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In-flight Actuator Failure Recovery of a Hexrotor

via Multiple Models and Extended High-Gain

Observers
Connor J. Boss1 and Vaibhav Srivastava1

Abstract—We study an in-flight actuator failure recovery prob-
lem for a hexrotor UAV. The hexrotor may experience external
disturbances and modeling error, which are accounted for in
the control design and distinguished from an actuator failure.
A failure of any one actuator occurs during flight and must be
identified quickly and accurately. This is achieved through the
use of a multiple-model, multiple extended high-gain observer
(EHGO) based output feedback control strategy. The family of
EHGOs are responsible for estimating states, disturbances, and
are used to select the appropriate model based on the system
dynamics after a failure has occurred. The proposed method
is theoretically analyzed and validated through simulations and
experiments.

Index Terms—Failure Detection and Recovery, Aerial Systems:
Mechanics and Control

I. INTRODUCTION

W ITH increased dependence on multi-rotor UAVs in

many mission critical applications from infrastructure

inspection to aerial cinematography to reconnaissance and

surveillance, the demand for increasingly reliable vehicles is

growing. In these applications, the loss of a vehicle poses

significant threats to financial, security, or personnel interests.

Improvements in control strategies as well as improvements

in both software and hardware implementation have increased

reliability greatly. However, there is still significant room for

improvement in the face of actuator failures.

Actuator failure is of particular interest when it comes to

reliability, as conventional multi-rotor UAVs will crash, or at

least require an emergency landing, in the event of a failure.

The main challenges in recovering from an actuator failure

during flight are the ability to quickly detect the failure and to

reconfigure the system while preserving stability. A complete

actuator failure will cause a large rotational torque, which in

turn causes the UAV to roll and pitch rapidly. If action is not

taken extremely quickly the UAV can arrive at a configuration

where it simply cannot recover.

The area of fault detection and isolation has been inves-

tigated for generalized systems [1–4], as well as for multi-
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rotor UAVs, including quadrotors [5–9], hexrotors [10–13],

and octorotors [14, 15]. A quadrotor with failure of one

actuator or two opposing actuators can be stabilized, but loses

yaw controllability [5]. A failure on an octorotor can result in

dramatically reduced thrust capability [14, 15]. Interestingly,

a standard hexrotor is fully vulnerable to any single actuator

failure because the total moment generated by opposed rotors

are collinear [16], resulting in an uncontrollable system.

In order to overcome this vulnerability, a variety of modi-

fications have been proposed. One option is to use a different

pattern of rotor rotation directions [10, 12], thus making

the moment of certain pairs of opposed rotors non-collinear.

This will maintain controllability under failure, however, the

asymmetry restricts this method to only recover if one of

four specific rotors fail. Another option [13, 16] involves a

modified airframe design where the actuators are canted off

plane to enable force application in all six degrees of freedom.

This method supports the loss of any one actuator, however,

given the orientation of the rotors, the configuration is not

efficient for nominal flight. A third option is to enable the

rotors to rotate in either direction [11]. This method maintains

controllability if any one of the actuators fail, while preserving

efficiency during nominal flight. Thus, we will utilize this

hardware reconfiguration strategy as well.

The detection strategies used in the methods described

above include a linear observer [12], estimating actuator forces

using a sliding-mode differentiator on IMU data [9], and an

Extended Kalman Filter based rotor health estimator [11],

while others have left the detection strategy to future work

[5, 14, 15]. In contrast, we utilize a multiple-model multiple

EHGO output feedback linearizing control approach, in which

estimates from the EHGOs are used to detect and classify a

failure. The EHGOs not only allow us to detect failures and

select the appropriate reconfiguration, but are fully integrated

in our control strategy to provide estimates of unmeasured

states and disturbances. These estimates are used before,

during, and after failure, to improve tracking performance in

the presence of a broad class of disturbances.

While disturbance observers have been used in multi-rotor

control [17, 18], EHGOs are not typically implemented on

highly dynamic systems of this nature due to high sample rate

requirements and possible measurement noise amplification.

This work serves to show that even at a relatively low sample

rate of 100Hz, EHGOs can be implemented on highly dynamic

systems in practice. Furthermore, EHGOs afford the ability

to estimate and cancel a broader class of disturbances than
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standard disturbance observers [19].

The failure recovery methods described thus far do not

consider disturbances affecting the system. Our method ex-

plicitly incorporates disturbances and can differentiate between

disturbances and an actuator failure, depending on disturbance

levels. The analysis presented here not only guarantees sta-

bility, but provides insights into what levels of disturbances

can be distinguished from an actuator failure and how much

time can elapse between failure and switching models before

risking losing control. Finally, we illustrate the effectiveness

of our approach through simulation and experimental results.

The paper is organized as follows. The system dynamics are

in Section II, and the control law is designed in Section III.

The failure recovery strategy is in Section IV, with stability

analysis in Section V. Simulation and experimental results are

presented in Section VI and Section VII, respectively, with

conclusions in Section VIII.

II. SYSTEM DYNAMICS

A hexrotor UAV dynamics are split into two subsystems:

the rotational dynamics and the translational dynamics.

