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Abstract

Monitoring the temporal variation of solute concentrations in streams at high tempo-

ral frequency can play an important role in understanding the hydrological and bio-

geochemical behaviour of catchments. UV–visible spectrometry is a relatively

inexpensive and easily used tool to infer those concentrations in streams at high tem-

poral resolution. However, it is not yet clear which solutes can be modelled with such

an in-situ sensor. Here, we installed a UV–visible spectrometer probe (200–750 nm)

in a high-altitude tropical Páramo stream to record the wavelength absorbance at a

5-min temporal resolution. For calibration, we simultaneously sampled stream water

at a 4-h frequency from February 2018 to March 2019 for subsequent laboratory

analysis. Absorbance spectra and laboratory-determined solute concentrations were

used to identify the best calibration method and to determine which solute concen-

trations can be effectively inferred using in situ spectrometry through the evaluation

of six calibration methods of different mathematical complexity. Based on the Nash–

Sutcliffe efficiency (NSE) and Akaike information criterion metrics, our results suggest

that multivariate methods always outperformed simpler strategies to infer solute

concentrations. Eleven out of 21 studied solutes (Al, DOC, Ca, Cu, K, Mg, N, Na, Rb,

Si and Sr) were successfully calibrated (NSE >0.50) and could be inferred using UV–

visible spectrometry even with a reduced daily sampling frequency. It is worth noting

that most calibrated solutes were correlated with wavelengths (WLs) in the low range

of the spectra (i.e., UV range) and showed relatively good correlation with DOC. The

latter suggests that estimation of metal concentrations could be possible in other

streams with a high organic load (e.g., peat dominated catchments). In situ operation

of spectrometers to monitor water quality parameters at high temporal frequency

(sub-hourly) can enhance the protection of human water supplies and aquatic ecosys-

tems as well as providing information for assessing catchment hydrological

functioning.
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1 | INTRODUCTION

Monitoring the temporal variation of solutes (nutrients and metals) in

streamflow plays an important role in understanding the hydrological

and biogeochemical behaviour of catchments when used as tracers in

hydro-geochemical models (Birkel et al., 2017; Correa et al., 2019;

McGuire & McDonnell, 2015). Observations of these solutes as water

quality parameters are also fundamental to investigate the dynamics

of instream biogeochemical processes, as well as hydrological connec-

tivity in ecosystems (Lloyd et al., 2016; McDowell & Asbury, 1994;

McGuire & McDonnell, 2010). Understanding these processes plays a

critical role in human and ecosystem health, particularly when related

to the use of water for human consumption (Kaushal et al., 2018; Lin

et al., 2002; Nimick et al., 2003) and the protection and preservation

of aquatic habits (Schmutz & Sendzimir, 2018; Soulsby et al., 2016).

Nevertheless, despite the advantages of monitoring nutrients and

metals in stream water, their application at high temporal frequency

and over longer periods in hydrological, biogeochemical, and water

quality studies is still limited to selected experimental sites (Green

et al., 2020; Heathwaite & Bieroza, 2021; Vorobyev et al., 2019;

Wymore et al., 2018). This mainly arises due to the high financial cost

associated with field sampling and laboratory analyses of water sam-

ples. These constraints usually limit the monitoring of solute concen-

trations at most sites to a few times during the year or specific

streamflow conditions, hampering the capacity to understand in-

stream changes in hydrological and biogeochemical conditions, and

medium- to long-term changes driven by the effects of global environ-

mental stressors such as changes in land use and climate.

There is a growing interest in exploring techniques to estimate

stream water solute concentrations at a high temporal frequency and

over longer periods (Cook et al., 2017; Etheridge et al., 2014;

Ruhala & Zarnetske, 2017; Thomas & Causse, 2017). Among the tech-

niques used for monitoring solute concentration in situ and in-stream

are ion chromatography (IC), which is only used under controlled con-

ditions (von Freyberg et al., 2017), and UV–visible spectrometry.

