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Frequency diffusion of waves by unsteady flows
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The production of broadband frequency spectra from narrowband wave forcing in
geophysical flows remains an open problem. Here we consider a related theoretical
problem that points to the role of time-dependent vortical flow in producing this
effect. Specifically, we apply multi-scale analysis to the transport equation of wave
action density in a homogeneous stationary random background flow under the
Wentzel–Kramers–Brillouin approximation. We find that, when some time dependence
in the mean flow is retained, wave action density diffuses both along and across surfaces
of constant frequency in wavenumber–frequency space; this stands in contrast to previous
results showing that diffusion occurs only along constant-frequency surfaces when the
mean flow is steady. A self-similar random background velocity field is used to show
that the magnitude of this frequency diffusion depends non-monotonically on the time
scale of variation of the velocity field. Numerical solutions of the ray-tracing equations for
rotating shallow water illustrate and confirm our theoretical predictions. Notably, the mean
intrinsic wave frequency increases in time, which by wave action conservation implies a
concomitant increase of wave energy at the expense of the energy of the background flow.

Key words: waves in random media, internal waves, waves in rotating fluids

1. Introduction

Atmospheric winds and storms inject energy to large-scale oceanic geostrophic flows
and near-inertial waves. It has long been known that wave–wave interactions can transfer
energy from large scales to small scales (McComas & Bretherton 1977) where waves
break causing diapycnal mixing (Sun & Kunze 1999; Polzin & Lvov 2017). Moreover,
Lelong & Riley (1991) have shown that geostrophic modes can act as a catalyst in moving
energy amongst inertia–gravity waves of the same frequency, transferring wave energy
from large scales to small. The catalysing effect in transferring energy of waves with the
same frequency was also found in the rotating shallow-water system by Ward & Dewar
(2010), but, in this two-dimensional space, the frequency constraint prevents redistribution
of energy among waves of different length scales. Similarly, Savva & Vanneste (2018)
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found that a random barotropic quasi-geostrophic flow can redistribute energy amongst
internal tides of the same vertical structure and frequency. Understanding the formation of
small-scale waves through nonlinear wave–wave interaction or wave–vortex interactions
is not only of fundamental interest, but also provides a means by which to estimate the
turbulence production rate (or mixing efficiency), since inertia–gravity wave breaking is a
major source of diapycnal mixing in the ocean (MacKinnon et al. 2017).

McComas & Bretherton (1977) coined the term ‘induced diffusion’ to describe the
scattering of small-scale fast waves by larger-scale slow waves, and pointed out that
‘induced diffusion’ also occurs in the Wentzel–Kramers–Brillouin (WKB) setting with
a random background flow. McComas & Bretherton (1977) outlined the derivation in the
WKB setting in their appendix, though the derivation is not well justified. Kafiabad, Savva
& Vanneste (2019, hereafter KSV2019) gave a rigorous derivation of the diffusivity in
the WKB setting by assuming that the large-scale velocity is weaker than the intrinsic
group velocity of waves and employing a multi-scale analysis. The analysis in KSV2019
also applies to other wave systems; Bôas & Young (2020, hereafter BY2020) adapted
the analysis to deep-water surface waves. Each paper emphasizes that diffusion in
wavenumber space occurs only transverse to the group velocity direction, meaning that
wave action is scattered amongst wavenumbers on surfaces of constant frequency. This
is consistent with the earlier studies on the scattering effect of inertia–gravity waves by
geostrophic modes mentioned above. By contrast, both Barkan, Winters & McWilliams
(2017) and Thomas & Arun (2020) have recently demonstrated frequency spreading
and a forward cascade of wave energy in numerical studies of the interaction between
geostrophic turbulence and near-inertial waves. Although the present paper only tiptoes
into these waters, these numerical observations serve as partial motivation for the present
study.

