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We study the interplay between Mott physics, driven by Coulomb repulsion U , and Hund physics,
driven by Hund’s coupling J , for a minimal model for Hund metals, the orbital-symmetric three-band
Hubbard-Hund model (3HHM) for a lattice filling of 1/3. Hund-correlated metals are characterized
by spin-orbital separation (SOS), a Hund’s-rule-induced two-stage Kondo-type screening process,
in which spin screening occurs at much lower energy scales than orbital screening. By contrast,
in Mott-correlated metals, lying close to the phase boundary of a metal-insulator transition, the
SOS window becomes negligibly small and the Hubbard bands are well separated. Using dynam-
ical mean-field theory and the numerical renormalization group as real-frequency impurity solver,
we identify numerous fingerprints distinguishing Hundness from Mottness in the temperature de-
pendence of various physical quantities. These include ARPES-type spectra, the local self-energy,
static local orbital and spin susceptibilities, resistivity, thermopower, and lattice and impurity en-
tropies. Our detailed description of the behavior of these quantities within the context of a simple
model Hamiltonian will be helpful for distinguishing Hundness from Mottness in experimental and
theoretical studies of real materials.

I. INTRODUCTION

The properties of multiorbital metals with strong on-
site atomic-like interactions is governed by strong corre-
lation effects. In this paper, we study the interplay of
two distinct manifestations of local interactions: “Mott
physics”, driven by the Coulomb repulsion U govern-
ing charge dynamics; and “Hund physics”, driven by the
Hund’s rule coupling J affecting spin dynamics.

For many years, strong electronic correlations in metals
have mainly been associated with Mottness, well-known
from ordinary Mott-Hubbard systems – in the proxim-
ity of a Mott-insulating state, U is large (compared to
J) and slows down or even suppresses the electronic mo-
tion. This leads to characteristic spectral signatures like
well-separated Hubbard sidebands and fairly flat bands
at the Fermi level at low energies and temperatures, re-
flecting strongly renormalized heavy Landau quasiparti-
cles (QPs). At high energies, typically, the quasiparticle
band vanishes and a gap or pseudogap opens between
the Hubbard sidebands. A well-known example is V2O3

[1–7].
Starting around 2008, it has been recognized that no-

ticeable correlation effects are manifest in many multi-
orbital systems far from a Mott insulating state as they
have occupancies differing from half integer filling [7–53].
In these systems the effect of U is considered to be too
small to correlate the electrons, while Hund’s coupling
J is only slightly smaller in the solid than for a bare
atom [54]. These so-called Hund metals are multiorbital
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systems with rather broad bands and thus sizeable J
compared to a strongly screened U . By now the 3d iron-
based superconductors [9–19] and the 4d-based ruthen-
ates [8, 22–29] have been studied from this perspective.
Other examples where Hund-rule physics is important are
iron impurities on a platinum surface [55], weak itinerant
ferromagnets [56], eg systems such as NiS2−xSex [57], the
recently discovered Ni-based superconductors [43, 44],
and even cold atom systems [58]. For some early reviews,
see Refs. [30–32].

Hund metals have many unusual characteristics, in-
cluding the following: (i) Atomic histograms showing
the probability weight for different electronic configu-
rations are broad. A range of configurations featur-
ing different orbital occupancies all receive significant
weight (implying metallic behavior), and high-spin mul-
tiplets are favored (thus allowing for a quasi-localized
spin) [9, 20, 59]. (ii) The orbitals appear to decouple
from each other [11, 59–62] if one focuses on static cor-
relators [36]. (iii) Spin dynamics appears to slow down
at low energies (“spin freezing”) [8]. (iv) Various cor-
relators show fractional power law behavior [8, 21, 39].
(v) Correlations depend strongly on the value of J and
relatively less strongly on the value of U . (vii) The in-
terplay of spin and orbital degrees of freedom leads to
“spin-orbital separation” (SOS) [7, 21, 33–39]. Here, we
focus particularly on the latter phenomenon.

In an isolated atom, it is well known that J simply
aligns electronic spins in different orbitals according to
Hund’s first rule [63]. But if the atom is hybridized with
a metallic environment, as in many multiorbital materials
or impurity models, the effect of J is much more intricate
and subtle (and was, with a few exceptions [64], largely
overlooked or underestimated until this decade). Here,
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SOS emerges in a complex two-stage Kondo-type screen-
ing process, in which spin screening occurs at much lower
energies than orbital screening [33, 35]: Tspin < Torb

(cf. Appendix A for precise definitions of these scales).
The low-energy regime below Tspin is a Fermi liquid (FL)
governed by Landau QPs with heavy masses. By con-
trast, the intermediate energy window featuring SOS,
[Tspin, Torb], is governed by almost fully screened orbital
degrees of freedom weakly coupled to almost free spin
degrees of freedom, leading to incoherent behavior. Its
non-Fermi-liquid (NFL) properties are caused by an un-
derlying novel NFL fixed point, described in detail in
Refs. [37, 39] for a 3-channel spin-orbital Kondo (3soK)
model for Hund metals, as suggested in Ref. [34].

As a function of increasing temperature, SOS leads
to a coherence-incoherence crossover with a coherence
scale that is strongly suppressed by Hund’s coupling
[33]. The coherence-incoherence crossover was predicted
in material simulations of iron oxypnictides already in
2008 [9, 65]. It was observed a few years later in measure-
ments of the resistivity, heat-capacity, thermal-expansion
coefficients, susceptibility, and optical conductivity of the
122-iron pnictides [66–68]. Further, only recently [7], re-
alistic material simulations and model Hamiltonian stud-
ies of the temperature dependence of the local spectrum
and of the charge, spin, and orbital susceptibilities of
the Hund metal Sr2RuO4 and the Mott material V2O3

revealed that, for Hund metals, SOS also occurs in the
onset (and completion) of screening of the orbital and
spin degrees of freedom: as the temperature is lowered in
Hund metals, the static local orbital and spin suscepti-
bilities show deviations from Curie behavior at different
scales: T onset

spin < T onset
orb . By contrast, for Mott materials

we have T onset
orb ≈ T onset

spin , since both these scales are equal
to the scale TM at which the Mott gap closes when the
temperature is lowered.

During the last years, many insights on SOS have been
gained in the context of a minimal 3-orbital Hubbard-
Hund model (3HHM) for Hund metals. In Refs. [33,
35, 39] the focus has mainly been on zero-temperature
results, while some finite-temperature results were pub-
lished in Ref. [7]. In the present paper, we build on
and extend the latter study by providing a full anal-
ysis of the temperature dependence of ARPES spectra,
spectral function, self-energy, static local spin and orbital
susceptibilities, the QP weight, scattering rate, resistiv-
ity, thermopower, and entropy. We choose four different
sets of system parameters, which mimic the physics of a
Hund system (H1), a Mott system (M1), an intermedi-
ate system (I2) showing aspect of both Hund and Mott
physics, and a weakly correlated system (W0). With
this we aim to clarify previously-proposed criteria and
also identify new ones for distinguishing the two distinct
routes of screening from atomic degrees of freedom to-
wards emerging quasiparticles, guided by either Mott or
Hund physics.

This paper is structured as follows. First we intro-
duce the 3HHM in Sec. II. In Sec. III we shortly review

the current state of research on the 3HHM and motivate
our choice of model parameters. Sections IV, V, and VI
present our results. Section IV concentrates on ARPES
spectra, as well as spectral functions and self-energies.
In particular, we discuss the different temperature de-
pendencies of these quantities for Hund and Mott sys-
tems. Based on our discussion of the ARPES spectra,
in Sec. V, we explain in detail the behavior of the static
local orbital and spin susceptibilities and the quasipar-
ticle weight in terms of the SOS screening process. In
Sec. VI we analyze signatures of Hund and Mott systems
in various transport properties (scattering rate, coher-
ence scale, resistivity, effective chemical potential, ther-
mopower). Further, we study the lattice entropy and
demonstrate that it differs from the impurity entropy.
Remarkably, we are able to calculate the lattice entropy
directly from our numerical data. We summarize our in-
sights in Sec. VII by providing tables, which highlight
the most important features for distinguishing Mott and
Hund physics. Appendix A additionally offers a detailed
analysis of the particle-hole asymmetry of the 3HHM at
T = 0 and of the frequency and temperature dependence
of the optical conductivity. Further, it contains elemen-
tary definitions of several quantities discussed in Sec. VI.

II. MODEL AND METHOD

The minimal 3HHM model for Hund metals, first sug-
gested in Ref. [21], is described by the Hamiltonian

Ĥ =
∑

i

(
−µN̂i + Ĥint[d̂

†
iν ]
)

+
∑

〈ij〉ν
t d̂†iν d̂jν , (1)

Ĥint[d̂
†
iν ] = 1

2

(
U − 3

2J
)
N̂i(N̂i − 1)− J Ŝ2

i + 3
4JN̂i.

The on-site interaction term incorporates Mott and Hund

physics through U and J , respectively. d̂†iν creates an
electron on site i of flavor ν = (mσ), composed of a spin

(σ =↑, ↓) and orbital (m = 1, 2, 3) index. n̂iν = d̂†iν d̂iν
counts the electrons of flavor ν on site i. N̂i =

∑
ν n̂iν is

the total number operator for site i and Ŝi its total spin,

with components Ŝαi =
∑
mσσ′ d̂

†
imσ

1
2σ

α
σσ′ d̂imσ′ , where

σα are Pauli matrices. We take a uniform hopping am-
plitude, t = 1, serving as energy unit in the 3HHM, and
a Bethe lattice in the limit of large lattice coordination.
The total width of each of the degenerate bands is W = 4.
We choose the chemical potential µ such that the total
filling per lattice site is nd ≡ 〈Ni〉 = 2, i.e., the three
degenerate bands host two electrons. The effective bare
gap of this model is given by ∆b ≡ U − 2J . (For a mo-
tivation of this definition, see Ref. [35].) We emphasize
that Hund’s coupling plays no role at filling nd = 1, un-
less the Hund’s coupling itself becomes so large that it
starts mixing orbitals with different occupation. In the
latter case, similar Hund’s signatures may be observed
even for a 2-orbital model with possible relevance to cer-
tain materials [69].
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We have solved the 3HHM of Eq. (1) using dy-
namical mean-field theory (DMFT) [4] combined with
a state-of-the-art multiband impurity solver, the full-
density-matrix numerical renormalization group (fdm-
NRG) [70, 71], while fully exploiting the model’s
U(1)ch×SU(2)spin×SU(3)orb symmetry using the QSpace
tensor library [72]. This approach has yielded valuable
insights into the complex interplay of spin and orbital de-
grees of freedom before [7, 33, 35, 39], because it delivers
high-quality results directly on the real-frequency axes
and for all physically relevant energies and temperatures.
Details of the DMFT+fdmNRG method are described in
Refs. [33, 35, 73]. Method-related parameters are given
in the Supplementary Material of Ref. [33].

III. BACKGROUND AND SETUP

This paper is strongly based on the insights gained
in Ref. [35] for the 3HHM at T = 0. In the following,
we give a short overview of the most important facts
established there. These will be used later to analyze the
temperature dependence of various physical quantities in
the 3HHM.

Phase diagram. In Ref. [35] we explored the 3HHM at
1/3 filling in a broad region of parameters at T = 0 and
established the J-U phase diagram, replotted in Fig. 1(a).
It consists of three different phases: a metallic phase
(squares), a coexistence region (circles), and an insulat-
ing phase (triangles), separated by two phase transition
lines Uc1 (solid red curve) and Uc2 (dashed black curve),
respectively. Thus, for fixed J , a Mott insulator tran-
sition (MIT) occurs with increasing U , discussed exten-
sively in Ref. [35]. The red color intensity of the symbols
reflects the strength of the quasiparticle weight, obtained
from the self-energy of the self-consistent lattice Green’s
function via

Z =
1

1− ∂ωRe Σ(ω)|ω=0

=
m

m∗
, (2)

with m the free electron mass and m∗ the renormalized
QP mass. Importantly, for sizeable J & 1 (cf. Ref. [35]
for details), strong correlation effects, i.e., considerable
mass enhancements Z−1 occur not only close to the MIT
lines but also far from it (cf. e.g., faded red color for H1).

In Ref. [35] we aimed to identify the origin of strong
correlations far from and close to the MIT in Fig. 1(a).
To this end, we proposed several characteristic signatures
distinguishing Hund-correlated from Mott-correlated sys-
tems at T = 0. We briefly recapitulate the findings from
Ref. [35] in the following three paragraphs.

Hund system. The 3HHM shows behavior typical of
Hund metals at moderate and small U values, i.e., far
from a MIT phase boundary. As a prototypical example,
we choose the Hund system H1 [marked by a cross in
Fig. 1(a)] with J = 1 and a small bare gap ∆b = 1. This
choice relies on the fact that H1 qualitatively reproduces
various physical properties of the Hund metal Sr2RuO4

[7]. At T = 0, Hund systems are characterized by the
following signatures.

The lowest bare atomic excitation scale Eatomic =
ωe1 = −ωh = 1

2U − J is typically small due to the small

value of U and the sizable value of J (e.g., EH1
atomic = 0.5

for H1). The bare atomic scales, ωh, ωe1, and ωe2 =
1
2U + 2J define the characteristic energy scales, i.e., the
peak positions, of the Hubbard bands in the local density
of states,

A(ω) = − 1
π Im [Gimp(ω)], (3)

cf. yellow crosses in Fig. 1(b). Thus, for H1, the Hubbard
bands form a broad incoherent background.