Determining the concentrations of metals represents a particular chal-

lenge as their measurement requires the use of expensive com-

plexometry or reagents making them unsustainable long-term

(Kulkarni et al., 2015; Xu et al., 2014), or IC (von Freyberg

et al., 2017), which in remote areas is not feasible to maintain. In con-

trast, UV–visible spectrometry can be relatively easily deployed and

operated anywhere for long-term and high-resolution monitoring.

UV–visible spectrometry has been previously used to estimate in situ

stream water nutrient concentrations such as carbon, nitrogen, and

phosphorus by various authors (Waterloo et al. (2006); Koehler

et al. (2009); Avagyan et al. (2014); Etheridge et al. (2014); Lopez-

Kleine and Torres (2014); Huebsch et al. (2015); Cook et al. (2017);

Ruhala and Zarnetske (2017).

UV–visible spectrometry allows inferring the concentration of

solutes with molecular structures known to absorb light at specific

wavelengths, such as the NO3
� ion, that can require site-specific cor-

rections to obtain maximum accuracy (e.g., Snyder et al., 2018).

Although UV–visible sensors are widely used to estimate DOC, DOM,

and NO3
� in situ, there are still considerable uncertainties regarding

their use to estimate other solute concentrations (Huebsch

et al., 2015; Ruhala & Zarnetske, 2017; Snyder et al., 2018; Thomas &

Burgess, 2007). It is unclear whether a spectrometer can be used

more generally under different environmental conditions and to esti-

mate a broad range of solutes for which no specific absorption wave-

length is known (McIntyre et al., 1982). Despite the advantages of

optical techniques (in particular UV–visible spectrometry), we are not

aware of studies that have inferred metal concentrations in situ using

spectrometry. Prior studies analysing metals through spectrometry

were carried out under controlled conditions in the laboratory apply-

ing a reagent to identify the solute of interest (Aguerssif et al., 2008;

Garcia Rodriguez et al., 1998; Kulkarni et al., 2015; Zhou et al., 2019).

Hence, there is a need to explore methods that use spectrometry to

infer the concentration of a variety of metals and nutrients in situ with

relatively low maintenance costs.

Past studies proposed different calibration methods using UV–

visible spectrometry (Cook et al., 2017; Garcia Rodriguez et al., 1998;

Thomas & Burgess, 2007; Wei et al., 2018). The simplest approach

uses a single absorbance at a determined wavelength. However, such

simple approaches may lose important information from analysing

wavelengths of suspended particles or other types of interferences in

the water (Shi et al., 2020, 2021; Snyder et al., 2018). More complex

calibration methods are based on multivariate statistics that consider

all or selected information recorded in the UV–visible spectrum

(e.g., the 5–10 most important WLs using the PLS method used by

manufacturers for calibration [Langergraber et al., 2003]). Multivariate

methods considering a larger amount of information from the UV–

visible spectrum are thus likely to take into account the aforemen-

tioned interferences. Simple calibration methods do not require much

mathematical computation, but may not be as accurate as multivariate

methods (Carré et al., 2017; Peacock et al., 2014; Thomas &

Burgess, 2007; van den Broeke, 2007). Although different calibration

methods were previously tested and compared, a more complete

comparison of the spectrum range for each method is still needed to

enhance our ability to conduct in situ monitoring of stream water sol-

utes at high temporal frequency using spectrometry.

The purpose of this scientific briefing is to analyse and compare

different calibration methods for inferring in situ solute concentra-

tions (nutrients and metals) using data from a UV–visible spectrome-

ter at an experimental catchment in a high-elevation Páramo

ecosystem that is representative of catchments with organic-rich

stream waters in other climates and geomorphic settings.

