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In-flight Actuator Failure Recovery of a Hexrotor
via Multiple Models and Extended High-Gain
Observers

Connor J. Boss! and Vaibhav Srivastava!

Abstract—We study an in-flight actuator failure recovery prob-
lem for a hexrotor UAV. The hexrotor may experience external
disturbances and modeling error, which are accounted for in
the control design and distinguished from an actuator failure.
A failure of any one actuator occurs during flight and must be
identified quickly and accurately. This is achieved through the
use of a multiple-model, multiple extended high-gain observer
(EHGO) based output feedback control strategy. The family of
EHGOs are responsible for estimating states, disturbances, and
are used to select the appropriate model based on the system
dynamics after a failure has occurred. The proposed method
is theoretically analyzed and validated through simulations and
experiments.

Index Terms—TFailure Detection and Recovery, Aerial Systems:
Mechanics and Control

I. INTRODUCTION

ITH increased dependence on multi-rotor UAVs in

many mission critical applications from infrastructure
inspection to aerial cinematography to reconnaissance and
surveillance, the demand for increasingly reliable vehicles is
growing. In these applications, the loss of a vehicle poses
significant threats to financial, security, or personnel interests.
Improvements in control strategies as well as improvements
in both software and hardware implementation have increased
reliability greatly. However, there is still significant room for
improvement in the face of actuator failures.

Actuator failure is of particular interest when it comes to
reliability, as conventional multi-rotor UAVs will crash, or at
least require an emergency landing, in the event of a failure.
The main challenges in recovering from an actuator failure
during flight are the ability to quickly detect the failure and to
reconfigure the system while preserving stability. A complete
actuator failure will cause a large rotational torque, which in
turn causes the UAV to roll and pitch rapidly. If action is not
taken extremely quickly the UAV can arrive at a configuration
where it simply cannot recover.

The area of fault detection and isolation has been inves-
tigated for generalized systems [1-4], as well as for multi-
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rotor UAVs, including quadrotors [5-9], hexrotors [10-13],
and octorotors [14, 15]. A quadrotor with failure of one
actuator or two opposing actuators can be stabilized, but loses
yaw controllability [5]. A failure on an octorotor can result in
dramatically reduced thrust capability [14, 15]. Interestingly,
a standard hexrotor is fully vulnerable to any single actuator
failure because the total moment generated by opposed rotors
are collinear [16], resulting in an uncontrollable system.

In order to overcome this vulnerability, a variety of modi-
fications have been proposed. One option is to use a different
pattern of rotor rotation directions [10, 12], thus making
the moment of certain pairs of opposed rotors non-collinear.
This will maintain controllability under failure, however, the
asymmetry restricts this method to only recover if one of
four specific rotors fail. Another option [13, 16] involves a
modified airframe design where the actuators are canted off
plane to enable force application in all six degrees of freedom.
This method supports the loss of any one actuator, however,
given the orientation of the rotors, the configuration is not
efficient for nominal flight. A third option is to enable the
rotors to rotate in either direction [11]. This method maintains
controllability if any one of the actuators fail, while preserving
efficiency during nominal flight. Thus, we will utilize this
hardware reconfiguration strategy as well.

The detection strategies used in the methods described
above include a linear observer [12], estimating actuator forces
using a sliding-mode differentiator on IMU data [9], and an
Extended Kalman Filter based rotor health estimator [11],
while others have left the detection strategy to future work
[5, 14, 15]. In contrast, we utilize a multiple-model multiple
EHGO output feedback linearizing control approach, in which
estimates from the EHGOs are used to detect and classify a
failure. The EHGOs not only allow us to detect failures and
select the appropriate reconfiguration, but are fully integrated
in our control strategy to provide estimates of unmeasured
states and disturbances. These estimates are used before,
during, and after failure, to improve tracking performance in
the presence of a broad class of disturbances.

While disturbance observers have been used in multi-rotor
control [17, 18], EHGOs are not typically implemented on
highly dynamic systems of this nature due to high sample rate
requirements and possible measurement noise amplification.
This work serves to show that even at a relatively low sample
rate of 100Hz, EHGOs can be implemented on highly dynamic
systems in practice. Furthermore, EHGOs afford the ability
to estimate and cancel a broader class of disturbances than
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standard disturbance observers [19].

