refining NNs
and the practical difficulty in guaranteeing their non-
expansiveness, we introduce the following generalized def-
inition of the non-expansiveness [60], [61].

Definition 7 (Asymptotically nonexpansive paired opera-
tors). A sequence of paired operators (Rθ(i) ,Rθ(i+1)) is asymp-
totically nonexpansive if there exist a summable nonnegative
sequence {ε(i+1) ≥ 0 :

∑∞
i=0 ε

(i+1) <∞} such that1

‖Rθ(i+1)(u)−Rθ(i)(v)‖22 ≤ ‖u− v‖
2
2 + ε(i+1), ∀u, v, i.

(11)

When Rθ(i+1) = Rθ and ε(i+1) = 0, ∀i, Definition 7
becomes the standard non-expansiveness of a mapping op-
erator Rθ . If we replace the inequality (≤) with the strict in-
equality (<) in (11), then we say that the sequence of paired
operators (Rθ(i+1) ,Rθ(i+1)) is asymptotically contractive.
(This stronger assumption is used to prove convergence of
BCD-Net in Proposition A.5.) Definition 7 also implies that
mapping operators Rθ(i+1) converge to some nonexpansive
operator, if the corresponding parameters θ(i+1) converge.

Definition 7 incorporates a pairing property because
Momentum-Net uses iteration-wise image refining NNs.
Specifically, the pairing property helps prove convergence
of Momentum-Net, by connecting image refining NNs at
adjacent iterations. Furthermore, the asymptotic property in
Definition 7 allows Momentum-Net to use expansive refining
NNs (i.e., mapping operators having a Lipschitz constant
larger than 1) for some iterations, while guaranteeing con-
vergence; see Figs. 3(a3) and 3(b3). Suppose that refining
NNs are identical across iterations, i.e., Rθ(i+1) = Rθ , ∀i,
similar to some existing INNs, e.g., PnP [23], RED [22], and
other methods in §1.3. In such cases, if Rθ is expansive,
Momentum-Net may diverge; this property corresponds
to the limitation of existing methods described in §1.3.
Momentum-Net moderates this issue by using iteration-
wise refining NNs that satisfy the asymptotic paired non-
expansiveness in Definition 7.

Because the sequence {z(i+1) : ∀i} in (Alg.1.1) is not
necessarily updated with a proximal mapping, we introduce
a generalized definition of block-coordinate minimizers [53,
(2.3)] for z(i+1)-updates:

Definition 8 (Asymptotic block-coordinate minimizer). The
update z(i+1) is an asymptotic block-coordinate minimizer if
there exists a summable nonnegative sequence {∆(i+1) ≥ 0 :∑∞
i=0 ∆(i+1) <∞} such that∥∥∥z(i+1) − x(i)

∥∥∥2

2
≤
∥∥∥z(i) − x(i)

∥∥∥2

2
+ ∆(i+1), ∀i. (12)

Definition 8 implies that as i→∞, the updates {z(i+1) :
i ≥ 0} approach a block-coordinate minimizer trajectory
that satisfies (12) with {∆(i+1) = 0 : i ≥ 0}. In particular,
∆(i+1) quantifies how much the update z(i+1) in (Alg.1.1)
perturbs a block-coordinate minimizer trajectory. The bound
‖z(i+1) − x(i)‖22 ≤ ‖z(i) − x(i)‖22 always holds, ∀i, when
one uses the proximal mapping in (3) within the BPEG-M
framework. Note that while applying trained Momentum-
Net, (12) is easy to examine empirically, whereas (11) is
harder to check.

2.4.2 Assumptions
This section introduces and interprets the assumptions for
convergence analysis of Momentum-Net in Algorithm 1:

1. One could replace the bound in (11) with ‖Rθ(i+1) (u) −
Rθ(i) (v)‖22 ≤ (1 + ε(i+1))‖u− v‖22 (and summable {ε(i+1) : ∀i}), and
the proofs for our main arguments go through.
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(a) Sparse-view CT: Condition numbers of data-fit majorizers have mild variations.
(a1) {∆(i) : i ≥ 2} (a2) {ε(i) : i ≥ 2} (a3) {κ(i) : i ≥ 1}
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(b) LF photography using a focal stack: Condition numbers of data-fit majorizers have large variations.
(b1) {∆(i) : i ≥ 2} (b2) {ε(i) : i ≥ 2} (b3) {κ(i) : i ≥ 1}
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Fig. 3. Empirical measures related to Assumption 4 for guaranteeing convergence of Momentum-Net using dCNNs refiners (for details, see
(19) and §4.2.1), in different applications. See estimation procedures in §A.2. (a) The sparse-view CT reconstruction experiment used fan-beam
geometry with 12.5% projections views. (b) The LF photography experiment used five detectors and reconstructed LFs consisting of 9×9 sub-
aperture images. (a1, b1) For both the applications, we observed that ∆(i) → 0. This implies that the z(i+1)-updates in (Alg.1.1) satisfy the
asymptotic block-coordinate minimizer condition in Assumption 4. (Magenta dots denote the mean values and black vertical error bars denote
standard deviations.) (a2) Momentum-Net trained from training data-fits, where their majorization matrices have mild condition number variations,
shows that ε(i) → 0. This implies that paired NNs (Rθ(i+1) ,Rθ(i) ) in (Alg.1.1) are asymptotically nonexpansive. (b2) Momentum-Net trained from
training training data-fits, where their majorization matrices have mild condition number variations, shows that ε(i) becomes close to zero, but
does not converge to zero in one hundred iterations. (a3, b3) The NNs, Rθ(i+1) in (Alg.1.1), become nonexpansive, i.e., its Lipschitz constant κ(i)
becomes less than 1, as i increases.

• Assumption 1) In MBIR problems (P1), (non)convex
F (x; y, z(i+1)) is (continuously) differentiable, proper,
and lower-bounded in dom(F ),2 ∀i, and X is convex
and closed. Algorithm 1 has a fixed-point.

• Assumption 2) ∇F (x; y, z(i+1)) is M (i+1)-Lipschitz con-
tinuous with respect to x (see Definition 1), where
M (i+1) is a iteration-wise majorization matrix that satis-
fies mF,minIN �M (i+1)�mF,maxIN with 0 < mF,min ≤
mF,max <∞, ∀i.

• Assumption 3) The extrapolation matrices E(i+1) � 0 in
(8)–(9) satisfy the following conditions:
for convex F ,(
E(i+1)

)T
M (i+1)E(i+1) � δ2 ·M (i), δ < 1; (13)

for nonconvex F ,(
E(i+1)

)T
M (i+1)E(i+1) � δ2(λ− 1)2

4(λ+ 1)2
·M (i), δ < 1.

(14)
• Assumption 4) The sequence of paired operators

(Rθ(i+1) ,Rθ(i)) is asymptotically nonexpansive with a
summable sequence {ε(i+i) ≥ 0}; the update z(i+1)

is an asymptotic block-coordinate minimizer with a
summable sequence {∆(i+i) ≥ 0}. The mapping func-
tions {Rθ(i+1) : ∀i} are continuous with respect to input
points and the corresponding parameters {θ(i+1) : ∀i}
are bounded.

2. F : Rn → (−∞,+∞] is proper if domF 6= ∅. F is lower bounded
in dom(F ) , {u : F (u) <∞} if infu∈dom(F ) F (u) > −∞.

Assumption 1 is a slight modification of Assumption S.1
of BPEG-M, and Assumptions 2–3 are identical to Assump-
tions S.2–S.3 of BPEG-M; see Assumptions S.1–S.3 in §A.1.3.
The extrapolation matrix designs (8) and (9) satisfy condi-
tions (13) and (14) in Assumption 3, respectively.

We provide empirical justifications for the first two
conditions in Assumption 4. First, Figs. 3(a2) and A.1(a2)
illustrate that paired refining NNs (Rθ(i+1) ,Rθ(i)) of
Momentum-Net appear to be asymptotically nonexpansive
in an application that has mild condition number variations
across training data-fit majorization matrices. Figs. 3(a3),
3(b3), A.1(a3), and A.1(b3) illustrate for different applica-
tions that refining NNs {Rθ(i+1)} become nonexpansive:
their Lipschitz constants at the first several iterations are
larger than 1, and their Lipschitz constants in later iter-
ations become less than 1. Alternatively, the asymptotic
non-expansiveness of paired operators (Rθ(i+1) ,Rθ(i)) can
be satisfied by a stronger assumption that the sequence
{Rθ(i+1)} converges to some nonexpansive operator. (Fig. 2
illustrates that dCNN parameters of Momentum-Net appear
to converge.)

Figs. 3(a3), 3(b3), A.1(a3), and A.1(b3) illustrate for dif-
ferent applications that the z(i+1)-updates are asymptotic
block-coordinate minimizers. Lemma A.4 and §A.3 in the
appendices provide a probabilistic justification for the asymp-
totic block-coordinate minimizer condition.
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2.4.3 Main convergence results
This section analyzes fixed-point and critical point conver-
gence of Momentum-Net in Algorithm 1, under the assump-
tions in the previous section. We first show that differences
between two consecutive iterates generated by Momentum-
Net converge to zero:

Proposition 9 (Convergence properties). Under Assumptions
1–4, let {x(i+1), z(i+1) : i ≥ 0} be the sequence generated by
Algorithm 1. Then, the sequence satisfies

∞∑
i=0

∥∥∥∥[x(i+1)

z(i+1)

]
−
[
x(i)

z(i)

]∥∥∥∥2

2

<∞, (15)

and hence
∥∥∥∥[x(i+1)

z(i+1)

]
−
[
x(i)

z(i)

]∥∥∥∥
2

→ 0.

Proof. See §A.4 in the appendices.

Using Proposition 9, our main theorem provides that any
limit points of the sequence generated by Momentum-Net
satisfy critical point and fixed-point conditions:

Theorem 10 (A limit point satisfies both critical point and
fixed-point conditions). Under Assumptions 1–4 above, let
{x(i+1), z(i+1) : i ≥ 0} be the sequence generated by Algo-
rithm 1. Consider either a fixed majorization matrix with general
structure, i.e., M (i+1) =M for i≥ 0, or a sequence of diagonal
majorization matrices, i.e., {M (i+1) : i ≥ 0}. Then, any limit
point x̄ of {x(i+1)} satisfies both the critical point condition:

〈∇F (x̄; y, z̄), x− x̄〉 ≥ 0, ∀x ∈ X , (16)

where z̄ is a limit point of {z(i+1)}, and the fixed-point condition:[
x̄
x̄

]
= AM̄Rθ̄

([
x̄
x̄

])
, (17)

where
[
x(i+1)

x(i)

]
=AM(i+1)

R
θ(i+1)

([
x(i)

x(i−1)

])
, AM(i+1)

R
θ(i+1)

(·) denotes per-
forming the ith updates in Algorithm 1, and θ̄ and M̄ is a limit
point of {θ(i+1)} and {M (i+1)}, respectively.

Proof. See §A.5 in the appendices.

Observe that, if X = RN or x̄ is an interior point
of X , (16) reduces to the first-order optimality condition
0 ∈ ∂F (x̄; y, z̄), where ∂F (x) denotes the limiting subdiffer-
ential of F at x. With additional isolation and boundedness
assumptions for the points satisfying (16) and (17), we
obtain whole sequence guarantees:

Corollary 11 (Whole sequence convergence). Consider the
construction in Theorem 10. Let S be the set of points satisfying
the critical point condition in (16) and the fixed-point condition in
(17). If {x(i+1) : i ≥ 0} is bounded, then dist(x(i+1),S) → 0,
where dist(u,V) , inf{‖u − v‖ : v ∈ V} denotes the distance
from u to V , for any point u ∈ RN and any subset V ⊂ RN . If
S contains uniformly isolated points, i.e., there exists η > 0 such
that ‖u− v‖ ≥ η for any distinct points u, v ∈ S , then {x(i+1)}
converges to a point in S .

Proof. See §A.6 in the appendices.