2 | MATERIALS AND METHODS

2.1 | Study site

The study was conducted at the Zhurucay Ecohydrological Observa-

tory (Figure 1), southwest of the city of Cuenca in southern Ecuador

(3�40S, 79�140W). The observatory is on the west slope of the Andean

mountain range at 3400–3900 m a.s.l. The climate in the study region
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is mainly influenced by air masses originating from the Amazon forest

(Esquivel-Hernández et al., 2019). Mean annual temperature and pre-

cipitation during the period December 2017 to March 2019 were

6.0�C and 1300 mm at 3779 m a.s.l., respectively. The maximum

observed temperature was 15.9�C and the minimum �2.4�C (C�ordova

et al., 2015). The study catchment is part of the observatory with a

drainage area of 3.28 km2 and ranges from 3676 to 3900 m a.s.l. with

an average slope of 18%. The catchment geology is composed of the

Quimsacocha formation and mostly basaltic flows of plagioclases,

feldspars, and andesitic pyroclastic Miocene or younger rocks in turn

deposited on Palaeozoic and Mesozoic rocks (Beate, 1999). The

catchment represents typical Páramo (tropical alpine) ecosystem char-

acteristics and is mainly covered with tussock grasses (Calamagrostis

sp. and Festuca sp.) covering Andosols (74% of the catchment) on the

hillslopes. Cushion plants cover Histosols (22% of the catchment) in

the riparian areas, and in some plains within the catchment (Mosquera

et al., 2015). A small area (4%) is covered with Leptosols. Andosols

and Histosols are organic-rich soils with high acidity (e.g., pH = 4.7)

(Quichimbo et al., 2012). Extensive volcanic ash deposits result in high

concentrations of aluminium, iron, and other metals in the soil

(Buytaert, Sevink, et al., 2005; Buytaert, Wyseure, et al., 2005), which

are probably continuously exported to the streams (Correa

et al., 2017, 2019). These metals are associated with organic compo-

nents forming organo-metallic complexes in the soil and are then

released to the streams depending on the hydrometeorological condi-

tions (Buytaert, Sevink, et al., 2005; Correa et al., 2019; Pesántez

et al., 2018).

2.2 | In situ monitoring and water sampling

We operated a UV–visible (200–750 nm) Spectrometer Probe V2

(Spectrolyser, s::can Messtechnik GmbH, Vienna, Austria) in the

stream at the catchment outlet (Figure 1) to record the wavelength

absorbance at a 5-min temporal resolution from February 2018 to

March 2019. In order to record reliable wavelength measurements a

cleaning system with a Compressor V4.0 (Spectrolyser, s::can

Messtechnik GmbH, Vienna, Austria) was installed together with the

spectrometer and activated every 15 min. In addition, manual cleaning

of the monitored stream section and the probe was carried out twice

a week to avoid sediment and algae accumulation. A time series analy-

sis was performed to identify inconsistencies in the data resulting

from the cleaning process (as a result 20% of the data was not

included in the analysis). A Conductivity-Pressure Smart Sensor

F IGURE 1 (a) Soil type map of the Zhurucay Ecohydrological Observatory showing the position of the spectrometer installed,
(b) spectrometer installed in the river and (c) location of the observatory within Ecuador
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(CT2X, Seametrics, Washington) was used to measure water level and

electrical conductivity (EC) data. Water level data were converted into

discharge using the Kindsvater–Shen equations (U.S. Bureau of

Reclamation, 2001) using the salt dilution method (Moore, 2004).

Samples for laboratory analyses were collected using a Portable

Discrete Water Sampler (PVS4120D, Campbell Scientific, Inc., Utah;

4–6-h frequency) at the same site. The samples were taken during

March 2018 to March 2019 for DOC and TNb and March 2018 to

September 2019 for the rest of solutes. Samples from the auto-

sampler were retrieved twice a week. The samples were filtered using

0.45 μm polypropylene membrane filters (Puradisc 25PP Whatman,

Inc., Clifton, NJ) for metals and dissolved organic carbon. An extra

unfiltered sample for total nitrogen (TNb) was taken. All the samples

were stored in high-density polyethylene bottles which were washed

before sampling in a thermodisinfection washer (GW1160, Smeg S.p.