KSV2019 and BY2020 both consider the evolution of a random spatially slowly varying
background flow that is frozen in time, and proceed to analyse the WKB transport equation
for wave action density ((2.1) below). The WKB approximation, however, is also consistent
with a time-dependent flow, so long as the temporal variation is slow compared to that of
the waves’ frequencies. In this paper, we generalize the multi-scale analysis of KSV2019 to
unsteady large-scale flows, and show that this extra freedom turns out to allow scattering
of waves across frequencies, or along the group velocity direction in spectral space, a
process we term ‘frequency diffusion’. To connect this new finding to the results in
KSV2019 and BY2020, we introduce a similarity scaling of the velocity field, using the
time scale of the velocity variation as a control parameter on the diffusivity. We find
that diffusion in the group velocity direction is negligible if the unsteady large-scale flow
evolves either too slowly (consistent with previous results) or too quickly, but has a peak
for time scales comparable to the time needed for waves to travel across the dominant eddy
scale.

We investigate this theoretical prediction by solving the ray-tracing equations for
inertia–gravity waves in the rotating shallow-water system, with a time-varying synthetic
mean flow. The mean flow is constructed by assuming that each wavenumber mode obeys
an Ornstein–Uhlenbeck (OU) process, and demanding an energy spectrum that obeys a
power law with slope −3. By explicitly varying the decorrelation time scale, we show that,
as predicted, wave action diffuses across surfaces of constant frequency, with a tendency
to spread towards higher frequency. Notably, as wave action is conserved in the ray-tracing
equations (Bretherton & Garrett 1968), this spread to higher (intrinsic) frequency implies
a concomitant net increase of wave energy. This new wave energy is drawn from the mean
flow.
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2. Diffusion of wave action by unsteady velocity fields

We use the standard ray-tracing approximations for the linear evolution of waves on a
slowly varying background flow U , i.e. |∂U/∂t| " |U |ωr and |∇x U | " |U ||k|, where k
is the wavevector and ωr is the intrinsic frequency. Without wave–wave interactions the
phase-space wave action density a(x, k, t) then solves the linear transport equation

at + ∇kω · ∇x a − ∇xω · ∇k a = 0, (2.1)

where ω = ωr + U(x, t) · k is the absolute frequency. The intrinsic frequency ωr(k) is
assumed to be independent of x and t. As is usual in ray tracing, the space–time coordinates
(x, t) are tuned to the wave envelope scales, so they are slow compared to the wavelength
and frequency, and the background flow U(x, t) is allowed to vary on these envelope
scales.

Following KSV2019 and BY2020, we assume the weak current limit, i.e. |U | " |c|,
where c = ∇kωr is the intrinsic group velocity. Specifically, we let the typical size of
|U |/|c| be ε, and define slow time and space variables T = ε2t and X = ε2x, respectively.
Unlike KSV2019 and BY2020, however, we assume that the velocity field depends on the
fast time and space variables, i.e. U = U(x, t), instead of assuming that U is frozen on
the fast time. We show in appendix A that, if U is a homogeneous and stationary random
field, then (2.1) is approximated by

∂ta + c(k) · ∇x a = ∇k · (D · ∇k a). (2.2)

Here we have reverted to the original (x, t) coordinates, and D is a symmetric diffusion
tensor with Cartesian components

Dij = Dji = −1
2 knkm

∫ ∞

−∞
∂xi∂xj E[Un(x, t)Um(x − cs, t − s)] ds, (2.3)

where summation over repeated indices is implied, and ensemble averaging is denoted by
E[·]. This is equivalent to (2.4) of KSV2019, except for the retained fast time dependence
in the velocity autocorrelation function

Vnm(r, τ ) = E[Un(x + r, t + τ )Um(x, t)]. (2.4)

As indicated, for homogeneous and stationary velocity fields, the function Vnm depends
only on the space–time separations. The Fourier transform in d-dimensional space and
time of a function f (r, τ ) is

f̂ (q, σ ) =
∫

R

∫

Rd
f (r, τ ) exp(−i(q · r + στ )) dr dτ. (2.5)