In Hund systems, strong correlations are induced by
“Hund physics”: The spin Kondo scale is strongly re-
duced due to SOS, with Tspin = 0.12 for H1 [cf. brown
curves in Fig. 1(c)]. Accordingly, the QP mass, Z−1 =
3.45 ∝ Tspin

−1 [35], is strongly enhanced. By con-
trast, Torb = 1.20 is even larger than Eatomic = 0.5 for
H1. This leads to a very broad SOS frequency window
[Tspin, Torb] = 1.08 comparable in magnitude to ∆b = 1 in
Hund systems [cf. yellow vertical bar in Fig. 1(c) for H1].
The incoherent regime is strongly particle-hole asymmet-
ric in frequency space [33, 35] and shows fractional power-
law behavior [39, 73–75]. At zero temperature, the two-
step SOS Kondo screening process is reflected in A(ω) in
form of a two-tier QP peak on top of the broad incoherent
background. It consists of a thin spin Kondo peak related
to spin screening and a broader orbital Kondo peak re-
lated to orbital screening [cf. yellow curve in Fig. 1(b)]
[35].

Mott system. A Mott system is by definition close to
the MIT phase boundary. U is large compared to J .
We choose the Mott system M1 [marked by an asterisk
in Fig. 1(a)] with J = 1 and a large bare gap ∆b ≡
U−2J = 4.5 as a prototypical example. M1 qualitatively
reproduces various physical properties of the well-studied
Mott system V2O3 [7]. The lowest bare atomic excitation
scales ±EM1

atomic = ±2.25 are large due to the large value
of U , and the Hubbard bands therefore well separated [cf.
black curve in Fig. 1(b)]. By contrast, with increasing
U , both Torb and Tspin are linearly reduced, while their
ratio remains constant [cf. brown curves in Fig. 1(c)]. As
a consequence the SOS window is strongly downscaled
[Tspin = 0.04, Torb = 0.39], becoming almost negligibly
small compared to ∆b = 4.5 [cf. black vertical bar in
Fig. 1(c) for M1]. Since both Kondo scales are small, the
QP peak is narrow altogether and well separated from
the Hubbard side bands [cf. black curve in Fig. 1(b)]. In
sum, Hund physics is only observable at very low energy
scales. Typical Mott physics, induced via the DMFT
self-consistency, dominates.

Absence of Hund’s coupling. For J = 0, SOS is ab-
sent: spin and orbital degrees of freedom are screened at
the same scale, Tspin = Torb [cf. blue curves in Fig. 1(c)].
Far from the MIT phase boundary, e.g., for W0 with
J = 0 and ∆b = 3.5 [marked by an open square in
Fig. 1(a)], Tspin = Torb = 0.7405 are rather large and
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Tspin

Torb

J
0
1
2

ωe1

ωe2

ωh

b=4.5, J=1: M1

b=1, J=1: H1

b=3.5, J=2: I2

b=3.5, J=0: W0

FIG. 1. (a) The zero-temperature phase diagram of the 3HHM has three phases in the J-U plane: a metallic phase (squares),
a coexistence region (circles), and an insulating phase (triangles). These are separated by two phase transition lines Uc1 (solid
red curve) and Uc2 (dashed black curve), respectively. The color intensity of the symbols in the metallic and coexistence regions
indicates the value of Z ∈ [0, 1]: the lower Z the more faded is the red color. The phase diagram is adapted from Ref. [35].
We will present temperature-dependent results for a Hund system H1 far away from the Uc1 phase transition line deep in the
metallic state (cross), a Mott system M1 near the transition (asterisk), an intermediate system I2 having both Hund and Mott
features (open diamond), and a weakly correlated system W0 with J = 0 far from Uc1 (open square). (b) The local density
of states A(ω) for M1 (black), H1 (yellow), I2 (red), and W0 (blue). The legend lists the corresponding values of the bare
gap, ∆b = U − 2J . Triangles, circles, and crosses mark the bare atomic excitation scales, ωh, ωe1, and ωe2 (listed in increasing
order), respectively, defined in Sec. III. The inset zooms into the peaks around the Fermi level ω = 0. (c) The spin and orbital
Kondo scales, Tspin (solid) and Torb (dashed), plotted as function of U for J = 0 (blue), J = 1 (brown), and J = 2 (red); these
scales are defined as the maxima of the imaginary parts of the dynamic orbital and spin susceptibilities, see Appendix A. The
SOS window is marked by a vertical yellow (black) bar for H1 (M1).

thus Z−1 = 1.5134 not much enhanced: the system is
only weakly correlated. The QP peak has no substruc-
ture [cf. blue curve in Fig. 1(b)].

Temperature-dependence. The size and the properties
of the SOS window in frequency space has direct implica-
tions for temperature dependent properties of the 3HHM.
This was first demonstrated in Ref. [7]. In particular, it
was shown that, in local spectra, the QP peak persists
up to very high temperatures in Hund systems, exhibit-
ing large charge fluctuations, whereas a pseudogap de-
velops with increasing temperature in all Mott systems
at a characteristic energy scale TM, suppressing charge
fluctuations. This can be explained by the fact that
far from the MIT boundary the Hubbard bands overlap,
whereas close to the boundary they are well separated.
Furthermore, onset scales for orbital and spin screening,
T onset

orb and T onset
spin , were introduced as the scales where

decreasing temperature first causes deviations of the re-
spective static local orbital and spin susceptibilities, χorb

and χspin, from the Curie behavior, χ ∝ 1/T , character-
izing free local moments. In Hund metals, it was found
that T onset

orb � T onset
spin with T onset

orb as high as Eatomic.
In contrast, in Mott systems, spin and orbital screen-
ing set in, simultaneously, below a much lower scale,
T onset

spin ≈ T onset
orb ≈ TM � Eatomic, together with the for-

mation of the QP peak. A weakly correlated system with

J = 0 likewise does not exhibit any separation of the on-
set scales of orbital and spin screening.

In addition, completion scales for orbital and spin
screening, T cmp

orb and T cmp
spin , were defined as the temper-

ature scale below which Pauli behavior sets in with de-
creasing temperature. It was suggested that these scales
are also separated in the presence of finite J in both Hund
and Mott systems, while they are equal for J = 0 [7].

Strategy. In the following, we analyze and compare
four different systems, H1, M1, W0 and I2, as presented
in Fig. 1(a), to further clarify the Hund and Mott routes
towards strong correlations. The Hund system, H1, and
the Mott system, M1, are defined as in Ref. [7]. In ad-
dition, we also study the weakly correlated system W0
and an intermediate system I2 with J = 2 and ∆b = 3.5
[marked by an open diamond in Fig. 1(a)], which has
both Hund and Mott features and thus demonstrates the
crossover between Hund and Mott systems. For all these
systems we summarize the physics in ARPES spectra at
T = 0 and study their temperature dependencies. While
some of this data is already presented as the Supplemen-
tary Information of Ref. [7], we here analyze it in much
more detail and directly connect it to the temperature de-
pendence of various other physical quantities. In particu-
lar, we revisit the static local susceptibilities and the idea
of completion and onset scales of spin and orbital screen-
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ing. Further insights are obtained by studying the quasi-
particle weight, the resistivity, the thermopower, and the
lattice entropy. We will show that the latter differs from
the impurity entropy, studied before in Ref. [33]. In Ap-
pendix A, we also offer a detailed discussion, for I2, of
the implications of particle-hole asymmetry for various
frequency-dependent quantities at T = 0. All in all, these
studies lead to a deepened understanding of the nature
of Hund metals.

IV. ARPES, SPECTRAL FUNCTION, AND
SELF-ENERGY

In this section we focus on ARPES spectra. We cal-
culate the structure factor A(εk, ω) for a Bethe lattice
as

A(εk, ω) = − 1
π Im [ω + µ− εk − Σ(ω)]

−1
. (4)

Experimentally, the structure factor can be measured
by angle-resolved photoemission spectroscopy (ARPES).
For brevity, our A(εk, ω) spectra will be called ARPES
spectra, too, although they are of course computed, not
measured. The four Figs. 2, 4, 5, and 6 show our re-
sults for A(εk, ω), together with the corresponding spec-
tral function A(ω) and self-energy Σ(ω) for the four sys-
tems H1, M1, I2, and W0, respectively. A(εk, ω) is plot-
ted for different temperatures in panels (a),(c), and (e)–
(h). A(ω) is plotted for several temperatures in panel (i),
analogously, Re Σ(ω) in panel (j), and Im Σ(ω) in panel
(k). In the following, we are particularly interested in
how SOS is reflected in ARPES data at T = 0, and how
it develops with increasing temperature in Hund systems
compared to Mott systems. How can the emerging dif-
ferences be explained and interpreted physically?

A. Hund system H1

Let us first analyze Fig. 2 for H1. Here, we start with
the T = 0 results [Figs. 2(a) and 2(c)]. We reveal three
regimes with different behavior of the ARPES spectrum,
A(εk, ω), due to SOS.

Fermi-liquid regime at T = 0. Figure 2(a) is a zoom
into the FL regime, which at T = 0 sets in for |ω| <
Tspin = 0.1221. The white curve shows the ω dispersion
of the QP band, defined as the maxima E∗(ω) of A(εk, ω)
for given ω, and the blue curve the εk dispersion, defined
as the maxima E(εk) of A(εk, ω) for given εk. Both defi-
nitions lead to the same low-energy linear FL dispersion
relation (cf. thick dashed red line) of slope Z = 0.29 [with
a Fermi surface crossing point E∗(ω = 0) = µeff ]. The
mass enhancement of the Landau QPs in the Hund sys-
tem H1 is thus fairly large, Z−1 = m∗/m = 3.45. We de-
fine ω−FL and ω+

FL as the negative and positive crossover
scales between which FL behavior holds [as diagnosed
from a detailed analysis of the ω dependence of A(ω) and

Σ(ω), see Appendix A for a detailed discussion]. Interest-
ingly, we find that the extent of the FL regime is different
for negative or positive frequencies, ω−FL 6= ω+

FL (cf. thin
dash-dotted red horizontal lines): the white (blue) QP
band dispersion deviates earlier from the thick dashed
red FL line on the positive frequency side, i.e., at a lower
scale ω+

FL ≈ − 1
3ω
−
FL = 0.027. The asymmetry of the

FL regime directly reflects the particle-hole asymmetry
of the model away from half-filling. The asymmetry of
the FL regime is discussed in more detail in Appendix A.
With ω+

FL−ω−FL = 0.109, the FL regime is rather large in
H1 (compared to the lowest bare atomic excitation scale
EH1

atomic = 0.5). We remark that a similar asymmetric
FL regime was found earlier in a one-band hole-doped
Mott insulator [76], i.e., for a particle-hole asymmetric
model with only one type of degrees of freedom (spins).
There, it was also shown that a well-defined QP peak of
“resilient” QP excitations exists at temperatures above
the FL scale, and that it dominates an intermediate in-
coherent transport regime.

Crossover regime at T = 0. Above ω+
FL and below ω−FL

the QP band starts to deviate from FL behavior and
crosses over into the NFL regime. In this regime, the
dispersion relation becomes highly particle-hole asym-
metric, as clearly visible in Fig. 2(c). For ω > 0, E (and
E∗) turn upwards with increasing εk into a steeper ap-
proximately linear function. This crossover is reflected in
a weak kink around a crossover scale ω+

cr = 0.085 (solid
yellow line at ω > 0). For ω < 0, E develops into a
step-shaped curve for decreasing εk approximately at the
crossover scale ω−cr = −0.256 (solid yellow line at ω < 0).
By contrast, E∗ essentially keeps following the red FL
line almost down to ω−cr, before a jump signals the transi-
tion to a new type of transport regime, the HQP regime,
where HQP stands for “Hund quasiparticle”, explained
further below.

HQP regime at T = 0. For ω below the above-
mentioned jump, i.e., well smaller than crossover scale
−ω−cr, the ω dispersion E∗(ω) (white line) approaches
the steep linear behavior of the εk dispersion E(εk) (blue
line). Thus, the dispersion in the HQP regime is again
linear, similar to the FL regime, but it is steeper than
in the latter, for both negative and positive ω. This sig-
nals the survival of resilient but lighter QPs in the HQP
regime, described in more detail below. Interestingly, the
slope of E (E∗) is slightly larger for negative (ω < −ω−cr)
than for positive (ω > ω+

cr) frequencies, indicating differ-
ent effective masses for electrons and holes.