A. Rotational Dynamics

Let )1 = [q \ k]> ∈ (− c
2
, c

2
)2×(−c, c] be the Euler angles

describing the hexrotor orientation in the inertial frame, and let

)2 = [ ¤q ¤\ ¤k]> ∈ R3 be the associated angular rates. Let )A =

[qA \A kA ]> ∈ (− c
2
, c

2
)2 × (−c, c] and ¤)A = [ ¤qA ¤\A ¤kA ]> ∈

R
3 be the rotational reference signals. Define the rotational

tracking error, /, by

/1 = )1 − )A , /2 = ¤/1 = )2 − ¤)A , / = [/>1 />2 ]>.

Defining the inertia matrix, � ∈ R3×3, a matrix Ψ ∈ R3×3 which

transforms body-fixed angular velocity to Euler angular rates

[20], and its associated derivative, ¤Ψ ∈ R3×3, the rotational

tracking error dynamics are

¤/1 = /2,

¤/2 = 5 (/, )1,
¤̄)A ) + � ()1)3 + = b ,

(1)

where

5 (/, )1,
¤̄)A ) = ¤ΨΨ

−1 (/2 + ¤̄)A )
− Ψ�−1 (Ψ−1 (/2 + ¤̄)A ) × �Ψ−1 (/2 + ¤̄)A )),

� ()1) = Ψ�−1,

¤̄)A is some approximation of ¤)A , 3 ∈ R3 is a vector of body-

fixed torques, = b = 2 b−¥)A+[ 5 (/, )1, ¤)A )− 5 (/, )1,
¤̄)A )] ∈ R3

is an added term to represent the lumped rotational disturbance

which satisfies Assumption 1 (stated below), and 2 b ∈ R3 is

the nominal rotational disturbance term [20] in the original

rotational dynamics with a generic control input.

Assumption 1 (Properties of Disturbances): For a control

system with state x ∈ R=, expressed in lower triangular form,

such as (1), any disturbance term is assumed to enter only

the G= dynamics. The disturbance term is also assumed to

be continuously differentiable and its partial derivatives with

respect to states are bounded on compact sets of those states

for all C ≥ 0 [20].

B. Translational Dynamics

Let p1 = [G H I]> ∈ R3 and p2 = [ ¤G ¤H ¤I]> ∈ R3 be

the position and velocity of the hexrotor center of mass. Let

pA = [GA HA IA ]> ∈ R3 and ¤pA = [ ¤GA ¤HA ¤IA ]> ∈ R3 be the

translational reference signals. Define the translational tracking

error, 1, by

11 = p1 − pA , 12 = ¤11 = p2 − ¤pA , 1 = [1>
1 1>

2 ]>.

Taking the third column of the rotation matrix describing the

hexrotor orientation in the inertial frame as '3 ()1) ∈ R3, as in

[20], 6 as the gravitational constant, D 5 ∈ R as the total thrust

input, < ∈ R>0 as the mass, and defining eI = [0 0 1]) , the

translational tracking error dynamics are

¤11 = 12,

¤12 = −
D 5

<
'3 ()1) + 6eI + 2d − ¥pA ,

(2)

where 2d ∈ R3 is an added term to represent the lumped

translational disturbance which also satisfies Assumption 1.

C. Failure Modes and Mapping Actuator Speeds to Inputs

We will now consider how the system inputs in the form

of body-torques, 3, and thrust force, D 5 , are applied by the

actuators, and how this changes during a failure.

Remark 1 (Bidirectional Rotor Rotation): Bidirectional ro-

tors are a requirement for a model switching failure recovery

based on the controllability of the system.

Since we require bidirectional rotor rotation, and the rotors

are designed for efficient operation in only one direction, we

define a pair of thrust coefficients, 1+ ∈ R>0 for normal oper-

ation and 1− ∈ R>0 for reverse operation. These coefficients

relate rotor speed, l ∈ R, to force, 5̄ ∈ R, as

5̄ 9 =

{
1+l2

9 , for l 9 ≥ 0,

−1−l2
9 , for l 9 < 0,

for 9 ∈ {1, . . . , 6}. (3)

Let 8 ∈ {0, . . . , 6} denote failure modes such that 8 = 0

corresponds to no failure and 8 ≠ 0 corresponds to the failure

of the 8-th rotor. Let F (8) ∈ R6×6 be the failure matrix

associated with failure mode 8, defined by F (0) = �6 and

F (8)
=

[
31

. . .
36

]
, with 3 9 =

{
0, for 9 = 8,

1, otherwise,
(4)

for 9 ∈ {1, . . . , 6}. Let " ∈ R4×6 be the mapping between

actuator forces and system inputs and be defined by

" =

[
1 1 1 1 1 1
− A

2
−A − A

2
A
2

A A
2

A
√

3
2

0 − A
√

3
2

− A
√

3
2

0 A
√

3
2

2 −2 2 −2 2 −2

]
, (5)

where A ∈ R>0 is the distance from the hexrotor center of mass

to the center of an actuator, and 2 ∈ R>0 is the aerodynamic

drag coefficient of a rotor. Let 8∗C be the true failure mode at

time C, 8C be the failure mode that is selected at time C, and C 5
be the time of failure.
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The system inputs for the nominal model and all failure

models are mapped to a vector of squared rotor speeds, 8B =

[l2
1
, . . . , l2

6
]> ∈ R6

≥0
, through[

D 5

3

]
= "BF (8C )8B , B =

[
a11

a1

. . .
a61

a6

]
, (6)

where a 9 ∈ {−, +} is the sign of l 9 .