Throughout the paper, we will use k for the wavenumber of the waves, and q for the
wavenumber associated with mean flow quantities, with magnitudes k = |k| and q = |q|,
respectively. Using the inverse Fourier transform and the identity

∫∞
−∞ eiσ s ds = 2πδ(σ ),

the diffusivity components can be formulated as

Dij = knkm

2(2π)d

∫

Rd
qiqjV̂nm(q, −q · c(k)) dq. (2.6)

For steady flows, Dij reduces to (A 7) of KSV2019 and (2.6) of BY2020. However, for
unsteady flows, there may be diffusion along the group velocity direction in spectral space,
i.e. D · c /= 0. By the definition of c = ∇kωr, this implies diffusion of frequency values,
as will be demonstrated below.
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3. Diffusion by two-dimensional isotropic non-divergent velocity fields

We show here that frequency diffusion is non-zero for unsteady, non-divergent,
isotropic random velocity fields. For a general time-dependent flow, the divergent part
of the velocity field presumably also contributes to frequency diffusion, but a purely
non-divergent flow is chosen here because of its simplicity and our interest in the
effects of geostrophic modes on inertia–gravity waves. We also assume the domain
is two-dimensional, and consider an isotropic dispersion relationship ωr = ωr(k), with

k =
√

k2
1 + k2

2, which holds for both inertia–gravity waves in the rotating shallow-water
system and for deep-water waves. We introduce a random streamfunction ψ such that
(U1, U2) = (−∂x2ψ, ∂x1ψ). Letting

C(r, τ ) = E[ψ(x + r, t + τ )ψ(x, t)], (3.1)

we have the following relations:

V̂11 = q2
2Ĉ, V̂22 = q2

1Ĉ and V̂12 = V̂21 = −q1q2Ĉ. (3.2a–c)

Substituting these relations into (2.6), one finds

Dij(k) = 1
2(2π)2

∫
qiqj[k2q2 − (k · q)2] Ĉ(q, −q · c(k)) dq. (3.3)

Hereafter, we assume that the spectrum of the correlation function C is isotropic,
i.e. Ĉ(q, σ ) = Ĉ(q, σ ), where q = |q|. It is then convenient to use two sets of polar
wavenumber coordinates, k = k(cos θ, sin θ) and q = q(cos η, sin η), which yields

D11 = 1
2(2π)2

∫ 2π

0

∫ ∞

0
q5k2 cos2(η + θ) sin2 η Ĉ(q, −qc(k) cos η) dq dη, (3.4a)

D22 = 1
2(2π)2

∫ 2π

0

∫ ∞

0
q5k2 sin2(η + θ) sin2 η Ĉ(q, −qc(k) cos η) dq dη, (3.4b)

D12 = 1
2(2π)2

∫ 2π

0

∫ ∞

0
q5k2 sin(η + θ) cos(η + θ) sin2 η Ĉ(q, −qc(k) cos η) dq dη.

(3.4c)

Here c(k) = |c(k)|. In polar coordinates the diffusivity matrix is diagonal and the radial
diffusivity

D p
11(k) = k · D · k

k2 = k2

2(2π)2

∫ 2π

0

∫ ∞

0
q5Ĉ(q, −qc(k) cos η) sin2 η cos2 η dq dη. (3.5)

Similarly, the azimuthal diffusivity

D p
22(k) = k2

2(2π)2

∫ 2π

0

∫ ∞

0
q5Ĉ(q, −qc(k) cos η) sin4 η dq dη and D p

12 = 0. (3.6a)

In general, Ĉ is real and non-negative because it is the Fourier transform of a covariance
function. Hence for smooth Ĉ the diffusivity D has two strictly positive eigenvalues.
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However, in the limiting case of a steady mean flow, Ĉ has a delta function in its second
argument and then D p

11 = 0 but D p
22 > 0. This was the singular diffusion case considered

by BY2020.
The wave action equation (2.2) in polar wavenumber coordinates becomes

∂ta + c(k) · ∇x a = 1
k
∂k(kD p

11∂ka) + 1
k2 D p

22∂
2
θ a. (3.7)