SOS Kondo screening process. We can now establish a
connection between the three different frequency regimes
identified above in the ARPES spectrum, and the inter-
twined two-stage Kondo screening process of SOS (cf.
Fig. 3) analyzed in Refs. [7, 33, 35]. Proceeding from
high to low frequencies (energies), orbital screening sets
in first. This involves the formation of an orbital singlet,
by binding one bath electron to the impurity to screen the
orbital hole. Due to Hund’s coupling, the extra bath elec-
tron couples ferromagnetically to the impurity, leading
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H1

SU(3)
Kondo

resonance

SU(2)
Kondo

resonance
maximum

shoulder

HQP dispersion

kink

step− shape

ω+
cr

ω+
cr

ω−
cr

ω−
cr

ω+
FL

ω−
FL

Z = 0.2899

FIG. 2. A Hund system (H1) with parameters ∆b = 1 and J = 1. [(a),(c),(e)–(h)] The structure factor A(εk, ω). [(b),(d)] The
dispersion relation E(εk), (i) the spectral function A(ω), [(j),(k)] the real and imaginary parts of the self-energy, Re Σ(ω) and
Im Σ(ω), respectively, all plotted for various temperatures. [(a),(c),(e)–(h)] The colored curves highlight the dispersion relation
E(εk) and the white curves show the alternative definition of the dispersion relation E∗(ω). Panels (a) and (b) are low-energy
zooms of panels (c) and (d). The FL regime, ω−FL < ω < ω+

FL, lies between the dash-dotted red lines, running horizontally in
(a) and (b) and vertically in (i)–(k). The thick dashed red line in panel (a) denotes FL behavior of the low-energy dispersion
relation. Its slope Z = m/m∗ reflects the strength of local correlations. The yellow solid horizontal lines in (b) and vertical
lines in (i)–(k) denote, for ω < 0, the energy scale ω−cr of the maximum in Re ΣT=0(ω < 0), and for ω > 0, the energy scale ω+

cr

of the kink in Re ΣT=0(ω > 0).
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orbital
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orbitals 
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  SOS window
= NFL regimeTspin |ω|

|ω±
FL|

Torb

|ω±
cr|

FIG. 3. Refined schematic depiction of the two-stage Kondo
screening process of SOS at filling nd = 2 (based on Fig. 13
of Ref. [35]). With decreasing energy orbital screening sets
in first, roughly at the orbital Kondo scale Torb. This in-
volves the formation of an orbital singlet by building a large
effective Hund’s-coupling-induced 3/2 spin including a bath
spin degree of freedom. |ω±cr| approximately marks the com-
pletion of orbital screening. Below |ω±cr| the 3/2 spin is
gradually screened by the three effective channels of the
3HHM. Well below the spin Kondo scale Tspin, full screen-
ing of both orbital and spin degrees of freedom is reached
at the FL scale |ω±FL|, below which FL behavior occurs in
frequency-dependent quantities. Our schematic sketch ig-
nores the effects of particle-hole asymmetry on the crossover
scales, |ω−cr| 6= |ω+

cr| and |ω−FL| 6= |ω
+
FL|.

to the emergence of a large effective 3/2 impurity spin.
This transport regime has NFL properties, but is charac-
terized by an ARPES spectrum with a surprisingly linear
band dispersion, having a much steeper slope, i.e., a much
smaller mass enhancement, than in the FL regime. It
might thus be described in terms of specific resilient QPs,
which are formed by gradually screened orbital degrees of
freedom coupled to quasi-free large spins. We dub these
resilient QPs “Hund quasiparticles” (HQPs). The steep
slope of this HQP band (especially at negative frequen-
cies) is reminiscent of the (inverted) waterfall structure
discovered in ARPES spectra and realistic density func-
tional theory (DFT) plus quantum Monte Carlo (QMC)
studies of Sr2RuO4 [77]. We thus corroborate the sug-
gestion of Ref. [77] that the waterfall structure is a signa-
ture of resilient QPs in Hund metals. But we also remark
that a waterfall structure was also found in ARPES plots
for the hole-doped one-band Hubbard model in Ref. [76].
The “completion” of the orbital screening process is re-
flected in a (strong) change in the band dispersion around
ω−cr (step-shape) and ω+

cr (kink), respectively. Notably,
subtle changes (kinks) at about 30 meV were reported in
ARPES data of Sr2RuO4 [22, 77, 78], presumably caused
by local electronic correlations [78], and therefore could
be associated with the crossover from the NFL to the
FL regime. For frequencies below ω+

cr and above ω−cr spin
screening sets in: the large 3/2 spin is now screened by

the three channels of the 3HHM to additionally form a
spin singlet in the ground state. Figuratively speaking
the HQPs get additionally dressed by the spin degrees
of freedom. After completion, FL behavior characterizes
the low-frequency regime. Here, the QP band can be
described in terms of Landau QPs with a heavy mass
Z−1 = m∗/m, reflected by the small slope Z of the band
dispersion in ARPES data. These Landau QPs are more
stable on the negative frequency side.

As has been discussed in Sec. III and Refs. [33, 35],
the two-step screening process of SOS is also reflected in
A(ω) and Σ(ω). In A(ω) a narrow SU(2) spin Kondo peak
sits on top of a broad SU(3) orbital Kondo peak [cf. blue
curve in Fig. 2(i)], resulting in a shoulder for ω < ω−cr and
a subtle kink for ω > ω+

cr (cf. vertical solid yellow lines).
Correspondingly, −Im Σ(ω) [cf. blue curve in Fig. 2(k)]
develops a shoulder below ω−cr and a regime above ω+

cr

in which the slope of −Im Σ(ω) becomes smaller than
for ω < ω+

cr. The scattering rate in the HQP regime is
thus less energy dependent than in the FL regime. The
shoulder-like structure in −Im Σ(ω < 0) directly trans-
lates to a sharp maximum in Re Σ(ω < 0) [cf. blue curve
in Fig. 2(j)]. We use the position of this maximum to
define ω−cr (vertical solid yellow line at ω < 0). The kink
in Re Σ(ω > 0) approximately marks ω+

cr (vertical solid
yellow line at ω > 0), which turns out to lie at 1

3ω
−
cr.

While these scales are in principle heuristic choices, their
physical relevance can be motivated by the fact that they
directly reflect the energy scales of marked changes in the
band dispersion E(εk): the latter is the solution to the
equation ω + µ − εk − Re Σ(ω) = 0, as used in Ref. [6],
and thus directly connected to Re Σ(ω). In Appendix A,
we complement this discussion by a detailed investiga-
tion of the frequency dependence of A(ω), Σ(ω), and the
dynamical spin and orbital susceptibilities, χspin(ω) and
χorb(ω), at T = 0 for the system I2 and their interpreta-
tion in terms of the SOS screening process.

We remark that the SOS features described above,
in particular the shoulder below ω−cr in both A(ω) and
−Im Σ(ω), have also been predicted to occur for Sr2MoO4

in very recent DFT+DMRG studies [40].

Temperature dependence. In order to verify the idea
of robust HQPs governing the incoherent transport
regime, we study the evolution of the QP band and its
dispersion E with temperature in Figs. 2(c), 2(e)–2(h)
and Figs. 2(b) and 2(d), respectively. We find that, with
increasing temperature, first the SOS features in the dis-
persion, like the step at ω < 0 and the kink at ω > 0, dis-
solve gradually and very slowly, while the steep slope of
the linear behavior characteristic of the HQP regime re-
mains unchanged [cf. Fig. 2(d)]. At T & 0.2 the Landau-
FL QP band has fully disappeared and only a slight kink
at the Fermi level separates the linear parts of the re-
silient HQP band at ω > 0 and ω < 0 [cf. green curves in
Figs. 2(b), 2(d), and 2(f)]. The slope of the HQP band
remains quite stable over a very broad range of frequen-
cies (especially for ω < 0) up to the highest temperature
plotted [cf. Fig. 2(d)]. Thus the incoherent transport
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regime for T & 0.2 is governed by a very robust, almost
temperature independent HQP band.

This evolution of the QP band with increasing tem-
perature is also reflected in A(ω), Re Σ(ω), and Im Σ(ω)
[cf. Figs. 2(i)–2(k)]. In the FL temperature regime a
sharp SU(2) Kondo peak in A(ω), a pronounced maxi-
mum in Re Σ(ω), and a shoulder and dip in Im Σ(ω) are
clearly visible (cf. blue curves). With increasing temper-
ature there is a gradual crossover to NFL behavior. The
height of the SU(2) Kondo resonance in A(ω) decreases
and the two-tier structure of the QP peak disperses by re-
distributing spectral weight from the SU(2) Kondo peak
to the SU(3) Kondo resonance shoulder. However, the
width of the broad SU(3) Kondo resonance is essentially
unaffected by this redistribution. In fact, the robustness
of the HQP band is reflected in the stable form of the QP
peak flank of A(ω), especially at negative frequencies [cf.
Fig. 2(i)]. Interestingly, this flank is stabilized by the
lower Hubbard band, which lies around ωh = −0.5, i.e.,
the SU(3) Kondo resonance and atomic excitations merge
in H1, resulting in a robust ARPES spectrum with mixed
valence character at very high temperatures [7].

Next we consider the self-energy. Reflecting the tem-
perature dependence of A(ω), also the maximum in
Re Σ(ω) and the dip and the shoulder in Im Σ(ω) get
first gradually smeared out with increasing temperature
for T . 0.2. Notably, the minimum of −Im Σ(ω, T ) is
shifted to positive frequencies within this process. This
hints towards long-lived electron-like excitations govern-
ing the incoherent transport of this crossover regime. The
minimum in −Im Σ(ω, T ) disappears at higher tempera-
tures and −Im Σ(ω, T ) becomes a monotonically increas-
ing function of frequency close to the Fermi level. This
might again be caused by mixed valence physics, which
becomes important at an energy scale of around 0.5.

Interestingly, very similar behavior of the minimum
of −Im Σ(ω, T ) is observed for the hole-doped one-band
Hubbard model of Ref. [76]. There, a well-defined QP
peak persists with increasing temperature above the co-
herence scale until it merges with the lower Hubbard
band at high temperatures.

Note that the temperature dependence of Re Σ(ω) di-
rectly determines the temperature dependence of the dis-
persion relation E(εk) in A(εk, ω) [cf. Fig. 2(d)]. Again,
the evolution of the QP band with temperature strongly
hints towards the existence of different types of QPs. At
very low T in the FL regime, the band is described by
a low-frequency FL-like QP band with a rather flat dis-
persion. Correspondingly, A(ω) exhibits a sharp SU(2)
Kondo resonance. Then, with increasing temperature,
a crossover takes place: The low-frequency FL-like QP
band dissolves gradually until, at higher temperatures,
we find a new QP regime, the HQP regime. There, a
much steeper (slightly particle-hole asymmetric) HQP
band exists and the two-tier QP peak in A(ω) is reduced
to a single broad resilient SU(3) Kondo resonance.

B. Mott system M1

We now turn to the Mott system M1. Figure 4 displays
its spectral properties using the same layout as Fig. 2 for
H1. At T = 0 we again find a particle-hole asymmetric
FL frequency regime and SOS features [cf. Figs. 4(a) and
4(c)]. However, these occur at much lower frequencies
than in H1 (for instance, M1 has ω−cr = −0.15), as ex-
pected from the insights given in Sec. III. The slope of
the FL dispersion Z = 0.10 is clearly smaller for M1 than
for H1, indicating much heavier electron masses. With
increasing temperature, the SOS features vanish very
quickly (already below T = 0.08 for M1) [cf. Figs. 4(b)
and 4(d)]. The emergent HQP band [cf. Fig. 4(f)] is
very unstable with increasing temperature and already
starts to disappear at around T = 0.15 [cf. Figs. 4(d)
and 4(g)]. Above T & 0.2 a pseudogap has fully re-
placed the QP peak [cf. Figs. 4(h)]. Similarly, the whole
QP peak in A(ω) becomes strongly suppressed, eventu-
ally turning into a pseudogap at high temperatures [red
curve in Fig. 4(i)]. The emergence of a pseudogap is
accompanied by a change of sign, from positive to nega-
tive, in the slope of the dispersion relation E(εk) [cf. red
curve in Fig. 4(d)]. Consequently, Re Σ(ω) and Im Σ(ω)
are strongly temperature dependent, as well. While for
T . 0.08 the minimum of −Im Σ(ω, T ) is shifted to posi-
tive frequencies, it is gradually shifted back towards neg-
ative frequencies with increasing temperature and finally
turns over to a maximum in the presence of a pseudogap
[cf. Fig. 4(k)].

C. Intermediate system I2

Figure 5 shows spectral data for the intermediate sys-
tem I2. At T = 0, the ARPES spectrum for I2 [cf.
Figs. 5(a) and 5(c)] shows SOS features similar to those
of H1, but occurring at smaller scales. Since J = 2 and
the bare gap ∆b = 3.5 are both large, Tspin is pushed
down [35] even compared to M1: Tspin = 0.021 and thus
Z = 0.055 (cf. thick dashed red line) but also |ω±FL| and
|ω±cr| take approximately half the values of the respective
scales of M1, while Torb = 0.42 for I2 is slightly larger
than Torb = 0.3878 for M1. In sum, the zero-temperature
band dispersion of I2 is similar in its shape to H1 and
M1.

However, qualitative differences emerge in the temper-
ature evolution of the QP band and its dispersion E com-
pared to H1 and M1, respectively—again due to the spe-
cific relation [Tspin, Torb]/∆b for I2. With increasing tem-
perature, first the band’s step-shaped structure gradually
dissolves, while its steep linear behavior in the HQP fre-
quency regime remains unchanged [cf. bright blue curve
for T = 0.02 in Figs. 5(b), 5(d), and Fig. 5(e)]. In con-
trast to M1, this HQP band is stable up to rather high
temperatures, T = 0.25, for I2 (similar to H1). Never-
theless, above T = 0.25, we additionally find a crossover
to a pseudogap similar to M1 [cf. red curves in Figs. 5(b),
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M1

gap
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FL

ω−
FL

ω+
cr

ω−
cr

ω+
cr

ω−
cr

Z = 0.0995

FIG. 4. Same quantities as in Fig. 2 for a Mott system (M1) with parameters ∆b = 4.5 and J = 1.

5(d), 5(h), and 5(i)]. I2 is thus characterized by both a
Hund feature (HQP band) at intermediate temperatures
and a Mott feature (pseudogap) at very high temper-
atures. This evolution of the QP band with tempera-
ture is again reflected in A(ω), Re Σ(ω), and Im Σ(ω) [cf.
Figs. 5(i)–5(k)].

D. Weakly correlated system W0

For J = 0 the SOS features are fully absent in A(εk, ω),
A(ω), Re Σ(ω), and Im Σ(ω) (cf. Fig. 6). The FL behav-
ior holds for a rather large temperature regime (almost
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Z = 0.0552

I2

FIG. 5. Same quantities as in Fig. 2 for an intermediate system (I2) with paramters ∆b = 3.5 and J = 2.

up to T ≈ 0.25) and is characterized by a very stable
large dispersion with Z = 0.6672 and thus a rather small
mass enhancement. Resilient HQPs do not exist.