Assumption 2 (Single Failure Occurrence): We assume

8∗C = 8C = 0 for C < C 5 . At the time of failure 8∗C 5 = 0 →
8∗C ∈ {1, . . . , 6} for C > C 5 . Since our platform is a hexrotor,

we focus on a single actuator failure to ensure the system

retains full controllability. Failure of more than one actuator, in

specific cases, can result in a system that retains controllability.

However, in these configurations, only two of the actuators

would be responsible for generating the total lifting thrust,

with the others providing small correctional forces and torques.

Consequently, due to limited actuator power, the hexrotor

would not be able to maintain altitude.

III. OUTPUT FEEDBACK CONTROL DESIGN

In this section, an output feedback estimation and control

strategy is designed as in [20]. We utilize the same control

and observer design, while extending our previous work to

incorporate a family of EHGOs to estimate not only modeling

error and external disturbances, but errors due to the failure

of any one actuator, as well as enabling the detection of a

failure through the use of the observer estimates. As such, each

observer will correspond to a possible plant configuration, i.e.,

a nominal model and six failure models.

A. Extended High-Gain Observer Design

A family of multi-input multi-output EHGOs is designed to

estimate higher-order states of the error dynamic systems (1)

and (2), and uncertainties arising from modeling error, external

disturbances, and actuator failure [21]. It is shown in [20, 22]

that it is necessary to include actuator dynamics in the multi-

rotor model for EHGO design. For a desired rotor speed, ldes,

the actuators can be modeled as a first-order system with time

constant, g< ∈ R>0, given by g< ¤l 9 = (ldes
9

− l 9 ), for 9 ∈
{1, . . . , 6}. The actuator dynamics must be included in the

EHGO because in practice g< and n are of similar magnitude,

so both reside in the same time-scale. These dynamics then

form the input to the EHGO as in [20].

The rotational and translational tracking error dynamics

are combined and the state-space is extended to estimate

disturbance vectors for both subsystems. For the purposes of

writing the observer under the 8-th failure mode, we write the

extended system dynamics in the following form

¤11 = 12,

¤12 = −
D 5

<
'3 ()1) + 6eI + 2d − ¥pA ,

¤2d = id (C, 1),
¤/1 = /2,

¤/2 = 5 (/, )1,
¤̄) (8C )
A ) + �̃"BF (8)8 (8C )

B + =̄
(8)
b
,

¤̄= (8)
b

= i
(8)
b
(C, =̄ (8)

b
),

(7)

where =̄
(8)
b

= 2
(8)
< + = b , and 2

(8)
< = �̃"B(F (8∗C ) − F (8) )8 (8C )

B

is the error resulting from an incorrect model, 8C ≠ 8∗C .

Finally, �̃ = [03×1 � ()1)] and 2
(8∗C )
< = 0. Here, id (C, 1) and

i
(8)
b
(C, =̄ (8)

b
) are unknown functions describing the translational

and rotational disturbance dynamics.

Assumption 3 (Disturbance Dynamics): It is assumed that

id (C, 1) and i
(8)
b
(C, =̄ (8)

b
) are continuous and bounded on any

compact set in the domain of 1 and =̄
(8)
b

, respectively.

The observer system is written with extended states and

directional squared rotor speeds as the input, 8
(8C )
B . Defining

the following state vectors

61 = [1>
1 1>

2 2>
d ]>, 62 = [/>1 />2 =>

b ]>, 6 = [6>
1 6>

2 ]>,

we can write the EHGOs in a compact form as

¤̂6 (8)
= � 6̂ (8) + �

[
5̄ ( 6̂ (8) , )1,

¤̄) (8C )
A ) + �̄ (8) ()1)8 (8C )

B

]
+ � 6̂

(8)
4 ,

6̂
(8)
4 = � (6 − 6̂ (8) ),

(8)

where 6̂ (8)
=

[
1̂
(8)>
1

1̂
(8)>
2

2̂
(8)>
d /̂

(8)>
1 /̂

(8)>
2

ˆ̄=
(8)>
b

]>
is the

estimate of 6 under the model with failure 8, and

� = ⊕2
9=1� 9 , � = ⊕2

9=1� 9 , � = ⊕2
9=1� 9 , � = ⊕2

9=1� 9 ,

� 9 =

[
03 �3 03

03 03 �3
03 03 03

]
, � 9 =

[
03

�3
03

]
, � 9 =

[
U1/n �3
U2/n 2�3

U3/n 3�3

]
,

� 9 = [ �3 03 03 ] , for 9 ∈ {1, 2},

5̄ ( 6̂ (8) , )1,
¤̄) (8C )
A ) =

[
6eI − ¥pA

5 (/̂ (8)
, )1,

¤̄) (8C )
A )

]
,

�̄ (8) ()1) =
[ −'3 ()1)

<
03

03×1 � ()1)

]
"BF (8) ,

where ⊕ denotes the matrix direct sum, � is designed by

choosing U1, U2, U3 ∈ R>0 such that the polynomial

B3 + U1B
2 + U2B + U3, (9)

is Hurwitz [21] and n ∈ R>0 is a tuning parameter that must

be chosen small enough. In practice, n is tuned empirically to

achieve a balance between convergence rate of the observer

and noise amplification. All EHGO estimates must also be

saturated outside a compact set of interest to avoid peaking,

see Remark 1 in [20].