This leads to an evolution equation for wave energy density e = ωra. In the case of
non-dispersive waves, with ωr = c0k and c0 being a constant, (3.5) implies D p

11 = bk2,
where b is some positive constant. Integrating c0k times (3.7) over phase space yields the
total wave energy evolution equation

d
dt

∫
ek dk dθ dx = b

∫
k∂k

(
k3∂k

e
k

)
dk dθ dx = 3b

∫
ek dk dθ dx, (3.8)

after two integrations by parts. The total wave energy therefore increases exponentially
with time at the k-independent rate 3D p

11/k2.
We also note that, in this non-dispersive case, a source term Sk−1

f δ(k − kf ) on the
right-hand side of (3.7) gives a steady-state wave energy spectrum

∫
ek dθ dx proportional

to k2 for k < kf , and constant for k > kf .

3.1. Dependence of radial diffusivity on time scale of the velocity field
We exhibit the generic dependence of the radial diffusivity on the time scale of the velocity
field by using a similarity solution for streamfunction. In particular, we let

ψ(x, t) $→ ψ(x,αt), (3.9)

where 1/α > 0 indicates how fast or slow the flow evolves. Then

C(r, τ ) $→ C(r,ατ ) and Ĉ(q, σ ) $→ 1
α

Ĉ
(

q,
σ

α

)
. (3.10a,b)

Correspondingly, the radial diffusivity becomes

D p
11 = k2

(2π)2

∫ π

0

∫ ∞

0
q5 1
α

Ĉ
(

q,
−qc(k) cos η

α

)
sin2 η cos2 η dq dη

= k2

(2π)2

∫ ∞

0

∫ 1/α

−1/α
q5Ĉ(q, −qc(k)z)α2z2

√
1 − α2z2 dz dq, (3.11)

where z = cos(η)/α in the second line. The behaviour of the radial diffusivity for fast
and slow background flows can be investigated by taking the limits α → ∞ and α → 0,
respectively.

For fast flows the radial diffusivity is approximately

D p
11 ∼ 1

α

k2

32π

∫ ∞

0
q5Ĉ(q, 0) dq, as α → ∞. (3.12)

Here we have assumed that the spectrum Ĉ(q, σ ) is sufficiently steep at large q such that
the integral above converges. For slow flows one finds D p

11 → 0 as α → 0 (however, the
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exact order of D p
11 in terms of a power of α depends on the detailed form of Ĉ). Thus, if the

velocity field evolves too slowly or too quickly, the radial diffusivity goes to zero. Below,
we investigate numerically the diffusivity in the full range of velocity time scales.

4. Numerical simulations of ray-tracing equations

We test our theoretical findings using numerical solutions of the ray-tracing equations

dx
dt

= U + c and
dk
dt

= −(∇x U) · k. (4.1a,b)

Notably, in the relevant case c(k), these equations have an exact scaling symmetry: if
U(x, t) is replaced by U(ax, at) with some scaling factor a > 0 then (4.1a,b) are invariant
under the rescaling X = ax and T = at. For steady flows this means that the ray-tracing
dynamics is self-similar for all choices of a > 0 in U(ax), i.e. the length scale of the mean
flow does not matter. For unsteady flows the self-similarity holds if the length and time
scales of the mean flow are kept in fixed proportion.

We now specialize to inertia–gravity waves in the rotating shallow-water system, for
which

ωr(k) = f (1 + L2
dk2)1/2 and c(k) =

√
gH[(kLd)

−2 + 1]−1/2 (4.2a,b)

are the intrinsic frequency and group velocity magnitude, respectively. Here f is the
Coriolis parameter, g is gravitational acceleration, H is the layer depth and Ld =

√
gH/f

is the deformation scale. We characterize the background flow by its magnitude U0 and
its length scale L0, and define the Froude number Fr = U0/

√
gH and the Rossby number

Ro = U0/( f L0). Choosing the scale of the mean flow to be L0 = Ld sets Fr = Ro.