The boundedness assumption for {x(i+1)} in Corol-
lary 11 is standard in block-wise optimization, e.g., [24], [35],
[53], [55], [62]. The assumption can be satisfied if the set X
is bounded (e.g., box constraints), one chooses appropriate

regularization parameters in Algorithm 1 [24], [35], [55],
the function F (x; y, z) is coercive [62], or the level set is
bounded [53]. However, for general F (x; y, z), it is hard to
verify the isolation condition for the points in S in practice.
Instead, one may use Kurdyka-Łojasiewicz property [53],
[62] to analyze the whole sequence convergence with some
appropriate modifications.

For simplicity, we focused our discussion to noniter-
ative MBIR module (Alg.1.3). However, Momentum-Net
practically converges with any proximable MRIR function
(Alg.1.3) that may need an iterative solver, if sufficient
inner iterations are used. To maximize the computational
benefit of Momentum-Net, one needs to make sure that
majorized MBIR function (Alg.1.3) is better proximable over
its original form (P1).

2.5 Benefits of Momentum-Net
Momentum-Net has several benefits over existing INNs:
• Benefits from refining module: The image refining mod-

ule (Alg.1.1) can use iteration-wise image refining NNs
{Rθ(i+1) : i≥ 0}: those are particularly useful to reduce
overfitting risks by reducing dimensions of their param-
eters θ(i+1) at each iteration [16], [18], [19]. Iteration-
wise refining NNs require less memory for training,
compared to methods that use a single refining NN
for all iterations, e.g., [63]. Different from the exist-
ing methods mentioned in §1.3, Momentum-Net does
not require (firmly) nonexpansive mapping operators
{Rθ(i+1)} to guarantee convergence. Instead, {Rθ(i+1)}
in (Alg.1.1) assumes a generalized notion of the (firm)
non-expansiveness condition assumed for convergence
of the existing methods that use identical refining NNs
across iterations, including PnP [20], [23], [39]–[41], [46],
RED [22], [43], etc. The generalized concept is the first
practical condition to guarantee convergence of INNs
using iteration-wise refining NNs; see Definition 7.

• Benefits from extrapolation module: The extrapolation mod-
ule (Alg.1.2) uses the momentum terms x(i) − x(i−1)

that accelerate the convergence of Momentum-Net. In
particular, compared to the existing gradient-descent-
inspired INNs, e.g., TNRD [21], [28], Momentum-Net
converges faster. (Note that the way the authors of [43]
used momentum is less conventional. The correspond-
ing method, RED-APG [43, Alg. 6], still can require
multiple inner iterations to solve its quadratic MBIR
problem, similar to BCD-Net-type methods.)

• Benefits from MBIR module: The MBIR module (Alg.1.3)
does not require multiple inner iterations for a wide
range of imaging problems and has both theoretical and
practical benefits. Note first that convergence analysis
of INNs (including Momentum-Net) assumes that their
MBIR operators are noniterative. In other words, related
convergence theory (e.g., Proposition A.5) is inapplica-
ble if iterative methods, particularly with insufficient
number of iterations, are applied to MBIR modules.
Different from the existing BCD-Net-type methods [20],
[22], [23], [25], [30], [39]–[41], [43] that can require it-
erative solvers for their MBIR modules, MBIR mod-
ule (Alg.1.3) of Momentum-Net can have practical close-
form solution (see examples in §2.2), and its correspond-
ing convergence analysis (see §2.4) can hold stably for a
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wide range of imaging applications. Second, combined
with extrapolation module (Alg.1.2), noniterative MBIR
modules (Alg.1.3) lead to faster MBIR, compared to the
existing BCD-Net-type methods that can require multi-
ple inner iterations for their MBIR modules for conver-
gence. Third, Momentum-Net guarantees convergence
even for nonconvex MBIR cost function F (x; y, z) or
nonconvex data-fit f(x; y) of which the gradient is M -
Lipschitz continuous (see Definition 1), while existing
INNs overlooked nonconvex F (x; y, z) or f(x; y).
Furthermore, §A.7 analyzes the sequence convergence

of BCD-Net [25], and describes the convergence benefits of
Momentum-Net over BCD-Net.

3 TRAINING INNS

This section describes training of all the INNs compared in
this paper.

3.1 Architecture of refining NNs and their training
For all INNs in this paper, we train the refining NN at each
iteration to remove artifacts from the input image x(i) that
is fed from the previous iteration. For the ith iteration NN,
we first consider the following sCNN architecture, residual
single-hidden layer convolutional autoencoder:

Rθ(i+1)(u) =
K∑
k=1

d
(i+1)
k ∗Texp(α

(i+1)
k )

(
e

(i+1)
k ∗u)+ u, (18)

where θ(i+1) = {d(i+1)
k , α

(i+1)
k , e

(i+1)
k : ∀k} is the parameter

set of the ith image refining NN, {d(i+1)
k , e

(i+1)
k ∈ CR : k=

1, . . . ,K} is a set of K decoding and encoding filters of size
R, {exp(α

(i+1)
k ) : k = 1, . . . ,K} is a set of K thresholding

values, and Tα(u) is the soft-thresholding operator with
parameter α defined in (6), for i = 0, . . . , Niter−1. We use
the exponential function exp(·) to prevent the thresholding
parameters {αk} from becoming negative during training.
We observed that the residual convolutional autoencoder
in (18) gives better results compared to the convolutional
autoencoder, i.e., (18) without the second term [18], [25].
This corresponds to the empirical result in [64], [65] that
having skip connections (e.g., the second term in (18))
can improve generalization. The sequence of paired sCNN
refiners (18) can satisfy the asymptotic non-expansiveness,
if its convergent refiner satisfies that

σmax(DHD) ≤ 1/R, σmax(EHE) ≤ 1/R,

where σmax(·) is the largest eigenvalue of a matrix, D ,
[d̄1, . . . , d̄K , δR], E , [ē1, . . . , ēK , δR], {d̄k, ēk : ∀k} are limit
point filters, and δR is the Kronecker delta filter of size R.

For dCNN refiners, we use the following residual multi-
hidden layer CNN architecture, a simplified DnCNN [4]
using fewer layers, no pooling, and no batch normalization
[46] (we drop superscript indices (·)(i) for simplicity):

Rθ(u) =u−
K∑
k=1

e
[L]
k ∗u[L−1]

k , (19)

u
[1]
k = ReLU

(
e

[1]
k ∗u

)
, u

[l]
k = ReLU

(
K∑
k′=1

e
[l]
k,k′∗z[l−1]

k′

)
,

for k = 1, . ..,K and l = 2,. ..,L−1, where θ = {e[l]
k ,e

[l]
k,k′ :

∀k,k′,l} is the parameter set of each refining NN, K is
the number of feature maps, L is the number of layers,
{e[l]
k ∈ RR : k = 1,. ..,K,l = 1,L} is a set of filters at the

first and last dCNN layer, {e[l]
k,k′ ∈ RR : k,k′= 1,. ..,K,l=

2,. ..,L−1} is a set of filters for remaining dCNN layer,
and the rectified linear unit activation function is defined
by ReLU(u),max(0,u).

The training process of Momentum-Net requires S high-
quality training images, {xs : s= 1,. ..,S}, S training mea-
surements simulated via imaging physics, {ys :s=1,. ..,S},
and S data-fits {fs(x;ys) : s = 1,. ..,S} and the corre-
sponding majorization matrices {M (i)

s ,M̃
(i)
s :s=1,. ..,S,i=

1,. ..,Niter}. Different from [16], [25], [66] that train con-
volutional autoencoders from the patch perspective, we
train the image refining NNs in (18)–(19) from the convo-
lution perspective (that does not store many overlapping
patches, e.g., see [24]). From S training pairs (xs,x

(i)
s ),

where {x(i)
s :s=1,. ..,S} is a set of S reconstructed images

at the (i−1)th Momentum-Net iteration, we train the ith
iteration image refining NN in (18) by solving the following
optimization problem:

θ(i+1) = argmin
θ

1

2S

S∑
s=1

∥∥∥xs −Rθ(x(i)
s )
∥∥∥2

2
, (P2)

where θ(i+1) is given as in (18), for i = 0, . . . , Niter − 1
(see some related properties in §A.8). We solve the training
optimization problems (P2) by mini-batch stochastic opti-
mization with the subdifferentials computed by the PyTorch
Autograd package.

3.2 Regularization parameter selection based on
“spectral spread”
When majorization matrices of training data-fits {fs(x; ys) :
s=1, . . . , S} have similar spectral properties, e.g., condition
numbers, the regularization parameter γ in (P1) is trainable
by substituting (Alg.1.1) into (Alg.1.3) and modifying the
training cost (P2). However, the condition numbers of data-
fit majorizers can greatly differ due a variety of imaging
geometries or image formation systems, or noise levels in
training measurements, etc. See such examples in §4.1–4.2.

To train Momentum-Net with diverse training data-fits,
we propose a parameter selection scheme based on the
“spectral spread” of their majorization matrices {M (i)

fs
}.

For simplicity, consider majorization matrices of the form
M̃

(i)
s = M̃s = λ(Mfs + γsI) ∀i, where the factor λ is

selected by (7) and Mfs is a symmetric positive semidefinite
majorization matrix for fs(x; ys), ∀s. We select the regular-
ization parameter γs for the sth training sample as

γs =
σspread(Mfs)

χ
, (20)

where the spectral spread of a symmetric positive definite
matrix is defined by σspread(·) , σmax(·) − σmin(·) for
σmax(Mfs) > σmin(Mfs) ≥ 0, and σmin(·) is the smallest
eigenvalue of a matrix. For the sth training sample, a
tunable factor χ controls γs in (20) according to σspread(Mfs),
∀s. The proposed parameter selection scheme also applies to
testing Momentum-Net, based on the tuned factor χ? in its
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training. We observed that the proposed parameter selection
scheme (20) gives better MBIR accuracy than the condition
number based selection scheme that is similarly used in
selecting ADMM parameters [17] (for the two applications
in §4). One may further apply this scheme to iteration-
wise majorization matrices M̃ (i)

s and select iteration-wise
regularization parameters γ(i)

s accordingly. For comparing
different INNs, we apply (20) to all INNs.

4 EXPERIMENTAL RESULTS AND DISCUSSION

We investigated two extreme imaging applications: sparse-
view CT and LF photography using a focal stack. In par-
ticular, these two applications lack a practical closed-form
solution for the MBIR modules of BCD-Net and ADMM-
Net [20], e.g., solving (Alg.2.2). For these applications, we
compared the performances of the following five INNs:
BCD-Net [25] (i.e., generalization of RED [22] and MoDL
[30]), ADMM-Net [20], i.e., PnP-ADMM [23], [41] using
iteration-wise refining NNs, Momentum-Net without extrap-
olation (i.e., generalization of TNRD [21], [28]), PDS-Net, i.e.,
PnP-PDS [50] using iteration-wise refining NNs, and the
proposed Momentum-Net using extrapolation.

4.1 Experimental setup: Imaging

4.1.1 Sparse-view CT

To reconstruct a linear attenuation coefficient image x ∈ RN
from post-log sinogram y ∈ Rm in sparse-view CT, the
MBIR problem (P1) considers a data-fit f(x; y) = 1

2‖y −
Ax‖2W and the non-negativity constraint X = [0,∞)N ,
where A ∈ Rm×N is an undersampled CT system matrix,
W ∈ Rm×m is a diagonal weighting matrix with elements
{Wm′,m′ = p′2m/(p

′
m + σ2) : ∀m′} based on a Poisson-

Gaussian model [17], [67] for the pre-log raw measurements
p ∈ Rm with electronic readout noise variance σ2.

We simulated 2D sparse-view sinograms of size m =
888×123 – ‘detectors or rays’ × ‘regularly spaced projection
views or angles’, where 984 is the number of full views –
with GE LightSpeed fan-beam geometry corresponding to
a monoenergetic source with 105 incident photons per ray
and no background events, and electronic noise variance
σ2 =52. We avoided an inverse crime in imaging simulation
and reconstructed images of sizeN=420×420 with a coarser
grid ∆x=∆y=0.9766 mm; see details in [37, §V-A2].