B. Output Feedback Control

The output feedback controllers are written using the es-

timates from the corresponding EHGO, 6̂ (8) . The family of

translational output feedback controllers, induced by rotational

reference signals and total thrust, become

q̂
(8)
A = tan−1

©­­«
− 5̂

(8)
H√

( 5̂ (8)G )2 + ( 5̂ (8)I − 6)2

ª®®¬
, k̂

(8)
A = 0,

\̂
(8)
A = tan−1

(
5̂
(8)
G

5̂
(8)
I − 6

)
, D̂

(8)
5 3

= − <( 5̂ (8)I − 6)
cos q̂

(8)
A cos \̂

(8)
A

,
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where f̂
(8)
C = [ 5̂ (8)G 5̂

(8)
H 5̂

(8)
I ]> = −W1 1̂

(8)
1

− W2 1̂
(8)
2

− 2̂
(8)
d + ¥pA .

Here, desired heading, k̂
(8)
A , is set to zero to simplify the

control equations; see [22] for control equations with arbitrary

k̂
(8)
A . The family of rotational output feedback controllers

become

3̂
(8)
3

= �−1 ()1)
[
f̂
(8)
A − 5 (/̂ (8)

, )1,
¤̄) (8C )
A )

]
,

where f̂
(8)
A = −V1/̂

(8)
1 − V2/̂

(8)
2 − ˆ̄=

(8)
b

. Note that the rotational

reference signal estimates (q̂ (8C )
A , \̂

(8C )
A , k̂

(8C )
A ) are used to esti-

mate ¤̄) (8C )
A in 3̂

(8)
3

(see [20] for details). We then arrive at the

family of commanded squared rotor speeds

8
(8)
B = ("BF (8) )†û (8) , û (8)

=

[
D̂
(8)
5 3

3̂
(8)
3

]
, (10)

where (·)† = (·)> ((·) (·)>)−1 is the minimum energy pseudo-

inverse of the argument.

The rotational closed-loop system under input 8
(8C )
B for any

8C , regardless of 8∗C , reduces to the following perturbed linear

system, since the mismatch is captured by =̄
(8)
b

¤/ = �b / + n�1%
(8) , �b =

[
03 �3

−V1�3 −V2�3

]
, �1 =

[
03

�3

]
, (11)

where

n% (8)
= = b + 2

(8)
< − ˆ̄=

(8)
b

+ V1 (/1 − /̂
(8)
1 ) + V2 (/2 − /̂

(8)
2 )

+ Δ 5 (8) , Δ 5 (8) = 5 (/, )1,
¤̄) (8C )
A ) − 5 (/̂ (8)

, )1,
¤̄) (8C )
A ).

(12)

The ability to write the mismatched closed-loop system as

(11) means that if n is chosen small enough, the system under

output feedback will recover performance of the desired linear

system, even in the presence of an actuator failure without

requiring a model switch.

Remark 2 (Multiple Possible Recovery Strategies): For the

small constants, n1, n2 ∈ R>0, where n1 � n2, if we choose

n ∈ (0, n1) a recovery can be achieved without requiring a

model switch. If we choose n ∈ (n1, n2), nominal disturbances

can be compensated, however, the large disturbance, 2
(8)
< , can

result in large estimation error. Due to practical constraints

on n when it comes to implementation, such as sample rate

and noise, we must choose n ∈ (n1, n2). This motivates our

use of multiple models and multiple observers for recovery

(see Theorem 1 for details). Furthermore, we can arrive at

approximate values of n1 ≈ 0.002 and n2 ≈ 0.06 through

simulation.

Remark 3 (Domain of Operation): We define the domain of

operation as the region in which singularities are avoided in the

feedback linearizing control design [20]. Since 2
(8)
< = 0 for 8 =

8∗C , for any single actuator failure, with n ∈ (0, n2) and 8C = 8∗C ,
the closed-loop rotational subsystem becomes the linearized

system (11) with a small perturbation n% (8) . Therefore, the

domain of operation is the same for all 8C = 8∗C .

IV. FAILURE RECOVERY STRATEGY

The most common external disturbances experienced by a

multi-rotor during flight are aerodynamic (wind gusts, drag,

etc.), and therefore primarily affect the translational dynam-

ics. During an actuator failure, a large rotational torque is

generated. This large torque appears as a high magnitude

disturbance, 2
(8)
< , in the rotational dynamics, thus we monitor

the rotational subsystem for actuator failure detection.