The failure recovery methods described thus far do not
consider disturbances affecting the system. Our method ex-
plicitly incorporates disturbances and can differentiate between
disturbances and an actuator failure, depending on disturbance
levels. The analysis presented here not only guarantees sta-
bility, but provides insights into what levels of disturbances
can be distinguished from an actuator failure and how much
time can elapse between failure and switching models before
risking losing control. Finally, we illustrate the effectiveness
of our approach through simulation and experimental results.

The paper is organized as follows. The system dynamics are
in Section II, and the control law is designed in Section III.
The failure recovery strategy is in Section IV, with stability
analysis in Section V. Simulation and experimental results are
presented in Section VI and Section VII, respectively, with
conclusions in Section VIIIL.

II. SYSTEM DYNAMICS

A hexrotor UAV dynamics are split into two subsystems:
the rotational dynamics and the translational dynamics.

A. Rotational Dynamics

LetO;=[¢0y]" € (-5.5 2x(—n, ] be the Euler angles
describing the hexrotor orientation in the inertial frame, and let
0, =[¢ 6 y]T € R3 be the associated angular rates. Let 6, =
[¢r Or wr]T € (_%a% Zx (—=m,n] and 60, = [¢, 0, wr]T €
R3 be the rotational reference signals. Define the rotational
tracking error, &, by

£1=01-0,, &=6=60-6,, £=[£ &1
Defining the inertia matrix, J € R>, a matrix ¥ € R¥ which
transforms body-fixed angular velocity to Euler angular rates

[20], and its associated derivative, ¥ R33, the rotational
tracking error dynamics are

£ =6,

. . 1
§2:f(§’01307”)+G(01)T+§§5 (

where
f(£.61,8,) =97 (£,+86,)
~ w6, + 0,) x TP (£, +8,)),
G(0)=vJ",

?)r is some approximation of #,, T € R? is a vector of body-
fixed torques, ¢z = ¢ —0,+[f(£,01,0,)-f(£,601.6,)] € R?
is an added term to represent the lumped rotational disturbance
which satisfies Assumption I (stated below), and o¢ € R3 is
the nominal rotational disturbance term [20] in the original
rotational dynamics with a generic control input.

Assumption 1 (Properties of Disturbances): For a control
system with state x € R", expressed in lower triangular form,
such as (1), any disturbance term is assumed to enter only
the x, dynamics. The disturbance term is also assumed to
be continuously differentiable and its partial derivatives with
respect to states are bounded on compact sets of those states
for all r > 0 [20].

B. Translational Dynamics

Let p; = [x y z]T e R3and p, = [x y 2] € R3 be
the position and velocity of the hexrotor center of mass. Let
pr =[x yrz]" € R? and pr =% yr 4] € R? be the
translational reference signals. Define the translational tracking
error, p, by

PI=Pi—Pr. P2=P1=P2— P, pP=Ip]p]"
Taking the third column of the rotation matrix describing the
hexrotor orientation in the inertial frame as R3(6;) € R3, as in
[20], g as the gravitational constant, s € R as the total thrust
input, m € R.¢ as the mass, and defining e, = [0 0 117, the
translational tracking error dynamics are

p1 = P2
2)

u
P2 = _;fR3(01) tge;+0p — Py,

where o, € R? is an added term to represent the lumped
translational disturbance which also satisfies Assumption 1.

C. Failure Modes and Mapping Actuator Speeds to Inputs

We will now consider how the system inputs in the form
of body-torques, 7, and thrust force, uy, are applied by the
actuators, and how this changes during a failure.

Remark 1 (Bidirectional Rotor Rotation): Bidirectional ro-
tors are a requirement for a model switching failure recovery
based on the controllability of the system.

Since we require bidirectional rotor rotation, and the rotors
are designed for efficient operation in only one direction, we
define a pair of thrust coefficients, b* € R, for normal oper-
ation and b~ € R, for reverse operation. These coefficients
relate rotor speed, w € R, to force, f e R, as

b+w§, for w; 20, for j € {1 6} 3)
= or j€{l,...,6}.
J —b’w?, for w; <0, J
Let i € {0,...,6} denote failure modes such that i = 0
corresponds to no failure and i # 0 corresponds to the failure
of the i-th rotor. Let F € R pe the failure matrix
associated with failure mode i, defined by # 0 = I and

d; 0
9’“):[ l Withdjz{’
de 1,

for j € {1,...,6}. Let M € R*¥® be the mapping between
actuator forces and system inputs and be defined by

for j =1,
/ )

otherwise,

1 1 1 1 1 1
55 5o

M= V3o _r¥3 _r¥3 g r¥3 | (5)
2 2 2 2
c —-c ¢ —-c ¢ -c

where r € R is the distance from the hexrotor center of mass
to the center of an actuator, and ¢ € R is the aerodynamic
drag coefficient of a rotor. Let i} be the true failure mode at
time ¢, i; be the failure mode that is selected at time 7, and 7 ¢
be the time of failure.
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The system inputs for the nominal model and all failure
models are mapped to a vector of squared rotor speeds, wg =

[w%, el ] € R‘;O, through

vib”1

[”Tf ] =MBFWw,, B=

l . ©
veb6
where v; € {—,+} is the sign of w;.

