
Anisotropic Statistics of Lagrangian Structure Functions and Helmholtz Decomposition

HAN WANG
a,b

AND OLIVER BÜHLER
a

aCenter for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University,
New York City, New York

(Manuscript received 20 August 2020, in final form 2 February 2021)

ABSTRACT: We present a new method to estimate second-order horizontal velocity structure functions, as well as their
Helmholtz decomposition into rotational and divergent components, from sparse data collected along Lagrangian obser-
vations. The novelty compared to existing methods is that we allow for anisotropic statistics in the velocity field and also in
the collection of the Lagrangian data. Specifically, we assume only stationarity and spatial homogeneity of the data and that
the cross covariance between the rotational and divergent flow components is either zero or a function of the separation
distance only. No further assumptions are made and the anisotropy of the underlying flow components can be arbitrarily
strong.We demonstrate our newmethod by testing it against synthetic data and applying it to the Lagrangian Submesoscale
Experiment (LASER) dataset. We also identify an improved statistical angle-weighting technique that generally increases
the accuracy of structure function estimations in the presence of anisotropy.
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1. Introduction

Lagrangian observations have been playing a crucial role in
the understandings of submesoscale dynamics (Richardson
and Stommel 1948; Davis 1991; Poje et al. 2014; D’Asaro et al.
2018). Collected from flow-following devices such as buoys or
surface drifters, with GPS tracking, they can resolve spatial
scales well below the deformation radius of 10–50 km in the
ocean, with temporal resolutions down to minutes (Özgökmen
2015; D’Asaro et al. 2017; Lumpkin et al. 2017). While main-
taining the submesoscale-resolving accuracy, they could stay in
the ocean for up to months and cover several degrees in lati-
tude and longitude. Such a wide span in spatial and temporal
scales provides the potential for resolving the transitions and
interactions between submesoscale and mesoscale dynamics.
As oceanic flows are usually turbulent, we will apply a statis-
tical description, rather than a deterministic one. To describe
the scale-dependent dynamics, second-order structure func-
tions, which are convenient to estimate for irregularly sampled
data and directly related to power spectra (LaCasce 2016;
Callies et al. 2016) are often investigated from Lagrangian data
(Poje et al. 2014, 2017; Beron-Vera and LaCasce 2016;
Balwada et al. 2016; Essink et al. 2019; Pearson et al.
2019, 2020).

The Helmholtz decomposition of two-dimensional (2D)
velocity u5 uex1 yey on a 2D flat plane (such as a patch of the

ocean surface on a tangent plane) separates the divergent and
rotational components of the velocity via

u52c
y
1f

x
, y5c

x
1f

y
, (1)

where c andf are stream and potential functions, respectively.
As quasigeostrophic flows are nearly nondivergent, a strongly
divergent flow indicates the breaking of balance. The detection
of balance breaking sheds light on classic open questions such
as the dynamics underlying the double power law of the
Nastrom and Gage (1985) kinetic energy spectrum (Bartello
1995; Bühler et al. 2014, hereafter BCF14; Lindborg 1999), and
has also been of practical interests in recent studies of tracer
dispersion (D’Asaro et al. 2018) and high-resolution altimetry
data processing (Qiu et al. 2017; Cao et al. 2019). However,
observational data often suffer from strong limitations. Ship
track or aircraft track measurements are one dimensional (1D)
only, satellite snapshots usually cannot resolve scales finer than
10 km and Lagrangian observations are sparse and potentially
suffer from biased sampling (D’Asaro et al. 2018; Pearson et al.
2019, 2020).

Overcoming such limitations to untangle the balanced and
unbalanced flows has been of great interest, and a decompo-
sition method suitable for 1D spectra under the assumption of
horizontal isotropy was developed by BCF14. Their method
consists of two steps: first, a Helmholtz decomposition is de-
veloped for 1D spectral data. Second, if potential energy
spectrum is also measured, an energy equipartitation state-
ment is used to separate the energy spectrum of linear inertia–
gravity waves and of the geostrophic flow. Extensions and
generalizations of the BCF14 method have since been actively
developed. It was soon realized that the assumption of un-
correlatedness between c andf is not necessary under isotropy
for the Helmholtz decomposition (Callies et al. 2016); inclu-
sions of nonhydrostratic effects by utilizing vertical velocity
measurements are studied (Zhang et al. 2015; Callies et al.
2016); more recently, a quasigeostrophic component is added
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to the diagnosis, allowing for weak nonlinearities in the de-
composition algorithm (Wang and Bühler 2020; Waite 2020).
The BCF14 Helmholtz decomposition formulae has also been
adapted into second-order structure functions counterparts
(Lindborg 2015), emerging as a practical Helmholtz decom-
position algorithm in studies of Lagrangian observations
(Balwada et al. 2016; Essink et al. 2019; Pearson et al. 2019).

All the Helmholtz decomposition algorithms mentioned
above rely on the assumptions of temporal stationarity, spatial
homogeneity and horizontal isotropy. In this work, while
keeping stationarity and homogeneity, we attempt to relax
isotropy in the treatments of Lagrangian observations.
Anisotropy is of obvious relevance to atmospheric and oceanic
flows, as angle-dependent flow features such as fronts and di-
rectional currents cannot exist without it. Some quantitative
indicators of anisotropy include the eccentricity of the eddy
covariance matrix (Hoskins et al. 1983; Stewart et al. 2015) and
asymmetry in zonal and meridional dispersions (Beron-Vera
and LaCasce 2016; LaCasce 2010), but to our knowledge these
cannot be directly applied to diagnose anisotropic components
in structure functions.Moreover, nonphysical values have been
sometimes observed in the applications of the isotropic
methods in both atmospheric and oceanic datasets (Lindborg
2015; Bühler et al. 2017, hereafter BKT17). Motivated by this,
an anisotropic extension to the BCF14 method that applies to
1D power spectra is proposed in BKT17, which successfully
suppresses some nonphysical values in the applications to ship
track data taken at Gulf Stream.

The BKT17 method is developed specifically for treatments
of 1D data, which inevitably suffers from some strong con-
straints on the forms of anisotropy. Lagrangian observations,
albeit irregular and sparse, are not strictly restricted to a single
spatial dimension as 1D ship tracks do, and in principle, could
provide more angle-dependent information. In this work, we
propose a new Helmholtz decomposition algorithm that is
suitable for the sparse 2D measurements, which allows for a
generic azimuthal Fourier expansion of 2D structure functions.

Another discovery made during our explorations is a new
angle-weighted approach to estimate structure functions. To
our knowledge, isotropic structure functions are commonly
evaluated as unweighted ensemble averages within each sep-
aration distance bin. We show that even if one is only inter-
ested in the isotropic components of structure functions, there
is a systematic error in this approach if both the underlying
dynamics and the distribution of separation vectors are an-
isotropic. A straightforward angle-weighted approach is pro-
posed, which resolves this systematic error. We appeal to
readers that this approach can be applied to any scalar-based
quantities, including third-order structure functions and so on,
and should be relevant inmore general applications even if one
is not focused on the Helmholtz decomposition.

The paper flows as follows. In section 2, we state the basic
definitions of second-order structure functions, and expand
them in terms of azimuthal Fourier coefficients. The azimuthal
Fourier transform converts 2D functions into isotropic and
anisotropic modes, and we will analyze the modes system-
atically in later chapters. In section 3, we explain the po-
tential systematic error from the traditional structure function

estimation approach that applies unweighted ensemble aver-
ages, and propose a straightforward angle-weighted approach
to suppress it. Section 3 is self-containing and can be read alone
if one is not primarily concerned with Helmholtz decomposi-
tions. In section 4, we derive the anisotropic Helmholtz de-
composition formulae that in principle can diagnose any
anisotropic modes of rotational or divergent structure func-
tions. Notably, compared to the isotropic Helmholtz decom-
position, this method does not require any additional observed
fields. The form of anisotropy allowed in the derivation is quite
general: the only constraint is that the cross covariance be-
tween c and f needs to be either zero or at most isotropic. No
more assumption is made other than stationarity and homo-
geneity. We then test and verify both the angle-weighted
approach and the Helmholtz decomposition formulae on
synthetic data in section 5, which shows excellent agreements
with theoretical expectations. In section 6, we apply the new
algorithms onto data from a recent surface drifter observa-
tional project that took place in the Gulf of Mexico. Some
discussions and summary are offered in section 7.