4.1.2 LF photography using a focal stack

To reconstruct a LF x= [xT1 , . . . , x
′
C ]T ∈ RSN

′
that consists

of C ′ sub-aperture images from focal stack measurements
y= [yT1 , . . . , y

T
C ]T ∈RCN ′ that are collected by C photosen-

sors, the MBIR problem (P1) considers a data-fit f(x; y) =
1
2‖y − Ax‖22 and a box constraint X = [0, U ]C

′N ′ with
U =1 (or 255 without rescaling), where A∈RCN ′×C′N ′ is a
system matrix of LF imaging system using a focal stack that
is constructed blockwise with C · C ′ different convolution
matrices {τcA′c,c′ ∈RN

′×N ′ :c=1, . . . , C, c′=1, . . . , C ′} [47],
[68], τc ∈ (0, 1] is a transparency coefficient for the cth

Algorithm 2 BCD-Net [25]

Require: {Rθ(i) : i = 1, . . . , Niter}, γ > 0, x(0) = x(−1), y
for i = 0, . . . , Niter−1 do

Image refining:
z(i+1) = Rθ(i+1)

(
x(i)

)
(Alg.2.1)

MBIR:
x(i+1) = argmin

x∈X
F (x; y, z(i+1)) (Alg.2.2)

end for

detector, and N ′ is the size of sub-aperture images, xc′ , ∀c′.3
In general, a LF photography system using a focal stack is
extremely under-determined, because C � C ′.

To avoid an inverse crime, our imaging simulation used
higher-resolution synthetic LF dataset [70] (we converted
the original RGB sub-aperture images to grayscale ones by
the “rgb2gray.m” function in MATLAB, for simplicity and
smaller memory requirements in training). We simulated
C = 5 focal stack images of size N ′ = 255×255 with 40 dB
AWGN that models electronic noise at sensors, and setting
transparency coefficients τc as 1, for c=1, . . . , C . The sensor
positions were chosen such that five sensors focus at equally
spaced depths; specifically, the closest sensor to scenes and
farthest sensor from scenes focus at two different depths that
correspond to ‘dispmin + 0.2’ and ‘dispmax− 0.2’, respec-
tively, where dispmax and dispmin are the approximate
maximum and minimum disparity values specified in [70].
We reconstructed 4D LFs that consist of S = 9 × 9 sub-
aperture images of size N ′ = 255×255, with a coarser grid
∆x=∆y=0.13572 mm.

4.2 Experimental setup: INNs
4.2.1 Parameters of INNs
The parameters for the INNs compared in sparse-view CT
experiments were defined as follows. We considered two
BCD-Nets (see Algorithm 2): for one BCD-Net, we applied
the APG method [49] with 10 inner iterations to (Alg.2.2),
and set Niter = 30; for the other BCD-Net, we applied the
APG method with 3 inner iterations to (Alg.2.2), and set
Niter = 45. For ADMM-Net, we used the identical configu-
rations as BCD-Net and set the ADMM penalty parameter
to γ in (P1), similar to [16]. For Momentum-Net without
extrapolation, we chose Niter = 100 and ρ = 1 − ε. For
the proposed Momentum-Net, we chose Niter = 100 and
ρ= 0.5. For PDS-Net, we set the first step size to γ1 = γ−1

and the second step size to γ2 = γ−1
1 σ−1

max(M), per [50].
For performance comparisons between different INNs, all
the INNs used sCNN refiners (18) with {R,K = 72} to
avoid the overfitting/hallucination risks. For Momentum-
Net using dCNN refiners, we chose L= 4 layer dCNN (19)
using R = 32 filters and K = 64 feature maps, following
[46]. (The chosen parameters gave lower RMSE values than
{L=6, R=33,K=64}, for identical regularization parame-
ters.) For comparing different MBIR methods, Momentum

3. Traditionally, one obtains focal stacks by physically moving imag-
ing sensors and taking separate exposures across time. Transparent
photodetector arrays [47], [69] allow one to collect focal stack data in
a single exposure, making a practical LF camera using a focal stack. If
some photodetectors are not perfectly transparent, one can use τc < 1,
for some c.
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used extrapolation, i.e., (Alg.1.2) with (8) and (10), and
{R = 72,K = 92} for (18). We designed the majorization
matrices as {M̃ (i+1) = diag(ATWA1) + γI : i ≥ 0}, using
Lemma A.7 (A andW have nonnegative entries) and setting
λ=1 by (7). We set an initial point of INNs, x(0), to filtered-
back projection (FBP) using a Hanning window. The regular-
ization parameters of all INNs were selected by the scheme
in §3.2 with χ? = 167.64. (This factor was estimated from
the carefully chosen regularization parameter for sparse-
view CT MBIR experiments using learned convolutional
regularizers in [24].)

The parameters for the INNs compared in experiments
of LF photography using a focal stack were defined as fol-
lows. We considered two BCD-Nets and two ADMM-Nets
with the identical parameters listed above. For Momentum-
Net without extrapolation and the proposed Momentum-
Net, we set Niter = 100 and ρ = 1 − ε. For PDS-Net, we
used the identical parameter setup described above. For
performance comparisons between different INNs, all the
INNs used sCNN refiners (18) with {R = 52,K = 32}
(to avoid the overfitting risks) in the epipolar domain. For
Momentum-Net using dCNN refiners, we chose L=6 layer
dCNN (19) using R = 32 filters and K = 16 feature maps.
(The chosen parameters gave most accurate performances
over the following setups, {L = 4, R = 32,K = 16, 32, 64},
given the identical regularization parameters.) To generate
Rθ(i+1)(x(i)) in (Alg.1.1), we applied a sCNN (18) with
{R= 52,K = 32} or a dCNN (19) with {L= 6, R= 32,K =
16} to two sets of horizontal and vertical epipolar plane
images, and took the average of two LFs that were permuted
back from refined horizontal and vertical epipolar plane
image sets, ∀i.4 We designed the majorization matrices as
{M̃ (i+1) = diag(ATA1) + γI : i ≥ 0}, using Lemma A.7
and setting λ = 1 by (7). We set an initial point of INNs,
x(0), to AT y rescaled in the interval [0, 1] (i.e., dividing
by its max value). The regularization parameters (i.e., γ in
BCD-Net/Momentum-Net, the ADMM penalty parameter
in ADMM-Net, and the first step size in PDS-Net) were
selected by the proposed scheme in §3.2 with χ? = 1.5. (We
tuned the factor to achieve the best performances).

For different combinations of INNs and sCNN refiner
(18)/dCNN refiner (19), we use the following naming con-
vention: ‘the INN name’-‘sCNN’ or ‘dCNN’.

4.2.2 Training INNs

For sparse-view CT experiments, we trained all the INNs
from the chest CT dataset with {xs, ys, fs(x; ys) = 1

2‖ys −
Ax‖2Ws

, M̃s : s = 1, . . . , S, S = 142}; we constructed the
dataset by using XCAT phantom slices [71]. The CT ex-
periment has mild data-fit variations across training sam-
ples: the standard deviation of the condition numbers
(, σmax(·)/σmin(·)) of {Mfs = diag(ATWsA1) : ∀s} is 1.1.
For experiments of LF photography using a focal stack, we
trained all the INNs from the LF photography dataset with
{ys, fs(x; ys)= 1

2‖ys − Asx‖
2
2, M̃s :s=1, . . . , S, S=21} and

4. Epipolar images are 2D slices of a 4D LF LF (cx, cy , cu, cv), where
(cx, cy) and (cu, cv) are spatial and angular coordinates, respectively.
Specifically, each horizontal epipolar plane image are obtained by fixing
cy and cv , and varying cx and cu; and each vertical epipolar image are
obtained by fixing cx and cu, and varying cy and cv .

two sets of ground truth epipolar images, {xs,epi-h, xs,epi-v :
s = 1, . . . , S, S = 21 · (255 ·9)}; we constructed the dataset
by excluding four unrealistic “stratified” scenes from the
original LF dataset in [70] that consists of 28 LFs with
diverse scene parameter and camera settings. The LF ex-
periment has large data-fit variations across training sam-
ples: the standard deviation of the condition numbers of
{Mfs =diag(ATs As1) :∀s} is 2245.5.

In training INNs for both the applications, if not spec-
ified, we used identical training setups. At each iteration
of INNs, we solved (P2) with the mini-batch version of
Adam [72] and trained iteration-wise sCNNs (18) or dC-
NNs (19). We selected the batch size and the number of
epochs as follows: for sparse-view CT reconstruction, we
chose them as 20 & 300, and 20 & 200 for sCNN and
dCNN refiners, respectively; for LF photography using a
focal stack, we chose them as 200 & 200, and 200 & 100,
for sCNN and dCNN refiners, respectively. We chose the
learning rates for filters in sCNNs and dCNNs, and thresh-
olding values {α(i+1)

k : ∀k, i} in sCNNs (18), as 10−3 and
10−1, respectively; we reduced the learning rates by 10%
every 10 epochs. At the first iteration, we initialized filter
coefficients with Kaiming uniform initialization [73]; in the
later iteration, i.e., at the ith INN iteration, for i ≥ 2, we
initialized filter coefficients from those learned from the
previous iteration, i.e., (i − 1)th iteration (this also applies
to initializing thresholding values).

4.2.3 Testing trained INNs
In sparse-view CT reconstruction experiments, we tested
trained INNs to two samples where ground truth images
and the corresponding inverse covariance matrices (i.e., W
in §4.1.1) sufficiently differ from those in training samples
(i.e., they are a few cm away from training images). We eval-
uated the reconstruction quality by the most conventional
error metric in CT application, RMSE (in HU), in a region
of interest (ROI), where RMSE and HU stand for root-mean-
square error and (modified) Hounsfield unit, respectively,
and the ROI was a circular region that includes all the
phantom tissues. The RMSE is defined by RMSE(x?, xtrue),
(
∑NROI
j=1 (x?j − xtrue

j )2/NROI)
1/2, where x? is a reconstructed

image, xtrue is a ground truth image, andNROI is the number
of pixels in a ROI. In addition, we compared the trained
Momentum-Net (using extrapolation) to a standard MBIR
method using a hand-crafted EP regularizer, and an MBIR
model using a learned convolutional regularizer [24], [37]
which is the state-of-the-art MBIR method within an unsu-
pervised learning setup. We finely tuned their regularization
parameters to achieve the lowest RMSE. See details of these
two MBIR models in §A.9.2.

In experiments of LF photography using a focal stack,
we tested trained INNs to three samples of which scene
parameter and camera settings are different from those
in training samples (all training and testing samples have
different camera and scene parameters). We evaluated the
reconstruction quality by the most conventional error metric
in LF photography application, PSNR (in dB), where PSNR
stands for peak signal-to-noise. In addition, we compared
the trained Momentum-Net (using extrapolation) to MBIR
method using the state-of-the-art non-trained regularizer,
4D EP introduced in [47]. (The low-rank plus sparse tensor
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(a) Momentum-Net vs. (b) BCD-Net vs.
PDS-Net [50] ADMM-Net [20], [23], [41]
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Fig. 4. RMSE minimization comparisons between different INNs for
sparse-view CT (fan-beam geometry with 12.5% projections views and
105 incident photons; (a) averaged RMSE values across two test re-
fined images; (b) averaged RMSE values across two test reconstructed
images).
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Fig. 5. RMSE minimization comparisons between different INNs for
sparse-view CT (fan-beam geometry with 12.5% projections views and
105 incident photons; averaged RMSE values across two test recon-
structed images).

decomposition model [68], [74] failed when inverse crimes
and measurement noise are considered.) We finely tuned
its regularization parameter to achieve the lowest RMSE
values. See details of this MBIR model in §A.9.3. We further
investigated impacts of the LF MBIR quality on a higher-
level depth estimation application, by applying the robust
Spinning Parallelogram Operator (SPO) depth estimation
method [75] to reconstructed LFs.

For comparing Momentum-Net with PDS-Net, we mea-
sured quality of refined images, z(i+1) in (Alg.1.1), because
PDS-Net is a hard-refiner.