E. Summary of spectral properties

To summarize, both H1 and M1 (and also I2) show
SOS features in the dispersion extracted from A(εk, ω) at
T = 0: (i) a rather flat low-frequency Landau QP band
of slope Z; (ii) a NFL crossover behavior (in form of a
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Z = 0.6672

W0

FIG. 6. A weakly coupled system W0 with parameters ∆b = 3.5 and J = 0. [(a),(c)–(f)] The structure factor A(εk, ω). (b)
The dispersion relation E(εk), (g) the spectral function A(ω), [(h),(i)] the real and imaginary parts of the self-energy, Re Σ(ω)
and Im Σ(ω), respectively, all plotted for various temperatures. (h) Note that the difference in Re Σ(ω = 0) between T = 0 and
T > 0 arises from a 4% deviation of nd(T = 0) from nd = 2. FL and crossover scales are not shown. Note that the latter do
not exist for J = 0.

step-shaped band at ω < 0 and a kink at ω > 0); and (iii)
a HQP band, which is extended in frequency space. The
latter consists of positive and negative frequency parts,
both of which exhibit linear dispersion relations with
large slopes, with the negative-frequency slope slightly
larger than the positive-frequency slope. However, these
SOS features occur at very different energy scales for the
three systems [35]: while in H1 they are extended over a
broad frequency range up to atomic energy scales, they
are compressed and lie at smaller frequency scales in M1.
Consequently, in H1, these features govern transport for
all temperatures. In particular, very robust HQPs ex-

ist up to the highest (. t) temperatures. By contrast,
in M1, SOS physics only survives at very low tempera-
tures, whereas the behavior of A(εk, ω) at higher tem-
peratures is dominated by typical Mott physics, i.e., the
DMFT self-consistency opens a (pseudo)gap and quickly
destroys the HQPs. For I2, the SOS features are also
found at rather low scales (due to the large ∆b) at T = 0,
but the SOS regime is more extended than for M1 (due
to the large J). Temperature-dependent ARPES spectra
thus show both Hund and Mott features. If J = 0, SOS
features are absent and W0 is governed by FL behavior
in a broad temperature range.
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V. STATIC LOCAL ORBITAL AND SPIN
SUSCEPTIBILITIES, AND QUASIPARTICLE

WEIGHT

Based on the above detailed analyzis of the ARPES
spectra, we now revisit the static local susceptibilities for
the orbital and spin degrees of freedom, to refine the find-
ings which we had reported in Ref. [7]. There we intro-
duced four temperature scales, characterizing the onset
and the completion of screening of the spin and the or-
bital degrees of freedom. The concept of onset and com-
pletion scales for screening was inspired by Wilson’s clas-
sic analysis of the impurity contribution to the spin sus-
ceptibility of the spin-1/2 one-channel Kondo model, re-
viewed in Appendix B. We correspondingly derived these
scales from the behavior of the static local spin and or-
bital susceptibilities, and also of the local spectral func-
tion. Our main result was that Hund and Mott systems
show contrasting behavior at intermediate to high ener-
gies. In Hund systems, we found a clear separation in the
energy scales at which the screening for orbital and spin
fluctuations sets in, respectively: T onset

orb � T onset
spin , with

T onset
orb very large (& Eatomic). By contrast, in Mott sys-

tems the strong Coulomb repulsion localizes the charge
at high temperature. With decreasing temperature the
onset of charge localization triggers the simultaneous on-
set of the screening of the spin and orbital degrees of
freedom, accompanied by the formation of the coher-
ence resonance at TM ≡ T onset

spin = T onset
orb � Eatomic. At

low temperatures, we suspected SOS in the completion
of screening, T cmp

orb � T cmp
spin , both for Hund and Mott

systems, but considered this to be more pronounced for
Hund systems.

In this section we now reanalyze the static local sus-
ceptibilities of H1 and M1 of Ref. [7]. While we only
slightly refine the onset scales of screening quantitatively
to provide a clearer connection to corresponding ARPES
data and the quasiparticle weight, we suggest a revised
perspective on the completion scales. In sum, we estab-
lish a consistent physical picture of screening from the
atomic degrees of freedom at high energies to the quasi-
particles at low energies. We corroborate our findings by
studying the static local susceptibilities of I2 and W0.

The dynamical real-frequency spin and orbital suscep-
tibilities are defined as

χspin(ω) = 1
3

∑

α

〈Ŝα‖Ŝα〉ω, (5a)

χorb(ω) = 1
8

∑

a

〈T̂ a‖T̂ a〉ω, (5b)

respectively [71, 79], where T̂ a =
∑
mm′σ d̂

†
mσ

1
2τ

a
mm′ d̂m′σ

are the impurity orbital operators with the SU(3) Gell-
Mann matrices τa normalized as Tr[τaτ b] = 2δab. Below
the subscript 0 will be used to denote the static limit,
χ0 = χ(ω = 0), i.e., the static local susceptibilities.

We plot Tχorb,spin
0 in Figs. 7(a), 7(b), 7(e), and 7(f)

and χorb,spin
0 in Figs. 7(c), 7(d), 7(g), and 7(h) as func-

tions of T , for H1 (yellow), M1 (black), I2 (red), and W0
(blue). As a function of decreasing temperatures, these
susceptibilities traverse four regimes: first Curie-like be-
havior, where Tχ0 is independent of temperature; onset
of screening, where Tχ0 begins to decrease; completion of
screening, where χ0 begins to saturate; and Pauli behav-
ior, where χ0 is constant. We will discuss these regimes
in detail below.

We also plot the quasiparticle weight Z(T ) as dotted
lines in Figs. 7(a), 7(b), 7(e), and 7(f) [and additionally
in Figs. 9(a) and 9(b)]. In principle, the interpretation of
Z(T ) as quasiparticle weight holds only in the FL regime.
Nevertheless, for temperatures in the NFL regime, it is
still computationally well-defined and we use it to inter-
pret the physics on a heuristic level.

A. Hund system H1

We begin with a discussion of the results for H1 in
Figs. 7(a)–7(d). Tχorb

0 decreases with decreasing tem-
perature for all temperatures plotted [cf. dashed yellow
curves in Figs. 7(a) and 7(b)], i.e., the onset for orbital
screening, T onset

orb > 1, is on the order of bare excitation
scales. The onset of spin screening, T onset

spin ≈ 0.25, is sig-

naled by the deviation from Curie-like (constant) behav-

ior of Tχspin
0 with decreasing temperature, marked by the

yellow triangle [cf. solid yellow curves in Figs. 7(a) and
7b)]. Thus, for H1, we find T onset

orb � T onset
spin , as shown

in Ref. [7]. Note, however, that here we have chosen
T onset

spin ≈ 0.25 slightly smaller than in Ref. [7] (where we

had chosen T onset
spin ≈ 0.4). This choice is motivated by the

ARPES data in Fig. 2. There the onset of spin screen-
ing is reflected in the formation of a flat low-frequency
band in addition to the steep HQP band, resulting in a
pronounced step-like feature in the dispersion at T = 0.
In Fig. 2(d) the onset of the step formation is visible for
T . 0.2. Furthermore, we motivate our choice in terms
of the behavior of χorb

0 . With T onset
spin ≈ 0.25, the onset

scale of spin screening is equal to the temperature scale
for the completion of orbital screening: χorb

0 shows Pauli
(constant) behavior for T < T onset

spin ≈ T cmp
orb [cf. dashed

yellow curve in Figs. 7(c) and 7(d)]. When the tempera-

ture is further lowered, χspin
0 too reaches Pauli behavior

at TFL = T cmp
spin (yellow cross). Then spin screening is

completed and the system is a FL.
Figure 8(a) summarizes these observations in a

schematic sketch. In a Hund system, the SOS screen-
ing process of Fig. 3 is directly reflected in the tem-
perature dependence of the static local susceptibilities.
For T onset

spin < T < T onset
orb , HQPs, i.e., gradually screened

(quasi-itinerant) orbitals coupled to quasi-free spins,
dominate the physics and lead to a robust HQP band in
ARPES spectra and a Curie-like spin susceptibility. At
very high temperatures mixed-valence physics addition-
ally comes into play [7], because the lower (and a part
of the upper) Hubbard band merge at ωh = −0.5 (and
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FIG. 7. The static local orbital (dashed) and spin (solid) susceptibilities, [(a),(b),(e),(f)] Tχorb,spin and [(c),(d),(g),(h)] χorb,spin
0 ,

all plotted as functions of temperature on a linear (left) and a logarithmic (right) scale, for M1 (black), H1 (yellow), I2 (red),
and W0 (blue). In addition, the quasiparticle weight (dotted) Z(T ) is shown in (a), (b), (e), and (f). The squares mark the
onset of orbital screening T onset

orb below which Tχorb
0 deviates from a constant value, i.e., from Curie-like behavior. Note that

Z(T ) diverges for T > T onset
orb . The triangles mark the maxima of χorb

0 and also signal the onset of spin screening T onset
spin below

which Tχspin
0 deviates from Curie-like behavior. The crosses denote the FL scale TFL below which FL behavior is found. In

M1, we observe that T onset
spin ≈ T onset

orb = TM. In H1, we find T onset
orb � T onset

spin , as discussed in Ref. [7]. The data for the static
susceptibilities shown in panels (a)–(d) are adapted from Ref. [7]. A Curie-Weiss analysis of the data of panel (c) is presented
in Appendix B.

ωe1 = +0.5) into the QP peak in H1 [cf. Fig. 2(i)]. Due
to the special SOS screening process, the spin screening
only sets in once orbital screening has been completed
T cmp

orb , thus T onset
spin ≈ T cmp

orb . As the temperature is low-

ered into the regime TFL < T < T onset
spin also the spins get

gradually screened, eventually resulting in the full screen-
ing of both spin and orbital degrees of freedom and thus
in a FL below TFL. The spin screening is signaled by the
formation of a step-like feature in ARPES spectra and
by a Pauli-like orbital susceptibility.

This screening route is also reflected in Z(T ) [cf. dotted
yellow curve in Figs. 7(a) and 7(b)]. For T onset

spin < T <

T onset
orb , the existence of resilient HQPs leads to a plateau-

like feature in Z(T ). As the temperature decreases into
the regime TFL < T < T onset

spin , Z(T ) decreases and ap-
proaches a second plateau in the FL regime T < TFL.
The reduction of Z(T ) shows that the HQPs are addi-
tionally “dressed” through spin screening, resulting in
heavier Landau QPs.
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TFL = T cmp
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≈ T cmp
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FIG. 8. (a) Schematic sketch of different temperature regimes
in a Hund metal. For T > TFL, H1 is a NFL up to temper-
atures in the order of bare energy scales, where also mixed-
valence physics becomes important. The NFL regime, which
we dub Hund metal regime, reflects the complex SOS screen-
ing process of Fig. 3. First orbitals get screened with de-
creasing temperature for T cmp

orb < T < T onset
orb . In this regime

transport is governed by HQPs, which are characterized by
gradually screened orbitals coupled to quasi-free spins. Only
when the orbital screening process is completed spins get
screened below T onset

spin ≈ T cmp
orb , i.e., in this regime, the HQPs

get gradually dressed to form heavier Landau QPs. For
T < TFL = T cmp

spin , H1 is a FL and both orbital and spin degrees
of freedom are fully screened. (b) Schematic sketch of different
temperature regimes in a multiorbital Mott-correlated metal.
In a Mott system, a pseudogap governs the physics in an ex-
tended temperature regime, T > T onset

spin ≈ T onset
orb = TM. For

temperatures below TM, both orbital and spin degrees of free-
dom get screened simultaneously with the onset of a Kondo
resonance, which is driven by the DMFT self-consistency con-
dition. The NFL regime for TFL < T < TM is followed by a
low-temperature FL regime, T < TFL < T cmp

spin ≈ T
cmp
orb , where

both orbital and spin degrees of freedom are fully screened.

B. Mott system M1

The Mott system M1 behaves very differently. As
shown in Ref. [7], TM ≡ T onset

orb ≈ T onset
spin [cf. black triangle

and square in Figs. 7(a) and 7(b)]. For T > TM ≈ 0.15,

both Tχorb
0 and Tχspin

0 exhibit a Curie plateau and
the spectral function is characterized by a pseudogap.
Both spin and orbital degrees of freedom get screened
simultaneously with the onset of a Kondo resonance [cf.
Figs. 4(g) and 4(i)], which is driven by the DMFT self-
consistency condition, in contrast to the Kondo screening
in H1. Interestingly, T onset

spin now corresponds to the posi-

tion of a maximum in χorb
0 [cf. black triangle and black

dashed curve in Figs. 7(c) and 7(d)]: the orbital dynam-
ics is strongly influenced by the spin screening and true
Pauli behavior is only reached for T < TFL in M1, thus
TFL = T cmp

spin ≈ T cmp
orb for Mott systems.

The behavor described above is summarized in
Fig. 8(b). In M1, Mott physics dominates and with

increasing temperature essentially destroys SOS physics
by opening a pseudogap already at low temperatures.
Again, Z(T ) reflects these findings [cf. dotted black curve
in Figs. 7(a) and 7(b)]. Similar to H1, Z(T ) is small and
constant for T < TFL. But instead of a second HQP
plateau as in H1, Z(T ) has a maximum directly below
TM and diverges for T > TM.

C. Intermediate system I2

To corroborate our picture above, we similarly study
I2 and W0 in Figs. 7(e)–7(h). I2 is rather close to
the Mott boundary [cf. diamond in Fig. 1(a)]. Thus,
we observe Mott signatures at high temperatures: for
T > TM ≡ T onset

orb ≈ 0.25, Tχorb
0 shows Curie behavior

[cf. red square in Figs. 7(e) and 7(f)] and a pseudogap
exists [cf. Figs. 5(g) and 5(i)]. However, due to the large
J = 2, we find Hund signatures, as well, at intermedi-
ate and low temperatures: orbital and spin screening are
slightly separated, T onset

orb > T onset
spin , and Z(T ) features

a plateau for T onset
spin < T < T onset

orb (between red trian-

gle and square). T onset
spin marks a maximum in χorb

0 [cf.

Figs. 7(g) and 7(h)], which is however less pronounced
than for M1. Full screening with Pauli behavior of both
χorb

0 and χspin
0 is reached at T < TFL. Due to the large

Hund’s coupling, TFL (and accordingly Z(T = 0) [35])
is lowest in I2 compared to H1, M1, and W0. In sum,
I2 exhibits an intermediate system, showing a mixture of
Hund and Mott features.