2. Second-order structure functions

For each drifter pair the separation vector r 5 Dxex 1 Dyey
connects the locations of the two drifters in a local tangent
plane. We follow the usual convention that ex and ey point
toward zonal and meridional directions, respectively. The ve-
locity difference Du between two drifters is decomposed into
two components: DuL, the ‘‘longitudinal’’ component pointing
along r, and DuT, the ‘‘transversal’’ component pointing along
ez 3 r where ez is the vertical unit vector. The longitudinal and
transversal second-order structure functions are then de-
fined as

D
LL

(r)5Du2
L, D

TT
(r)5Du2

T , (2)

where (!) denotes a suitable ensemble average. The assump-
tions of homogeneity and stationarity imply that these aver-
ages depend only on the separation vector r. We also need the
‘‘cross’’ structure function

D
LT

(r)5Du
L
Du

T
, (3)

which will turn out to be crucial for our method. The velocity
difference Du can also be decomposed into DuR, the velocity
difference due to rotational motion induced by the stream-
function c in (1), and DuD, the velocity difference induced by
the potential function f in (1):

Du5Du
R
1Du

D
. (4)

The rotational and divergent structure functions, denoted as
DRR and DDD, are

D
RR

(r)5Du2
R, D

DD
(r)5Du2

D , (5)

where DuR 5 jDuRj and DuD 5 jDuRj. Under isotropy, it
has been pointed out that the sum of DLL and DTT can be
unambiguously expressed as a sum of DRR and DDD

(Lindborg 2015):
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D
LL

(r)1D
TT
(r)5D

RR
(r)1D

DD
(r) . (6)

We will later find out that the above still holds under aniso-
tropic statistics. The principal goal is to diagnose the rotational
and divergent structure functions DRR(r) and DDD(r) from
observations of DuL(r) and DuT(r) without assuming isotropic
statistics.

In subsequent analysis, we refer to second-order structure
functions as ‘‘structure functions’’ for convenience. The only
time higher-order structure functions are mentioned are in
section 3, and we will be explicit about the order there. We will
also work primarily in polar coordinates, referring to the polar
angle a of the separation vector r as the ‘‘separation angle,’’
and the magnitude of r, denoted as r, as ‘‘separation distance.’’
The (second-order) structure functions considered in this work
are even in r, which means they have the same values at a and
a 1 p. So in the evaluation of structure functions from ob-
servations we can enforce Dy $ 0 or a 2 [0, p) without loss of
generality.

We will systematically analyze 2D anisotropic functions
through the lens of azimuthal Fourier series. Any smooth real
function f(r, a) can be expanded into the azimuthal Fourier
series

f (r,a)5 !
‘

n50,1,2,...
f cn(r) cos(na)1 f sn(r) sin(na) , (7)

where in (7), n are nonnegative integers and the azimuthal
Fourier coefficients are

f c0 5
1

2p

ðp

2p

f (r,a)da, (8)

f cn 5
1

p

ðp

2p

f (r,a) cos(na)da, n 6¼ 0, (9)

f sn 5
1

p

ðp

2p

f (r,a) sin(na)da, n 6¼ 0: (10)

We also define the absolute value function when n 6¼ 0, which
will be convenient when we compare modal amplitudes
in figures.

f an(r)[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f cn(r)2 1 f sn(r)2

q
, n 6¼ 0: (11)

The (second-order) structure functions and covariance func-
tions are all even by definition, so all odd-ordermodes are zero.
Hence, we will only discuss the modes where n are even. If we
assume a 2D function is isotropic, we are in fact truncating the
expansion to the mode at n 5 0. Conversely, as we allow for
anisotropy in the statistics, we include higher modes at n$ 2 in
the azimuthal Fourier expansions ofDLL(r, a) and so on. Most
derivations to appear in section 4 will be based on the azi-
muthal Fourier expansions, analyzing structure functions at
each mode separately.

3. Angle-weighted structure function estimation

Anisotropic velocity statistics introduce a sampling issue
that affects the estimation of all structure function modes,

including the isotropic mode (n 5 0). For example, consider
estimating Dc0

LL(r) at r 5 ri from a dataset. If the underlying
DLL(r, a) is indeed isotropic, then there would be no need to
incorporate the angle distribution of separation vectors, and to
estimateDc0

LL(ri), one only needs to calculate a sample average
of Du2

L over all the drifter pairs whose separation distances fall
into the distance bin around ri. We call this the ‘‘unweighted
approach.’’ To our knowledge, this is highly likely the popular
practice so far, as we have never seen discussions on the angle
distribution in previous literature when estimations of struc-
ture functions are introduced (e.g., Bennett et al. 2006;
LaCasce 2016; Pearson et al. 2019). This approach is conve-
nient and consistent with isotropy, but as we will see in the
following thought experiment, if the underlying DLL(r, a) is
actually anisotropic, the unweighted approach based on isot-
ropy introduces a systematic error.

Suppose the true DLL(r, a) at r 5 ri is

D
LL

(r
i
,a)5 sin(2a)1 1 (12)

and that there are 5 drifter pairs whose separation distances
fall into the distance bin centered at r 5 ri. We also assume a
simple anisotropic arrangement of the separation vectors, as
sketched in Fig. 1. The ‘‘true answer’’ for Dc0

LL is

Dc0
LL(ri)5

1

p

ðp

0

[ sin(2a)1 1]da5 1: (13)

But in the unweighted approach Dc0
LL would be estimated

simply as an average over the five observations:

1

5

#
01 sin

$
2p

6

%
1 sin

$
2p

3

%
1 sin

$
2p

2

%

1 sin

$
6p

4

%&
1 15 1:15,

which is significantly different from (13). What has gone wrong
here is that the integral was biased toward angle regions where
there were more observations.

This biasing error can be removed if we use a suitable angle
weighting to counterbalance the empirical angle distribution.
In the approach we are proposing here, we treat the evaluation
of (13) as a numerical integration over a nonuniform grid.

FIG. 1. Locations of the five drifter pairs distributed anisotropi-
cally at the same separation distance in the thought experiment.
The underlying structure function (not plotted) is prescribed by
(12), which is also anisotropic.
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In this example, the difference in the separation angles be-
tween the drifter pair at a5 0 and the drifter pair at a5 p/6 is

p/6, and so on. We use these empirical Da values and apply a
simple trapezoidal rule to (13):

1

2p

'#
sin(0)1 sin

$
2p

6

%&
3

p

6
1

#
sin

$
2p

6

%
1 sin

$
2p

3

%&
3
p

6
1

#
sin

$
2p

3

%
1 sin

$
2p

2

%&

3
p

6
1

#
sin

$
2p

2

%
1 sin

$
23 3p

4

%&
3
p

4
1

#
sin

$
23 3p

4

%
1 sin(0)

&
3
p

4
1 1

(
5 1:04, (14)

so this approach yields the much better estimate 1.04 for (13).
Higher modes such as

Dcn
LL(r)5

1

2p

ðp

0

D
LL

(r
i
,a) cosnada, (15)

can be estimated in the same fashion. For n # 1, noise in the
observedDLL(ri, a) may be amplified by the highly oscillatory
cos(na) in the evaluation of (15). In the applications to realistic
data, we will only estimate the modes at n 5 0, 2 and n 5 4.
Finally, in real data, occasionally, several drifter pairs in the
ensemble may share a same, or almost identical separation
vector. In that case, we chose to average observations from
these drifter pairs, and treat the averaged value as a single
point in the (r, a) space. Overall, this approach is elementary
yet effective in our applications. We do not argue it is optimal,
and an alternative approach is described in appendix B.

The angle-weighted approach can be applied to the evalu-
ations of any other scalar-based quantities. For example, to
evaluate the zeroth mode of third-order structure functions, the
only significant inconsistency with the thought experiment above
is the oddness of third-order structure functions, which can be
incorporated by making up an odd function to replace (13).

Last but not least, in the thought experiment, the weighted
and unweighted approaches would give the same estimation
for Dc0

LL(ri) and so on if we modify our premises by making
either the underlying DLL(ri, a), or the distribution of sepa-
ration vectors to be instead isotropic. Here, by isotropic dis-
tribution, we mean that the five separation angles are equally

spaced by p/5, so that the equally spaced angles span the whole
angle range [0, p). This leads to a practical rule: the angle
weighting only makes a difference in the outcome when both
the underlying 2D structure functions and the distribution of
separation vectors are anisotropic.

4. Anisotropic Helmholtz decomposition

The angle-weighted approach described in the previous
section allows us to estimate the velocity structure functions
DLL(r,a),DTT(r,a), andDLT(r,a) at anymode. In this section,
we derive a set of formulae that relate the modes of the rota-
tional and divergent structure functions to them, which is the
key ingredient for a Helmholtz decomposition algorithm of
sparse 2D observational data.

a. Helmholtz decomposition results

The BCF14 Helmholtz decomposition method for iso-
tropic spectra can be adapted to isotropic structure func-
tions (Lindborg 2015), yielding

D
RR

(r)5D
TT
(r)1

ðr

0

[2D
LL

(t)1D
TT
(t)]

dt

t
,

D
DD

(r)5D
LL

(r)2
ðr

0

[2D
LL

(t)1D
TT
(t)]

dt

t
. (16)

In this paper we show that for anisotropic flows this can be
generalized to

D
RR

(r,a)5D
TT
(r,a)1

ðr

0

#
2D

LL
(t,a)1D

TT
(t,a)2

›D
LT

(t,a)

›a

&
dt

t
,

D
DD

(r,a)5D
LL

(r,a)2
ðr

0

#
2D

LL
(t,a)1D

TT
(t,a)2

›D
LT

(t,a)

›a

&
dt

t
. (17)

These formulas are exact under stationarity and homogeneity,
provided that c and f are either uncorrelated or correlated
only via an isotropic function. In casec andf are correlated via
an anisotropic function, the formulas at the isotropic mode n5
0 are still valid. The azimuthal average of (17) brings back (16),
which shows that (16) can be viewed as an equation for the n5
0 mode. The implied azimuthal average brings in the angle-
weighting issue discussed in section 3.