4.1. A model of stationary and homogeneous velocity field
We use a doubly periodic square domain of size L such that the spatial Fourier coefficients
of a function f (x, t) are

f̃q(t) =
∫

[0,L]2
f (x, t) e−iq·x dx for q = 2π

L
(n1, n2), n1, n2 ∈ Z. (4.3)

The streamfunction is modelled as

ψ(x, t) = 1
L2

∑

q
ψ̃q(t) eiq·x where ψ̃q(t) = L

√
P(q)

2
[Aq(t) + iBq(t)], (4.4)

where ψq satisfies the reality condition ψ̃q(t) = ψ̃∗
−q(t), so we need to consider only q1 ≥

0, say. The function P(q) determines the energy spectrum, and Aq(t) and Bq(t) are real
independent unit-variance OU processes satisfying (see e.g. Gardiner 1985)

dAq = −αAq dt +
√

2α dW and dBq = −αBq dt +
√

2α dW ′, (4.5a,b)

where W and W ′ are independent Wiener processes. Note that the use of the same symbol
α here and in (3.9) is intentional: while here α is dimensional, in both places it scales time
for the mean flow.
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Frequency diffusion of waves by unsteady flows

Stationarity is ensured by choosing the initial values Aq(0) and Bq(0) to follow
independent standard normal distributions. The autocovariances of the OU parameters are
E[Aq(τ + t)Aq(t)] = E[Bq(τ + t)Bq(t)] = e−α|τ |, and so from (3.1)

C(r, τ ) = 1
L2

∑

q
P(q) exp(iq · r − α|τ |). (4.6)

Using (2.5), the Fourier transform of C is then

Ĉ(q, σ ) =
∫ ∞

−∞

∫

[0,L]2
C(r, τ ) exp(−iq · r − iστ ) dr dτ = P(q)

2α
σ 2 + α2 . (4.7)

The spectrum is set to a band-limited power spectrum of the form

P(q) =
(

2U2
0L2

∑
Q1<q<Q2

q2−n

)

q−n1Q1<q<Q2, (4.8)

where 1Q1<q<Q2 is the indicator function, being 1 within the specified range of q and 0
outside. Using (3.2a–c), the prefactor in (4.8) ensures that the mean flow energy is

E
[ |U |2

2

]
= 1

2L2

∑

q
q2P(q) = U2

0 . (4.9)

Finally, using the expression for Ĉ above and taking the continuum limit L → ∞, the
radial diffusivity (3.5) is

D p
11 =

4U2
0k2

∫
R2 q2−n1Q1<q<Q2 dq

∫ π

0

∫ Q2

Q1

q5−nα

q2c(k)2 cos2 η + α2 sin2 η cos2 η dq dη. (4.10)

When α → 0,

D p
11 ∼ αk2 U2

0
c2 . (4.11)

4.2. Radial spreading of energy
In this section, we present numerical results demonstrating frequency diffusion in spectral
space. We integrate (4.1a,b) using a second-order Runge–Kutta time-stepping method. The
spectral slope of the autocorrelation is set to n = 6, which gives a one-dimensional energy
spectrum with slope −3, and the limiting wavenumbers are Q1 = L−1

d and Q2 = 50L−1
d .

The domain scale is L = 8πLd and the model uses 5122 grid points to resolve the
maximum and minimum wavenumbers, with the minimum wavenumber increment set to
be as small as possible. The Rossby and Froude numbers are set to Ro = Fr = 0.1. The
WKB approximation requires |U |−1|∂U/∂t| ∼ α " ωr and |U |−1|∇x U | ∼ L−1

d " k.
From the dispersion relationship in (4.2a,b), the latter requires kLd , 1 so that the first
requirement is α " ωr ∼ k

√
gH.