Assumption 2 (Single Failure Occurrence): We assume
iy =i =0 forr <y At the time of failure i =0 —
iy € {1,...,6} for t > ty. Since our platform is a hexrotor,
we focus on a single actuator failure to ensure the system
retains full controllability. Failure of more than one actuator, in
specific cases, can result in a system that retains controllability.
However, in these configurations, only two of the actuators
would be responsible for generating the total lifting thrust,
with the others providing small correctional forces and torques.
Consequently, due to limited actuator power, the hexrotor
would not be able to maintain altitude.

III. OuTPUT FEEDBACK CONTROL DESIGN

In this section, an output feedback estimation and control
strategy is designed as in [20]. We utilize the same control
and observer design, while extending our previous work to
incorporate a family of EHGOs to estimate not only modeling
error and external disturbances, but errors due to the failure
of any one actuator, as well as enabling the detection of a
failure through the use of the observer estimates. As such, each
observer will correspond to a possible plant configuration, i.e.,
a nominal model and six failure models.

A. Extended High-Gain Observer Design

A family of multi-input multi-output EHGOs is designed to
estimate higher-order states of the error dynamic systems (1)
and (2), and uncertainties arising from modeling error, external
disturbances, and actuator failure [21]. It is shown in [20, 22]
that it is necessary to include actuator dynamics in the multi-
rotor model for EHGO design. For a desired rotor speed, w®,
the actuators can be modeled as a first-order system with time
constant, T,, € R>g, given by 1,w; = (a)des —wj), for j €
{1,...,6}. The actuator dynamics must be included in the
EHGO because in practice 7, and € are of similar magnitude,
so both reside in the same time-scale. These dynamics then
form the input to the EHGO as in [20].

The rotational and translational tracking error dynamics
are combined and the state-space is extended to estimate
disturbance vectors for both subsystems. For the purposes of
writing the observer under the i-th failure mode, we write the
extended system dynamics in the following form

P1=p2

, ur .

Py = —;R3(01) +ge:+0,—p,,

0y = ¢plt, p), )
fl =§27

£ = f(£.01,0)+ GMBF Dl +
;.Efl) l)(t (l))

sy,

where g"'( D= gy S¢, and o) = GMB(FE) — F)e!)
is the error resulting from an incorrect model, i; # ij.
Finally, G = [03x; G(6)] and 0' ) — o, Here, ¢,(t, p) and
’) (¢, g(l)) are unknown functions describing the translational
and rotatlonal disturbance dynamics.
Assumption 3 (Disturbance Dynamics): It is assumed that
@p(t,p) and @ f)(t IS ‘f)) are contlnuous and bounded on any

compact set in the domain of p and g' respectlvely

The observer system is written W1th extended states and
directional squared rotor speeds as the input, wf. . Defining
the following state vectors

oI1. x2= €] €1 ST,
the EHGOs

x1=1[p{ ps x =[x x217,

we can write in a compact form as

X(z) _AX(l) +B[f(X(l) 01 0(11))+G(z)(01)w(1t)] +Hj/(l)

A =cx -1,
®)

where () = [ﬁ;l)T f)él)T OA'S)T gil)T g:(l)T ?g)T] is the

estimate of ) under the model with failure i, and

— 2 2 2 _ 2
A—Gaj:lAj, B—@jlej, C—@jzlcf’ H_®j:1Hj’

03 I3 03 [ 03 ai/el;
Ai=1005|, Bj=|5L|, Hj= @/eh |,
03 03 03 703 (1/3/6313
Ci=[r005], for j € {1,2},
o 2 (ir) ge; — b,
f(/\/(l)70170 )_ () ;l'l ’
SR PO IR
= (i) [—R3(01) ] (1)
G\ = m MBF
@1) 03x1 G(01)

where @ denotes the matrix direct sum, H is designed by
choosing a1, as, @3 € R.g such that the polynomial

s3+alsz+a/2s+oz3, 9)

is Hurwitz [21] and € € R.¢ is a tuning parameter that must
be chosen small enough. In practice, € is tuned empirically to
achieve a balance between convergence rate of the observer
and noise amplification. All EHGO estimates must also be
saturated outside a compact set of interest to avoid peaking,
see Remark 1 in [20].