For n ∈ (n1, n2), when 8C ≠ 8∗C immediately after failure,

the perturbation, n% (8C ) , is no longer small, and may make

(11) leave the domain of operation. This behavior can be

identified by monitoring an estimate of the derivative of a

Lyapunov function for the rotational subsystem, using the

method presented in [23]. Therefore we can detect the failure,

and then switch models to recover stability. Defining CB as the

time of control switching, we can define a maximum switching

time, CBmax
, such that CB < CBmax

ensures recovery from the

failure before (11) leaves the domain of operation (see the

proof of Theorem 1 for an estimate of CBmax
).

A. Estimating the Lyapunov Derivative

Since the derivative of the Lyapunov function is not avail-

able, it will be estimated using estimates from the EHGOs,

similar to [23]. Following Assumption 2, the system begins

in the nominal operating regime, 8∗C = 0, therefore only the

nominal Lyapunov function derivative must be estimated

¤̂+b = /̂
(0)>

%b
¤̂/ (0) + ¤̂/ (0)>%b /̂

(0)
, (13)

where %b �b + �>
b
%b = −�6. We use this estimate to test the

following inequality to detect an actuator failure

¤̂+b ≤ 00 −


/̂ (0)

2

, (14)

where 00 ∈ R>0 is a small constant introduced to overcome

the $ (n) estimation errors and is tuned empirically through

simulation and experiments. For example, choosing 00 too

small would result in detecting false positives, and too large

would increase time until failure detection, potentially past

CBmax
. Once (14) is violated, a new model must be selected.

B. Estimating Disturbance and Failures Simultaneously

Since all disturbance estimates contain any discrepancies

between the modeled response and the response of the physical

system, the total rotational disturbance estimated by the 8-th

observer, ˆ̄=
(8)
b

, is an estimate of 2
(8)
< + = b . In order to select

the appropriate model after a failure has been detected using

(14), we utilize the magnitude of the disturbance estimates

from each observer to appropriately select 8C = 8∗C as

8C = arg min
8∈{1,...,6}

{

 ˆ̄=
(8)
b



} . (15)

Following Assumption 2, (15) is a minimization across failure

modes, excluding the nominal model.

V. STABILITY ANALYSIS

Following the stability arguments in [20] and the theoretical

analysis therein, the proposed output feedback control design

presented here meets the same stability guarantees. We can

show that these stability guarantees are also met under actuator

failure without switching models when n ∈ (0, n1), and also

hold for n ∈ (n1, n2) so long as 8C = 8∗C .
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We must now investigate the stability of the system during

an actuator failure. Define the scaled observer error for the

rotational system, ( (8) = [( (8)
1

(
(8)
2

(
(8)
3
]> ∈ R9, by

(
(8)
1

=
/1 − /̂

(8)
1

n2
, (

(8)
2

=
/2 − /̂

(8)
2

n
, (

(8)
3

= = b + 2
(8)
< − ˆ̄e

(8)
b
.

The entire rotational output feedback closed-loop system can

now be written as the singularly perturbed system

¤/ = �b / + n�1%
(8) , (16a)

n ¤( (8)
= Λ( (8) + n

(
�2

Δ 5 (8)

n
+ �3 (i (8)

b
(C, =̄ (8)

b
) + ¤2 (8)

< )
)
, (16b)

where the system dynamics (16a) are the slow variables, the

observer error (16b) are the fast variables, and

Λ =

[
−U1�3 �3 03

−U2�3 03 �3
−U3�3 03 03

]
, �2 =

[
03

�3
03

]
, �3 =

[
03

03

�3

]
.

By Assumption 3, i
(8)
b
(C, =̄ (8)

b
) is continuous and bounded, and

it can be shown that ¤2 (8)
< is also continuous and bounded, so

we can bound the sum as, i
(8)
b
(C, =̄ (8)

b
) + ¤2 (8)

< ≤ Δ
(8)
max.

From [20], Δ 5 (8) is Lipschitz in / over the domain of

operation and Δ 5 (8) can be bounded by


Δ 5 (8)



 ≤ n![



( (8)

,

for the Lipschitz constant, ![ . We can write a Lyapunov

function for the scaled observer error system (16b) as

+
(8)
[ = (( (8) )>%[(

(8) , where %[Λ + Λ
>%[ = −�9. (17)

Lemma 1 (Bounds on Observer Error): Let the observer

error at the time of failure, C 5 , be ( (8) (C 5 ). Then, the observer

error for C > C 5 can be bounded by



( (8) (C)


 ≤

((√
+

(8)
[ (C 5 ) − n

^

2

)
4−

2 (C−C 5 )
n + n

^

2

)
/
√
_min (%[),

2 =

(
1

_max (%[ ) −
_max (%[ ) n ![

_min (%[ )

)
, ^ =

_max (%[ )Δ (8)
max√

_min (%[ )
,

where _min (·) and _max (·) are the minimum and maximum

eigenvalues of the argument, respectively.