The imaging simulation and reconstruction experiments
were based on the Michigan image reconstruction tool-
box [76], and training INNs, i.e., solving (P2), was based
on PyTorch (for sparse-view CT, we used ver. 1.2.0; for
LF photography using a focal stack, we used ver. 0.3.1).
For sparse-view CT, single-precision MATLAB and PyTorch
implementations were tested on 2.6 GHz Intel Core i7 CPU
with 16 GB RAM, and 1405 MHz Nvidia Titan Xp GPU
with 12 GB RAM, respectively. For LF photography using a
focal stack, they were tested on 3.5 GHz AMD Threadripper
1920X CPU with 32 GB RAM, and 1531 MHz Nvidia GTX
1080 Ti GPU with 11 GB RAM, respectively.

4.3 Comparisons between different INNs

First, compare sCNN results in Figs. 4–5 and Figs. 6–7, for
sparse-view CT and LF photography using a focal stack, re-
spectively. For both applications, the proposed Momentum-
Net using extrapolation significantly improves MBIR speed

(a) Momentum-Net vs. (b) BCD-Net vs.
PDS-Net [50] ADMM-Net [20], [23], [41]
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Fig. 6. PSNR maximization comparisons between different INNs in LF
photography using a focal stack (LF photography systems with C = 5
detectors obtain a focal stack of LFs consisting of S = 81 sub-aperture
images; (a) averaged RMSE values across two test refined images); (b)
averaged RMSE values across two test reconstructed images.

0 50 100 150 200
Reconstruction time (sec)

26

28

30

32

34

P
S
N
R

(d
B
)

Momentum-Net-dCNN

Momentum-Net-sCNN
Momentum-Net-sCNN, no extrapolation

BCD-Net-sCNN, 3 inner iter.
BCD-Net-sCNN, 10 inner iter.

Fig. 7. PSNR maximization comparisons between different INNs in LF
photography using a focal stack (LF photography systems with C = 5
detectors obtain a focal stack of LFs consisting of S = 81 sub-aperture
images; averaged PSNR values across three test reconstructed im-
ages).

and accuracy, compared to the existing soft-refining INNs,
[21]–[23], [28], [30] that correspond to BCD-Net [25] or
Momentum-Net using no extrapolation, and ADMM-Net
[20], [23], [41], and the existing hard-refining INN PDS-
Net [50]. (Note that BCD-Net and Momentum-Net require
slightly less computational complexity per INN iteration,
compared to ADMM-Net and PDS-Net, respectively, due
to having fewer modules.) Fig. 5 shows that to reach the
24 HU RMSE value in sparse-view CT reconstruction, the
proposed Momentum-Net decreases MBIR time by 53.3%
and 62.5%, compared to Momentum-Net without extrapola-
tion and BCD-Net using three inner iterations, respectively.
Fig. 7 shows that to reach the 32 dB PSNR value in LF
reconstruction from a focal stack, the proposed Momentum-
Net decreases MBIR time by 36.5% and 61.5%, compared to
Momentum-Net without extrapolation and BCD-Net using
three inner iterations, respectively. In addition, Figs. 5 and
7 show that using extrapolation, i.e., (Alg.1.2) with (8)–
(10), improves the performance of Momentum-Net versus
iterations.

We conjecture that the larger performance gap between
soft-refiner Momentum-Net and hard-refiner PDS-Net, in
Fig. 4(a) compared to Fig. 6(a), is because the LF problem
needs stronger regularization, i.e., a smaller tuned factor χ?

in (20), than the CT problem. Similarly, comparing Fig. 4(b)
to Fig. 6(b) shows that the LF problem has small perfor-
mance gaps between BCD-Net and ADMM-Net.

For both the applications, using dCNN refiners (19)
instead of sCNN refiners (18) has a negligible effect on total
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run time of Momentum-Net, because reconstruction time of
MBIR modules (Alg.1.3) (in CPUs) dominates inference time
of image refining modules (Alg.1.1) (in GPUs). Compare re-
sults between Momentum-Net-sCNN and -dCNN in Figs. 5
& 7 and Tables A.1 & A.2.

4.4 Comparisons between different MBIR methods

In sparse-view CT using 12.5% of the full projection views,
Fig. 8(b)–(e) and Table A.1(b)–(f) show that the proposed
Momentum-Net achieves significantly better reconstruction
quality compared to the conventional EP MBIR method and
the state-of-the-art MBIR method within an unsupervised
learning setup, MBIR model using a learned convolutional
regularizer [24], [37]. In particular, Momentum-Net recov-
ers both low- and high-contrast regions (e.g., soft tissues
and bones, respectively) more accurately than MBIR using
a learned convolutional regularizer; see Fig. 8(c)–(e). In
addition, when their shallow convolutional autoencoders
need identical computational complexities, Momentum-Net
achieves much faster MBIR compared to MBIR using a
learned convolutional regularizer; see Table A.1(c)–(d).

In LF photography using five focal sensors, regardless
of scene parameters and camera settings, Momentum-Net
consistently achieves significantly more accurate image re-
covery, compared to MBIR model using the state-of-the-art
non-trained regularizer, 4D EP [47]. The effectiveness of
Momentum-Net is more evident for a scene with less fine
details. See Fig. 9(b)–(d) and Table A.2(b)–(d). Regardless
of the scene distances from LF imaging systems, the re-
constructed LFs by Momentum-Net significantly improve
the depth estimation accuracy over those reconstructed by
the state-of-the-art non-trained regularizer, 4D EP [47]. See
Fig. 10(c)–(e) and Table A.3(c)–(e).

In general, Momentum-Net needs more computations
per iteration than EP MBIR, because its refining NNs use
more and larger filters than the small finite-difference filters
in EP MBIR, and EP MBIR algorithms can be often fur-
ther accelerated by gradient approximations, e.g., ordered-
subsets methods [77], [78].

5 CONCLUSIONS

Developing rapidly converging INNs is important, because
1) it leads to fast MBIR by reducing the computational com-
plexity in calculating data-fit gradients or applying refining
NNs, and 2) training INNs with many iterations requires
long training time or it is challenging when refining NNs are
fixed across INN iterations. The proposed Momentum-Net
framework is applicable for a wide range of inverse prob-
lems, while achieving fast and convergent MBIR. To achieve
fast MBIR, Momentum-Net uses momentum in extrapola-
tion modules, and noniterative MBIR modules at each itera-
tion via majorizers. For sparse-view CT and LF photography
using a focal stack, Momentum-Net achieves faster and
more accurate MBIR compared to the existing soft-refining
INNs, [21]–[23], [28], [30] that correspond to BCD-Net [25]
or Momentum-Net using no extrapolation, and ADMM-Net
[20], [23], [41], and the existing hard-refining INN PDS-
Net [50]. When an application needs strong regularization
strength, e.g., LF photography using limited detectors, using

dCNN refiners with moderate depth significantly improves
the MBIR accuracy of Momentum-Net compared to sCNNs,
only marginally increasing total MBIR time. In addition,
Momentum-Net guarantees convergence to a fixed-point
for general differentiable (non)convex MBIR functions (or
data-fit terms) and convex feasible sets, under some mild
conditions and two asymptotic conditions. The proposed
regularization parameter selection scheme uses the “spectral
spread” of majorization matrices, and is useful to consider
data-fit variations across training/testing samples.

There are a number of avenues for future work. First, we
expect to further improve performances of Momentum-Net
(e.g., MBIR time and accuracy) by using sharper majorizer
designs. Second, we expect to further reduce MBIR time
of Momentum-Net with the stochastic gradient perspective
(e.g., ordered subset [77], [78]). On the regularization pa-
rameter selection side, our future work is learning the factor
χ in (20) from datasets while training refining NNs.
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(a) Ground truth at the
(5, 5)th angular coord.

(b) Error maps of
4D EP reg. [47]

(c) Error maps of
Momentum-Net-sCNN

(d) Error maps of
Momentum-Net-dCNN

PSNR (dB) = 29.9 (32.0) PSNR (dB) = 37.7 (35.8) PSNR (dB) = 38.2 (37.1)

PSNR (dB) = 30.7 (28.1) PSNR (dB) = 33.9 (30.7) PSNR (dB) = 34.6 (32.0)

PSNR (dB) = 27.3 (28.1) PSNR (dB) = 32.9 (30.9) PSNR (dB) = 33.6 (31.7)
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Momentum-Net: Fast and convergent
iterative neural network for inverse problems

(Appendices)

This supplementary material for [1] a) reviews the Block Proximal Extrapolated Gradient method using a Majorizer
(BPEG-M) [2], [3], b) lists parameters of Momentum-Net, and summarizes selection guidelines or gives default values,
c) compares the convergence properties between Momentum-Net and BCD-Net, and d) provides mathematical proofs or
detailed descriptions to support several arguments in the main manuscript. We use the prefix “A” for the numbers in
section, theorem, equation, figure, table, and footnote in the supplement.

A.1 BPEG-M: REVIEW

This section explains block multi-(non)convex optimization problems, and summarizes the state-of-the-art method for block
multi-(non)convex optimization, BPEG-M [2], [3], along with its convergence guarantees.

A.1.1 Block multi-(non)convex optimization

In a block optimization problem, the variables of the underlying optimization problem are treated either as a single block
or multiple disjoint blocks. In block multi-(non)convex optimization, we consider the following problem:

min
u

F (u1, . . . , uB) , f(u1, . . . , uB) +
B∑
b=1

rb(ub) (A.1)

where variable u is decomposed into B blocks u1, . . . , uB ({ub ∈ Rnb : b = 1, . . . , B}), f is assumed to be (continuously)
differentiable, but functions {rb : b = 1, . . . , B} are not necessarily differentiable. The function rb can incorporate the
constraint ub ∈ Ub, by allowing rb’s to be extended-valued, e.g., rb(ub) = ∞ if ub /∈ Ub, for b = 1, . . . , B. It is standard
to assume that both f and {rb} are proper and closed, and the sets {Ub} are closed. We consider either that (A.1) has
block-wise convexity (but (A.1) is jointly nonconvex in general) [2], [4] or that f , {rb}, or {Ub} are not necessarily convex
[3], [5]. Importantly, rb can include (non)convex and nonsmooth `p (quasi-)norm, p ∈ [0, 1]. The next section introduces our
optimization framework that solves (A.1).

The following sections review BPEG-M [2], [3], the state-of-the-art optimization framework for solving block multi-
(non)convex problems, when used with sufficiently sharp majorizers. BPEG-M uses block-wise extrapolation, majorization,
and proximal mapping. By using a more general Lipschitz continuity (see Definition 1) for block-wise gradients, BPEG-M
is particularly useful for rapidly calculating majorizers involved with large-scale problems, and successfully applied to
some large-scale machine learning and computational imaging problems; see [2], [3], [6] and references therein.

A.1.2 BPEG-M

This section summarizes the BPEG-M framework. Using Definition 1 and Lemma 2, the proposed method, BPEG-M, is
given as follows. To solve (A.1), we minimize majorizers of F cyclically over each block u1, . . . , uB , while fixing the
remaining blocks at their previously updated variables. Let u(i+1)

b be the value of ub after its ith update, and define

f
(i+1)
b (ub) , f

(
u

(i+1)
1 , . . . , u

(i+1)
b−1 , ub, u

(i)
b+1, . . . , u

(i)
B

)
,

for all b, i. At the bth block of the ith iteration, we apply Lemma 2 to functional f (i+1)
b (ub) with a M (i+1)-Lipschitz

continuous gradient at the extrapolated point ú(i+1)
b , and minimize a majorized function. In other words, we consider the

updates

u
(i+1)
b = argmin

ub
〈∇f (i+1)

b (ú
(i+1)
b ), ub − ú(i+1)

b 〉+
1

2

∥∥∥ub − ú(i+1)
b

∥∥∥2

M̃
(i+1)
b

+ rb(ub)

= Prox
M̃

(i+1)
b

rb

(
ú

(i+1)
b −

(
M̃

(i+1)
b

)−1
∇f (i+1)

b (ú
(i+1)
b )︸ ︷︷ ︸

extrapolated gradient step using a majorizer of f(i+1)
b

)
, (A.2)

where
ú

(i+1)
b = u

(i)
b + E

(i+1)
b

(
u

(i)
b − u

(i−1)
b

)
, (A.3)
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Algorithm A.1 BPEG-M [2], [3]

Require: {u(0)
b = u

(−1)
b : ∀b}, {w(i)

b ∈ [0, 1], ∀b, i}, i = 0
while a stopping criterion is not satisfied do

for b = 1, . . . , B do
Calculate M̃ (i+1)

b by (A.4), and E
(i+1)
b to satisfy (A.5) or (A.6)

ú
(i+1)
b = u

(i)
b + E

(i+1)
b

(
u

(i)
b − u

(i−1)
b

)
u

(i+1)
b = Prox

M̃
(i+1)
b

rb

(
ú

(i+1)
b −

(
M̃

(i+1)
b

)−1

∇f (i+1)
b (ú

(i+1)
b )

)
end for
i = i+ 1

end while

the proximal operator is defined by (2), ∇f (i+1)
b (ú

(i+1)
b ) is the block-partial gradient of f at ú(i+1)

b , a scaled majorization
matrix is given by

M̃
(i+1)
b = λb ·M (i+1)

b � 0, λb ≥ 1, (A.4)

and M
(i+1)
b ∈ Rnb×nb is a symmetric positive definite majorization matrix of ∇f (i+1)

b (ub). In (A.3), the Rnb×nb matrix
E

(i+1)
b � 0 is an extrapolation matrix that accelerates convergence in solving block multi-convex problems [2]. We design

it to satisfy conditions (A.5) or (A.6) below. In (A.4), {λb = 1 : ∀b} and {λb > 1 : ∀b}, for block multi-convex and block
multi-nonconvex problems, respectively.