We have not been able to derive (17) in a straightforward
fashion, instead its Fourier mode form was guessed and then
verified using Wolfram Mathematica. The corresponding

codes are located in the online supplemental material. To do
this we first express the structure functions in terms of the
velocity covariances and then use the covariances of the
streamfunction c and velocity potential f to find the di-
vergent and rotational components, respectively. This is
sketched now.

b. Expressions for velocity structure functions

By definition (see section 2) we have

Du
L
5Du cos(a)1Dy sin(a) , (18)
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Du
T
52Du sin(a)1Dy cos(a) , (19)

where (u, y) are zonal and meridional velocities. For the ve-
locity structure functions this yields

D
LL

5Du2 cos2(a)1Dy2 sin2(a)1DuDy sin(2a) , (20)

for example. We can then use the standard relations

DuDy(r) 5 2uy2C
uy
(r)2C

uy
(2r) ,

Du2(r) 5 2[u2 2C
u
(r)],

Dy2(r) 5 2[y2 2C
y
(r)], (21)

to bring in Cu, Cy, the covariance functions of u and y respec-
tively, and also the cross covariance Cuy(r). As a reminder, the
covariance and cross-covariance functions are defined as

C
u
(r)5u(r0)u(r0 1 r), C

uy
(r)5u(r0)y(r0 1 r) , (22)

where we have assumed zero-mean fields, and as a conse-
quence of homogeneity, the location variable r0 that denotes
the initial point vanishes after ensemble averaging. Cu(r) or
Cy(r) are always even, but Cuy(r) need not be. Henceforth we
use the letter C to denote covariance or cross-covariance
functions, depending on whether it is adorned by one or two
subscripts. With manipulations similar to appendix A in
BKT17, we can further relate the above to the covariance and
cross-covariance functions of c and f:

C
u
52

›2C
f

›x2
2

›2C
c

›y2
1

›2C
cf

›x›y
1
›2C

fc

›x›y
; (23)

C
y
52

›2C
f

›y2
2
›2C

c

›x2
2
›2C

cf

›x›y
2
›2C

fc

›x›y
; (24)

C
uy
52

›2C
f

›x ›y
1

›2C
c

›x ›y
1

›2C
cf

›y2
2
›2C

fc

›x2
, (25)

where we used r5 (x, y) for simplicity here. Now, in our theory
we allow for arbitrary Cf(r) and Cc(r), but restrictCcf(r) to be
isotropic (or zero), i.e., it can only be a function of the sepa-
ration distance r5 jrj. Relaxations of this extra assumption will
be discussed in section 4e, but for now we stick to this as-
sumption for simplicity. Hence Ccf(r) 5 Cfc(r) and (23)–(25)
can be shortened. The velocity correlation Cuy is even too,
which simplifies (21) to

DuDy5 2(uy2C
uy
) . (26)

Combining these equations, and with help from Wolfram
Mathematica, we can finally express DLL, DTT, and DLT in
terms of Cf(r), Cc(r) and Ccf(r)5Cc0

cf(r). For the Fourier
modes this yields

Dc0
LL 5 u2 1 y2 1 2(Cc0

f )
00
1
2(Cc0

c )
0

r
; (27)

Dcn
LL 5 1

n52(u
2 2 y2)1 2(Ccn

f )00 2
2n2Ccn

c

r2
1
2(Ccn

c )0

r
, n$ 2;

(28)

Dsn
LL 5 1

n52
(2uy)1 2(Csn

f )
00 2

2n2Csn
c

r2
1

2(Csn
c )

0

r
, n$ 2; (29)

Dc0
TT 5 u2 1 y2 1

2(Cc0
f )

0

r
1 2(Cc0

c )
00
; (30)

Dcn
TT 5 1

n52(2u2 1 y2)1
2(Ccn

f )0

r
2
2n2Ccn

f

r2
1 2(Ccn

c )00, n$ 2;

(31)

Dsn
TT 5 1

n52(22uy)1
2(Csn

f )0

r
2
2n2Csn

f

r2
1 2(Csn

c )00, n$ 2;

(32)

Dc0
LT 52

2(Cc0
cf)

0

r
1 2(Cc0

cf)
00
; (33)

Dcn
LT 5 1

n52(2uy)1
2n(Csn

f )
0

r
2
2nCsn

f

r2

1
2nCsn

c

r2
2
2n(Csn

c )0

r
, n$ 2; (34)

Dsn
LT 5 1

n52(2u2 1 y2)2
2n(Ccn

f )0

r
1
2nCcn

f

r2

2
2nCcn

c

r2
1

2n(Ccn
c )0

r
, n$ 2: (35)

Here primes denote differentiation with respect to r and
1n52 5 1 if n5 2 and zero otherwise; note that there are terms
peculiar to the n 5 2 mode. If all covariance terms diminish
at a decorrelation scale, which presumably should be the limit
r / ‘, we can extract the decorrelation limits

lim
r/‘

Dc0
LL 5 lim

r/‘
Dc0

TT 5u2 1 y2, lim
r/‘

Dc0
LT 5 0, (36)

lim
r/‘

Dan
LL5 lim

r/‘
Dan

TT 5 lim
r/‘

Dan
LT

5 1
n52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u2 2 y2)2 1 (2uy)2

q
. (37)

We will check if such limiting behaviors are indeed satisfied in
synthetic and observational data.We also note here thatDLL(r,
a) 5 DTT(r, a) at decorrelation scale, which is a generalization
of a similar result in the isotropic case (Lindborg 2015).

c. Nonzero Ccf(r) and ‘‘spirality’’ of the flow

It follows from (33)–(35) that DLT(r) 5 0 if the correlation
functions ofc andf are isotropic and their cross correlation is zero,
which is likely the reason whyDLTwas usually ignored in previous
work. On the other hand, (33) shows that in general Dc0

LT(r) 6¼ 0
even if c and f are correlated only by an isotropic term, which is
the case that we allow for in the present theory. An intriguing
situation arises if all correlation functions are isotropic yetDc0

LT 6¼ 0
becauseCc0

cf 6¼ 0. This implies that there is an isotropic handedness
involved in the statistical description of the flow, i.e., the flow sta-
tistics can distinguish between a clockwise and a counterclockwise
rotation of the velocity along the separation vector r.

This makes sense physically, given that the Coriolis force
provides precisely this handedness, but it is puzzling at first sight
from a mathematical point of view: if all correlation functions
are isotropic, how can the preference to turn clockwise, say, be
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encoded in the statistics? The answer to that comes from the
observation that c and f behave differently under a reflection of
the flow across a line such as the y axis: in this case f remains the
same butc changes sign. In physical terms,f behaves like a scalar
but c like a pseudoscalar, a consequence of the obvious handed-
ness involved in the definition of c. Hence a nonzero correlation
betweenf and c implies a lack of reflection symmetry of the flow
statistics, leading to Dc0

LT(r) 6¼ 0.
Notably, one can check with similar steps as before that the

cross covariance between vertical vorticity z and horizontal
divergence x is directly related to that between c and f via
Czx 5=4

hCcf, where =2
h is the horizontal Laplacian operator.

Hence if Ccf behaves in a way that makes Czx positive, then
cyclonic vorticity is correlated with flow divergence and vice
versa. The resultant flow pattern will exhibit a distinct
‘‘spirality,’’ with outward or inward spirals preferentially
associated with cyclones or anticyclones, respectively [W. Young
2020, personal communication; see also Zhurbas et al. (2019)
for recent observations of tracer spirals]. Such spirality obviously
implies a lack of reflectional symmetry of the flow statistics.

d. Anisotropic Helmholtz decomposition

A crucial observation from (27)–(32) is that any mode of the
sum (DLL1DTT) is a linear combination of terms related only to
Cf and Cc, and the cross terms Ccf or Cfc play no role. This
means thatDRRorDDD, whose definitions are essentially ‘‘velocity
structure functions due to rotational or divergent motions,’’ can
unambiguously be told apart in their contribution to (DLL1DTT)
if we have full knowledge of c andf: we can simply evaluate them
by retaining the terms induced by c or f, respectively. Formally,

D
RR

5D
LL

1D
TT

withf taken as 0, (38)

and

D
DD

5D
LL

1D
TT

withc taken as 0: (39)

To illustrate how to use (38) and (39), at n 5 0, we have by
summing up (27) and (30) and taking f 5 0

Dc0
RR 5A1

2(Cc0
c )

0

r
1 2(Cc0

c )
00
, (40)

where the constant A is determined from the zero boundary con-
dition of structure functions at r5 0. The other modes ofDRR and
DDD can be similarly evaluated. Resubstituting from (27)–(35) as
needed we can then verify the following integral relationships

Dcn
RR(r)5Dcn

TT(r)1
ðr

0

#
2Dcn

LL(t)1Dcn
TT(t)

t
2n

Dsn
LT(t)

t

&
dt ,

Dsn
RR(r)5Dsn

TT(r)1
ðr

0

#
2Dsn

LL(t)1Dsn
TT(t)

t
1n

Dcn
LT(t)

t

&
dt ,

Dcn
DD(r)5Dcn

LL(r)2
ðr

0

#
2Dcn

LL(t)1Dcn
TT(t)

t
2n

Dsn
LT(t)

t

&
dt ,

Dsn
DD(r)5Dsn

LL(r)2
ðr

0

#
2Dsn

LL(t)1Dsn
TT(t)

t
1n

Dcn
LT(t)

t

&
dt .