Proof: Taking the Lyapunov function (17) and computing

the derivative with the scaled observer error system (16b)

yields

n ¤+ (8)
[ = −(( (8) )>( (8)

+ 2n (( (8) )>%[

(
�2

Δ 5 (8)

n
+ �3 (i (8)

b
(C, =̄ (8)

b
) + ¤2 (8)

< )
)
,

which can be bounded by

n ¤+ (8)
[ ≤ − 2

2
+

(8)
[ + 2n^

√
+

(8)
[ ,

2 =

(
1

_max (%[ ) −
_max (%[ ) n ![

_min (%[ )

)
, ^ =

_max (%[ )Δ (8)
max√

_min (%[ )
.

Taking ,
(8)
[ =

√
+

(8)
[ , the bound becomes

¤, (8)
[ ≤ −2, (8)

[ + n^.

By the Comparison Lemma [24, Lemma 3.4], ,
(8)
[ (C) is upper

bounded by

,
(8)
[ (C) ≤

(
,

(8)
[ (C 5 ) − n

^

2

)
4−

2
n
(C−C 5 ) + n

^

2
,

leading to the bound on scaled observer error

( (8) (C)


 ≤ ,

(8)
[ (C)/

√
_min (%[).

We can now write (12) as

n% (8)
= n2V1 (( (8)

1
) + n V2 (( (8)

2
) + (

(8)
3

+ Δ 5 (8) , (18)

which can be bounded in terms of observer error as

n% (8) ≤ %
(8)
max (C) = (n2V1 + n (V2 + ![) + 1)



( (8) (C)


. (19)

Lemma 1 shows that estimation error, ( (8) , converges to

an $ (nΔ (8)
max) neighborhood of the origin within $ (n) time.

Actuator failure is significantly more dynamic than external

disturbance, i.e., ¤= b is relatively small as compared with ¤2 (8)
< .

Thus, Δ
(8∗C )
max � Δ

(8)
max for 8 ≠ 8∗C , since ¤2 (8∗C )

< = 0. Therefore, as

stated in Remark 2, n can be chosen larger for the correct

model than for any incorrect model, motivating the use of

multiple models to reduce the total system disturbance.

In order to select the appropriate model after failure, as long

as 2
(8)
< , = b , and



( (8)
3

(CB)


 satisfy,

2 (8)

< ‖ ≥ 2


= b



 + 

( (8)
3

(CB)


 + 

( (8∗C )

3
(CB)



, (20)

for each 8 ∈ {1, . . . , 6} \ {8∗C }, the observer estimate, ˆ̄=
(8∗C )
b

, will

be the smallest in magnitude at CB , therefore, (15) will select

the appropriate model.

Proposition 1 (Correct Model Selection): Under the control

input, 8
(8C )
B , the family of observers (8) will produce distur-

bance estimates, ˆ̄=
(8)
b

, for 8 ∈ {0, . . . , 6}. If 2
(8)
< , = b , and

( (8)

3
(CB)



 satisfy (20), the estimate ˆ̄=
(8∗C )
b

will be the smallest

in magnitude and (15) will select the correct model.

Proof: Suppose the modeling and external disturbances,

= b , the disturbance resulting from incorrect model selection,

2
(8)
< , and the scaled observer error,



( (8)
3

(CB)


 satisfy (20), then

ˆ̄=
(8)
b

= = b + 2
(8)
< − (

(8)
3

≥ ‖2 (8)
< ‖ −

(
‖= b ‖ + ‖( (8)

3
‖
)

≥
using (20)

(
‖= b ‖ + ‖( (8∗C )

3
‖
)
≥ = b − (

(8∗C )
3

= ˆ̄=
(8∗C )
b

,

where the last equality holds since 2
(8∗C )
< = 0. Thus, the

estimated disturbance, ˆ̄=
(8∗C )
b

, will be the smallest in magnitude

at CB , and the solution to (15) will be the correct model.

Remark 4 (Minimum Switching Time): At C 5 ,


( (8)

3
(C 5 )




may be large, but will decay to an $ (nΔ (8)

max) neighborhood of

the origin in $ (n) time. Therefore, there is some $ (n) time

we must wait to switch for the observer estimates to converge.

Furthermore,


( (8∗C )

3
(C)



 will decay to an $ (nΔ (8∗C )
max) neighbor-

hood of the origin, further reducing


 ˆ̄=

(8∗C )
b



 as compared with

the other model estimates, since Δ
(8∗C )
max � Δ

(8)
max.

Theorem 1 (Stability During Actuator Failure): Let the state

of the system (11) at the time of failure, C 5 , be such that

+b (C 5 ) < 0 for some sufficiently small 0 > 0. Then, there exist

n1, n2 > 0, and maximum switching time, CBmax
> C 5 , such that

the state, /, will remain within the domain of operation during

the failure transient, and will recover tracking performance
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i) after the transient, when n ∈ (0, n1);
ii) if the correct model, 8C = 8∗C , is selected before CBmax

,

when n ∈ (n1, n2).
Proof: A common Lyapunov function, +b , for the feed-

back linearized rotational subsystem for each 8 ∈ {0, . . . , 6}
and n → 0 is given by

+b = />%b /, where %b �b + �>
b%b = −�6. (21)

Let Ωb = {+b < 2 b } be an estimate of the domain of

operation of the controller designed in Section III-B for

2 b ∈ R>0 (see [20] for more details). For simplicity, we use

the estimate of the domain of operation for n → 0, wherein

the states and disturbances are estimated perfectly. For small

n > 0, the obtained domain of operation can be shrunk to

Ω′
b
= {+b < 2′

b
}, with 2′

b
< 2 b , to incorporate the effect of

estimation error [25].