Since the spectrum of the streamfunction is sufficiently steep and dominated by Q1,
the typical length scale is approximately 1/Q1 = Ld (this is also approximately the
decorrelation length scale). The fast time scale is the time it takes for waves, moving at the
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FIGURE 1. (a) A snapshot of a realization of the streamfunction. (b) Trajectories of rays in
physical space for α∗ = 1 and ωr(0) ≈ 10f , where the black square has length L/Ld.
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FIGURE 2. Ray trajectories in spectral space for α∗ = 0, 0.1, 1 and 10 with ωr(0) ≈ 10f .

group velocity, to traverse the dominant size of the eddies, or Ld/c ≈ Ld/
√

gH = 1/f .
Thus, the slow time scale is approximately 1/( f Fr2). For convenience, we define a
non-dimensional time t∗ = ft and correlation α∗ = α/f . We compute the trajectories of
100 rays in physical and spectral space, up to time t∗ = 1/Fr2. For each run, all the rays
are initially located uniformly in [0, L] × [0, L], with the same wavevector amplitude k and
initial intrinsic frequency ωr, but random angle θ . We vary α∗ from 0 to 100, despite the
fact that the larger values violate the WKB assumption.

Figure 1(a) shows a snapshot of a realization of the streamfunction ψ . As mentioned
earlier, the wavenumber spectrum of the streamfunction decreases sufficiently fast so that
ψ is dominated by large-scale features. Figure 1(b) shows trajectories of all the rays in
physical space for a simulation with α∗ = 1, where the black box shows the size of the
periodic domain for realizing the velocity field. Rays have travelled far away from their
initial locations at the end of the simulation. Figure 2(c) shows the trajectories of rays
in spectral space for this simulation. The rays not only spread outside of the initial ring
(which shows the initial locations of rays in spectral space), but also spread inside of the
ring, just like diffusion of a passive tracer.

The four panels of figure 2 show the ray trajectories in wavenumber space for
simulations with α∗ ranging from 0 to 10. For these runs, the initial k is large enough so that
the intrinsic group velocity is well approximated by

√
gH. Figure 2(a), with α∗ = 0, shows
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/ω̄
r(0
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*

FIGURE 3. (a) Evolution of ln[ω̄r(t∗)/ω̄r(0)] for initial intrinsic frequency ωr(0) ≈ 10f .
(b) Dependence of d ln[ω̄r(t∗)/ω̄r(0)]/dt∗ on α∗ for ωr(0) ≈ 10f . (c) Evolution of ln[ω̄r(t∗)/
ω̄r(0)] for different ωr(0). The black dashed line in (b) denotes the value of

√
Eζ 2/f , where

ζ = Vx − Uy is the vorticity of the background velocity field.

that, when the velocity field is steady, radial diffusion is very limited and rays are confined
to a narrow annulus about the initial wavenumber. This is expected, since dω/dt = 0 for
steady flows and ω ≈ ωr under the weak current approximation, so deviations of the
intrinsic frequency from its initial value are uniformly bounded in time by the Froude
number. When α∗ increases from 0 to 1, rays spread faster and further away from their
initial locations, indicating stronger radial diffusion. When α∗ increases further to 10,
spreading in spectral space slows down, and radial diffusion becomes weaker compared to
the case with α∗ = 1. Thus, figure 2 qualitatively verifies the theoretical predictions that
frequency diffusion is very weak when the time scale of the velocity field is too large or
too small. In addition, the simulations show that frequency diffusion achieves a maximum
if α∗ = O(1).

Figure 3(a) shows the evolution of the intrinsic frequency averaged over all the rays for a
short time window. The averaged intrinsic frequency, ω̄r, is proportional to the integration
of intrinsic frequency over the spectral and physical domain if we assume that the action
density on each ray is the same. As discussed in § 3, ω̄r increases with time approximately
exponentially for large k or in the high-frequency limit, which holds initially for all the
rays and continues to hold for those rays not diffused to small k. For α∗ /= 0, the quantity
ln[ω̄r(t∗)/ω̄r(0)] grows approximately linearly. We use the least-squares method to find
the rate ln[ω̄r(t∗)/ωr(0)] increases, denote the value by d ln[ω̄r(t∗)/ωr(0)]/dt∗, and use
it as a measure of radial diffusivity for different α∗. Figure 3(b) shows that, among the
simulations performed, radial diffusivity is largest for α∗ = 1. As predicted by the theory
and demonstrated by figure 2, radial diffusivity is small when α∗ is too large or small. Of
course, in reality the time scale of the background flow is determined by the flow itself.
If we match α to the eddy turnover rate