(41)

These were the equations found first by guesswork and then
verified in Wolfram Mathematica. The guess was inspired by
DLT 6¼ 0 for n. 0 under anisotropy, and was stumbled upon by
listing and observing all the separate modes that are shown in
section 4b. Summing the Fourier series then yields the compact
relations in (17).

The terms on the RHS in formulae (41) can be estimated
from data by the angle-weighted approach described in
section 3, which works for sparse 2D observations, as long as
the mode number n is not too high to exaggerate observa-
tional noises. In practice, we will stop at n 5 4.

At the mode n 5 0, the Helmholtz decomposition formulae
(41) are identical to the Helmholtz decomposition formulae
under assumption of isotropy (16). We stress, however, that
although the Helmholtz decomposition formulae are the same
at the zeroth modes, the angle-weighted approach to estimate
the input functions Dc0

LL(r), D
c0
TT(r), and Dc0

LT(r) described in
section 3 could still render different outcomes.

e. Consequences of anisotropic Ccf

Even though the relations (27)–(32) were derived under the
assumption that Ccf is isotropic, we found with similar steps
that even if Ccf(r, a) contains anisotropic modes, the sum
(DLL 1 DTT) is still always a linear combination of terms re-
lated to Cf and Cc, which means (6), (38) and (39) are valid
and a Helmholtz decomposition should still be a well-defined
problem in the sense that it can always be achieved if full
knowledge ofCc andCf is available. The remaining question is
then how to achieve the Helmholtz decomposition if the only
inputs available are modes of velocity structure functions.

Apparently, the assumption that Ccf is isotropic can easily
be relaxed to allow for odd Fourier modes in Ccf. With similar
steps as above we find that the expressions for the velocity
structure function modes from (27) to (35) turn out exactly the
same, and hence (41) hold as is. We are not aware of any
particularly useful implications of this result yet, and hence we
stick to the stricter assumption of isotropy for simplicity.

The troubling case is when Ccf contains even and nonzero
Fourier modes (i.e., n5 2, 4, 6, . . .). In this case, (27)–(35) turn
out different at n $ 2 in a way that makes the formulas (41)
invalid at n $ 2. However, at n 5 2, we find that the modes
Dc0

LL, D
c0
TT andDc0

LT happen to stay unchanged: all the modes at
n . 0 in Ccf do not leave fingerprints on Dc0

LL, D
c0
TT and Dc0

LT .
Hence, the Helmholtz decomposition formulas (41) at n 5 0
holds even in this troubling case. We attach the relevant deri-
vations, which follow similar steps as in sections 4b and 4d, in
the illustrated code provided in the supplemental material.

This may indeed be a useful result: the current Helmholtz
decomposition formulas (41) are always valid at the mode n5
0 no matter what form Ccf takes. This means that in a dataset,
if anisotropic modes are diagnosed to be magnitudes weaker
than the isotropic modes, then the Helmholtz decomposition,
then dominated by the isotropic modes, would be valid even if
Ccf violates our assumption. In the Lagrangian Submesoscale
Experiment (LASER) data application, we have not found a
good chance to apply this result as anisotropic modes rarely
turn out to be more than 10 times smaller than the isotropic
modes, but it is still potentially useful in other datasets.
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We also note that the isotropy of Ccf is already a weaker
assumption than the uncorrelatedness between c and f [i.e.,
Ccf(r) 5 0], which has been made in some preceding works
(BCF14; Callies et al. 2014). As derived in BCF14, the un-
correlated case is at least consistent with a classic idealized
scenario: a superposition of purely geostrophic flow and lin-
ear inertia–gravity waves. To make the theory more appli-
cable it would be desirable to incorporate general forms of
Ccf. This is left as future work.

5. Synthetic examples

We have developed a code for (17) and (41) that includes
suitable angle weighting and here we test it on two synthetic
examples. For these examples the ‘‘true answers’’ forDRR and
DDD should be known. We achieve this by setting up the un-
derlying 2D power and cross spectrum of c and f which are
easily related to both the velocity fields and DRR and DDD.
These true answers for DRR and DDD are to be reconstructed
from velocity ‘‘observations’’ on synthetic drifters.

The 2D power spectrum of c(x, y), denoted as Sc(k, l), is the
2D Fourier transform of the covariance function Cc(x, y), and
the 2D cross spectrum of c(x, y) and f(x, y), denoted as
Scf(k, l), is the 2D Fourier transform of the cross covariance
Ccf(x, y). The power spectra and cross spectra are also known
to be related to the Fourier modes of individual fields via
(Yaglom 2004)

S
c
(k, l)5

jĉ(k, l)2j
L2

; S
cf
(k, l)5

ĉ*(k, l)f̂(k, l)

L2
, (42)

where ĉ(k, l) and f̂(k, l) denote the 2D Fourier coefficients
of c(x, y) and f(x, y), and L is the domain length in real space
(x, y), fixed here at L 5 250 km.

Both examples feature the band-limited spectra

S
c
(k, l)5C

S
(pk2 1 l2)23/2K22, S

f
(k, l)5C

H
K25 , (43)

S
cf

5C
P
K25, K5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
. (44)

Outside the wavenumber interval 2p/(100km), K, 2p/(1 km)
the spectra are zero. The corresponding one-dimensional ki-
netic energy spectra along k due toc orf are both proportional
to power decay laws k22 within the interval.

a. Isotropic example with strong correlation

In the first example p 5 1, rendering the input spectra iso-
tropic. The constants CS, CH are fixed so that the root-mean-
square velocities in the domain due to c or f are 0.2 and
0.1m s21, respectively. The constant CP is set to be 0:9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CSCH

p
.

Under this configuration, the Cauchy–Schwartz inequality
condition

jS
cf
(k, l)j2 # S

c
(k, l)S

f
(k, l) (45)

holds at all wavenumbers, making this a realizable spectrum. In
this example the magnitudes of Scf(k, l), Sc(k, l) and Sf(k, l)
are all comparable to each other: in 2-norm, Scf(k, l) is roughly
twice as big as Sf(k, l) and a half as big as Sc(k, l). To construct

the true answers, we first directly calculate from these model
spectra the corresponding 2D structure functions DLL(r, a),
DTT(r, a),DLT(r, a) from the general relations (21)–(25). Also
similar to section 4d, the true answers ofDRR(r, a) andDDD(r,
a) are evaluated by summing up (23) and (24), and deleting all
the terms involving Cf(r, a) and Cc(r, a), respectively. With
the method described in appendix A, we evaluate the n 5 0,
n 5 2, and n 5 4 modes directly from these 2D structure
functions.

We generate 1000 independent random snapshots of the
velocity fields that are consistent with the assigned spectra Sc,
Sf, and Scf, and for each of those snapshots we randomly
generate 400 independent locations in the real domain, which
we assign as drifter locations. The large sample number makes
statistical noise almost invisible in figures. We purposefully
ensure that the drifter locations are anisotropically distributed,
by demanding that the polar angles of drifter locations con-
centrate around p/5 and 6p/5, as sketched in the histogram
Fig. 2. It is the separation vectors of these drifters, not the
positions of each drifter themselves, that are directly required
in calculations of structure function reconstructions. We
present a histogram of the separation vectors (Dx, Dy) with
Dy $ 0 from all the drifter pairs in Fig. 3. The distribution of
separation vectors is anisotropic too under our configuration.

At separation distances larger than about 84 km, marked by
the semicircle in figure Fig. 3, there are nearly no drifter pairs
at a significantly wide gap in angles. To have a reasonable es-
timate of azimuthal Fourier modes, which are in essence angle
integrations, the observations need to have a reasonable cov-
erage over angles. Hence, we will only calculate the modes of
structure functions with r up to r5 84 km in the angle-weighted
approach described in section 3. In the traditional unweighted

FIG. 2. Histogram of drifter positions (x, y) in synthetic examples
(sections 5a and 5b). The polar angle of drifter locations follows a
double-triangular distribution in the interval [0, 2p], peaking atp/5
and 6p/5. The square of the radial coordinate of drifter locations
follows a uniform distribution in the interval [0, (3L/8)2]. The his-
togram is plotted with 500 3 500 bins.
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approach to estimate structure functions under isotropy, the
angle distributions are not investigated, and these gaps in an-
gles would likely not be detected or regarded as a concerning
factor. Hence, when we conduct the reconstructions with the
traditional unweighted approach, the modes of structure
functions are calculated up to a higher r.