Using arguments similar to singular perturbation [24, The-

orem 11.4] and non-vanishing perturbation [24, Lemma 9.2],

it can be shown that (16) converges to an $ (nΔ (8)
max) neigh-

borhood of the origin for n ∈ (0, n2). For n ∈ (0, n1)
the neighborhood $ (nΔ (8)

max) is small enough for reasonable

tracking performance. For n ∈ (n1, n2), the large estimation

error can make the trajectory leave the domain of operation

and the system may diverge, thus requiring a model switch.

Taking the Lyapunov function (21), and computing its

derivative with the rotational closed-loop system (11) yields

¤+b = −/>/ + 2/>%b n�1%
(8) . (22)

By the change of variables ,b =
√
+b , and the arguments

in the proof of Lemma 1, we can immediately upper bound

,b (C) by

,b (C 5 )4
−(C−C 5 )

2_max (%b ) +
∫ C

C 5

4
−(C−g)

2_max (%b ) _max (%b )√
_min (%b )

%
(8)
max (g)3g.

Let C = CBmax
be the unique solution to the equation

√
04

−(C−C 5 )
2_max (%b ) +

∫ C

C 5

4
−(C−g)

2_max (%b ) _max (%b )√
_min (%b )

%
(8)
max (g)3g = 2 b .

The theorem follows immediately from the definition of CBmax
.

VI. SIMULATION

The proposed method is simulated for a hexrotor system

tracking a trajectory generated by a 9-th order polynomial to

ensure sufficient smoothness, shown in Fig. 2. The system

is simulated in discrete-time with sample time, ) = 0.01B,

while using position and orientation measurements with added

white Gaussian noise to replicate the experimental system.

The hexrotor is able to track the reference trajectory, suffer

an actuator failure at 14 seconds into flight, and recover to

resume tracking the trajectory after switching controllers. The

system is simulated with large external rotational disturbances,

2 b = 12[sin(C) cos(C) sin(C)]>, and translational distur-

bances, 2d = [sin(C) cos(C) sin(C)]>.

To facilitate tuning the parameters, for example n , 00,

and control gains, we use the same parameters in simulation

as in the experiment. The parameters are given in Table I,

TABLE I
SYSTEM PARAMETERS USED IN SIMULATION AND EXPERIMENT.

n 1+ A 2 W1 V1 U1 U3

0.025 1.8182e-5 0.275m 0.1 2 40 3 0.6

g< 1− < 00 W2 V2 U2 T

0.059 3.6364e-6 1.824kg 2 1.5 20 3 0.01s

13.9 13.95 14 14.05 14.1 14.15 14.2

10

20

30

40

50

60

70

80

13.9 13.95 14 14.05 14.1 14.15 14.2

0

1

2

3

Fig. 1. Norm of disturbance estimates for all failure case models and
Lyapunov derivative estimate during a simulated in-flight actuator failure.

and the inertia matrix � is a diagonal matrix with entries

{0.0228, 0.0241, 0.0446} kg m2.

The estimated Lyapunov function derivative, ¤̂+b , is moni-

tored to determine when the failure occurs. The magnitudes of

the estimated disturbances for all six failure modes, as well as

the Lyapunov derivative estimate, are shown in Fig. 1. At the

time of detection, ˆ̄=
(4)
b

has the smallest magnitude, indicating

a failure of actuator four. The dashed vertical line in Fig. 1

shows the time when a failure is induced, C 5 , and the solid

vertical line shows when the switch occurs, CB .

Fig. 2 shows the hexrotor briefly breaking from tracking

the reference trajectory as the failure occurs at C 5 , and after

0 5 10 15 20 25

0

1

2

0 5 10 15 20 25

0

0.5

1

0 5 10 15 20 25

-0.4

-0.2

0

Fig. 2. Hexrotor position tracking recovery after simulated in-flight actuator
failure using multiple models to recover performance.
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Fig. 3. Health estimate of each rotor as estimated using the Extended Kalman
Filter method.

the controller is switched, the hexrotor successfully resumes

tracking the trajectory. The tracking performance is slightly

degraded due to the large external disturbances present in this

simulation, however, a successful recovery is still achieved.