D. Weakly correlated system W0

Finally, we consider the weakly correlated system W0,
a system without Hund’s coupling, J = 0 (cf. also Fig. 6).

In Figs. 7(e)–7(h), χorb
0 and χspin

0 behave similarly for

W0, up to a constant prefactor: χspin
0 /χorb

0 = 1.5. The
FL regime extends up to very high temperatures [Z(T )
is essentially constant in an extended regime in Figs. 7(e)
and 7(f)]. Both Hund and Mott features are absent in
W0.

VI. TRANSPORT PROPERTIES AND
ENTROPY

In this section we add further perspective to the differ-
ences and similarities of the four systems H1, M1, I2, and
W0 by discussing the temperature dependence of various
transport properties and the entropy. For completeness,
Appendix D collects some elementary definitions and re-
lations involving the quantities discussed below.
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FIG. 9. [(a),(b)] The quasiparticle weight Z/Z(0) (replotted from Fig. 7 for reference), [(c),(d)] the scattering rate at the Fermi
level Im Σ(ω = 0), [(e),(f)] the coherence scale Γ∗/T , and [(g),(h)] the resistivity ρ, all plotted as functions of temperature on
a linear (left) and a logarithmic (right) scale for M1 (black), H1 (yellow), I2 (red), and W0 (blue). Symbols are defined as in
Fig. 7. [(d),(h)] The dashed grey guide-to-the-eye lines indicate FL behavior. [(e),(f)] The horizontal dashed grey lines mark
Γ∗/T ∗ = 1. [(g),(h)] The horizontal solid grey line marks the MRI limit defined via kFlmin ≈ 2π.

A. Scattering rate at the Fermi level

Figure 9 shows the temperature dependence of the
quasiparticle weight, the scattering rate, the coherence
scale, and the resistivity. We now discuss them in turn.

The scattering rate −Im Σ(ω = 0) is plotted as a func-
tion of temperature in Figs. 9(c) and 9(d). For T < TFL,
−Im Σ(ω = 0) follows FL behavior [cf. dashed grey guide-
to-the-eye line in Fig. 9(d)]. In H1, for T > TFL, the
scattering rate is small and shows a crossover to a rather
flat behavior in the HQP regime. By contrast, in M1,
the scattering rate increases strongly [cf. Fig. 9(e)], sat-
urating at high temperatures due to the presence of a
pseudogap. I2 shows a mixture of both the Hund and
the Mott behavior. −Im Σ(ω = 0) first flattens some-

what for TFL < T < T onset
spin , but then increases strongly

for T > T onset
spin , saturating as well at very high temper-

atures. Notably, −Im Σ(ω = 0) is larger for I2 than for
M1 for T < 0.1; this is caused by the larger J = 2 in I2.
The scattering rate in W0 is small and FL-like. It keeps
growing slowly with increasing temperature.

B. Coherence scale

In Figs. 9(e) and 9(f) we plot Γ∗/T , with the inverse
QP lifetime, defined as

Γ∗(T ) = −Z(T )Im Σ(ω = 0, T ) . (6)
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In a FL, i.e., for T . TFL, one expects Γ∗(T ) ∝ T 2. The
coherence scale T ∗ is defined as Γ∗/T ∗ ≡ 1 (cf. inter-
cepts with horizontal dashed grey line). Above T ∗ coher-
ent Landau QPs become short-lived and the FL picture
breaks down.

H1 is characterized by a very broad maximum of Γ∗/T
in the NFL regime around T onset

spin . This behavior is
reminiscent of DFT+DMFT results for Sr2RuO4, where
Γ∗/T keeps increasing in a FL-to-NFL crossover regime
above T ∗ ≈ 100 K and finally reaches a plateau above
350 K [22]. By contrast, M1 shows only a narrow plateau
in Γ∗/T around T onset

spin before it diverges [due to the di-

vergence of Z(T )]. Again, I2 features a mixture of both
the Hund and the Mott behavior. Γ∗/T first exhibits a
maximum at T onset

spin , but then diverges above T onset
orb . In

W0, Γ∗/T is very small and grows linearly with increas-
ing temperature, implying Γ∗ ∝ T 2.

C. Resistivity

The resistivity ρ(T ) is shown in Figs. 9(g) and 9(h). In
the FL regime, we find T 2 behavior (though this is hard
to resolve very accurately). Equivalently to the findings
for a hole-doped Mott insulator [76], we observe for H1
and I2 that in the regime TFL < T < T onset

spin , ρ(T ) first
increases approximately linearly with a negative inter-
cept, then it shows a slope-decreasing knee-like feature,
above which a linear increase with positive intercept sets
in. The inset of Fig. 9(g) highlights this for I2 using grey
dashed lines, which approximate the behavior of the red
curve. For H1 (yellow curve), ρ(T ) keeps increasing lin-
early up to the highest temperature plotted, and thus
behaves qualitatively in the same way as the hole-doped
Mott insulator of Ref. [76]. This is an intriguing simi-
larity, considering that both systems are assumed to be
governed by resilient QPs in their NFL regime. Moreover,
our findings for H1 are reminiscent of the DFT+DMFT
simulations [9] and measurements [66] of the resistivity
in iron pnictides. In contrast to H1, for I2 a second
(slope-increasing) knee occurs at T onset

spin , beyond which

ρ(T ) grows rapidly with increasing temperature until it
saturates above T onset

orb in the presence of a stable pseu-
dogap. For M1 (black curve), we do not observe a slope-
decreasing knee, but instead a slope-increasing knee at
T ≈ 0.08, above which ρ(T ) increases rapidly with grow-
ing temperature [cf. Fig. 9(h)]. W0 is again characterized
by a large FL regime, reaching up to very high tempera-
tures. For all but the largest temperatures, ρ(T ) is much
smaller for the system with J = 0 than for those with
finite J . (At very high T , the resistivity ρ(T ) of W0 in-
creases past that of H1; the reason is that the scattering
rate −ImΣ(ω = 0, T ) of W0 likewise increases past that
of H1 [cf. Figs. 9(c) and 9(d)], reflecting the fact that the
former has a larger bare gap, ∆W0

b = 3.5 vs ∆H1
b = 1.)

We remark that for all systems ρ(T ) crosses the Mott-
Ioffe-Regel (MIR) limit, ρMIR [cf. horizontal solid grey
line in Figs. 9(g) and 9(h) and Appendix D 1 for a defini-

tion of ρMIR] and continues to grow above this limit. As
expected, M1 crosses the MIR limit at a smaller temper-
ature scale than H1. Notably, I2 crosses the MIR limit
at an even lower scale although Coulomb interactions are
larger in M1 than in I2. This strong correlation effect is
due to Hundness, i.e., large J .

To conclude this subsection, we remark that an analy-
sis of the temperature dependence of the optical conduc-
tivity σ(ω) for I2 is presented in Appendix C.

D. Effective chemical potential of quasiparticles

We now turn to Fig. 10. We first study the evolu-
tion of the effective chemical potential for QPs, µeff =
µ − Re Σ(ω = 0), in Figs. 10(a) and 10(b). For T <
TFL, µeff is constant, i.e., Luttinger pinning holds (cf.
Sec. 3.10.2 of Ref. [73] for details). Interestingly, for the
finite-J systems µeff increases towards 0 with increasing
temperature, TFL < T < T onset

spin , i.e., towards an effective
half-filling of the system. In H1, this trend is retained
above T onset

spin until µeff approaches a plateau in the mixed-
valence regime. This behavior fits to the SOS screening
picture (cf. Figs. 3 and 8) where, above TFL, spins are
gradually unscreened to form an effective 3/2 spin (which
implies effective half filling), while the orbitals are still
in an orbital singlet for T < T onset

spin . For T > T onset
spin ,

the orbitals start to get unscreened while large quasi-free
spins persist. In M1, µeff drastically reduces for T > TM,
reflecting the formation of a pseudogap. In I2, µeff first
increases markedly almost up to 0 and then decreases for
T > T onset

orb , similarly to M1. By contrast, for J = 0, W0
directly decreases above TFL. The substantial continuous
increase of µeff(T ) with increasing temperature towards
half-filling, i.e., an inflating Fermi volume, is clearly con-
nected to the existence of a finite J in the 3HHM, while
the decrease of µeff(T ) with increasing temperature is a
Mott feature.

E. Thermopower

In Figs. 10(c) and 10(d) we show the thermopower
(Seebeck coefficient) α(T ) [as defined in Eq. (D5)] and
compare the 3HHM results to the thermopower of
Sr2RuO4 reported in Ref. [42]. In the FL regime, the
thermopower of the 3HHM at nd = 2 shows an electron-
like decrease, i.e., α(T ) < 0. This is qualitatively con-
sistent (modulo a particle-hole transformation) with the
hole-like increase, α(T ) > 0, observed for Sr2RuO4,
which in a 3HHM-type description would correspond to
nd = 4. However, our data is not accurate and dense
enough to unveil FL behavior, α(T ) ∝ T . Similar to
the (broad) maximum in α(T ) of Sr2RuO4 around 300 –
500 K, we observe a minimum in the crossover regime
TFL < T < T onset

spin . In H1, we further find a saturation

(broad maximum) well above T onset
spin . In I2 and M1, a
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FIG. 10. [(a),(b)] The effective chemical potential µeff , [(c),(d)] the thermopower α, and [(e),(f)] the lattice entropy Slatt (solid)
and the impurity contribution to the entropy Simp (dashed), all plotted as functions of temperature on a linear (left) and
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grey dash-dotted curves indicate FL behavior for Simp and Slatt, respectively. We remark that wiggles in Slatt are an artefact
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maximum occurs above T onset
orb , as well. Overall, the be-

havior of α(T ) is similar for all systems with finite J .
However, the minimum is much more extended and lies
at higher energies in H1 compared to M1 [cf. Fig. 10(c)].
In contrast, W0 with J = 0 does not exhibit any min-
imum (or maximum) in α(T ). Here, the thermopower
decreases in a FL-like fashion in an extended tempera-
ture range.

In sum, we conclude that H1 reflects the findings of
Ref. [42]. Using t ≈ 5000 K (a value which is estimated
from a comparison of the model bandwidth with the real-
istic bandwidth of Sr2RuO4 [7]), the minimum of α(T ) of
H1 is indeed in the same temperature range (300 – 500 K)
as the maximum observed for Sr2RuO4. Our results sup-
port the suggestion made in Ref. [42] that this unusual
feature in α(T ) can be associated with quenched orbitals
and fluctuating spins as present in the two-stage SOS
screening process. To be more precise, the minimum of
α(T ) in the 3HHM corresponds to the crossover regime,
where the spins get gradually screened to form coherent
Landau QPs. Thus, this minimum in α(T ) is observed
together with the formation of the step-like ARPES fea-
ture [cf. Fig. 2(d)].

F. Entropy

We conclude our study of Hund and Mott features in
the 3HHM by calculating the lattice entropy for H1, M1,
I2, and W0. For I2, we additionally calculate the im-
purity contribution to the entropy [cf. Fig. 10(e) and
10(f)]. We start our discussion with I2. For the com-
putation of the lattice entropy Slatt(T ), we use Eq. (D8).
The impurity contribution to the entropy Simp(T ) is ob-
tained with Eq. (D7). Remarkably, we find that Slatt(T )
is larger than Simp(T ) in the whole temperature range
0 < T < 1, while both entropies behave qualitatively
in the same way. The difference between Slatt(T ) and
Simp(T ) already arises in the FL regime, where the en-
tropy is given as

S(T ) = γT (7a)

γ =
2Ncπ

2

3Z . (7b)

When computing the lattice or impurity entropies, Slatt

or Simp, the parameter Z should be equated to the mass
renormalizations, Zlatt or Zimp, derived from the lattice
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or impurity Green’s functions, respectively. The for-
mer is given by Zlatt = [1 − ∂ωRe Σ(ω)|ω=0]−1. The
latter, found by a first-order expansion of Gimp(ω) =
[ω − εd − ∆(ω) − Σ(ω)]−1, where ∆(ω) is the self-
consistent hybridization function, is given by Zimp =

[Z−1
latt− ∂ωRe ∆(ω)|ω=0]−1 (cf. Sec. 3.9 in Ref. [73] for de-

tails). Obviously, DMFT generically yields Zlatt < Zimp

in the FL regime (when using a Bethe lattice). This
implies that Slatt > Simp, as found numerically above.
Although this insight can be simply derived, we are
not aware of any previous results that explicitly demon-
strated this quantitative difference of the impurity and
the lattice entropy. Its implication is that Simp can not
be regarded as a quantitatively reliable proxy for Slatt.

Nevertheless both entropies for I2 reveal the two-stage
SOS screening process. For T > T onset

orb , I2 is char-
acterized by a pseudogap and both the spin and or-
bital degrees of freedom are unscreened, resulting in
Slatt > ln(9). [Slatt slightly exceeds ln(9) because of
remaining active charge fluctuations in the pseudogap
regime.] Simp crosses ln(9) at slightly higher tempera-
tures. For T < T onset

orb , Slatt(T ) and Simp(T ) decrease
continuously with decreasing temperature, reflecting the
screening of orbital degrees of freedom, while spin degrees
of freedom are still quasi-free. We observe that Slatt(T )
crosses ln(3) below T onset

spin , while Simp(T ) crosses ln(3) at

about T onset
spin . The value ln(3) is associated with a spin

triplet and an orbital singlet. For T < TFL we find FL
behavior for both Slatt and Simp, indicated by the dash-
dotted grey fits, respectively [cf. Fig. 2(f)].

Overall, we clearly observe that the two-stage SOS
screening process is a continuous process: the entropy
continuously decreases with decreasing temperature, i.e.,
no stable NFL fixed point is reached in the system (this
was already pointed out in the Supplemental Material
of Ref. [33]). Instead, we are faced with an intriguingly
complex crossover behavior.