We compute the random velocity fields from samples of
ĉ(k, l) and f̂(k, l) that follow a multivariate Gaussian distri-
bution consistent with (44). To ensure the correct cross cor-
relation we follow a standard strategy (Rasmussen 2003):
[ĉ(k, l), f̂(k, l)] are drawn as a complex bivariate sample that
follows the two-variable Gaussian distribution with mean zero
and covariance matrix

S5
S
c
(k, l) S

cf
(k, l)

S
fc
(k, l) S

f
(k, l)

" #
. (46)

Numerically, we compute the Cholesky decomposition of S,
which is bound to be symmetric and positive definite from (45),
findingA such thatAAT5S, and draw a random vector z5 (z1,
z2)

T, where z1 and z2 are independent samples from standard
normal distributions. The productAzwould then have the zero
mean and the covariance matrixS as we desired. If either Sc(k,
l) or Sf(k, l) is zero then so is Scf(k, l), meaning that ĉ(k, l) and
f̂(k, l) are uncorrelated at this wavenumber. We can then just
sample ĉ(k, l) and f̂(k, l) separately from Sc(k, l) and Sf(k, l),
assuming single-variable zero-mean Gaussian distributions.

Afterward, we enforce the reality condition on ĉ(k, l) and
f̂(k, l) so that their inverse Fourier transforms are purely real
and normalize the samples accordingly.

With û(k, l) and ŷ(k, l) sampled, we can then numerically
evaluate the velocities at each drifter location (x, y) by the
inverse Fourier series:

u(x, y)5
1

L2!
k,l
û(k, l)ei(kx1ly) . (47)

In our application, we directly evaluate the sum (47) instead of
applying a FFT algorithm, as the drifter locations presented in
Fig. 2 do not fall on a regular grid. For our purpose this is not
too costly, as we only evaluate u(x, y) on 400 points in each
snapshot.

The binning in r is set so that the number of drifter pairs in
each bin is about the same. In the results presented in this
section, we apply 256 bins in r, and each bin contains about
30 500 pairs of drifters. Varying the number of bins by a factor
of 4 did not significantly change the outcomes. We then apply
both the angle-weighted approach and the unweighted ap-
proach described in section 3 to evaluate different modes of
DLL(r, a),DTT(r, a), andDLT(r, a) and compare the outcomes.

We note that although the underlying true answers are all
isotropic, we do not ‘‘tell’’ our algorithms that they are a priori,
and all the inputs are the positions and velocity recordings of
the synthetic drifters. At modes n . 0, all the structure func-
tions considered should be zero, and we intend to test if the
synthetic drifters can recover these zero values.

As shown in figure Fig. 4, the reconstructed velocity struc-
ture function are in agreement with the true answers at the n5
0, n 5 2, and n 5 4 modes. At n 5 2 and n 5 4 modes, the
synthetic drifters recover the zero values. The decorrelation
limits of the n 5 0 modes, estimated via (36) and (37), also
seem consistent with the behaviors of the true answers at
larger r. In this example, there is a strong correlation be-
tween c and f, which is the cause for nonzero values in
Dc0

LT(r) that are comparable in magnitude with Dc0
LL(r) or

Dc0
TT(r). We will apply these reconstructed structure func-

tion modes to diagnose the corresponding modes of the

FIG. 3. Histogram of separation vectors (Dx, Dy) in synthetic
example (section 5a). The dashed half-circle marks the radius of
84 km, beyondwhich there are significant gaps in the distribution of
separation angles. The histogram is plotted with 200 3 200 bins.

FIG. 4. The n5 0, n5 2, and n5 4 modes of (left)DLL, (center)DTT, and (right)DLT in the first synthetic example where underlying
structure functions are isotropic. Note that for anisotropic modes, the absolute value of the modes defined in (11) are presented. The gray
lines mark the ‘‘true answers’’ for all the presented modes, which are evaluated directly from 2D structure functions corresponding to the
underlying spectra, and colored lines mark the reconstructions from synthetic drifter observations under the angle-weighted approach.
The dash–dot lines mark the decorrelation limits of different modes at r/ ‘ that is estimated from (36) and (37). Note that the plots in
synthetic experiments do not use logarithmic scales, contrary to popular practice on observational data.
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rotational and divergent structure functions via the Helmholtz
decomposition formulas (41).

As noted in section 3, the angle weighting would make a
difference only when both the distribution of separation
vectors and the underlying functions are anisotropic. In this
synthetic example, the underlying structure functions are
isotropic. Thus, the approaches with or without the angle
weighting are both expected to correctly reconstruct the
structure functions, even though the calculation processes
are different.

In Fig. 5, we present the n 5 0 modes ofDRR andDDD. The
presentations of the n 5 2 or n 5 4 modes for DRR(r, a) and
DDD(r, a) are skipped here, as they all turn out close to zero.
We find that the reconstructed structure functions using both
the angle-weighted and the unweighted approach are in
agreements with the true answer, which should be expected, as
the error in the reconstructed velocity structure functions are
shown small in Fig. 4. The small error at r around 40–80 km,
which may be noticeable to a careful eye, are well bounded by
10%. It is caused by numerical integration of a noisy function,

and decreases when we change the bin sizes in r to be more
optimal. In summary, from this example, we have demon-
strated that the reconstruction of different modes of velocity
structure functions as well as the rotational/divergent structure
functions behave as we expected under isotropy in the pres-
ence of a strong cross spectrum Scf(k, l). As all the structure
functions are isotropic here, at valid separation distances the
angle weighting does not make any difference.

b. Anisotropic example

The main goal of this example is to test if our reconstruction
algorithm works in the existence of strong anisotropy, and to
demonstrate that angle weighting can be crucial in such sce-
narios. The general flow of this example is similar to the pre-
vious example, and the major change is in the constant p in
(44): to introduce anisotropy, we pick p to be 5 in this example.
The value 5 was chosen arbitrarily. In order for the inequality
(45) to still hold, we also modify the constant Cp into
0:9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
523/2CSCH

p
. Under this configuration, the cross spectrum

Scf(k, l) would turn out weaker compared to the previous
example; in 2-norm, Scf(k, l) is roughly half as big as Sf(k, l),
and 15% as big as Sc(k, l). The true answers and synthetic
drifters are sampled in the same way as in the previous
example.

We present the reconstructions of the n5 0, n5 2, and n5 4
modes of velocity structure functions in this example in Fig. 6.
The reconstructions of all these modes from the angle-
weighted approach appear successful. In Fig. 7, we present
the modes of DRR(r, a) and DDD(r, a). The reconstructions
obtained using the angle-weighted approach again agrees with
the true answers, but the reconstructions obtained with the
unweighted approach diverge significantly. At around r 5
100 km, there is a crossover of Dc0

RR(r) and Dc0
DD(r) in the out-

come of the unweighted approach, which could mislead one
into believing a fundamentally different underlying dynamics
from the true answers. This illustrates a main point of this
example: the angle weighting could indeed be important when
both the underlying structure functions and the distribution of
separation vectors are anisotropic.

6. Application to LASER data

We now demonstrate the Helmholtz decomposition with
angle weighting by applying it to a well-studied dataset.

FIG. 5. Helmholtz decomposition of second-order structure
functions at the n5 0 mode in the first synthetic example. The gray
lines mark the ‘‘true answers’’ for all the presented modes, evalu-
ated directly from 2D structure functions. Lines marked with text
‘‘unw.’’ in the legends represent modes reconstructed from syn-
thetic drifters under the unweighted approach, and the rest of
the lines are reconstructed under the angle-weighted approach. In
this example the weighted and unweighted outcomes are identical
at the overlapping distances.

FIG. 6. As in Fig. 4, but for the second synthetic example instead.
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The primary aim is to show that the new method is easy to
use and builds naturally on previous methods, rather than to
find new physical effects in this particular dataset.

a. Data and methods

The LASER took place near the site of the Deepwater
Horizon oil spill in the northern Gulf of Mexico. In this work
we restrict the attention to the .1000 Consortium for
Advanced Research on Transport of Hydrocarbon in the
Environment (CARTHE)-type drifter units, which were
drogued at 0.5 m and reported their positions through GPS
tracking every 5 min for about 3 months, covering the period
from 21 January through 30 April 2016. Among the released
drifters, 840 were densely deployed around 288–298N and
878–898W, intended to monitor the structure of frontal lines,
and the remaining drifters were deployed to provide a
contextual map of the mesoscale flows during the operation
(Novelli et al. 2017, 20–21). Among all the positions re-
ported, 95% have an error of 10 m or less (Novelli et al.
2017, p.4).

We use the processed data product (D’Asaro et al. 2017),
where the positions are low-pass filtered and interpolated to
uniform 15min intervals. The trajectories are separated at
drogue loss, which are detected for deletion by transmission
data and comparison of neighboring drifter velocities (Haza
et al. 2018). In this work, we do not discard or attach weight on
any specific deployments or snapshots for simplicity.