For some f (i+1)
b having sharp majorizers, we expect that extrapolation (A.3) has no benefits in accelerating convergence,

and use {E(i+1)
b = 0 : ∀i}. Other than the blocks having sharp majorizers, one can apply some increasing momentum

coefficient formula [7], [8] to the corresponding extrapolation matrices. The choice in [2]–[4] accelerated BPEG-M for some
machine learning and data science applications. Algorithm A.1 summarizes these updates.

A.1.3 Convergence results
This section summarizes convergence results of Algorithm A.1 under the following assumptions:
• Assumption S.1) In (A.1), F is proper and lower bounded in dom(F ) , {u : F (u) <∞}. In addition,

for block multi-convex (A.1), f is differentiable and (A.1) has a Nash point or block-coordinate minimizerA.1 (see its
definition in [4, (2.3)–(2.4)]);
for block multi-nonconvex (A.1), f is continuously differentiable, rb is lower semicontinuousA.2, ∀b, and (A.1) has a
critical point u? that satisfies 0 ∈ ∂F (u?).

• Assumption S.2) ∇f (i+1)
b (ub) is M -Lipschitz continuous with respect to ub, i.e.,∥∥∥∇f (i+1)

b (u)−∇f (i+1)
b (v)

∥∥∥(
M

(i+1)
b

)−1 ≤ ‖u− v‖M(i+1)
b

,

for u, v ∈ Rnb , where M (i+1)
b is a bounded majorization matrix.

• Assumption S.3) The extrapolation matrices E(i+1)
b � 0 satisfy that

for block multi-convex (A.1),
(
E

(i+1)
b

)T
M

(i+1)
b E

(i+1)
b � δ2 ·M (i)

b ; (A.5)

for block multi-nonconvex (A.1),
(
E

(i+1)
b

)T
M

(i+1)
b E

(i+1)
b � δ2(λb − 1)2

4(λb + 1)2
·M (i)

b , (A.6)

with δ < 1, ∀b, i.
Theorem A.1 (Block multi-convex (A.1): A limit point is a Nash point [2]). Under Assumptions S.1–S.3, let {u(i+1) : i ≥ 0} be
the sequence generated by Algorithm A.1. Then any limit point of {u(i+1) : i ≥ 0} is a Nash point of (A.1).

Theorem A.2 (Block multi-nonconvex (A.1): A limit point is a critical point [3]). Under Assumptions S.1–S.3, let {u(i+1) : i ≥ 0}
be the sequence generated by Algorithm A.1. Then any limit point of {u(i+1) : i ≥ 0} is a critical point of (A.1).

Remark A.3. Theorems A.1–A.2 imply that, if there exists a critical point for (A.1), i.e., 0 ∈ ∂F (u?), then any limit point of
{u(i+1) : i ≥ 0} is a critical point. One can further show global convergence under some conditions: if {u(i+1) : i ≥ 0} is
bounded and the critical points are isolated, then {u(i+1) : i ≥ 0} converges to a critical point [2, Rem. 3.4], [4, Cor. 2.4].

A.1.4 Application of BPEG-M to solving block multi-(non)convex problem (1)
For update (3), we do not use extrapolation, i.e., (A.3), since the corresponding majorization matrices are sharp, so
one obtains tight majorization bounds in Lemma 2. See, for example, [3, §V-B]. For updates (3) and (5), we rewrite∑K
k=1 ‖hk ∗x− ζk‖22 as ‖x−

∑K
k=1 flip(h∗k)∗ ζk‖22 by using the TF condition in §2.1 [3, §VI], [6].

A.1. Given a feasible set U , a point u? ∈ dom(F ) ∪ U is a critical point (or stationary point) of F if the directional derivative dT∇F (u?) ≥ 0
for any feasible direction d at u?. If u? is an interior point of U , then the condition is equivalent to 0 ∈ ∂F (u?).

A.2. F is lower semicontinuous at point u0 if lim infu→u0 F (u) ≥ F (u0).
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A.2 EMPIRICAL MEASURES RELATED TO THE CONVERGENCE OF MOMENTUM-NET USING SCNN REFIN-
ERS

This section provides empirical measures related to Assumption 4 for Momentum-Net using single-hidden layer au-
toencoders (18); see Fig. A.1 below. We estimated the sequence {ε(i) : i = 2, . . . , Nlyr} in Definition 7, the sequence
{∆(i) : i = 2, . . . , Nlyr} in Definition 8, and the Lipschitz constants {κ(i) : i = 1, . . . , Nlyr} of refining NNs {Rθ(i) : ∀i},
based on a hundred sets of randomly selected training samples related with the corresponding bounds of the measures,
e.g., u and v in (11) are training input to Rθ(i+1) and Rθ(i) in (Alg.1.1), respectively.

(a) Sparse-view CT: Condition numbers of data-fit majorizers have mild variations.
(a1) {∆(i) : i ≥ 2} (a2) {ε(i) : i ≥ 2} (a3) {κ(i) : i ≥ 1}
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(b) LF photography using focal stack: Condition numbers of data-fit majorizers have strong variations.
(b1) {∆(i) : i ≥ 2} (b2) {ε(i) : i ≥ 2} (b3) {κ(i) : i ≥ 1}
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Fig. A.1. Empirical measures related to Assumption 4 for guaranteeing convergence of Momentum-Net using sCNN refiners (for details, see
(18) and §4.2.1), in different applications. (a) The sparse-view CT reconstruction experiment used fan-beam geometry with 12.5% projections
views. (b) The LF photography experiment used five detectors and reconstructed LFs consisting of 9×9 sub-aperture images. (a1, b1) For both
the applications, we observed that ∆(i) → 0. This implies that the z(i+1)-updates in (Alg.1.1) satisfy the asymptotic block-coordinate minimizer
condition in Assumption 4. (Magenta dots denote the mean values and black vertical error bars denote standard deviations.) (a2) Momentum-Net
trained from training data-fits, where their majorization matrices have mild condition number variations, shows that ε(i) → 0. This implies that
paired NNs (Rθ(i+1) ,Rθ(i) ) in (Alg.1.1) are asymptotically nonexpansive. (b2) Momentum-Net trained from training training data-fits, where their
majorization matrices have mild condition number variations, shows that ε(i) becomes close to zero, but does not converge to zero in one hundred
iterations. (a3, b3) The NNs, Rθ(i+1) in (Alg.1.1), become nonexpansive, i.e., its Lipschitz constant κ(i) becomes less than 1, as i increases.

A.3 PROBABILISTIC JUSTIFICATION FOR THE ASYMPTOTIC BLOCK-COORDINATE MINIMIZER CONDITION
IN ASSUMPTION 4
This section introduces a useful result for an asymptotic block-coordinate minimizer z(i+1): the following lemma provides
a probabilistic bound for ‖x(i) − z(i+1)‖22 in (12), given a subgaussian vector z(i+1) − z(i) with independent and zero-mean
entries.

Lemma A.4 (Probabilistic bounds for ‖x(i) − z(i+1)‖22). Assume that z(i+1) − z(i) is a zero-mean subgaussian vector of which
entries are independent and zero-mean subgaussian variables. Then, each bound in (12) holds with probability at least

1− exp

 −
(
‖z(i+1) − z(i)‖22 + ∆(i+1)

)2

8ρ · σ(i+1) · ‖Rθ(i+1)(x(i))− x(i)‖22

 ,
where σ(i+1) is a subgaussian parameter for z(i+1) − z(i), and a random variable is subgaussian with parameter σ if P{| · | ≥ t} ≤
2 exp(− t2

2σ ) for t ≥ 0.

Proof. First, observe that∥∥∥x(i) − z(i+1)
∥∥∥2

2
=
∥∥∥x(i) − z(i) − (z(i+1) − z(i))

∥∥∥2

2

=
∥∥∥x(i) − z(i)

∥∥∥2

2
+
∥∥∥z(i+1) − z(i)

∥∥∥2

2
− 2〈x(i) − z(i), z(i+1) − z(i)〉
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=
∥∥∥x(i) − z(i)

∥∥∥2

2
+
∥∥∥z(i+1) − z(i)

∥∥∥2

2
− 2〈z(i+1) − z(i) + ρ(x(i) −Rθ(i+1)(x(i))), z(i+1) − z(i)〉 (A.7)

=
∥∥∥x(i) − z(i)

∥∥∥2

2
−
∥∥∥z(i+1) − z(i)

∥∥∥2

2
+ 2ρ〈Rθ(i+1)(x(i))− x(i), z(i+1) − z(i)〉 (A.8)

where the inequality (A.7) holds by x(i) = ρx(i)−ρRθ(i+1) +z(i+1) via (Alg.1.1). We now obtain a probablistic bound for the
third quantity in (A.8) via a concentration inequality. The concentration inequality on the sum of independent zero-mean
subgaussian variables (e.g., [9, Thm. 7.27]) yields that for any t(i+1) ≥ 0

P
{
〈Rθ(i+1)(x(i))− x(i), z(i+1) − z(i)〉 ≥ t(i+1)

}
≤ exp

(
− (t(i+1))2

2σ(i+1)‖Rθ(i+1)(x(i))− x(i)‖22

)
(A.9)

where σ(i+1) is given as in Lemma A.4. Applying the result (A.9) with t(i+1) = 1
2ρ (‖z(i+1) − z(i)‖22 + ∆(i+1)) to the bound

(A.8) completes the proofs.

Lemma A.4 implies that, given sufficiently large ∆(i+1), or sufficiently small σ(i+1) (e.g., variance for a Gaussian random
vector z(i+1) − z(i)) or ‖Rθ(i+1)(x(i))− x(i)‖22, bound (12) is satisfied with high probability, for each i. In particular, ∆(i+1)

can be large for the first several iterations; if paired operators (Rθ(i+1) ,Rθ(i)) in (Alg.1.1) map their input images to similar
output images (e.g., the trained NNs Rθ(i+1) and Rθ(i) have good refining capabilities for x(i) and x(i−1)), then σ(i+1) is
small; if the regularization parameter γ in (Alg.1.3) is sufficiently large, then ‖Rθ(i+1)(x(i))− x(i)‖22 is small.

A.4 PROOFS OF PROPOSITION 9
First, we show that

∑∞
i=0 ‖x(i+1) − x(i)‖22 <∞ for convex and nonconvex F (x; y, z(i+1)) cases.