The two-stage SOS screening process is also manifest
in Slatt for H1 and M1. While the qualitative behavior is
similar, quantitative details differ. In the FL regime, Slatt

is smaller for H1 than for M1, since Slatt ∝ T/Zlatt (and
H1, having smaller U , has less mass enhancement, i.e.,
larger Zlatt). Above TFL, Slatt increases strongly for H1,
leading to a very large entropy (> ln(9)) above T onset

spin .
We interprete this as a consequence of large charge fluc-
tuations due to small Coulomb interactions. By contrast,
Slatt for M1 approaches ln(9) above TM and only slightly
exceeds ln(9) for very high temperatures.

Very recently, a detailed study of the temperature de-
pendence of the entropy and specific heat of a three-band
Hubbard model has been performed [80]. This study is
much more comprehensive than ours. Their results are
not directly comparable to ours, although, since their in-
teraction term contained only density-density terms but
no spin-flip terms.

VII. CONCLUSION

A. Fingerprints of Hund versus Mott physics

In this paper we have used DMFT+NRG to investi-
gate the normal state properties of the degenerate three-
band Hubbard-Hund model (3HHM) with focus on 1/3
filling, a minimal model with relevance for Hund metals.
Our paper has been based on the following key question:
What are the decisive fingerprints of a Hund metal as op-
posed to a Mott-correlated metal? We conclude by giving
a summary-style overview of the fingerprints found in the
present paper.

At T = 0, finite J induces an intertwined two-stage
SOS Kondo-type screening process in the 3HHM at nd =
2, in which orbital and spin degrees of freedom are ex-
plicitly coupled: below Torb, the orbital degrees of free-
dom form an orbital singlet through the formation of
a large effective Hund’s-coupling-induced impurity spin
of 3/2—including a bath spin degree of freedom; and
below Tspin, the spin-3/2 is fully screened by the three
bath channels of the 3HHM. In the frequency domain this
screening process results in three characteristic regimes:
a FL regime, a NFL crossover regime, and a NFL HQP
regime. At zero temperature, clear signatures of SOS
include: (i) a low-frequency FL regime with a narrow
“needle”-formed SU(2) Kondo peak in the local density
of states, a low-frequency Landau QP band with a small
slope given by Z in ARPES spectra, FL scaling of the
self-energy, a Drude peak in the optical conductivity (cf.
Appendix C); (ii) a NFL crossover regime signaling the
deviation from FL behavior characterized by a step-like
feature in the dispersion at ω < 0 and a kink at ω > 0 [ac-
cordingly, Re Σ(ω < 0) exhibits a pronounced maximum];
and (iii) an intermediate-frequency NFL “Hund quasi-
particle” (HQP) regime with a SU(3) Kondo resonance in
the local density of states, also identifiable as excess spec-
tral weight in the optical conductivity (cf. Appendix C)
and as a resilient slightly particle-hole asymmetric steep
“HQP band” in ARPES spectra (waterfall structure),
which is extended over a large frequency range, where
the scattering rate is only weakly energy dependent [e.g.,
there is a shoulder in Im Σ(ω < 0)]. We remark that
the particle-hole asymmetry of the 3HHM leads to two
distinct FL scales in the frequency domain and to very
different features in the SOS window at negative and pos-
itive frequencies (e.g., in ARPES spectra). These SOS
features (cf. Fig. 11 for an overview) are generic and are
found for both the metallic H1 and the metallic M1, since
SOS physics is essentially impurity physics [33]. However,
there is an important difference.

A Hund metal, such as H1, lies far from any MIT phase
boundary. Strong correlations are primarily induced by
the two stage SOS Kondo-type screening, which leads to
the localization of spins rather than charges. The inco-
herent SOS window is extended over a broad range of
energies, reaching up to bare excitation scales. In the
3HHM, at high frequencies, the SU(3) Kondo resonance
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(shoulder) merges with the Hubbard bands. At very low
temperatures, the local density of states exhibits a two-
tier quasiparticle peak on top of a broad incoherent back-
ground.

By contrast, Mott-correlated metals with ∼ 1/3 filling
such as V2O3 [7], represented in our study by M1, are
close to the MIT phase boundary. Thus, at zero tem-
perature, both Torb and Tspin are strongly reduced com-
pared to bare excitation scales and the SOS window is
very small, i.e., a narrow QP peak exists between well-
separated pronounced Hubbard bands.

In Hund metals, the SOS screening process also gov-
erns the temperature dependence of Hund metals, up to
highest temperatures. Most importantly, we argue that
the nature of the incoherent transport regime is governed
by resilient HQPs, while the FL regime is described in
terms of Landau QPs. In Ref. [7], we have identified two
different temperature scales for the onset of orbital and
spin screening in Hund metals, T onset

orb and T onset
spin , respec-

tively. For T onset
spin < T < T onset

orb , HQPs dominate the
high-temperature physics and lead to a Curie-like static
spin susceptibility (while the static orbital susceptibility
is a decreasing function of temperature) and a resilient
QP peak (without substructure) in the local density of
states. In the 3HHM, we find a robust HQP band in
ARPES spectra, an additional HQP plateau in Z(T ), a
rather flat (electron-like) scattering rate, a linear resis-
tivity exceeding the MIR limit, and an inflated Fermi
volume (µeff increases with increasing temperature). At
very high temperatures, mixed-valence physics addition-
ally comes into play. Due to the special SOS screening
process, the spins can only get screened as soon as the or-
bitals are fully screened at T cmp

orb , thus T onset
spin ≈ T cmp

orb . For

TFL < T < T onset
spin also the spins are gradually screened,

eventually resulting in the full screening of both degrees

of freedom and thus in a FL below TFL = T cmp
spin . The spin

screening is signalled by the formation of a step-like fea-
ture in ARPES spectra, while the completion of orbital
screening is characterized by a Pauli-like orbital suscep-
tibility. In this regime, the thermopower has a minimum.
A corresponding feature in the thermopower is observed
in experiments for ruthenates. [42].

By contrast, in Mott-correlated metals, with increas-
ing temperature, SOS features (and HQPs) only sur-
vive at very low temperatures, whereas the behavior at
higher temperatures is fully governed by classical Mott
physics (as known from the one-band Hubbard model):
the DMFT self-consistency condition opens up a pseu-
dogap in the local spectrum by localizing the charges.
Conversely, with decreasing temperature, spin, and or-
bital degrees of freedom get screened simultaneously at
the temperature scale, TM = T onset

orb ≈ T onset
spin , with the

onset of a Kondo resonance, driven by DMFT. Only be-
low TFL = T cmp

spin ≈ T cmp
orb both the spin and the orbital

degrees of freedom get fully screened.

All important temperature-dependent signatures for
H1 and M1 are summarized in Fig. 12.

In sum, we shed light on two qualitatively different
screening routes from the atomic degrees of freedom to
the emerging heavy QPs in strongly correlated systems,
driven by Hundness or Mottness, and corroborated that
Hundness, i.e., SOS Kondo-type screening, dominates the
anomalous physics of Hund metals in terms of resilient
HQPs.
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B. Physics beyond the minimal three-band
Hund-Hubbard model

In the present study we purposefully focused on the
3HHM, the simplest possible Hamiltonian capturing the
essence of Hund and Mott physics. We thereby neglected
several complications occurring in real materials. Let us
now briefly comment on these. First, to fully exploit the
power of the NRG, we used a Coulomb interaction ma-
trix with U(1)ch×SU(2)spin×SU(3)orb symmetry, avoid-

ing more realistic parametrizations of the Coulomb inter-
action such as the Kanamori parametrization. Second,
we neglected the spin-orbit coupling, which reduces the
symmetry to U(1)ch×SU(2)tot or even weaker symme-
tries, where “tot” stands for total angular momentum.
The spin-orbit coupling terms have been shown to be
irrelevant in the renormalization group sense [81], i.e.,
they do not affect the system’s low-energy behavior un-
less the coupling strength is larger than Torb. Third, we
neglected crystal field splittings. Fourth, we took a very
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simple bipartite Bethe lattice, thereby ignoring effects
arising from realistic electronic dispersions and Fermi
surfaces. Spin-orbit coupling, crystal fields, and realis-
tic band structures all bring about important physical
effects not present in our model. These include orbital
differentiation and even orbital-selective Mott transitions
(see, for example, Refs. [60, 82–85]), where one orbital
becomes much more correlated than others or even com-
pletely localized. Incorporating such realistic aspects is
the focus of intensive current investigations in multiple
materials and models (see, for example, Refs. [86–88]).
Such studies will benefit from the deeper understanding,
achieved in our paper, of the finite-temperature Hund
metal state and how it is modified as the Mott transition
is approached. In this sense, our paper sets the stage for
future studies incorporating additional material-specific
physical effects.

Finally, an important aspect that was not studied
in our paper is the appearance of symmetry-broken
phases in Hund metals at low temperatures, e.g., mag-
netic [89, 90], insulating [91], and superconducting [41,
74, 92, 93] phases. Generalizations and extensions of the
DMFT+NRG approach used here could be developed to
achieve a deeper understanding of these phases, and how
they emerge from the Hund metal state.

In the long run, such studies would also have to include
the effects of nonlocal correlations and nonlocal interac-
tions, neglected here, e.g., by using nonlocal extensions
of DMFT [94–104]. Nonlocal correlations are generally
expected to be weaker in Hund metals than Mott sys-
tems [105]. We also expect nonlocal interactions to be
less important as the screening of the nonlocal interac-
tions is more efficient in metallic systems. Nevertheless,
clarifying how nonlocal correlations and nonlocal interac-
tions affect the physics of Hund metals is a very interest-
ing question which is only beginning to be studied [106].

C. Experimental signatures of two-stage screening

Although our minimal 3HHM neglects numerous ef-
fects relevant for realistic materials, as discussed above,
the physics, which it does capture, in particular two-
stage screening and SOS, is expected to be robust. In-
deed, indications of two-stage screening of electrons have
been found in several experimental studies. For exam-
ple, they were identified in various members of the iron
pnictides and chalcogendies by means of infrared spec-
troscopy [68, 107]; resistivity, heat-capacity, thermal-
expansion, susceptibility measurements [66, 67]; quasi-
particle scattering interference [14]; proximity effect [50];
and ARPES [108, 109]. A second prototypical system
of a Hund metal is Sr2RuO4, where optical conductivity
[77], thermopower [42], and ARPES [78] provide multi-
ple signatures of Hund metal behavior. We hope that
the present paper of a minimal three-band model, con-
taining the minimal ingredients to yield Hund and/or
Mott physics, will assist future experimental studies in

attributing observed features to either Hund rule effects
(Hundness) or charge-blocking effects (Mottness).
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Appendix A: Asymmetry of frequency-dependent
quantities at zero temperature

In this Appendix, we investigate in more detail the
particle-hole asymmetry of the 3HHM at zero tempera-
ture discussed in the main text. In particular, we look
at the frequency-dependence of the self-energy, the local
spectral function, the dynamical spin and orbital suscep-
tibilities, the optical conductivity, and the kinetic energy.

A first detailed temperature-dependent study of the
implications of particle-hole asymmetry in Hubbard-type
models was given in Ref. [76] for a one-band hole-doped
Mott insulator, i.e., for a model with only one type of de-
grees of freedom (spins). It was shown that a well-defined
QP peak of “resilient” QP excitations exists above the FL
scale TFL and that it dominates an intermediate incoher-
ent transport regime up to TMIR. Above this temperature
the resistivity exceeds the MIR limit (cf. Appendix D 1
for a definition) and the resilient QPs eventually dis-
appear, or more specifically, the QP peak merges with
the lower Hubbard band. Interestingly, the resilient QPs
are longer-lived for electron-like than for hole-like excita-
tions, due to the particle-hole asymmetry in the model.
This asymmetry further leads to different scales, ω−FL and

ω+
FL, below which FL behavior is found at negative and

positive frequencies at T = 0.

In Fig. 13 we revisit the self-energy Σ(ω), the spectral
function A(ω), and the orbital and spin susceptibilities,
χorb(ω) and χspin(ω) [Eqs. (5)], at T = 0. We consider
system I2 (∆b = U − 2J = 3.5, J = 2) which features
a broad SOS window, well separated from the Hubbard
side bands. We start with a detailed investigation of the
FL regime (cf. left panels of Fig. 13) and then concentrate
on the SOS window (cf. right panels of Fig. 13). Due to
the universal behavior of the model with respect to ∆b

(respectively U) (cf. Fig. 10 of Ref. [35]) the following
findings are generic in the metallic regime of the 3HHM,
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I2 : ∆b = 3.5, J = 2, T = 0

ω+
FLω−

FL

ω+
crω−

cr

Tspin

Torb

FIG. 13. [(a),(b)] The imaginary part Im Σ(ω) and [(c),(d)] the real part Re Σ(ω) of the self-energy; [(e),(f)] the local spectral
function A(ω); [(g),(h)] the imaginary part χ′′(ω) and [(i),(j)] the real part χ′(ω) of the spin (solid) and orbital (dashed)
susceptibilities are plotted versus frequency for I2 (∆b = 3.5, J = 2) at T = 0. Left panels are zooms into the FL regime,
whereas their insets show the quantities on a large frequency range. The SOS window is presented in the right panels. Dashed
red fits reveal FL behavior for Im Σ(ω), Re Σ(ω), and A(ω) in the asymmetric range, ω−FL < ω < ω+

FL, with ω+
FL ≈

1
3
ω−FL

(indicated by vertical dash-dotted red lines) and for the orbital and spin susceptibilities in the symmetric range, |ω| < ω+
FL.

The vertical solid yellow line at ω < 0 denotes the energy scale ω−cr of the maximum in Re Σ(ω) at ω < 0. In (b), ω+
cr = − 1

3
ω−cr

marks the kink in Re Σ(ω) at ω > 0. Filled dots and open squares mark the orbital and spin Kondo scales, respectively. The
grey area in (a) indicates a systematic error in Im Σ(ω) (cf. Sec. 3.2 of Ref. [73] for details).
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but can occur on very different energy scales (depending
on the value of ∆b).