Shown in Fig. 8 is the histogram of the locations of drifters from
all available observations. We will analyze in section 6b observa-
tions fromall the areas covered in the dataset, and in section 6c four
different spatial subregions marked in the right panel of Fig. 8.

Denoting the longitude and the latitude of two drifters in a
drifter pair as (l1, u1) and (l2, u2), themeridional separationDy
and the zonal separation Dx of the drifter pair are evaluated as

Dy5R(u
2
2 u

1
) , (48)

Dx5R(l2 2l1)[cos(u2)1 cos(u1)]/2 , (49)

where R is the radius of Earth. We have tested that the results
are insensitive to other reasonable choices such as

FIG. 7. Helmholtz decomposition of second-order structure functions at (left) n 5 0, (center) n 5 2, and (right) n 5 4 modes in the
second synthetic example. The line legends in the left panel are the same as in Fig. 5. In the center and right panels, the gray lines still mark
the ‘‘true answers,’’ and the colored lines are reconstructed under the angle-weighted approach.

FIG. 8. (left) Histogram of drifter positions in the LASERdataset. Uniformly divided 20003 2000 bins in latitude
and longitude are applied to compute the histogram and all snapshots and locations available in the dataset are
included. (right) Four regions of interest, to be individually analyzed in section 6c. Each region is of a circular shape
in the latitude–longitude space, and the radius of each circle is 0.38.
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Dx5R(l2 2l1)fcos[(u2 1 u1)/2]g , (50)

which was used in Balwada et al. (2016).

As the error in the drifter positions is roughly 10m, we
discard all the drifter pairs whose separation distances are
smaller than 0.1m and group all the drifter pairs whose sepa-
ration distances are between 0.1 and 30m into a single first bin
in r. We have verified that if we, say, only require the separa-
tion distances smaller than 10m to be grouped into the first bin,
the diagnosed rotational or divergent structure functions
change little at scales larger than 100m. To make the statistical
error more uniform across scales, we set the bin widths at
separation distances larger than 30m such that the numbers of
drifter pairs is similar in each bin. As a result, the bin centers of
r are not guaranteed to be equally spaced.

b. Global statistics

We first apply our algorithm to all the available observations
in LASER, as depicted in Fig. 8. This is a brute force test of the
robustness of our method, as it is unlikely that this large-scale
dataset will be well described by homogeneous or stationary
statistics. In Fig. 9 we plot a histogram of separation vectors
to get a sense on how anisotropic the distribution is. The
distribution of separation vectors is not generally isotropic,
and at r . 400 km, there are significant gaps in angles in the

histogram. Hence we discard all drifter pairs with r . 300 km.
We apply 1000 bins for r . 30m, in each of which there are
some 592 000 drifter pairs. Increasing or decreasing the number
of bins by a factor of 4 did not significantly change the results.
The n 2 {0, 2, 4} modes of DLL, DTT, and DLT estimated from
data are plotted in Fig. 10. At r/ 300 km, not all themodes are
consistent with the decorrelation limits derived in (36) and
(37). Hence, it is likely that the data are not decorrelated there.
We note that this would not affect the Helmholtz decomposi-
tion of structure functions: observing formulas (41), the data
at larger separation distances do not affect the outcomes.
Nevertheless, if one further conducts a spectra analysis based
on structure functions, which involves Fourier transforms that
require information at all r in the computations of spectral
quantities (i.e., power spectra), this should be kept as a caveat.

From Fig. 10, at distances smaller than 100 km, the isotropic
modes Dc0

LL(r) and Dc0
TT(r) are stronger than the anisotropic

modes. Hence, unless there are significant cancellations in the
Helmholtz decomposition formulas (41), the same should be
true for the Helmholtz modes at these distances. Moreover, as
the underlying functions are nearly isotropic at these distances,
the angle weighting is not expected to make a difference at
distances smaller than 100 km. These turn out to be the case, as
reflected in the Helmholtz decomposition outcomes presented
in separate modes, plotted in Fig. 11. The angle weighting does

FIG. 9. Histogram of drifter pair separation vectors accumulated from all available observations in
the LASER dataset. Uniform 10003 1000 bins in (Dx, Dy) are applied to compute the histogram.

FIG. 10. The n 5 0, n 5 2, and n 5 4 modes of (left) DLL, (center) DTT, and (right) DLT from all data available in LASER, estimated
from the angle-weighted approach. The dash–dot lines mark the estimated decorrelation limits as r / ‘, from (36) and (37). As in the
synthetic examples, for anisotropic modes, the absolute value of the modes defined in (11) are presented for convenience. Note that from
now on we will present figures in logarithmic scales, which was not the case in the synthetic experiment.
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make a difference in the Helmholtz decomposition outcome
(Fig. 11, first panel) at distances larger than 100 km, where the
anisotropic components in the underlying velocity structure
functions are strong (Fig. 10). At these large distances, the
unweighted results give a near equipartation between rota-
tional and divergent components, while the angle-weighted
results still present a larger rotational component over the di-
vergent component at the zeroth mode.

The outcomes could be confusing in their physical implica-
tions. For example, at the largest separation distances r .
100 km, even thoughDc0

RR(r) is consistently larger thanDc0
DD(r),

they differ by just about a factor of 2. Meanwhile, the aniso-
tropic component in DRR(r, a) is about as strong as Dc0

RR(r)
(Fig. 11, second panel) there. If we add the zeroth mode and
the two anisotropic modes together, reconstructDRR(r, a) and
DDD(r, a) in 2D by the truncated Fourier series (7), it would
turn out that at certain angles, DRR(r, a) is sometimes weaker
thanDDD(r, a) at distances larger than 100 km. It seems likely
that this is not a physical effect, but to do with error or viola-
tions of our assumptions, such as the inhomogeneity of the data
at such large separation distances.

c. Statistics in different subregions

We now apply the Helmholtz decomposition on data spa-
tially confined in four different smaller regions marked in
Fig. 8, each of which spans 0.38 in latitude and longitude. We
select the four regions roughly based on the spatial density of
available observations, picking the four most densely observed
regions. Among those that entered the regions, on average,
drifters stayed for about 137 h in region 1, 238 h in region 2, 55 h
in region 3, and 174 h in region 4. The regions 1 and 2, which
appear as strong convergence zones, are close to the deploy-
ment locations of 840 drifters, some of which got caught into a
mesoscale oceanic front (Nouguier et al. 2018) and passed
region 3. About 150 drifters were then further advected into
region 4, while the remaining joined the surrounding eddies.

Our motivations to study the smaller spatial regions is
mainly concerned with inhomogeneities in data. Most drifters

in the LASER operation are deployed in a conscious effort to
focus on frontal areas (Novelli et al. 2017, p. 20), and the
drifters that sketch the surrounding mesoscale features are
rather sparsely distributed in comparison. As reflected the
histogram of drifter positions shown in Fig. 8, there is a clear
concentration of observations in a relatively narrow spatial
range (D’Asaro et al. 2018; Pearson et al. 2019). Including the
very sparsely observed regions could then introduce statistical
error at larger separation distances. Moreover, the underlying
dynamics does not appear homogeneous across the range
covered in the LASER operation. Due to the rich variety of
dynamics sampled, if we average over all data covered in
LASER, it becomes less clear what does the location-smeared
quantities mean physically. Especially, as we do not weight
observations based on deployment locations or surrounding
dynamical conditions, spatial areas that are densely observed
are likely the main contributors to the averaged statistics. We
will find out that this is indeed the case: the outcomes from
region 2 will appear similar to outcomes from the ‘‘global
statistics.’’ By inspecting smaller regions, within each of which
the area ismore uniformly sampled and the underlying dynamics
are less qualitatively different, we could hopefully get location-
smeared quantities that are more meaningful physically.

In Fig. 12, we present the histograms of separation vectors in
the four regions. In the calculations of structure functions, we
will cut off at r 5 30 km for all the four regions, which are
marked by the dashed half-circles in Fig. 12. Beyond this ra-
dius, the outcomes in region 3 and 4 would suffer significantly
from statistical error due to the gaps in separation angles. We
have checked that the velocity structure function modes do not
approach the decorrelation limits derived in (36) and (37),
which is not surprising at such a small cutoff distance. The
binning in r in the four regions is detailed as follows. Between
r5 30m and r5 30 km, in region 1, there are 1000 bins, each of
which contains about 26 000 drifter pairs; in region 2, there are
244 bins, each of which contains 200 000 drifter pairs; in region 3,
there are 248 bins, each of which contains 6500 drifter pairs; and
in region 4, there are 999 bins, each of which contains 3800 pairs.