B. Output Feedback Control

The output feedback controllers are written using the es-
timates from the corresponding EHGO, g?. The family of
translational output feedback controllers, induced by rotational
reference signals and total thrust, become

_ A(i)

D = tan~! , g =o,
D2+ (70 = gp2
A 1 o () m(f” - g)
6;" =tan”! | Ay =
. —8 : cos ¢, cos 0,
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~(0) NON Ot N i ~ (i
where f," = [f" fi7 17 = —y1pt” 32”6 + b,

Here, desired heading, (ﬁﬁi), is set to zero to simplify the
control equations; see [22] for control equations with arbitrary
1//,'). The family of rotational output feedback controllers
become

A (i @) ( = (i
=670 |f, 7.0,,8%)|,

where 7\ = -2\ — p& -

reference signal estimates (¢, t[/ﬁi‘)) are used to esti-
mate 0(") in T ) (see [20] for details). We then arrive at the
family of commanded squared rotor speeds

-f(&

s g). Note that the rotational
(i) é(it)

Q)
D= msF)a®, a®= [”{l)l (10)

Ta

where ()" = ()T((-)(-)7)"! is the minimum energy pseudo-
inverse of the argument.

The rotational closed-loop system under input wgi’) for any
iy, regardless of i}, reduces to the following perturbed linear
system, since the mismatch is captured by ¢ E)

E=Asb+eBi6"), Ag = [—81313 —;gls]’ B = [(;;] b

where

(@)

8V =g, +al) -0 4pi1(6 - &) +Bal6s - &)

+ALD AFD = p£,0,,09) - £(@" ,01,95‘;)1)2.)

The ability to write the mismatched closed-loop system as
(11) means that if € is chosen small enough, the system under
output feedback will recover performance of the desired linear
system, even in the presence of an actuator failure without
requiring a model switch.

Remark 2 (Multiple Possible Recovery Strategies): For the
small constants, €1, e, € R.g, where €1 < €, if we choose
€ € (0,€1) a recovery can be achieved without requiring a
model switch. If we choose € € (€], € ), nominal disturbances
can be compensated, however, the large disturbance, 0'5,2), can
result in large estimation error. Due to practical constraints
on € when it comes to implementation, such as sample rate
and noise, we must choose € € (€1, €). This motivates our
use of multiple models and multiple observers for recovery
(see Theorem 1 for details). Furthermore, we can arrive at
approximate values of € = 0.002 and e = 0.06 through
simulation.

Remark 3 (Domain of Operation): We define the domain of
operation as the region in which singularities are avoided in the
feedback linearizing control design [20]. Since a'f,’L) =0fori=
iy, for any single actuator failure, with € € (0, &) and i; =17,
the closed-loop rotational subsystem becomes the linearized
system (11) with a small perturbation €6, Therefore, the
domain of operation is the same for all i; = i}.

IV. FAILURE RECOVERY STRATEGY

The most common external disturbances experienced by a
multi-rotor during flight are aerodynamic (wind gusts, drag,

etc.), and therefore primarily affect the translational dynam-
ics. During an actuator failure, a large rotational torque is
generated. This large torque appears as a high magnitude
disturbance, (rﬁ,’,), in the rotational dynamics, thus we monitor
the rotational subsystem for actuator failure detection.

For € € (€1,€e2), when i; # iy immediately after failure,
the perturbation, €6 is no longer small, and may make
(11) leave the domain of operation. This behavior can be
identified by monitoring an estimate of the derivative of a
Lyapunov function for the rotational subsystem, using the
method presented in [23]. Therefore we can detect the failure,
and then switch models to recover stability. Defining ¢ as the
time of control switching, we can define a maximum switching
time, t, ., such that f; < ¢, _ ensures recovery from the
failure before (11) leaves the domain of operation (see the
proof of Theorem 1 for an estimate of f5 ).