• Convex F (x; y, z(i+1)) case: Using Assumption 2 and {M̃ (i+1) =M (i+1) :∀i} for the convex case via (7), we obtain the
following results for any X :

F
(
x(i); y, z(i)

)
− F

(
x(i+1); y, z(i+1)

)
+ γ∆(i+1)

≥ F
(
x(i); y, z(i+1)

)
− F

(
x(i+1); y, z(i+1)

)
(A.10)

≥ 1

2

∥∥∥x(i+1) − x́(i+1)
∥∥∥2

M(i+1)
+
(
x́(i+1) − x(i)

)T
M (i+1)

(
x(i+1) − x́(i+1)

)
(A.11)

=
1

2

∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− 1

2

∥∥∥E(i+1)
(
x(i) − x(i−1)

)∥∥∥2

M(i+1)
(A.12)

≥ 1

2

∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− δ2

2

∥∥∥x(i) − x(i−1)
∥∥∥2

M(i)
(A.13)

where the inequality (A.10) uses the condition (12) in Assumption 4, the inequality (A.11) is obtained by using the
results in [2, Lem. S.1], the equality (A.12) uses the extrapolation formula (Alg.1.2) and the symmetry of M (i+1), the
inequality (A.13) holds by Assumption 3.
Summing the inequality of F (x(i); y, z(i))−F (x(i+1); y, z(i+1))+γ∆(i+1) in (A.13) over i = 0, . . . , Nlyr−1, we obtain

F
(
x(0);y,z(0)

)
−F

(
x(Nlyr);y,z(Nlyr)

)
+γ

Nlyr−1∑
i=0

∆(i+1)≥
Nlyr−1∑
i=0

1

2

∥∥∥x(i+1)−x(i)
∥∥∥2

M(i+1)
− δ

2

2

∥∥∥x(i)−x(i−1)
∥∥∥2

M(i)

≥
Nlyr−1∑
i=0

1−δ2

2

∥∥∥x(i+1)−x(i)
∥∥∥2

M(i+1)

≥
Nlyr−1∑
i=0

mF,min(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥2

2
(A.14)

where the inequality (A.14) holds by Assumption 2. Due to the lower boundedness of F (x; y, z) in Assumption 1 and
the summability of {∆(i+1) ≥ 0 : ∀i} in Assumption 4, taking Nlyr →∞ gives

∞∑
i=0

∥∥∥x(i+1) − x(i)
∥∥∥2

2
<∞. (A.15)

• Nonconvex F (x; y, z(i+1)) case: Using Assumption 2, we obtain the following results without assuming that
F (x; y, z(i+1)) is convex:

F
(
x(i); y, z(i)

)
− F

(
x(i+1); y, z(i+1)

)
+ γ∆(i+1)

≥ F
(
x(i); y, z(i+1)

)
− F

(
x(i+1); y, z(i+1)

)
(A.16)
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≥ λ− 1

4

∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− (λ+ 1)2

λ− 1

∥∥∥x(i) − x́(i+1)
b

∥∥∥2

M(i+1)
(A.17)

=
λ− 1

4

∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− (λ+ 1)2

λ− 1

∥∥∥E(i+1)
(
x(i) − x(i−1)

)∥∥∥2

M(i+1)
(A.18)

≥ λ− 1

4

(∥∥∥x(i+1) − x(i)
∥∥∥2

M(i+1)
− δ2

∥∥∥x(i) − x(i−1)
∥∥∥2

M(i)

)
(A.19)

where the inequality (A.16) uses the condition (12) in Assumption 4, the inequality (A.17) use the results in [3, §S.3],
the equality (A.18) holds by (Alg.1.2), the inequality (A.19) is obtained by Assumption 3.
Summing the inequality of F (x(i); y, z(i))−F (x(i+1); y, z(i+1))+γ∆(i+1) in (A.19) over i = 0, . . . , Nlyr−1, we obtain

F
(
x(0);y,z(0)

)
−F

(
x(Nlyr);y,z(Nlyr)

)
+γ ·

Nlyr−1∑
i=0

∆(i+1)≥
Nlyr−1∑
i=0

λ−1

4

(∥∥∥x(i+1)−x(i)
∥∥∥2

M(i+1)
−δ2

∥∥∥x(i)−x(i−1)
∥∥∥2

M(i)

)

≥
Nlyr−1∑
i=0

(λ−1)(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥2

M(i+1)

≥
Nlyr−1∑
i=0

mF,min(λ−1)(1−δ2)

2

∥∥∥x(i+1)−x(i)
∥∥∥2

2
,

where we follow the arguments in obtaining (A.14) above. Again, using the lower boundedness of F (x; y, z) and the
summability of {∆(i+1) ≥ 0 : ∀i}, taking Nlyr →∞ gives the result (A.15) for nonconvex F (x; y, z(i+1)).

Second, we show that
∑∞
i=0 ‖z(i+1) − z(i)‖22 <∞. Observe∥∥∥z(i+1) − z(i)

∥∥∥2

2
=
∥∥∥(1− ρ)

(
x(i) − x(i−1)

)
+ ρ

(
Rθ(i+1)(x(i))−Rθ(i)(x(i−1))

)∥∥∥2

2

≤ (1− ρ)
∥∥∥x(i) − x(i−1)

∥∥∥2

2
+ ρ

∥∥∥Rθ(i+1)(x(i))−Rθ(i)(x(i−1))
∥∥∥2

2

≤
∥∥∥x(i) − x(i−1)

∥∥∥2

2
+ ρε(i+1) (A.20)

where the first equality uses the image mapping formula in (Alg.1.1), the first inequality holds by applying Jensen’s in-
equality to the (convex) squared `2-norm, the second inequality is obtained by using the asymptotically non-expansiveness
of the paired operators (Rθ(i+1) ,Rθ(i)) in Assumption 4. Summing the inequality of ‖z(i+1) − z(i)‖22 in (A.20) over
i = 0, . . . , Nlyr − 1, we obtain

Nlyr−1∑
i=0

∥∥∥z(i+1) − z(i)
∥∥∥2

2
≤
Nlyr−2∑
i=0

∥∥∥x(i+1) − x(i)
∥∥∥2

2
+ ρ

Nlyr−1∑
i=0

ε(i+1), (A.21)

where we used x(0) = x(−1) as given in Algorithm 1. By takingNlyr →∞ in (A.21), using result (A.15), and the summability
of the sequence {ε(i+1) : i ≥ 0}, we obtain

∞∑
i=0

∥∥∥z(i+1) − z(i)
∥∥∥2

2
<∞. (A.22)

Combining the results in (A.15) and (A.22) completes the proofs.

A.5 PROOFS OF THEOREM 10
Let x̄ be a limit point of {x(i) : i ≥ 0} and {x(ij)} be the subsequence converging to x̄. Let z̄ be a limit point of {z(i) : i ≥ 0}
and {z(ij)} be the subsequence converging to z̄. The closedness of X implies that x̄ ∈ X . Using the results in Proposition 9,
{x(ij+1)} and {z(ij+1)} also converge to x̄ and z̄, respectively. Taking another subsequence if necessary, the subsequence
{M (ij+1)} converges to some M̄ , since M (i+1) is bounded by Assumption 2. The subsequences {θ(ij+1)} converge to some
θ̄, since x(ij+1) → x̄, z(ij+1) → z̄, and {θ(i+1)} is bounded via Assumption 4.

Next, we show that the convex proximal minimization (A.23) below is continuous in the sense that the output point
x(ij+1) continuously depends on the input points x́(ij+1) and z(ij+1), and majorization matrix M̃ (ij+1):

x(ij+1) = argmin
x∈X

〈∇F (x́(ij+1); y, z(ij+1)), x− x́(ij+1)〉+
1

2

∥∥∥x− x́(ij+1)
∥∥∥2

M̃(ij+1)
(A.23)

= ProxM̃
(ij+1)

IX

(
x́(ij+1) −

(
M̃ (ij+1)

)−1∇F (x́(ij+1); y, z(ij+1))
)
.

where the proximal mapping operator ProxM̃
(ij+1)

IX (·) is given as in (2). We consider the two cases of majorization matrices
{M (i+1)} given in Theorem 10:
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• For a sequence of diagonal majorization matrices, i.e., {M (i+1) : i ≥ 0}, one can obtain the continuity of the convex
proximal minimization (A.23) with respect to x́(ij+1), z(ij+1), and M̃ (ij+1), by extending the existing results in [10,
Thm. 2.26], [11] with the separability of (A.23) to element-wise optimization problems.

• For a fixed general majorization matrix, i.e., M = M (i+1), ∀i, we obtain that the convex proximal minimization (A.24)
below is continuous with respect to the input points x́(ij+1) and z(ij+1):

x(ij+1) = argmin
x∈X

〈∇F (x́(ij+1); y, z(ij+1)), x− x́(ij+1)〉+
1

2

∥∥∥x− x́(ij+1)
∥∥∥2

M̃
(A.24)

= ProxM̃IX
(
x́(ij+1) − M̃−1∇F (x́(ij+1); y, z(ij+1))

)
=
(
Id + M̃−1∂̂IX

)−1(
x́(ij+1) − M̃−1∇F (x́(ij+1); y, z(ij+1))

)
(A.25)

where ∂̂f(x) is the subdifferential of f at x and Id denotes the identity operator, and the proximal mapping of IX
relative to ‖ · ‖M̃ is uniquely determined by the resolvent of the operator M̃−1∂̂IX in (A.25).
First, we obtain that the operator M̃−1∂̂IX is monotone. For a convex extended-valued function fe : RN → R ∪ {∞},
observe that M̃−1∂̂fe is a monotone operator:

〈M̃−1∂̂fe(u)− M̃−1∂̂fe(v), u− v〉 = 〈M̃−1M̃︸ ︷︷ ︸
=I

∂̂fe(M̃ũ)− M̃−1M̃︸ ︷︷ ︸
=I

∂̂fe(M̃ ṽ), M̃ ũ− M̃ ṽ〉 ≥ 0, ∀u, v, (A.26)

where the equality uses the variable change {u = M̃ũ, v = M̃ ṽ}, a chain rule of the subdifferential of a composition of
a convex extended-valued function and an affine mapping [12, §7], and the symmetry of M̃ , and the inequality holds
because the subdifferential of convex extended-valued function is a monotone operator [13, §4.2]. Because characteristic
function of a convex set is extended-valued function, the result in (A.26) implies that the operator M̃−1∂̂IX is monotone.
Second, note that the resolvent of a monotone operator M̃−1∂̂IX (with a parameter 1), i.e., (Id+M̃−1∂̂IX )−1 in (A.25), is
nonexpansive [10, §6] and thus continuous. We now obtain that the convex proximal minimization (A.24) is continuous
with respect to the input points x́(ij+1) and z(ij+1), because the proximal mapping operator (Id+M̃−1∂̂IX )−1 in (A.25),
the affine mapping M̃−1, and ∇F (x; y, z) are continuous with respect to their input points.

For the two cases above, using the fact that x(ij+1) → x̄, x́(ij+1) → x̄, z(ij+1) → z̄, and M (ij+1) → M̄ (or M̄ = M for
the {M (i+1) = M} case) as j →∞, (A.23) becomes

x̄ = argmin
x∈X

〈∇F (x̄; y, z̄), x− x̄〉+
1

2
‖x− x̄‖2M̄ . (A.27)

Thus, x̄ satisfies the first-order optimality condition of minx∈X F (x; y, z̄):

〈∇F (x̄; y, z̄), x− x̄〉 ≥ 0, for any x ∈ X ,

and this completes the proof of the first result.
Next, note that the result in Proposition 9 imply∥∥∥∥AM(i+1)

R
θ(i+1)

([
x(i)

x(i−1)

])
−
[
x(i)

x(i−1)

]∥∥∥∥
2

→ 0. (A.28)

Additionally, note that a function AM(i+1)

R
θ(i+1)

− I is continuous. To see this, observe that the convex proximal mapping in
(Alg.1.3) is continuous (see the obtained results above), and Rθ(i+1) is continuous (see Assumption 4). Combining (A.28),
the convergence of {M (ij+1),R

θ(ij+1)}, and the continuity of AM(i+1)

R
θ(i+1)

− I , we obtain [x̄T, x̄T ]T =AM̄Rθ̄ ([x̄
T, x̄T ]T ), and this

completes the proofs of the second result.