Asymmetry in the FL regime. The left panels of
Fig. 13 zoom into the frequency regime below Tspin

(marked by open squares in the right panels). Simi-
lar to the results of Ref. [76] we observe in Figs. 13(a),
13(c), and 13(e) that FL behavior holds up to different
frequency scales, ω−FL and ω+

FL, at ω < 0 and ω > 0
(cf. vertical red dash-dotted lines), respectively. These
FL scales have been identified in A(εk, ω) in the main
text. The FL behavior is indicated by the red dashed
curves in Figs. 13(a), 13(c), and 13(e): a parabola for
−Im Σ(ω) in panel (a), a linear fit for Re Σ(ω) in panel
(c), and a parabola for A(ω) in panel (e). Clearly, the
black DMFT+NRG results deviate earlier from the red
FL curves on the positive frequency side, i.e., at a lower
scale ω+

FL ≈ 1
3ω
−
FL. Furthermore, we find that the po-

sition of the maximum of A(ω) approximately coincides
with ω+

FL.
In Figs. 13(g) and 13(i) we show the imaginary and

the real parts of the dynamical orbital and spin sus-
ceptibilities, χorb(ω) and χspin(ω) [cf. Eq. (5)], respec-
tively. The imaginary part of the dynamical susceptibil-
ity is defined as χ′′(ω) ≡ − 1

π Imχ(ω), the real part as
χ′(ω) ≡ Reχ(ω). In contrast to Σ(ω) and A(ω) these
quantities are particle-hole symmetric. The imaginary
parts of both the orbital and spin susceptibilities follow
the red dashed linear FL fit only for |ω| . ω+

FL. Ac-
cordingly, the real part of the spin susceptibility χ′spin(ω)
also exhibits parabolic FL scaling in this regime, while
the real part of the orbital susceptibility χ′orb(ω) is essen-
tially constant.

In this paper we define the orbital and spin Kondo
scales, Torb and Tspin (cf. open squares and filled circles
in Fig. 13), below which Kondo screening of the local
orbital or spin degrees of freedom sets in, as the peak
positions of χ′′orb(ω) and χ′′spin(ω), respectively. As usual
for crossover scales, other definitions are possible, which
would differ from ours by constant prefactors.

Appendix B: On the definition of crossover scales

Unlike a phase transition occurring at a well-defined
critical temperature, spin screening is a crossover phe-
nomenon, which cannot be described in terms of just a
single number. This was understood very early in the
classic work of K. Wilson [110]. To set the stage for the
discussion of the Hund-Mott problem discussed in the
main text, we here summarize some of Wilson’s results
for the temperature dependence of the impurity contri-
bution to the spin susceptibility χimp(T ). (For a detailed
discussion, see Section IX of Ref. [110] or Section 4.6 in
Hewson’s book [111].)

Wilson studied the single-impurity Kondo model, in-
volving a single spin- 1

2 impurity coupled to a conduction
band with a featureless (flat) density of state. He consid-
ered the weak-coupling limit, where the impurity-bath

exchange coupling JK is much smaller than the band-
width W . He showed that in this limit the tempera-
ture dependence of physical quantities can be described
in terms of a crossover scale, the Kondo temperature TK,
and a universal scaling function, F (T/TK). For example
χimp(T ) has the form [112–114]

χimp(T ) =
F (T/TK)

T
. (B1)

The meaning of Eq. (B1) is that as long as the temper-
ature is much smaller than the bandwidth, T � W , the
dependence of χimp(T ) on the model parameters JK and
W enters only via the scale TK. Still, this does not mean
that spin screening “occurs at TK”, as is sometimes as-
serted in the literature. Both the scale TK and the scaling
function F are needed to characterize the full crossover
from an unstable high-temperature fixed point to a stable
low-temperature fixed point.

Wilson computed the scaling function F numeri-
cally using his newly-developed numerical renormaliza-
tion group approach. Fitting his numerical results, he
found that χimp(T ) is well described by the following
three functional forms, applicable for high, intermedi-
ate, and low temperatures, respectively (cf. Eq. (4.53) of
Ref. [111]):

χimp(T ) '





1
4T

[
1− 1

ln(T/TK) + ln[ln(T/TK)]
2[ln(T/TK)]2

+ O
(

1
[ln(T/TK)]3

)]
, (T >T2), (B2a)

0.68
4

1
T+
√

2TK
, (T1<T <T2), (B2b)

0.4132
4TK

[
1−O

(
T
TK

)2]
, (T <T1). (B2c)

Several comments are in order. First, Wilson de-
fined TK via a high-temperature condition, namely that
the expansion (B2a) of Tχimp(T ) should not contain a
[ln(T/TK)]−2 term. Notice, however, that the definition
of TK in terms of bare parameters is not unique, as it
depends on the cutoff procedure, as discussed by Wil-
son himself or in Hewson’s book [111]. Indeed, a change
in the definition of TK can always be compensated by a
change in the scaling function F .

Second, T2 and T1 are the scales where deviations from
the high- or low-temperature forms, (B2a) or (B2c), first
become noticeable when T is decreased below T2 or in-
creased above T1, respectively. Their values depend on
the definition of TK; for that of Wilson, they are given by
T2 = 16TK and T1 = 0.5TK (see Eq. (IX.99) in Ref. [110]
and Hewson [111]). In the parlance of the main text of
this paper, they may be viewed as the onset and com-
pletion of spin screening scales, T onset

spin and T cmp
spin , respec-

tively.
Third, we discuss the three functional forms given

above. The high-temperature fixed point describes an es-
sentially free local moment. Correspondingly, the high-
temperature susceptibility, Eq. (B2a), shows Curie be-
havior χimp ∼ 1/T with logarithmic corrections due to
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a marginally relevant operator. The crossover regime
of intermediate temperatures shows Curie-Weiss behav-
ior, Eq. (B2b). The overall prefactor, 0.68/4, is about
30% smaller than the prefactor 1/4 of the pure Curie
law (B2a), reflecting the renormalization of the impu-
rity magnetization due to the onset of screening with
lowering temperature. The low-temperature fixed point
describes FL excitations scattering off a fully screened
impurity. Correspondingly, the low-temperature suscep-
tibility, Eq. (B2c), approaches a constant for T/TK → 0,
with a (T/TK)2 correction caused by a leading irrelevant
operator. The zero-temperature value of 4TKχimp(0) =
0.4132, known as the Wilson number, is a characteristic
property of the crossover function, linking properties of
the high-and low-temperature fixed points.

Fourth, we note that an exact expression for the scal-
ing function F was later obtained using the Bethe Ansatz,
[115–117]. In particular, Andrei and Lowenstein obtained
an analytical expression for the Wilson number [115].
The definitions of TK used in the Bethe Ansatz papers
differ from that of Wilson, but the universal behavior
of the susceptibility agrees with Wilson’s solution. The
universality results from two facts: first, the impurity
model is studied at very weak coupling (JK � W ), and
second, there is only one (marginally) relevant operator
perturbing the unstable fixed point [111].

Fifth, we note for completeness that Wilson’s version
of our Eq. (B2b), namely his (IX.99), contains a factor 2

instead of
√

2 in the denominator. That is a typo, first
noticed by Mel’nikov [118], see p. 503 of Ref. [117], and
also Ref. [111], below Eq. (4.60).

To conclude our summary of Wilson’s results on
χimp(T ), we emphasize again that spin screening is a
gradual crossover phenomenon, even in the simple con-
text of the Kondo impurity model. To describe the
crossover quantitatively, it does not suffice to specify just
a single number for the crossover scale, even when only
a single scale is dynamically generated. Instead, one also
has to specify which observable and which scaling func-
tion was used, and the precise criteria used to define the
crossover scale.

Now let us discuss the relevance of the above argu-
ments for the present paper. DMFT maps the Hund-
Hubbard lattice model that we consider in the main text
to a quantum impurity model with a self-consistent bath.
The bath is described by a hybridization function, which,
in contrast to the pure Kondo model studied by Wilson,
has a non-trivial structure. Moreover, this structure de-
pends on temperature. Nevertheless Wilson’s NRG ap-
proach for solving impurity models has been generalized
to accommodate these complications, and indeed is now
a widely-used impurity solver for DMFT.

Some of the terminology introduced by Wilson and re-
viewed above can also be used to understand some as-
pects of the solution of the DMFT equations and to il-
luminate the physics of the problem. For Hund met-
als, we have shown in Ref. [33] that an impurity with
a rigid (not self-consistent) bath is a good guide to the

full DMFT solution. Moreover, we argued there that
Hund metals can be characterized by the criterion that
the crossover scales for spin and orbital screening dif-
fer strongly, Tspin � Torb, implying SOS, to identify a
Hund metal. In that work, as here, we defined Tspin and
Torb as the energy scales at which the imaginary parts of
the zero-temperature dynamical spin and orbital suscep-
tibilities are maximal. We emphasize, though, that the
occurrence or not of spin-orbital separation does not de-
pend on the criteria used to define these crossover scales.
For example, the onset-of-screening scales discussed in
Sec. V A likewise yield T onset

spin � T onset
orb for the Hund sys-

tem H1.
In Ref. [7], we refined our discussion of crossover scales

by analyzing the temperature dependence of the spin
and orbital susceptibilities, χspin(T ) and χorb(T ). We
introduced onset-of-screening scales T onset

spin , T onset
orb below

which deviations (say by x1%) from pure Curie behav-
ior set in, and completion-of-screening scales T cmp

spin , T cmp
orb

above which deviations (say by x2%) from pure Pauli
behavior set in. They correspond to Wilson’s T2 and T1

scales, respectively. These operational definitions have
some degree of arbitrariness (through the choices of x1

and x2; in fact, these were not even specified in Ref. [7]).
However, they have the advantage that they can also
be applied when the crossover function in the intermedi-
ate temperature regime does not have a simple analytical
form, a situation generally encountered for self-consistent
DMFT impurity models. We argued in Ref. [7] that
the onset temperatures are useful to distinguish Mott
systems from Hund systems: in Hund systems we have
T onset

spin � T onset
orb , but in Mott systems T onset

spin ' T onset
orb ,

since the onset of spin and orbital screening with decreas-
ing temperature occurs around the same temperature TM

at which a quasiparticle peak begins to emerge from the
Mott pseudogap. Again, this distinction between Hund
and Mott systems does not depend on the precise criteria
used to define the onset scales.

In the main text of the present paper, we refined our
discussion of crossover scales somewhat more. We ex-
ploited the freedom in the choice of definition of the on-
set and completion scales (i.e., of x2 and x1) to reduce
the number of parameters by defining T cmp

orb ' T onset
spin for

Hund systems and T cmp
orb ' T

cmp
spin for Mott systems. These

choices, compatible with our data for H1 and M1, have
simple physical interpretations: For Hund systems, fea-
turing SOS, spin screening sets in once orbital screen-
ing is complete. By contrast, for Mott systems, spin
and orbital screening go hand in hand: just as both
onset-of-screening scales coincide with the emergence of a
quasiparticle peak from the Mott pseudogap and there-
fore match, T onset

spin ' T onset
orb ' TM, the completion-of-

screening scales match, too, T cmp
orb ' T

cmp
spin .

As a final remark, we note that one may attempt
[42, 119, 120] to characterize the spin susceptibility
χ0(T ) of Hund systems using the Curie-Weiss (CW) form
χCW

0 (T ) = µ/(T + θ), with θ serving as a crossover scale.
The CW form applies if a plot of 1/χ0(T ) vs T yields a
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FIG. 14. Testing the applicability of a Curie-Weiss (CW)
form for various susceptibilities by replotting the data from
Fig. 7(c) as 1/χ0(T ) vs T . The top row shows the spin sus-
ceptibilities of M1 (left) and H1 (right) using solid lines, the
bottom row the same for the orbital susceptibilities, using
dashed lines. Dotted lines show Curie-Weiss fits to those data
points (shown using crosses) for temperatures higher than the
temperature at which χ0(T ) is maximal.

straight line. Figures 14(a) and 14(b) show such plots
for the spin susceptibilities of M1 and H1. The result-
ing curves show clear deviations from linear behavior, in
particular for large T . Therefore, CW fits (dotted lines)
characterize these susceptibilities only fairly crudely (see
also Refs. [119, 120]). For completeness, Figs. 14(c) and
14(d) show analogous plots of the orbital susceptibili-
ties. These curves are strongly nonlinear in the low-
temperature regime corresponding to the completion of
orbital screening, where the CW form is not applicable
at all.

Appendix C: Temperature dependence of optical
conductivity

We next study the optical conductivity σ(ω) [cf.
Eq. (D1)] again for system I2. σ(ω) is plotted on a lin-
ear and a logarithmic frequency scale in Figs. 15(a) and
15(b), respectively. For comparison, we also show data
for W0 (∆b = 3.5, J = 0), computed at T = 0.15, which
is still in the FL temperature regime. At T = 0 we ex-
pect a FL Drude peak for I2. However, the data (cf. blue
curve) is not accurate enough to resolve the FL behavior
at very low frequencies, ω < ω+

FL (cf. discussion of blue
and red curves in Fig. 3.1(b) in Sec. 3.2 of Ref. [73]). In
the low-frequency NFL crossover regime, here approxi-
mately given by ω+

FL . ω . |ω−cr|, we observe a power-law
flank in σ(ω) ∝ ω−α, with α ≈ 7/5 at T = 0. Notably,
for ω > |ω−cr| a broad HQP shoulder develops around Torb

at T = 0.
With increasing temperature but below T . T onset

spin =

0.1, spin degrees of freedom are gradually unscreened in
the system while the orbitals are still screened. This
process is reflected in σ(ω): with increasing temperature
spectral weight is shifted from low frequencies into the
HQP shoulder, while the high-frequency flank of σ(ω)
remains unaffected. Note that the HQP shoulder is ab-
sent for J = 0 [cf. black curve in Figs. 15(a) and 15(b)].
At higher temperatures (T > T onset

spin ) the HQP shoul-
der gradually decreases in height, reflecting the unscreen-
ing of the orbital degrees of freedom in I2. The second
shoulder at bare energy scales is a Hubbard-band fea-
ture, which is also present for J = 0. We suspect that
the HQP shoulder at ω > |ω−cr| is an optical fingerprint of
the HQP band [SU(3) Kondo resonance in A(ω)] and can
indeed be interpreted as Hund’s-coupling-induced excess
spectral weight, caused by resilient QPs, as suggested
in Ref. [77]. Further, we remark that our results (for
T . T onset

spin ) are reminiscent of recent optical conductiv-

ity measurements [68] for KFe2As2.