√
E(Vx − Uy)2 in our simulations, then frequency

diffusion occurs at approximately 50 % of its maximal value, as shown by the black dashed
line in figure 3(b). Still, even at this weaker strength, the frequency diffusion is irreversible
and leads to exponentially growing wave energy at long times. Interestingly, if α is matched
to the eddy turnover rate, then at constant Froude number the spatial and temporal mean
flow scales are in fixed proportion. In light of the comment below (4.1a,b), this means
that the ray-tracing dynamics is then self-similar, so after a suitable rescaling of time the
choice of L0 does not matter.

905 R3-9

�
#*

" 
#3

�7
��

8%
#!

�:
DD

$C
���

*
*

*
 5

3!
4%

��
97

 #
%9

�5
#%

7 
�/

21
�0

5:
##

 �#
8�.

7�
�5

�"
7�

�#
"�

�

�/

#)
��

��
��

3D
��


�
��

�	
	�

�C
(4

�7
5D

�D#
�D:

7�
,3

!
4%

��
97

�,
#%

7�
D7

%!
C�

#8
�(

C7
��3

)3
� 3

4 
7�

3D
�:

DD
$C

���
*

*
*

 5
3!

4%
��

97
 #

%9
�5

#%
7�

D7
%!

C 
�:

DD
$C

���
�#

� #
%9

��
� 

��
��

��8
!

 �
��

� 
��

�

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.837


W. Dong, O. Bühler and K. S. Smith

Asymptotically, if we use U0/Ld as an estimation of α since the velocity field is
dominated by a length scale Ld, we find α∗ = O(U0/

√
gH) = O(Fr) (J. Vanneste, private

communication). Furthermore, for sufficiently small Fr flows such that approximation
(4.11) applies, k2/D p

11 = 1/( f Fr3) is the frequency diffusion time scale. Note that this
time scale is even longer than the slow time scale 1/( f Fr2), which may explain why
frequency diffusion was not observed in previous studies. For instance, Wagner, Ferrando
& Young (2017) found azimuthal diffusion of internal tides propagating through a
barotropic quasi-geostrophic flow in the Fr = Ro regime, but they did not find noticeable
frequency diffusion. They ran their simulations barely up to t = O(1/( f Fr3)) and hence
frequency diffusion is expected to be weak.

Figure 3(c) shows the dependence of ln[ω̄r(t∗)/ωr(0)] on initial intrinsic frequency.
Overall, ω̄r increases faster for higher initial wave frequency. For the three runs, the WKB
requirement of length scale separation and large-k limit hold well for ωr(0) ≈ 10f , but
barely hold for ωr(0) ≈ 3.3f . The result for near-inertial waves with ωr(0) ≈ 1.1f is also
presented here. Although near-inertial waves modulated by geostrophic flows do not satisfy
the WKB approximation due to its large horizontal scale, Kunze (1985) and Young &
Jelloul (1997) found that wavevectors of near-inertial waves do obey a ray-tracing formula
that contains the refraction term by the background flow in (4.1a,b). For ωr(0) ≈ 1.1f , ω̄r
also increases with time, despite the questionable validity of the large-k limit and the weak
current approximation. In fact, initially

√
E|U |2 = 0.34|c| and ω ≈ ωr does not hold. In

this case, conservation of absolute frequency does not prevent intrinsic frequency from
shifting to higher frequency even for steady mean flow. Therefore, there is no reason to
expect ω̄r not to change.