FIG. 11. Helmholtz decomposition of second-order structure functions at (left) n 5 0, (center) n 5 2, and (right) n 5 4 modes from all
data available in LASER. Line legends and colors are as in Fig. 7, but that the gray lines now denote nonphysically negative components of
Dc0

DD(r) diagnosed from the angle-weighted approach, as marked by ‘‘neg’’ in the line legends. The n5 0 modes diagnosed from the angle-
weighted approach are reproduced in the middle and right panels for convenience in the comparison of the magnitudes between the n5 0
modes and the anisotropic modes.
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The numbers of bins in the four regions are set differently in
such an odd way mainly because we want the first bins to be all
centered around 20m for conveniences in presentations. The
results would not contain significant differences at scales larger
than 100m if we vary the number of bins by a factor of 4 in
each region.

The Helmholtz decomposition now delivers strikingly dif-
ferent outcomes in the four different regions, as depicted in
detail for the Fourier modes in Fig. 13. To more straightfor-
wardly present which component is dominating, we sum the
Fourier modes and display the ratioDRR/(DRR1DDD) for the
four regions in Fig. 14.

The ratio appears strongly anisotropic in region 1 across all
distances covered, showing that either the rotational or the
divergent component could dominate at different angles. In
region 2, we refrain from making interpretations due to the
nonphysically negative values diagnosed. As to be discussed in
detail in section 6d, these negative values in region 2 might not
be merely a negligible numerical artifact. In region 3, at any
distances, there does not seem to be a strong tendency for either
the rotational or divergent component to dominate. The ratio
revealed in region 4 shows a dominance of rotational component
at larger distances, and a mixture of near-equipartation and
dominance of divergent component at smaller distances. The
transition distance in region 4 is at around 1 km.

These outcomes are interesting in several aspects. First, the
dynamics are qualitatively different between region 1 and re-
gion 2, even though they seem to be both convergent regions
spatially close to each other. Second, at r , 30 km, the

Helmholtz decomposition from region 2 is quite similar to
those from the global statistics (comparing Fig. 11 and Fig. 13,
second row). This is understandable, as region 2 is more
densely sampled than other regions (as reflected in the histo-
gramFig. 8), and the collective statistics would strongly favor the
more densely sampled regions. When one calculates a simple
ensemble average of the global statistics as in section 6b, one
may well be tempted into thinking that the outcome somewhat
reflects the tendency of the general dynamics in the whole re-
gion, while in fact, the outcomes are dominantly contributed by
just region 2 only. This echoes with the rising concerns on the
bias caused by the uneven sampling of Lagrangian statistics
(D’Asaro et al. 2018; Pearson et al. 2019, 2020).

Third, anisotropy in the diagnosedDRR(r, a) and DDD(r, a)
is strong in region 3 at separation distances as small as 1 km,
which is perhaps surprising, as isotropy is usually assumed to
hold at such small scales. Fourth, in regions 1 and 3, the rota-
tional components do not show a tendency to dominate toward
larger distances. We note that this is not in direct contradiction
with the belief that mesoscale eddies are dominated by rota-
tional flows: the largest distance covered here is 30 km, so the
rotational motion could still be dominating at mesoscales, and
we just cannot resolve that here. Nevertheless, what leads to
the strong presence of divergent motion at distances up to
30 km in these regions is intriguing.

Finally, the angle weighting makes a modest difference in
the zeroth modes of the rotational or divergent structure
functions in these four regions. The explanation to this goes
back to the previous observation in section 3 that the angle

FIG. 12. (a)–(d) Histograms of separation vectors of drifter pairs at different spatial subregions in the LASER dataset for regions 1, 2, 3,
and 4, respectively. All snapshots are included. The dashed half-circles mark the radius at r 5 30 km.

MAY 2021 WANG AND BÜHLER 1387

� �#6�"�"��C�#�2C���B�0� ��/�8$� !8"C�D�/�1#"���"831"�4�D�
�B�:�14�4� �������� �
�	����/��



weighting could make a difference only when both the distri-
bution of separation vectors and the underlying functions are
anisotropic. The only region that appears to possess strong
anisotropy in both the distribution and the functionsDRR(r, a)
and DDD(r, a) is region 3. In region 3, although the visual
difference between the weighted and unweighted outcomes is

small in Fig. 13 (third row), they actually differ by about a
factor of 2 at some distances, which is significant quantitatively.

d. Nonphysical negative values

One initial motivation to this work was to investigate if
incorporating anisotropy could mitigate the nonphysically

FIG. 13. Helmholtz decomposition for the four subregions. Four rows correspond to the four different subregions in order. The legends and
line specifications are as in Fig. 11. Magnitudes smaller than 7 3 1025 m2 s22 are omitted in the plots.
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negative values that sometimes occur when isotropy is as-
sumed (Lindborg 2015). In our framework, following the
respective definitions, any negative values diagnosed in the
2D functions DRR(r, a) or DDD(r, a) should be nonphysical,
and so are any negative values in the zeroth modes Dc0

RR(r)
or Dc0

DD(r).
We find in our analysis of LASER data that even with angle

weighting, such nonphysical values still sometimes occur. At
the zeroth modes, there turns out to be negative components in
Dc0

DD in the global statistics and the outcomes from region 2
(Fig. 11 and Fig. 13, second row). In the estimated 2D func-
tions, negative values ofDDD(r, a) appear quite pronounced in
region 2, corresponding to the blank patches in the second
panel of Fig. 14. In region 1 and 3, there are occasional nega-
tives values in eitherDDD(r, a) orDRR(r, a), which correspond
to the smaller blank fragments marked in Fig. 14.

Such nonphysical values can be attributed to violations of our
assumptions [i.e., homogeneity, stationarity, and isotropy of
Ccf(r, a)], or error in our estimations. The error in our estima-
tions can arise from statistical noise and numerical integration
error. Moreover, in the estimations of the 2D functions, there
might also be significant truncation error as we only include the
modes at n5 0, 2, 4 in the azimuthal Fourier series. Even if a 2D
function f(r,a) is nonnegative everywhere, its truncated azimuthal
Fourier series is not guaranteed to be nonnegative. For example,
f (r0, a)5 exp[24 cos(a)2] is nonnegative, but its Fourier series
truncated at n 5 2 is not. As noted before, we cannot include
arbitrarily high modes in the series, as the higher modes would be
more sensitive to statistical noise. Theoretically, one may be able
to find an optimal cutoff number that balances the statistical noise
and the truncation error. We consider the pursuit of this to be
beyond the scope of this project.

In terms of relative error, the negative values diagnosed in
the LASER data are mild in most instances. At the zeroth
modes, when the negative Dc0

DD(r) are diagnosed in the global
statistics and in region 2 (Fig. 11 and Fig. 13, second row), the
magnitude of Dc0

RR(r) are indeed consistently greater (at least
5 times larger) than Dc0

DD(r) in our results. This means that
the relative error in Dc0

RR(r) should be less than 20%. When
such negative values are noted in previous analysis on atmo-
spheric track data (Lindborg 2015) or model outputs (Bierdel
et al. 2016), the situation appears similar.

For the 2D functions, in region 2, we compute the ratio
jDRR(r, a)/DDD(r, a)j when DDD(r, a) is diagnosed negative.
This ratio corresponds to whether or not DRR(r, a) is much
larger than [2DDD(r, a)] when DDD is nonphysical. In region
2, we find out that sometimesDRR(r, a) is about just 2 or 3 times
as large as [2DDD(r, a)], which means that the negative
values diagnosed could constitute a significant relative error in
DRR(r, a), at least in the infinity norm. Hence, we should be
cautious on the validity of our results in region 2.

Fortunately, in region 1 and 3, whenever a negative com-
ponent is diagnosed, the positive component is always at least
5 times larger than the magnitude of the negative component.
We have checked this is also the case in the global statistics.
Overall, when a negative component is diagnosed in 2D, the
relative error in the positive component appears to be strong
only in region 2.

7. Discussions and summary

Our new algorithm reported here consisted of two parts.
First, we pointed out a potential source of systematic error
from the unweighted ensemble averaging that is traditionally

FIG. 14. The ratio DRR/(DRR 1 DDD) calculated from observations that fall in regions 1, 2, 3, and 4, respectively.
Regions where DDD or DRR are diagnosed negative are left blank. Note the logarithmic scale in r.
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applied in the evaluations of structure functions and proposed
an angle-weighted approach instead, which takes account of
the anisotropic distribution of separation vectors (section 3).
The angle-weighted approach, as well as the analysis of 2D
functions through the lens of azimuthal Fourier expansions to
include anisotropy, can be applied on the estimations of other
spatially dependent scalar-based quantities, such as higher-
order structure functions and relative dispersions too.

Second, a set of Helmholtz decomposition formulas (41),
which diagnoses the azimuthal Fourier modes separately in a
systematic manner, was derived for sparse 2D data. The con-
ditions for this set of formulae to work are stationarity, ho-
mogeneity, and that the correlationCcf(r, a) is either zero or a
function of r only (but see section 4e for an extension to odd
Fourier modes). No further assumptions or constraints were
called upon, and the required observations for the decompo-
sition are the same as the ones for the isotropic Helmholtz
decomposition algorithm (Lindborg 2015). The algorithm was
verified using synthetic examples (section 5) and applied for
the LASER observational dataset (section 6).