In Figs. 15(c) and 15(d) the kinetic energy K(Ω) [as
defined in Eq. (D3)] is plotted as a function of frequency
Ω for various temperatures. In Ref. [107] an unusual
spectral weight transfer from low to high energies was
observed at low temperatures in K(Ω) for iron pnictides.
This observation would correspond to line crossings of
different K(Ω, T ) curves for J = 2 in Figs. 15(c) and
15(d), which is yet not found in our data. We remark
that this might be due to the rather large ∆b = 3.5.

Appendix D: Elementary definitions and relations

1. Optical conductivity, kinetic energy, resistivity,
and the Mott-Ioffe-Regel (MIR) limit

Optical conductivity. The (real part of the) optical
conductivity (per spinful band), computed in linear re-
sponse, is given by Ref. [76],

σ(ω) =
2πe2

~

∫
dω′

f(ω′)− f(ω + ω′)
ω

×
∫

dεΦ(ε)A(ε, ω′)A(ε, ω + ω′), (D1)

where f(ω) is the Fermi function, A(ε, ω) the structure
factor as defined in Eq. (4), and Φ(ε) the transport ve-
locity kernel,

Φ(ε) =

∫
ddk

(2π)d

(
∂εk
∂kx

)2

δ(ε− εk) (D2a)

= Φ(0)

[
1−

( ε
D

)2
] 3

2

. (D2b)

The latter is here expressed through the band velocity
in x direction, vxk = ∂εk

~∂kx , and Eq. (D2b) follows for the
Bethe lattice.
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I2 : ∆b = 3.5, J = 2

|ω−
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cr|

Tspin

Torb

FIG. 15. [(a),(b)] The optical conductivity σ(ω) and the kinetic energy K(Ω) are plotted for various temperatures on [(a),(c)]
a linear and [(b),(d)] a logarithmic frequency scale for I2 (∆b = 3.5, J = 2). In addition, data for W0 (∆b = 3.5, J = 0) at
T = 0.15 is shown in black. [(b),(d)] |ω±FL|, below which FL behavior should set in, is marked by vertical dash-dotted red lines.
The vertical solid yellow lines denote |ω±cr|. Filled dots and open squares mark the orbital and spin Kondo scales, respectively.

Kinetic energy. The kinetic energy K(Ω) is the inte-
gral of the optical conductivity σ(ω) up to a cutoff value
Ω [107]:

K(Ω)

K(∞)
=

∫ Ω

0
dω σ(ω)∫∞

0
dω σ(ω)

. (D3)

We normalize K(Ω) to K(∞).
Resistivity. The temperature-dependent optical resis-

tivity is given as the inverse of the optical conductivity
evaluated at the Fermi level, ω = 0,

ρ(T ) =
1

σ(ω = 0, T )
. (D4)

Mott-Ioffe-Regel (MIR) limit. In conventional metals
ρ(T ) increases with temperature. This behavior can be
explained in a QP picture: the mean-free path l of a
QP gradually decreases because thermally-induced scat-
tering events become more frequent. For phonon scatter-
ing at higher temperatures, i.e., above a small temper-
ature below which electron-electron scattering is domi-
nant, this leads to a linear growth of ρ(T ) ∼ T . How-
ever, this QP picture breaks down approximately when
l becomes shorter than the interatomic spacing, leading
to the Mott-Ioffe-Regel (MIR) limit, kFlmin ≈ 2π [121–
123] (another popular definition is kFlmin ≈ 1). As a
consequence, above a corresponding MIR temperature
TMIR, the resistivity saturates in conventional metals,
approaching a maximum value ρMIR. While for most

good metals, l � 2π/kF holds up to their melting tem-
peratures, there is a vast number of metals for which the
MIR resistivity saturation is observed [124]. Interest-
ingly, most strongly correlated metals, like cuprate high-
temperature superconductors (HTSCs), heavy fermions,
Hund metals (including iron-based HTSCs), and also sev-
eral organic compounds exceed the MIR limit and ρ(T )
does not saturate with increasing temperature. Due to
this unconventional but common feature, which is gener-
ically assumed to be induced by some kind of NFL be-
havior, all these materials are collectively referred to as
“bad metals” in the literature [124, 125].

In Fig. 15 σ(ω) is measured in units of σMIR = 2πe2Φ(0)
~D .

This is the MIR limit derived in Ref. [76] for a free

parabolic band in two dimensions, ε(k) =
~2(k2x+k2y)

2m , us-
ing the criterion kFLlmin = 2π. Accordingly, in Fig. 9 we
plot ρ in units of ρMIR = 1/σMIR.

2. Thermopower

The thermopower (Seebeck coefficient) is defined as
α(T ) = −∆V/∆T , where −∆V is the electric field gen-
erated when a thermal gradient ∆T is established in a
material under conditions which are such that no electri-
cal current flows [42]. We calculate α(T ) with the Kubo
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formula of Ref. [42],

α(T ) = −kB
e

∫
dω T (ω)βω

(
− ∂f
∂ω

)

∫
dω T (ω)

(
− ∂f
∂ω

) , (D5)

where β = 1/kBT , and the transport function T (ω) given
here for transport in x direction, reads

T (ω) = 2πe2

∫
ddk

(2π)d
(vxk)

2
Ak(ω)2

=
2πe2

~2

∫
dεΦ(ε)A(ε, ω)2. (D6)

3. Entropy

Within DMFT, where a lattice system is mapped self-
consistently onto an impurity system, we can both calcu-
late the impurity contribution to the entropy, as usually
done within NRG [126], and the lattice entropy. Im-
portantly, these entropies differ (quantitatively but not
qualitatively), as is discussed in detail in Sec. VI F.

Impurity contribution. The impurity contribution to
the entropy Simp is introduced in Eqs. (48) and (53) of
Ref. [126] as the difference,

Simp(T ) = Stot(T )− S(0)
tot(T ), (D7)

between the entropy of the total Wilson chain Stot and

the entropy of a reference system S
(0)
tot , which is the bare

conduction Hamiltonian without impurity. In practice,

it is thus necessary to perform two independent NRG
runs, one for the full Hamiltonian and one for the same
Hamiltonian without impurity.

Lattice entropy. Starting from the thermodynamic re-
lation T (∂Slatt/∂T ) = ∂Elatt/∂T between the entropy
and the total internal energy of the lattice, the lattice
entropy can be expressed as an integral involving the spe-
cific heat, C(T ) = (∂Elatt/∂T ),

Slatt(T ) = Slatt(T0) +

∫ T

T0

dT ′
C(T ′)
T ′

, (D8)

following Eq. (238) of Ref. [4]. Slatt(T0) is a constant
offset, in principle unknown. In the case of a FL, how-
ever, Slatt(T0) can be determined exactly [cf. Eq. (7)].
For Hubbard-type models in the limit of large lattice co-
ordination, the total internal energy is given by Eq. (7)
of Ref. [127], which we apply in the form,

Elatt

Nc
=

∫
dω f(ω)(ω + µ)A(ω) (D9a)

+ 2t2
∫

dω1

∫
dω2 f(ω1)

A(ω1)A(ω2)

ω1 − ω2

=

∫
dω f(ω)(ω + µ)A(ω) (D9b)

− 2t2

π

∫
dω f(ω)ReG(ω)ImG(ω).

Here f(ω) is the Fermi function, and the second equal-
ity follows via the Kramers-Kronig relation, ReG(ω) =
1
πP
∫

dω′ ImG(ω′)
ω′−ω = P

∫
dω′ A(ω′)

ω−ω′ .
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N. C. Plumb, A. S. Gibbs, A. P. Mackenzie, C. Berthod,

https://doi.org/10.1103/PhysRevB.91.195149
https://doi.org/10.1103/PhysRevLett.124.016401
https://doi.org/10.1103/PhysRevLett.124.016401
https://doi.org/10.1038/s41535-019-0175-y
https://doi.org/10.1103/PhysRevB.101.041101
https://doi.org/10.1103/PhysRevB.94.085143
https://doi.org/10.1103/PhysRevB.102.195115
https://doi.org/10.1103/PhysRevB.102.195115
https://doi.org/10.1103/PhysRevResearch.3.013001
https://doi.org/10.1103/PhysRevResearch.3.013001
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1016/j.crhy.2015.05.004
https://doi.org/10.1016/j.crhy.2015.05.004
https://link.aps.org/doi/10.1103/PhysRevLett.115.136401
https://link.aps.org/doi/10.1103/PhysRevB.91.041110
https://doi.org/https://doi.org/10.1016/j.aop.2018.10.017
https://doi.org/10.1103/PhysRevB.100.115159
https://doi.org/10.1103/PhysRevLett.124.136406
https://doi.org/10.1103/PhysRevLett.124.136406
https://arxiv.org/abs/1907.07100
https://arxiv.org/abs/1907.07100
https://doi.org/10.1103/PhysRevX.10.031052
https://doi.org/10.1103/PhysRevX.10.031052
https://doi.org/10.1103/PhysRevLett.125.166401
https://doi.org/10.1103/PhysRevLett.125.166401
https://doi.org/10.1103/PhysRevLett.115.247001
https://doi.org/10.1103/PhysRevLett.115.247001
https://link.aps.org/doi/10.1103/PhysRevLett.117.036401
https://link.aps.org/doi/10.1103/PhysRevLett.117.036401
https://doi.org/10.1103/PhysRevB.102.161118
https://doi.org/10.1103/PhysRevB.102.161118
https://arxiv.org/abs/2007.14610
https://doi.org/10.1103/PhysRevB.90.241105
https://doi.org/10.1103/PhysRevB.90.241105
https://doi.org/10.1103/PhysRevB.97.115141
https://doi.org/10.1103/PhysRevB.100.205134
https://doi.org/10.1103/PhysRevB.100.205134
https://doi.org/10.1088/1361-648x/ab0dce
https://doi.org/10.1088/1361-648x/ab0dce
https://doi.org/10.1103/PhysRevB.100.085104
https://doi.org/10.1103/PhysRevB.100.085104
https://doi.org/10.1103/PhysRevLett.124.117001
https://doi.org/10.1103/PhysRevLett.125.077001
https://doi.org/10.1103/PhysRevLett.125.077001
https://doi.org/10.1103/PhysRevB.102.205127
https://doi.org/10.1103/PhysRevB.102.205127
https://arxiv.org/abs/2107.05906
https://arxiv.org/abs/2107.05906
https://doi.org/10.1103/PhysRevB.37.10674
https://doi.org/10.1103/PhysRevB.37.10674
https://doi.org/10.1038/nnano.2015.193
https://doi.org/10.1038/nnano.2015.193
https://doi.org/10.1038/s41467-020-16868-4
https://doi.org/10.1038/s41467-021-21460-5
https://doi.org/10.1038/s41467-021-21460-5
https://doi.org/10.1103/PhysRevB.103.205132
https://doi.org/10.1103/PhysRevB.103.205132
https://link.aps.org/doi/10.1103/PhysRevB.83.205112
https://link.aps.org/doi/10.1103/PhysRevLett.102.126401
https://link.aps.org/doi/10.1103/PhysRevLett.112.177001
https://link.aps.org/doi/10.1103/PhysRevLett.112.177001
https://link.aps.org/doi/10.1103/PhysRevB.92.075136
https://link.aps.org/doi/10.1103/PhysRevB.92.075136
https://doi.org/10.1007/BF01328319
https://doi.org/10.1143/PTP.49.1483
https://doi.org/10.1143/PTP.49.1483
https://link.aps.org/doi/10.1103/PhysRevLett.100.226402
https://link.aps.org/doi/10.1103/PhysRevLett.100.226402
https://link.aps.org/doi/10.1103/PhysRevLett.111.027002
https://link.aps.org/doi/10.1103/PhysRevLett.111.027002
https://link.aps.org/doi/10.1103/PhysRevB.94.205113
https://link.aps.org/doi/10.1103/PhysRevB.94.205113
https://doi.org/10.1103/PhysRevB.96.201108
https://doi.org/10.1103/PhysRevB.96.201108
https://doi.org/10.1103/PhysRevLett.126.206401
https://doi.org/10.1103/PhysRevLett.126.206401
http://link.aps.org/abstract/PRL/v99/e076402
http://link.aps.org/abstract/PRL/v99/e076402
https://doi.org/10.1016/j.aop.2012.07.009
http://link.aps.org/doi/10.1103/PhysRevB.86.245124
https://edoc.ub.uni-muenchen.de/23843/1/Stadler_Katharina_M.pdf
https://doi.org/10.1103/PhysRevLett.121.187003
https://doi.org/10.1103/PhysRevLett.121.187003
https://doi.org/10.1103/PhysRevB.99.014502
https://doi.org/10.1103/PhysRevB.99.014502
https://doi.org/10.1103/PhysRevLett.110.086401
https://link.aps.org/doi/10.1103/PhysRevLett.113.087404
https://link.aps.org/doi/10.1103/PhysRevLett.113.087404


29

H. U. R. Strand, M. Kim, A. Georges, and F. Baum-
berger, Phys. Rev. X 9, 021048 (2019).

[79] M. Hanl and A. Weichselbaum, Phys. Rev. B 89, 075130
(2014).

[80] C. Yue and P. Werner, Phys. Rev. B 102, 085102 (2020).
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