A. Estimating the Lyapunov Derivative

Since the derivative of the Lyapunov function is not avail-
able, it will be estimated using estimates from the EHGOs,
similar to [23]. Following Assumption 2, the system begins
in the nominal operating regime, i; = 0, therefore only the
nominal Lyapunov function derivative must be estimated

A 2(0)
Ve =€

where PsAg + AL P& =—Is. We use this estimate to test the
following mequahty to detect an actuator failure

Ve < a8
where ag € R.o is a small constant introduced to overcome
the O(e) estimation errors and is tuned empirically through
simulation and experiments. For example, choosing ap too
small would result in detecting false positives, and too large
would increase time until failure detection, potentially past
Lo - Once (14) is violated, a new model must be selected.

TP é(0)+é(0)rp 5(0) (13)

(14)

B. Estimating Disturbance and Failures Simultaneously

Since all disturbance estimates contain any discrepancies
between the modeled response and the response of the physical
system, the total rotational disturbance estimated by the i-th
observer, g‘( D is an estimate of 0'5,1) + ¢ ¢. In order to select
the appropriate model after a failure has been detected using
(14), we utilize the magnitude of the disturbance estimates
from each observer to appropriately select i, = iy as

(15)
Following Assumption 2, (15) 1s a minimization across failure
modes, excluding the nominal model.

V. STABILITY ANALYSIS

Following the stability arguments in [20] and the theoretical
analysis therein, the proposed output feedback control design
presented here meets the same stability guarantees. We can
show that these stability guarantees are also met under actuator
failure without switching models when € € (0, 1), and also
hold for € € (€1, &) so long as i; = ij.
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We must now investigate the stability of the system during
an actuator failure. Define the scaled observer error for the
rotational system, p{¥ = [7]5’) né’) qgl)] e R’ by

2(0) 2
w_&6-6 w_&%-&% o @) _ &0
n - g‘;’: .

1 62 B 2 € s ’]3 = §£+0-m

The entire rotational output feedback closed-loop system can
now be written as the singularly perturbed system

(16a)
(l)([ g‘('))+0'(l>)), (16b)

E=Agf+ 6316“),
Eﬁ(i) = Aq(i) +€ (

where the system dynamics (16a) are the slow variables, the
observer error (16b) are the fast variables, and

03 03
L, B3=]03
03 I

By Assumption 3, ¢ f) (z, g'(')) is continuous and bounded, and
it can be shown that 0'( D is also continuous and bounded, so
we can bound the sum as, go(l)(t g'(l)) +o) <Al

From [20], Af® is L1psch1tz 1‘n £ over the domain of
operation and A f() can be bounded by ||A V|| < €L, ||[n®|],
for the Lipschitz constant, L,. We can write a Lyapunov
function for the scaled observer error system (16b) as

= (’T(i))TPnnm»

—a1lz Iz 03
A=|-mL 0L |, By=
—a3l3 03 03

V,(;) where P, A+ AP, =-Iy. (17)

Lemma 1 (Bounds on Observer Error): Let the observer
error at the time of failure, 7, be n(i)(t r). Then, the observer
error for ¢ >ty can be bounded by

. - K _L(l If)

7@ )] < ((\,VI(]l)(tf) - EE) e e +€—) [+ Amin (P ),

_ Ana (PYAS),
V/lmin(PI]) ’

where Apin() and Apax(+) are the minimum and maximum
eigenvalues of the argument, respectively.

Proof: Taking the Lyapunov function (17) and computing
the derivative with the scaled observer error system (16b)
yields

vy =—(q") Ty
+25(7](i))TP,,( Af 0 + B3 (go(l)(t g‘('))+0'(’)))

/lmax(PI]) 5L1] )
>

Cc = 1 -
/lmax(Pu) /lmin(Pl])

which can be bounded by

EV,(;) < - ‘V(’) +26K\/V,(7 ,

c= 1 _ Amax (Pyy) €Ly, — /lmax(Pn)Aggx
Amax (P7) Amin (P3) ’ \//lmin(Pu) )

Taking W(’) V,(,’), the bound becomes

i7 (i) (1)
W,7 < —CW,] + €K.

By the Comparison Lemma [24, Lemma 3.4], W,(f) (t) is upper
bounded by

W,(Ii)(t) < (W,(Ii)(lf) - ef) e ety 4 ef,
c c

leading to the bound on scaled observer error

I O < Wi (0)/yf Amin (P
|
We can now write (12) as
8 =i m)") + b () +m) + 45D, (18)
which can be bounded in terms of observer error as
e < 8 (1) = (B +e(Ba+ L) + D D). (19)

Lemma 1 shows that estimation error, n(i), converges to
an O(EAE;;X) neighborhood of the origin within O(e) time.
Actuator failure is significantly more dynamic than external

disturbance, i.e., g f is relatively small as compared with 0'(’) .