In the applications to the LASER data, we first compute the
statistics from all snapshots and locations, and then from four
different smaller spatial regions separately. The strength of
anisotropic modes, as well as the ratio between the rota-
tional and divergent structure functions, turn out quite
diverse across the four different subregions, suggesting
different dynamics underlying them. We also find along the
way that the statistics from region 2 only appear similar to
the statistics from all areas available in the LASER data,
which illustrates that averaging over a region that is sam-
pled highly nonuniformly can be problematic.

Whenever possible we have checked the robustness of our
method by varying details such as bin sizes and averaging al-
gorithms. However, there are still some potentially significant
issues we have not addressed. For the theory we had to assume
that Scf(r, a) is either zero or isotropic, the violation of which
couldmake theHelmholtz decomposition formulas (41) invalid at
anisotropic modes. We have not investigated if stationarity holds
in data. Similar to homogeneity, stationarity may also be consid-
ered as an operation that smears out timedependency, rather than
an assumption about the dynamics, and some small variations in
time would not blur the physical meaning of the averaged out-
comes. However, this could be questioned in the LASER data,
due to for example some high wind events that took place during
the operation (Lodise et al. 2019). The CARTHE drifters in
LASER are drogued close to surface at 0.5m, and we have not
studied the impacts of direct wind forcing yet.

Some minor issues are as follows. The LASER data product
we use could itself contain some space for improvements (Haza
et al. 2018). The subregions in the analysis in LASER as in
section 6 are handpicked roughly based on the density of ob-
servations, and the shapes of these subregions are chosen to be
round in latitude–longitude space for convenience. Othermore
sophisticated clustering approaches (D’Asaro et al. 2018) may
help pick the subregions in a more systematic manner with
better results.

As a direct comparison with previous work assuming isot-
ropy (Balwada et al. 2016), we have also applied our algorithm

to surface drifter observations from the Grand Lagrangian
Deployment campaign in a similar fashion as section 6b. We
find that in the global statistics, the anisotropic components in
DRR, DDD turn out weak compared to the isotropic compo-
nents, and accordingly the angle weighting does not make a
significant difference. Hence, the observations in (Balwada
et al. 2016) stand tested under anisotropy. We include a more
detailed report on this in the supplemental material.

While the kinematic Helmholtz decomposition is indica-
tive of the robustness of geostrophic balance, a further dy-
namical wave–vortex decomposition that can tell different
dynamic components apart is certainly more desirable
(BCF14). Due to lack of potential energy measurements
(such as buoyancy) in the LASER drifter observations, we
are currently unable to conduct this further step exactly. If
structure functions of buoyancy, or other indicators of potential
energy are available, a generalization of the BCF14 linear
wave–vortex decomposition algorithm, ormore ambitiously, the
inclusion of a nonlinear quasigeostrophic correction in the de-
composition (Wang and Bühler 2020), should be possible. Such
measurement of potential energy either calls on technological
advancements of Lagrangian instruments, or a proper synergy of
Lagrangian observations with remote sensing data or model
simulations. The latter may be particularly interesting, in the
prospect of the soon-to-be launched, submesoscale-resolving
satellite mission SWOT (Morrow et al. 2019). In principle, one
could also make additional assumptions about the relations
between different components, such as a Garrett–Munk fre-
quency spectra for the wave energy (BCF14; Cao et al. 2019),
and make a wave–vortex decomposition based on that.

Drifter observations are usually well resolved in time; the
LASER data product we are applying in this work has a res-
olution of 15min. It is intriguing to consider how to combine
the spatial information with temporal information. For moor-
ing data, a frequency-resolved structure function has been
developed (Callies et al. 2020), but its definition cannot be
directly generalized to Lagrangian observations, as Lagrangian
recording devices are constantly changing their relative posi-
tions. One other approach we have contemplated over is to
filter out the higher frequencies, and conduct the Helmholtz
again to see if the remaining motion becomes more rotational.
A similar idea was investigated in (Beron-Vera and LaCasce
2016), where structure functions were found to be different
after inertial oscillations are filtered out. A complication with
this approach is that after velocity observations are filtered, the
trajectories need to be reintegrated for consistency, and how to
determine what are the ‘‘new’’ subregions seems to be a non-
trivial question. This is still under exploration.
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APPENDIX A

Evaluating Azimuthal Fourier Modes

We seek to optimize the numerical approximation of polar
integrals such as

Dcn
LL(r)5F

n

ðp

2p

D
LL

(r,a) cos(na) da (A1)

when the data are given on a regular Cartesian grid. For
example, if n 5 0, we have
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where the variables (x, y) correspond to (r, a) via the polar-to-
Cartesian coordinate transform, and D̂LL(k, l) are the Fourier
coefficients of DLL(x, y). The integral is
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If n5 2, the evaluation ofDc2
LL(r) similarly involves the integral
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The integral (A5), and hence Dc2
LL(r), are then read-

ily evaluated on a regular grid. Similar identities
useful for the evaluation of other n 5 2 and n 5 4
terms are
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APPENDIX B

Alternative Angle-Weighted Approaches

There can be several other approaches to estimate integrals
such as (13) with nonuniformly distributed observations. We
will describe one other straightforward approach in detail,
which attempts to estimate the underlying functions at equally
spaced grids in a so as to preserve the spectral accuracy of
trapezoidal integrals.

In this approach, we first divide a into several equally spaced
bins. Taking four bins as an example, the first bin [0, p/4) is
centered at p/8. We conduct a simple unweighted ensemble
average of all the observations at ri that falls into the first bin,
and regard the outcome as our estimate of the underlying
function at the bin center (ri, p/8). Similarly, we estimate the
underlying function at the other three bin centers. A trape-
zoidal integration can then be conducted over the four equally
spaced bin centers. To illustrate this, we conduct a thought
experiment similar to the one in section 3. We suppose that the
underlying function DLL(ri, a) still takes the form

D
LL

(r
i
,a)5 sin(2a)1 1, (B1)

but for purpose of illustration, we now assume that we have
14 drifter pairs that fall into the bin centered at r 5 ri. Their
separation angles a are 08, 58, 108, 158, 208, 258, 308, 358, 408,
508, 808, 1308, 1508, and 1708. The observations are still as-
sumed to be free from statistical noise. The unweighted
ensemble average of Du2

L that fall into the first bin centered
at p/8 is then:

1

8
[sin(23 08)1 ! ! ! 1 sin(23 408)]1 15 1:58: (B2)

We regard the outcome 1.58 as our estimate of DLL(ri, p/8).
Similarly, our estimates of DLL(ri, 3p/8), DLL(ri, 5p/8), and
DLL(ri, 7p/8) are 1.66, 0.02, and 0.40, respectively. The zeroth
mode (13) can then be estimated using the trapezoidal method
on the regular grid:

F0

2

h
(1:581 1:66)1 (1:661 0:02)1 (0:021 0:40)

1 (0:401 1:58)3
p

4

i
5 0:91: (B3)

In this approach, as the bin centers are equally spaced, the
trapezoidal integration features spectral accuracy (Trefethen
and Weideman 2014). If one conducts the traditional un-
weighted averaging on these observations, the outcome would
be 1.31, which is worse.

At higher modes at n $ 2, as the main motivation of this
angle-weighting approach is to make the best use of the spec-
tral accuracy of trapezoidal integrations of periodic functions,
we propose to evaluate the ensemble average of

Du2
L cos(2g) , (B4)

where g is the center of the angle bin considered, not the sep-
aration angles of each drifter pair recorded. This is another
difference between the approach proposed in the main text

in section 3. For example, in the first bin, g 5 p/8, and
Dc2

LL(ri, p/8) would be estimated as

cos(23p/8)3 1:585 1:12, (B5)

where the value 1.58 comes from the ensemble average of the
zeroth mode (B2). Similarly, our estimate of Dc2

LL(ri, 3p/8) at
the second bin would be 21.17, and so on. As g is a constant
within each bin, one would only need to evaluate the ensemble
average of Du2

L for each bin once, and time them with cos(ng),
which does not change with regard to observations, to get the
estimates of Dcn

LL(ri, a) at any n in each bin. The separation
angle of each pair is only used to categorize the observations
into different angle bins. In case the data size is large, this
approach may save significant computational resources.

One could increase the number of bins in a from 4 to, say 32,
but in our applications, there is no point going much higher,
due to the spectral accuracy of trapezoidal integration, and the
practical obstacle that if the bins get too refined, eventually
there will be a shortage of observations in individual bins.

We have tested this approach in both our synthetic examples
described in section 5 and the analysis of LASER data in
section 6 with 32 bins in a, and the diagnosed structure function
modes we are interested in are not conspicuously different
from the ones diagnosed from the angle-weighted approach
described in section 3.

In the applications to realistic data, the observations suffer
from statistical error, and theoretically, there could be other
better approaches to conduct integration in the presence of
noise, which may involve estimating the probability distribu-
tion density of a (Delyon and Portier 2016). We consider such
finer improvements to be beyond the scope of this work.
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