A.6 PROOFS OF COROLLARY 11

To prove the first result, we use proof by contradiction. Suppose that dist(x(i),S) 9 0. Then there exists ε > 0 and a
subsequence {x(ij)} such that dist(x(ij),S) ≥ ε, ∀j. However, the boundedness assumption of {x(ij)} in Corollary 11
implies that there must exist a limit point x̄ ∈ S via Theorem 10. This is a contradiction, and gives the first result (via the
result in Proposition 9). Under the isolation point assumption in Corollary 11, using the obtained results, ‖x(i+1)−x(i)‖2 →
0 (via Proposition 9) and dist(x(i+1),S)→ 0, and the following the proofs in [4, Cor. 2.4], we obtain the second result.
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A.7 MOMENTUM-NET VS. BCD-NET

This section compares the convergence properties of Momentum-Net (Algorithm 1) and BCD-Net (Algorithm 2). We first
show that for convex f(x; y) and X , the sequence of reconstructed images generated by BCD-Net converges:

Proposition A.5 (Sequence convergence). In Algorithm 2, let f(x; y) be convex and subdifferentiable, and X be convex. Assume
that the paired operators (Rθ(i+1) ,Rθ(i)) are asymptotically contractive, i.e.,

‖Rθ(i+1)(u)−Rθ(i)(v)‖2 < ‖u− v‖2 + ε(i+1),

with
∑∞
i=0 ε

(i+1) < ∞ and {ε(i+i) ∈ [0,∞) : ∀i}, ∀u, v, i. Then, the sequence {x(i+1) : i ≥ 0} generated by Algorithm 2 is
convergent.

Proof. We rewrite the updates in Algorithm 2 as follows:

x(i+1) = argmin
x∈X

f(x; y) +
γ

2

∥∥∥x−Rθ(i+1)(x(i))
∥∥∥2

2
= ProxγIf+IX

(
Rθ(i+1)(x(i))

)
=
(
Id + γ−1∂̂(f(x; y) + IX )

)−1(Rθ(i+1)(x(i))
)

=: A(i+1)(x(i)).

We first show that the paired operators {A(i+1),A(i)} is asymptotically contractive:∥∥∥A(i+1)(u)−A(i)(v)
∥∥∥

2

=
∥∥∥(Id + γ−1∂̂(f(x; y) + IX )

)−1(Rθ(i+1)(u)
)
−
(
Id + γ−1∂̂(f(x; y) + IX )

)−1(Rθ(i)(v)
)∥∥∥

2

≤ ‖Rθ(i+1)(u)−Rθ(i)(v)‖2 (A.29)

≤ L′‖u− v‖2 + ε(i+1)‖u− v‖2, (A.30)

∀u, v, where the inequality (A.29) holds because the subdifferential of the convex extended-valued function f(x; y) + IX
(the characteristic function of a convex set X , IX , is convex, and the sum of the two convex functions, f(x; y) + IX ,
is convex) is a monotone operator [13, §4.2], and the resolvent of a monotone relation with a positive parameter, i.e.,
(Id + γ−1∂̂(f(x; y) + IX ))−1 with γ−1 > 0, is nonexpansive [13, §6], and the inequality (A.30) holds by L′ < 1 via the
contractiveness of the paired operators (Rθ(i+1) ,Rθ(i)), ∀i. Note that the inequality (A.29) does not hold for nonconvex
f(x; y) and/or X . Considering that L′ < 1, we show that the sequence {x(i+1) : i ≥ 0} is Cauchy sequence:∥∥∥x(i+l) − x(i)

∥∥∥
2

=
∥∥∥(x(i+l) − x(i+l−1)) + . . .+ (x(i+1) − x(i))

∥∥∥
2

≤
∥∥∥x(i+l) − x(i+l−1)

∥∥∥+ . . .+
∥∥∥x(i+1) − x(i)

∥∥∥
2

≤
(
L′
l−1

+ . . .+ 1
)∥∥∥x(i+1) − x(i)

∥∥∥
2

+
(
ε(i+l) + . . .+ ε(i+1)

)
≤ 1

1− L′
∥∥∥x(i+1) − x(i)

∥∥∥
2

+
l∑

i′=1

ε(i+i
′)

where the second inequality uses the result in (A.30). Since the sequence {x(i+1) : i ≥ 0} is Cauchy sequence, {x(i+1) : i ≥
0} is convergent, and this completes the proofs.

In terms of guaranteeing convergence, BCD-Net has three theoretical or practical limitations compared to Momentum-
Net:

• Different from Momentum-Net, BCD-Net assumes the asymptotic contractive condition for the paired operators
{Rθ(i+1) ,Rθ(i)}. When image mapping operators in (Alg.2.1) are identical across iterations, i.e., {Rθ = Rθ(i+1) : i≥0},
thenRθ is assumed to be contractive. On the other hand, a mapping operator (identical across iterations) of Momentum-
Net only needs to be nonexpansive. Note, however, that when f(x; y) = 1

2‖y − Ax‖2W with AHWA � 0 (e.g.,
Example 5), BCD-Net can guarantee the sequence convergence with the asymptotically nonexpansive paired operators
(Rθ(i+1) ,Rθ(i)) (see Definition 7) [14].

• When one applies an iterative solver to (Alg.2.2), there always exist some numerical errors and these obstruct the
sequence convergence guarantee in Proposition A.5. To guarantee sufficiently small numerical errors from iterative
methods solving (Alg.2.2) (so that one can find a critical point solution for the MBIR problem (Alg.2.2)), one needs to
use sufficiently many inner iterations that can substantially slow down entire MBIR.

• BCD-Net does not guarantee the sequence convergence for nonconvex data-fit f(x; y), whereas Momentum-Net
guarantees convergence to a fixed-point for both convex f(x; y) and nonconvex f(x; y).
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A.8 FOR THE SCNN ARCHITECTURE (18), CONNECTION BETWEEN CONVOLUTIONAL TRAINING LOSS
(P2) AND ITS PATCH-BASED TRAINING LOSS

This section shows that given the sCNN architecture (18), the convolutional training loss in (P2) has three advantages over
the patch-based training loss in [14], [15] that may use all the extracted overlapping patches of size R:

• The corresponding patch-based loss does not model the patch aggregation process that is inherently modeled in (18).
• It is an upper bound of the convolutional loss (P2).
• It requires about R times more memory than (P2).

We prove the benefits of (P2) using the following lemma.

Lemma A.6. The loss function (P2) for training the residual convolutional autoencoder in (18) is bounded by the patch-based loss
function:

1

2L

S∑
s=1

∥∥∥x̂(i)
s −

1

R

K∑
k=1

dk ~ Tαk(ek ~ x(i)
s )
∥∥∥2

2
≤ 1

2LR

S∑
s=1

∥∥X̂(i)
s −DTα̃(EX(i)

s )
∥∥2

F
, (A.31)

where the residual is defined by x̂(i)
s , xs−x(i)

s , {xs, x(i)
s } are given as in (P2), X̂s ∈ RR×Vs and Xs ∈ RR×Vs are the lth training

data matrices whose columns are Vs vectorized patches extracted from the images x̂s and xs (with the circulant boundary condition
and the “stride” parameter 1), respectively, D , [d1, . . . , dK ] ∈ CR×K is a decoding filter matrix, and E , [e∗1, . . . , e

∗
K ]H ∈ CK×R

is an encoding filter matrix. Here, the definition of soft-thresholding operator in (6) is generalized by

(Tα̃(u))k ,

{
uk − αk · sign(uk), |uk| > αk,

0, otherwise, (A.32)

for K = 1, . . . ,K , where α̃ = [α1, . . . , αK ]T . See other related notations in (18).

Proof. First, we have the following reformulation [3, §S.1]: e1∗u
...

eK ∗u

 = P ′

 EP1

...
EPN


︸ ︷︷ ︸

, Ẽ

u, ∀u, (A.33)

where P ′ ∈ CKN×KN is a permutation matrix, E is defined in Lemma (A.6), and Pn ∈ CR×N is the nth patch extraction
operator for n = 1, . . . , N . Considering that 1

R

∑K
k=1 flip(e∗k) ~ (ek ~ u) = ẼHẼu via the definition of Ẽ in (A.33) (see also

the reformulation technique in [3, §S.1]), we obtain the following reformulation result:

1

R

K∑
k=1

flip(e∗k) ~ Tαk(ek ~ x(i)
s ) =

1

R

N∑
n=1

PHn E
HTα̃

(
EPnx

(i)
s

)
(A.34)

where the soft-thresholding operators {Tαk(·) : ∀k} and Tα̃(·) are defined in (A.32) and we use the permutation invariance
of the thresholding operator Tα(·), i.e., Tα(P (·)) = P · Tα(·) for any α. Finally, we obtain the result in (A.31) as follows:

1

2L

S∑
s=1

∥∥∥x̂(i)
s −

1

R

K∑
k=1

dk ~ Tαk(ek ~ x(i)
s )
∥∥∥2

2
=

1

2L

S∑
s=1

∥∥∥x̂(i)
s −

1

R

N∑
n=1

PHn DTα̃
(
EPnx

(i)
s

)∥∥∥2

2
(A.35)

=
1

2L

S∑
s=1

∥∥∥ 1

R

N∑
n=1

PHn Pnx̂
(i)
s −

1

R

N∑
n=1

PHn DTα̃
(
EPnx

(i)
s

)∥∥∥2

2
(A.36)

=
1

2LR2

S∑
s=1

∥∥∥∥ N∑
n=1

PHn

(
x̂

(i)
l,n −DTα̃

(
Ex

(i)
l,n

))∥∥∥∥2

2

≤ 1

2LR

S∑
s=1

N∑
n=1

∥∥∥x̂(i)
l,n −DTα̃

(
Ex

(i)
l,n

)∥∥∥2

2
(A.37)

=
1

2LR

S∑
s=1

∥∥∥X̂(i)
s −DTα̃

(
EX(i)

s

)∥∥∥2

F
,

where D is defined in Lemma A.6, {x̂(i)
l,n = Pnx̂

(i)
s ∈ CR, x(i)

l,n = Pnx
(i)
s ∈ CR : n = 1, . . . , N} is a set of extracted patches,

the training matrices {X̂(i)
s , X

(i)
s } are defined by X̂

(i)
s , [x̂

(i)
l,n, . . . , x̂

(i)
l,N ] and X

(i)
s , [x

(i)
l,1, . . . , x

(i)
l,N ]. Here, the equality

(A.35) uses the result in (A.34), the equality (A.36) holds by
∑N
n=1 P

H
n Pn = R · I (for the circulant boundary condition in

Lemma A.6), and the inequality (A.37) holds by P̃ P̃H � R · I with P̃ , [PH1 · · ·PHN ]H .
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Lemma A.6 reveals that when the patch-based training approach extract all the R-size overlapping patches, 1) the
corresponding patch-based loss is an upper bound of the convolutional loss (P2); 2) it requires about R-times larger
memory than (P2) because Vs ≈ RNs for x ∈ RNs and the boundary condition described in Lemma A.6, ∀l; and 3) it
misses modeling the patch aggregation process that is inherently modeled in (18) – see that the patch aggregation operator∑N
n=1 P

H
n (·)n is removed in the inequality (A.37) in the proof of Lemma A.6. In addition, different from the patch-based

training approach [14], [15], i.e., training with the function on the right-hand side in (A.31), one can use different sizes of
filters {ek, dk : ∀k} in the convolutional training loss, i.e., the function on the left-hand side in (A.31).

A.9 DETAILS OF EXPERIMENTAL SETUP

A.9.1 Majorization matrix designs for quadratic data-fit
For (real-valued) quadratic data-fit f(x; y) in the form of 1

2‖y − Ax‖2W , if a majorization matrix M exists such that
AHWA �M , it is straightforward to verify that the gradient of quadratic data-fit f(x; y) satisfies theM -Lipchitz continuity
in Definition 1, i.e.,

‖∇f(u; y)−∇f(v; y)‖M−1 = ‖AHWAu−AHWAv‖M−1 ≤ ‖u− v‖2M , ∀u, v ∈ RN .

because the assumption ATWA � M ⇔ M−1/2ATWAM−1/2 � I implies that the eigenspectrum of
M−1/2ATWAM−1/2 lies in the interval [0, 1], and gives the following result:(

M−1/2ATWAM−1/2
)2 � I ⇔ (ATWA)M−1(ATWA) �M.