Thus, Afﬁ’ax < Amax for i # iy, since 0'5,1) = 0. Therefore, as

stated in Remark 2, € can be chosen larger for the correct
model than for any incorrect model, motivating the use of
multiple models to reduce the total system disturbance.

In order to select the appropriate model after failure, as long

as o-fn), Ss» and ”qgi)(ts)” satisfy,

o 2 2l ol + a0

for each i € {1,...,6}\ {iy}, the observer estimate, g( will
be the smallest in magmtude at 14, therefore, (15) w111 select
the appropriate model.

Proposition 1 (Correct Model Selection): Under the control
input, ws’) the famlly of observers (8) will produce distur-
bance estimates, g‘ , for i € {0,...,6}. If (rm , §¢» and

Hn;)(ts)” satisfy (20) the estimate §‘( ) will be the smallest

in magnitude and (15) will select the correct model.
Proof: Suppose the modeling and external disturbances,
§ ¢, the disturbance resulting from incorrect model selection,

O'SL), 1 @ (ts)|| satisfy (20), then

(20)

2'(5!) _S'§+0';(¢i) 7];!)

> ol - (s el + |I113’)|I)
(i) c(i?)

i)
winZ 0, (lsell+1n51) = ¢ —nl S
where the last equality holds since 0'( )= 0. Thus, the
estimated disturbance, g( ), will be the smallest in magnitude
at 4, and the solution to (15) will be the correct model. M

Remark 4 (Minimum Switching Tlme) At ty, ”I]3)(l‘f)“
may be large, but will decay to an O(GAm dx) neighborhood of
the origin in O(e€) time. Therefore, there is some O(€) time
we must wait to switch for the observer estimates to converge.
Furthermore, |’n§l’)(t)“ will decay to an O(eA,(,i;})() neighbor-
&l )|| as compared with
the other model estimates, since Af;;i < A},le.

Theorem 1 (Stability During Actuator Failure): Let the state
of the system (11) at the time of failure, 77, be such that
Ve(ty) < a for some sufficiently small a > 0. Then, there exist
€1, €& > 0, and maximum switching time, t5, > t7, such that
the state, &, will remain within the domain of operation during
the failure transient, and will recover tracking performance
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i) after the transient, when € € (0, €1);
ii) if the correct model, i; = i, is selected before f
when € € (€1, €).
Proof: A common Lyapunov function, V¢, for the feed-
back linearized rotational subsystem for each i € {0,...,6}
and € — 0 is given by

Ve =§TPe§, where PeAg + AL Pe =~ (21)

Let Qs = {Vg < cg} be an estimate of the domain of
operation of the controller designed in Section III-B for
cg € Ry (see [20] for more details). For simplicity, we use
the estimate of the domain of operation for € — 0, wherein
the states and disturbances are estimated perfectly. For small
€ > 0, the obtained domain of operation can be shrunk to
Q’§ ={Ve < c'g}, with c'§ < cg, to incorporate the effect of
estimation error [25].

Using arguments similar to singular perturbation [24, The-
orem 11.4] and non-vanishing perturbation [24, Lemma 9.2],
it can be shown that (16) converges to an O(EA,(;;X) neigh-
borhood of the origin for € € (0,&). For € € (0,€)
the neighborhood O(EA,(;ZIX) is small enough for reasonable
tracking performance. For € € (€}, €), the large estimation
error can make the trajectory leave the domain of operation
and the system may diverge, thus requiring a model switch.

Taking the Lyapunov function (21), and computing its
derivative with the rotational closed-loop system (11) yields

Ve=—£T6+267PseB 8. (22)

By the change of variables Ws = /Vg, and the arguments
in the proof of Lemma I, we can immediately upper bound

We (1) by

—(t-tf) —(t-1)

t
W‘f(tf)ez/lmax(f’_g) +/ ez/lmaX(Pg) /lmax(Pf)
: .

V/lmin(P & )
Let ¢ = ¢, be the unique solution to the equation
/lmax(P '3 )

VAmin(Pg)

The theorem follows immediately from the definition of #5 .
|

6$3X(7)d7.

l=ty) ~(1=7)

t
,\/EeZ/lmax(Pé’:) +/ eZ/Imax(Pg)
ty

6$§X(1)d7 =cg.