5. Conclusions

We have considered wave action diffusion in spectral space induced by a time-dependent
mean flow under the WKB approximation, with the assumption that the background mean
flow is weak compared to the intrinsic group velocity of the waves. In addition to the
previously found wave action diffusion along constant-frequency surfaces in wavenumber
space, we find that for time-dependent flows diffusion also occurs across such surfaces,
which is the main finding of this paper. This implies wave action can be diffused from low
frequency to high frequency, with a concomitant increase in wave energy.

In the case of inertia–gravity waves in the shallow-water system, the total energy of
the waves is predicted to increase exponentially in the short-wave limit, drawing their
energy from the background flow. For a velocity field dominated at the deformation scale,
frequency diffusion and wave energy increase occur on the long time scale 1/( f Fr3).
We suspect that this is one of the reasons why frequency diffusion is often not observed
and hence has been neglected in previous studies, and hope to investigate this in direct
numerical simulations in the future. Presumably, the exponential increase of wave energy
must break down when wave amplitudes become large enough so that nonlinear wave
interactions or nonlinear mean flow changes cannot be neglected any more.

Our theoretical results can be applied when the background flow is either near-inertial
waves or geostrophic modes and the small-scale waves are high-frequency waves. Since
the evolution of the near-inertial wavevector affected by geostrophic flows can also
be formulated as a ray-tracing problem with additional refraction terms (Kunze 1985;
Young & Jelloul 1997), our results are also potentially relevant to frequency spreading
of near-inertial waves.
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Appendix A. Derivation of the advective diffusive equation
In this appendix, we follow the steps in KSV2019 and BY2020 to derive an approximation
to (2.1). Let U $→ εU and a = a0(X , T, k) + εa1(x, t, X , T, k) + ε2a2(x, t, X , T, k) +
O(ε3). By substituting the expansion of a and ω = ωr + εU into (2.1), we find that the
equation at O(1) is trivial. At O(ε), we have

∂ta1 + c(k) · ∇x a1 = km(∂xjUm)∂kja0. (A 1)

The solution of the above equation is simply

a1(x, t, X , T, k) = a1(x − c(k)t, 0, ε2(x − c(k)t), 0, k)

+
∫ t

0
km∂xjUm(x − c(k)s, t − s) ds ∂kja0(X , T, k). (A 2)

The equation at O(ε2) is

∂Ta0 + c(k) · ∇X a0 + ∂ta2 + c(k) · ∇x a2 = ∇xω · ∇k a1 − U · ∇x a1

= ∂ki(kn∂xiUna1) − ∂xi(Uia1), (A 3)

where the velocity need not be incompressible for the second inequality to hold as BY2020
found. We average over fast time and space variables to eliminate terms involving a2 and
the term ∂xi(Uia1). The result of this averaging operation (denoted by · ) is

∂Ta0 + c(k) · ∇X a0 = ∂ki(kn∂xiUna1). (A 4)

Substituting (A 2) into ∂xiUna1, we have

∂xiUna1 = a1(x − c(k)t, 0, ε2(x − c(k)t), 0, k)∂xiUn(x, t)

+ km

∫ t

0
∂xiUn(x, t)∂xjUm(x − c(k)s, t − s) ds ∂kja0(X , T, k). (A 5)

Assume the averages in (A 5) can be approximated by ensemble averages (denoted by
E[·]); then the first term becomes zero due to homogeneity of the velocity field. As we
consider the dynamics at X ∼ O(1), we take the upper limit of the integral to infinity, so
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that

∂xiUna1 = km

∫ ∞

0
E[∂xiUn(x, t)∂xjUm(x − c(k)s, t − s)] ds ∂kja0(X , T, k). (A 6)

Substituting (A 6) into (A 3), one ends up with

∂Ta0 + c(k) · ∇X a0 = ∂ki(Dij∂kja0), (A 7)

where

Dij = knkm

∫ ∞

0
E[∂xiUn(x, t)∂xjUm(x − c(k)s, t − s)] ds. (A 8)

Using spatial homogeneity and exchanging n with m, one obtains (2.3).
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