Next, we review a useful lemma in designing majorization matrices for a wide class of quadratic data-fit f(x; y):

Lemma A.7 ( [2, Lem. S.3]). For a (possibly complex-valued) matrix A and a diagonal matrix W with non-negative entries,
AHWA � diag(|AH |W |A|1), where |A| denotes the matrix consisting of the absolute values of the elements of A.

A.9.2 Parameters for MBIR optimization models: Sparse-view CT reconstruction
For MBIR model using EP regularization, we combined a EP regularizer

∑N
n=1

∑
n′∈Nn ιnιn′ϕ(xn − xn′) and the data-fit

f(x; y) in §4.1.1, where Nn is the set of indices of the neighborhood, ιn and ιn′ are parameters that encourage uniform
noise [16], and ϕ(·) is the Lange penalty function, i.e., ϕ(t) = δ2(|t/δ| − log(1 + |t/δ|)), with δ= 10 in HU. We chose the
regularization parameter (e.g., γ in (P0)) as 215.5. We ran the relaxed linearized augmented Lagrangian method [17] with
100 iterations and 12 ordered-subsets, and initialized the EP MBIR algorithms with a conventional FBP method using a
Hanning window.

For MBIR model using a learned convolutional regularizer [6, (P2)], we trained convolutional regularizer with filters of
{hk ∈ RR : R=K= 72} via CAOL [3] in an unsupervised training manner; see training details in [3]. The regularization
parameters (e.g., γ in (1)) were selected by applying the “spectral spread” based selection scheme in §3.2 with the tuned
factor χ?=167.64. We selected the spatial-strength-controlling hard-thresholding parameter (i.e., α′ in [6, (P2)]) as follows:
for Test samples #1–2, we chose it is as 10−10 and 6−11, respectively. We initialized the MBIR model using a learned
regularizer with the EP MBIR results obtained above. We terminated the iterations if the relative error stopping criterion
(e.g., [2, (44)]) is met before reaching the maximum number of iterations. We set the tolerance value as 10−13 and the
maximum number of iterations to 4×103.

A.9.3 Parameters for MBIR optimization models: LF photography using a focal stack
For MBIR model using 4D EP regularization [18], we combined a 4D EP regularizer

∑N
n=1

∑
n′∈Nn ϕ(xn−xn′) and the data-

fit f(x; y) in §4.1.2, where Nn is the set of indices of the 4D neighborhood, and ϕ(·) is the hyperbola penalty function, i.e.,
ϕ(t) = δ2(

√
1 + |t/δ|2 − 1). We selected the hyperbola function parameter δ and regularization parameter (e.g., γ in (P0))

as follows: for Test samples #1–3, we chose them as {δ= 10−4, γ= 103}, {δ= 10−1, γ= 107}, and {δ= 10−1, γ= 5×103},
respectively. We ran the conjugate gradient method with 100 iterations, and initialized the 4D EP MBIR algorithms with
AT y rescaled in the interval [0, 1].

A.9.4 Reconstruction accuracy and depth estimation accuracy of different MBIR methods
Tables A.1–A.3 below provide reconstruction accuracy numerics of different MBIR methods in sparse-view CT reconstruc-
tion and LF photography using a focal stack, and reports the SPO depth estimation [19] accuracy numerics on reconstructed
LFs from different MBIR methods.

A.9.5 Reconstructed images and estimated depths with noniterative analytical methods
This section provides reconstructed images by an analytical back-projection method in sparse-view CT reconstruction and
LF photography using a focal stack (see the first two columns in Fig. A.2), and estimated depths from reconstructed LFs via
the SPO depth estimation method [19] (see the third column in Fig. A.2(c)). Results in Fig. A.2 below are supplementary to
Fig. 8, Fig. 9, and Fig. 10, and the first two columns visualize initial input images to INN methods.



26

TABLE A.1
RMSE (HU) of different CT MBIR methods

(fan-beam geometry with 12.5% projections views and 105 incident photons)

(a) FBP (b) EP
reg.

(c) Learned convolutional
reg. [3], [6]

(d) Momentum-Net-
sCNN

(e) Momentum-Net-
sCNN w/ larger width

(f) Momentum-Net-
dCNN

Test #1 82.8 40.8 35.2 19.9 19.5 19.8
Test #2 74.9 38.5 34.5 18.4 17.7 17.8

(c)’s convolutional regularizer uses {R=K=72}
(d)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder (18) with {R=K=72}.
(e)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder (18) with {R= 72,K = 92}.
This setup gives results in Fig. 8(d), as described in §4.2.1.
(f)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=4, R=32,K=64}.

TABLE A.2
PSNR (dB) of different LF MBIR methods

(LF photography systems with C=5 detectors obtain a focal stack of LFs consisting of S=81 sub-aperture images)

(a) AT y (b) 4D EP reg. [18] (c) Momentum-Net-sCNN (d) Momentum-Net-dCNN
Test #1 16.4 32.0 35.8 37.1
Test #2 21.1 28.1 30.7 32.0
Test #3 21.6 28.1 30.9 31.7

(c)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder with {R=52,K=32}.
(d)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=6, R=32,K=16}.
Momentum-Nets use refining CNNs in an epipolar-domain; see details in §4.2.1.

TABLE A.3
RMSE (in 10−2, m) of estimated depth from reconstructed LFs with different LF MBIR methods

(LF photography systems with C=5 detectors obtain a focal stack of LFs consisting of S=81 sub-aperture images)

(a) Ground truth
LF

(b) Reconstructed LF
by AT y

(c) Reconstructed LF
by 4D EP reg. [18]

(d) Reconstructed LF
by Momentum-Net-sCNN

(e) Reconstructed LF
by Momentum-Net-dCNN

Test #1 4.7 41.0 13.8 8.0 5.7
Test #2 30.5 117.6 39.5 34.6 31.9
Test #3 n/a† n/a† n/a† n/a† n/a†

SPO depth estimation [19] was applied to reconstructed LFs.
(d)’s refining sCNNs are in the form of residual single-hidden layer convolutional autoencoder with {R=52,K=32}.
(e)’s refining dCNNs are in the form of residual multi-hidden layer CNN (19) with {L=6, R=32,K=16}.
Momentum-Nets use refining CNNs in an epipolar-domain; see details in §4.2.1.
†The ground truth depth map for Test sample #3 does not exist in the LF dataset [20].

A.10 HOW TO CHOOSE PARAMETERS OF IMAGE REFINING MODULES IN SOFT-REFINING INNS?

In soft-refining INNs using iterative-wise refining NNs, one does not need to greatly increase parameter dimensions of
refining NNs [14], [21]. The natural question then arises, “How one can choose between sCNN (18) and dCNN (19) refiners,
and select their parameters (R, K , and L)?” The first answer to this question depends on some understanding of data-
fit f(x; y) in MBIR problem (P1), e.g., the regularization strength γ and the condition number variations across training
data-fit majorizers. (An additional criteria could be general understandings between sample size/diversity and parameter
dimension of NNs.)

For example, the sparse-view CT system in §4.1.1 needs moderate regularization strength (χ? = 167.64) and the
majorization matrices of its training data-fits have mild condition number variations (the standard deviation is 1.1). training
data-fits have mild parameter variations across samples. Comparing results between Momentum-Net-sCNN and -dCNN
in Fig. 5 and Table A.1 demonstrates that sCNN (18) seems suffice. Table A.1(d)–(e) shows that one can further improve the
refining accuracy of sCNN (18) by increasing its width, i.e., K . The LF photography system using a limited focal stack in
§4.1.2 needs a large γ value (χ?= 1.5), and the majorization matrices of its training data-fits have large condition number
variations (the standard deviation is 2245.5). Comparing results between Momentum-Net-sCNN and -dCNN in Fig. 7 and
Table A.2 demonstrates that dCNN (19) yields higher PSNR than sCNN (18). For dCNN (19), we observed increasing its
depth, i.e., L, up to a certain number is more effective than increasing its width, i.e., K , as briefly discussed in §4.2.1.

For choosing the relaxation parameter ρ in (Alg.1.1), we also suggest considering the regularization strength in (Alg.1.3).
For an application that needs moderate regularization strength, e.g., sparse-view CT in §4.1.1, we suggest setting ρ to 0.5
so as to mix information between input and output of refining NNs, rather than 1− ε that does not mix input and output.
For an application that needs strong regularization, e.g., LF photography using a limited focal stack in §4.1.2, we suggest
using ρ=1− ε than ρ=0.5. Results in the next section validate this suggestion.
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Fig. 8: FBP

RMSE (HU)
= 82.8

RMSE (HU)
= 82.8

RMSE (HU)
= 74.9

RMSE (HU)
= 74.9

Fig. 9: Error maps of AT y

PSNR (dB) = 16.5 (16.4)

PSNR (dB) = 22.6 (21.1)

PSNR (dB) = 23.4 (21.6)

Fig. 10: Estimated depth
from LF recon. by AT y

RMSE (m) = 41.0×10−2

RMSE (m) = 117.6×10−2

n/a
Fig. A.2. Reconstructed images from analytical back-projection methods. We used such results in the first two columns to initialize INN methods.

A.10.1 Performance of Momentum-Net with different relaxation parameters ρ in (Alg.1.1)
Fig. A.3 below compares the performances of Momentum-Net-sCNN with different ρ values. The results in Fig. A.3 support
the ρ selection guideline in §4.2.3. One can maximize the MBIR accuracy of Momentum-Net by properly selecting ρ.

Note that ρ ∈ (0, 1) controls strength of inference from refining NNs in (Alg.1.1), but does not affect the convergence
guarantee of Momentum-Net. Fig. A.3 illustrates that Momentum-Net appears to converge regardless of ρ values.

(a) Sparse-view CT (b) Light-field photography using focal stack
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(18) R = 25,K = 32, ρ = 1− ǫ

(18) R = 25,K = 32, ρ = 0.5

Fig. A.3. Convergence behavior of Momentum-Net-sCNN with different relaxation parameters, ρ = 0.5 and ρ = 1 − ε. For both applications (see
their imaging setups in §4.1), PyTorch ver. 0.3.1 was used.

A.11 PARAMETERS OF MOMENTUM-NET

Table A.4 below lists parameters of Momentum-Net, and summarizes selection guidelines or default values. Similar to BCD-
Net/ADMM-Net, the main tuning jobs to maximize the performance of Momentum-Net include selecting architectures of
refining NNs {Rθ(i) :∀i} in (Alg.1.1), and choosing a regularization parameter γ in (Alg.1.3) by tuning χ in §3.2. One can
simplify the tuning process by using the selection guidelines in §A.10 for selecting architectures of {Rθ(i) :∀i}, and training
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χ in §3.2. Note that one designs majorization matrices {M (i) : ∀i} rather than tuning them: majorization matrices can be
analytically designed, e.g., Lemma A.7 as used in §4.2.1; one can algorithmically design them [22]. Tighter majorization
matrices are expected to further accelerate the convergence of Momentum-Net [2], [3].

TABLE A.4
Guidelines for choosing parameters of Momentum-Net

Param. Module Guidelines or default values

{Rθ(i) :∀i} (Alg.1.1)
Trainable by §3.1. For selecting their
architecture/param., see guideline
§A.10.

ρ ∈ (0, 1) (Alg.1.1) Use regularization strength γ; see
guideline in §A.10.

δ < 1 in
(8)–(9) (Alg.1.2) 1−ε

{M(i) :∀i} (Alg.1.3)
Designed off-line. For large-scale
inverse problems with quadratic
data-fit, use Lemma A.7.

λ ≥ 1 in (7) (Alg.1.3) For convex F (x; y, z(i+1)), λ=1;
for nonconvex F (x; y, z(i+1)), λ=1+ε.

γ>0 (Alg.1.3) Chosen by tuning/training χ in §3.2

All INN methods also must select a number of INN iterations,Niter. One could determine it by using the convergence behavior
of iteration-wise refiners in Fig. 2.
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