VI. SIMULATION

The proposed method is simulated for a hexrotor system
tracking a trajectory generated by a 9-th order polynomial to
ensure sufficient smoothness, shown in Fig. 2. The system
is simulated in discrete-time with sample time, 7 = 0.0ls,
while using position and orientation measurements with added
white Gaussian noise to replicate the experimental system.
The hexrotor is able to track the reference trajectory, suffer
an actuator failure at 14 seconds into flight, and recover to
resume tracking the trajectory after switching controllers. The
system is simulated with large external rotational disturbances,
o¢ = 12[sin(r) cos(z) sin(7)]T, and translational distur-
bances, 0, = [sin(z) cos(r) sin(f)]".

To facilitate tuning the parameters, for example €, ao,
and control gains, we use the same parameters in simulation
as in the experiment. The parameters are given in Table I,

TABLE 1
SYSTEM PARAMETERS USED IN SIMULATION AND EXPERIMENT.
€ b* r c v | Bi 431 3

0.025 | 1.8182¢5 | 0275m | 0.1 | 2 | 40 | 3 0.6
Tm b~ m a | 2 | P | @ T
0.050 | 3.6364c-6 | 1.82dkg | 2 | 15| 20 | 3 | 0.01s
é 80+ =(1) ! A
= 07—l ! I | / —
E”O’—H%’&;II . 1
= N

o 607 Hc&)ll | 1

< af

E 50’_—\\2‘%)“ ! 1
£40f—\\<‘§2|l | \
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Fig. 1. Norm of disturbance estimates for all failure case models and
Lyapunov derivative estimate during a simulated in-flight actuator failure.

and the inertia matrix J is a diagonal matrix with entries
{0.0228,0.0241,0.0446} kg m>. )

The estimated Lyapunov function derivative, Vg, 1S moni-
tored to determine when the failure occurs. The magnitudes of
the estimated disturbances for all six failure modes, as well as
the Lyapunov derivative estimate, are shown in Fig. 1. At the
time of detection, 2‘(4> has the smallest magnitude, indicating
a failure of actuator four. The dashed vertical line in Fig. 1
shows the time when a failure is induced, 77, and the solid
vertical line shows when the switch occurs, f;.

Fig. 2 shows the hexrotor briefly breaking from tracking
the reference trajectory as the failure occurs at 77, and after

T
2r | q
St | z ||
] | T,
0 : ‘ L. ‘ -y
0 5 10 15 20 25
1F ]
. |
Eo05ft q —Y |
- —,
I I
0 L. ‘ ]
0 5 10 15 20 25
0 T
. |
E02r I |
: i\ ;
-04¢ . . X~ . —— Ul
0 5 10 15 20 25

time (s)

Fig. 2. Hexrotor position tracking recovery after simulated in-flight actuator
failure using multiple models to recover performance.



BOSS AND SRIVASTAVA: IN-FLIGHT ACTUATOR FAILURE RECOVERY OF A HEXROTOR 7

1 1
Zo08 M\/b\/\'“\/\ 508
=06 =06
0.4 0.4
1 2 3 4
1 1
:3'/ 0.8 :E: 0.8
~ 06 ~ 06
0.4 0.4
1 2 3 4
TNA 1
08 So0s8
~ 06 ~ 06
0.4 0.4
1 2 3 4 1 2 3 4
time (s) time (s)

Fig. 3. Health estimate of each rotor as estimated using the Extended Kalman
Filter method.

the controller is switched, the hexrotor successfully resumes
tracking the trajectory. The tracking performance is slightly
degraded due to the large external disturbances present in this
simulation, however, a successful recovery is still achieved.

A potential problem with not considering disturbance is
the false identification of failures. We illustrate this with the
rotor health estimation approach [11]. This method utilizes
an Extended Kalman Filter which estimates the health of
each rotor, hj, for j € {1,...,6}. Utilizing the same dy-
namics and a detection cutoff on the health of each rotor
of 0.5, as was shown to work well experimentally in [11],
we simulate this method. The same flight parameters and
large disturbances are again applied to the system with the
EHGO based failure detection method replaced by the EKF
method. The EKF method does not consider disturbances,
and Fig. 3 shows that a failure of actuator two is falsely
detected just under two seconds into flight. In principle, the
EKEF could be augmented with a disturbance model to improve
this performance, however, that would require a model of the
expected disturbances [19]. The EHGO can accommodate a
wide range of disturbances with unknown dynamics. We also
investigated lowering the health cutoff threshold below 0.5,
however, this results in longer detection times. In summary,
depending on flight conditions, considering disturbance in the
failure recovery strategy becomes important.