A potential problem with not considering disturbance is

the false identification of failures. We illustrate this with the

rotor health estimation approach [11]. This method utilizes

an Extended Kalman Filter which estimates the health of

each rotor, ℎ 9 , for 9 ∈ {1, . . . , 6}. Utilizing the same dy-

namics and a detection cutoff on the health of each rotor

of 0.5, as was shown to work well experimentally in [11],

we simulate this method. The same flight parameters and

large disturbances are again applied to the system with the

EHGO based failure detection method replaced by the EKF

method. The EKF method does not consider disturbances,

and Fig. 3 shows that a failure of actuator two is falsely

detected just under two seconds into flight. In principle, the

EKF could be augmented with a disturbance model to improve

this performance, however, that would require a model of the

expected disturbances [19]. The EHGO can accommodate a

wide range of disturbances with unknown dynamics. We also

investigated lowering the health cutoff threshold below 0.5,

however, this results in longer detection times. In summary,

depending on flight conditions, considering disturbance in the

failure recovery strategy becomes important.

VII. EXPERIMENTAL VALIDATION

The proposed multiple-model estimation and control

method is implemented on an experimental platform to val-

idate performance and show recovery from an actuator failure

during flight. The experimental platform is built on a 550mm

hexrotor frame with 920kV motors and 10x4.5 carbon fiber

rotors. Six 35A ESCs with bidirectional capability are used,

and the system is powered by a 5000mAh 4s LiPo battery.

The control method is implemented on a Pixhawk 4 FMU in

discrete time at 100Hz using Mathworks Simulink through the

PX4 Autopilots Support from Embedded Coder package. All

sensing and computation is done on-board the vehicle, with

89.5 89.55 89.6 89.65 89.7 89.75 89.8 89.85

20
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89.5 89.55 89.6 89.65 89.7 89.75 89.8 89.85

0

1

2

3

Fig. 4. Norm of disturbance estimates for all failure case models and
Lyapunov derivative estimate during an experimental in-flight actuator failure.

the exception of utilizing translational position data from a

Vicon motion capture system in lieu of GPS.

Once the failure is detected and the controller is switched,

the rotor opposite the failed rotor will be commanded to re-

verse directions to apply a large downward force to counteract

the roll and pitch errors. Once the system returns to level flight,

using the pseudo-inverse to compute desired rotor speeds

results in the opposite rotor being commanded to apply small

forces in either direction, thus requiring the rotor to change

directions rapidly. During experimental testing it became clear

that the opposite rotor could not change directions quickly

enough to stabilize the system. To restrict the opposite rotor

to only generate downward force for a detected failure, 8, we

impose force constraints, 5
(8, 9)

min
, 5

(8, 9)
max < 0 for the opposite

rotor, 9 , defined by

9 =

{
8 + 3, 1 ≤ 8 ≤ 3,

8 − 3, 4 ≤ 8 ≤ 6,

and 5
(8, 9)

min
, 5

(8, 9)
max ≥ 0 for all remaining 9 . These constraints

ensure only a single directional change will be commanded

when the model is switched. Let f̄
∗

be the solution to the fol-

lowing optimization problem with above discussed constraints

under the selected model 8C

minimize
f̄

(

 f̄ 

2 + _




,E ("F (8C ) f̄ − û (8C ) )



2

)

subject to 5
(8, 9)

min
≤ 5̄ ∗8, 9 ≤ 5

(8, 9)
max ,

where _ ∈ R>0 is chosen to be large to ensure we achieve

applied forces and torques as close as possible to the desired

û (8C ) . We also take advantage of the diagonal weighting matrix,

,E ∈ R4×4, to prioritize the total thrust and the roll and pitch

torques, allowing for lower performance in yaw tracking since

the former are integral for achieving a successful recovery. The

additional


 f̄ 

2

term is used to simultaneously select a solution

with lower energy. The solution, f̄
∗
, is then mapped to squared

rotor speeds through the inverse of (3). The optimization

problem is solved by the active-set algorithm proposed in [26].
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Fig. 5. Hexrotor position tracking recovery after experimental in-flight
actuator failure.

The experimental system is flown along the same trajectory
as in simulation and a failure of actuator four is induced
algorithmically. The norm of the experimental disturbance
estimates for each failure model, and the Lyapunov derivative
estimate, are shown in Fig. 4. The dashed vertical line in Fig.
4 corresponds to the time when a failure is induced, C 5 , and
the solid vertical line shows when the detection and switch
occurs, CB . The correct model for a failure of actuator four
is selected and the resulting tracking performance before and
after recovery are shown in Fig. 5. The tracking performance
after failure is slightly degraded due to the use of non-ideal
control inputs, f̄

∗
. A video of the experiments can be found

at https://youtu.be/8fQMrca49os

VIII. CONCLUSIONS AND FUTURE WORK

We studied a trajectory tracking problem for a hexrotor in the
presence of modeling error and external disturbances, while si-
multaneously enabling in-flight recovery of a complete actuator
failure. A multiple-model, multiple EHGO based output feedback
control framework is used to enable this extended functionality. The
framework is rigorously analyzed to provide stability guarantees and
bounds on the maximum switching time for recovery. Simulation
and experimental flight data show the successful application of the
method on a physical system.

Future work includes the extension to multiple failures for general
=-rotors. Assuming that system controllability is retained despite
multiple failures, the proposed approach could be applied in an
hierarchical way, wherein a new set of models are considered after
each failure detection. Analysis of such an approach under mutual
interactions of multiple failures is an interesting direction of future
investigation.
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