VII. EXPERIMENTAL VALIDATION

The proposed multiple-model estimation and control
method is implemented on an experimental platform to val-
idate performance and show recovery from an actuator failure
during flight. The experimental platform is built on a 550mm
hexrotor frame with 920kV motors and 10x4.5 carbon fiber
rotors. Six 35A ESCs with bidirectional capability are used,
and the system is powered by a 5000mAh 4s LiPo battery.

The control method is implemented on a Pixhawk 4 FMU in
discrete time at 100Hz using Mathworks Simulink through the
PX4 Autopilots Support from Embedded Coder package. All
sensing and computation is done on-board the vehicle, with

270 ‘ I
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2 60 Ikl : /
L o .
27— !
= js) I
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2 o IR ,
7] < ~(5
I e (150 ~
¢ 5ol fo) ! i
g 30 [l |
e - =ty I
R : N\
D Ll “ Il Il Il Il Il
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Fig. 4. Norm of disturbance estimates for all failure case models and

Lyapunov derivative estimate during an experimental in-flight actuator failure.

the exception of utilizing translational position data from a
Vicon motion capture system in lieu of GPS.

Once the failure is detected and the controller is switched,
the rotor opposite the failed rotor will be commanded to re-
verse directions to apply a large downward force to counteract
the roll and pitch errors. Once the system returns to level flight,
using the pseudo-inverse to compute desired rotor speeds
results in the opposite rotor being commanded to apply small
forces in either direction, thus requiring the rotor to change
directions rapidly. During experimental testing it became clear
that the opposite rotor could not change directions quickly
enough to stabilize the system. To restrict the opposite rotor
to only generate downward force for a detected failure, i, we
impose force constraints, fn(lti;lj ), fn(];,{ ) < 0 for the opposite
rotor, j, defined by

1<i<3,
4<i<6,

. )i+3,
T=)i-s,
and fn(ll;;lj ), fn(]la,{ ) > 0 for all remaining j. These constraints
ensure only a single directional change will be commanded
when the model is switched. Let f~ be the solution to the fol-
lowing optimization problem with above discussed constraints

under the selected model i,
)
ij) o =
f min < fi,j <

where 4 € R.( is chosen to be large to ensure we achieve
applied forces and torques as close as possible to the desired
") We also take advantage of the diagonal weighting matrix,
W, € R4, to prioritize the total thrust and the roll and pitch
torques, allowing for lower performance in yaw tracking since
the former are integral for achieving a successful recovery. The
additional Hf”z term is used to simultaneously select a solution
with lower energy. The solution, f*, is then mapped to squared
rotor speeds through the inverse of (3). The optimization
problem is solved by the active-set algorithm proposed in [26].

minimize (H}”2 +2 HW” (MF F — )
f

(i.J)

subject to han s
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Fig. 5. Hexrotor position tracking recovery after experimental in-flight
actuator failure.

The experimental system is flown along the same trajectory
as in simulation and a failure of actuator four is induced
algorithmically. The norm of the experimental disturbance
estimates for each failure model, and the Lyapunov derivative
estimate, are shown in Fig. 4. The dashed vertical line in Fig.
4 corresponds to the time when a failure is induced, 77, and
the solid vertical line shows when the detection and switch
occurs, fg. The correct model for a failure of actuator four
is selected and the resulting tracking performance before and
after recovery are shown in Fig. 5. The tracking performance
after failure is slightly degraded due to the use of non-ideal
control inputs, f*. A video of the experiments can be found
at https://youtu.be/8fQMrca490s

VIII. CONCLUSIONS AND FUTURE WORK

We studied a trajectory tracking problem for a hexrotor in the
presence of modeling error and external disturbances, while si-
multaneously enabling in-flight recovery of a complete actuator
failure. A multiple-model, multiple EHGO based output feedback
control framework is used to enable this extended functionality. The
framework is rigorously analyzed to provide stability guarantees and
bounds on the maximum switching time for recovery. Simulation
and experimental flight data show the successful application of the
method on a physical system.

Future work includes the extension to multiple failures for general
n-rotors. Assuming that system controllability is retained despite
multiple failures, the proposed approach could be applied in an
hierarchical way, wherein a new set of models are considered after
each failure detection. Analysis of such an approach under mutual
interactions of multiple failures is an interesting direction of future
investigation.
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