A, Guastalla [RE], Italy) and rinsed three times with type II distilled

water and subsequently three times with type I distilled water. The

bottles for metal analysis were washed in an acid washing device

(traceClean, Milestone) using purified nitric acid. Water samples for

metal analyses were acidified with ultrapurified nitric acid (pH < 2) on

the same sampling collection day to avoid trace metal precipitation

and adsorption. All samples were analysed within 2 months of field

sampling. Water samples for DOC and TNb analysis were analysed

the day after sampling or stored in the freezer (<�4�C) until analysis.

2.3 | Laboratory analyses

We determined solute concentrations – to be later compared to UV–

visible absorbance inferred ones – in approximately 1800 water sam-

ples for carbon and nitrogen and around 1150 samples for the rest of

the solutes (i.e., the complete dataset) at the Water and Soils Chemi-

cal Analysis Laboratory of the Department of Water Resources and

Environmental Sciences of the University of Cuenca. Nineteen of the

solutes targeted in this study (Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg,

Na, Pb, Rb, Si, Sr, V, Y, and Zn) were analysed with an ICP-MS Perkin

Elmer 350X (Shelton, CT). All these analyses used calibration stan-

dards of Inorganic Venture, Inc., ISO 9001 registered and ISO 17025

accredited. We performed five calibration curves, each with six stan-

dard dilutions, prepared by weight/weight dilutions in Type I distilled

water. Each calibration curve was used for five different groups of

targeted compounds based on the range of concentrations of each

group of solutes. This was done to avoid interferences between the

metals due to their concentration ranges from mg/L to ng/L.

Dissolved organic carbon (DOC), measured as non-purgeable

organic carbon (NPOC), and total nitrogen (TNb) concentrations were

determined by combustion using a Vario TOC cube (Elementar,

Germany). The standards were Potassium hydrogen phthalate BioXtra

≥99.95% (Sigma-Aldrich, MO) for NPOC, and Sodium Nitrate

ReagentPlus ≥99.0% (Sigma-Aldrich, MO) and Ammonium Chloride

≥99.5% (VWR Analytical, PA) for TNb.

In all the analyses, the Pearson coefficient (r) of the calibration

curves must always be greater than 0.99 to guarantee accuracy. The

method detection limit (DL) was calculated as three times the stan-

dard deviation of the blank (Ellison & Williams, 2012). All the results

obtained are the average of three repeated analyses. QA and QC

analysis were performed every 10 samples using two standard dilu-

tions for metals and one for NPOC and TNb. The acceptance

criteria (accuracy) were: less than 16% of the relative standard devi-

ation in mg/L, less than 45% in μg/L, and less than 60% in ng/L,

according to the Horwitz equation (Thompson, 2004). If these

criteria were not met for a certain interval, the corresponding sam-

ples were reanalyzed.

2.4 | Multi-solute calibration methods

To determine the stream water solutes that could be inferred using

UV–visible spectrometry, we compared solute concentrations esti-

mated using this technique against those determined for the 4-h field

collected samples via laboratory. To infer solute concentrations, we

used data sets for each solute (WLs vs. laboratory-determined con-

centrations for each solute) after quality control (due to the cleaning

processes of the probe, system failures, or any problems related to

storage, handling or analysis of the samples). Thus, we used 1571

observations for DOC and N, 784 observations for Al, and around

1100 observations for the rest of the solutes. Calibration of the UV–

visible spectrometry based concentrations was conducted using dif-

ferent methods. As an initial inspection of the spectral behaviour, the

entire wavelength (WL) absorbance range (200–750 nm) provided by

the probe was tested at 2.5 nm intervals. The spectra (in the UV–

visible range) recorded at the exact time of sample collection were

compared against the laboratory-determined concentration of each

solute in a simple linear regression analysis. This allowed us to identify

the optimal WLs or peaks (those with the highest R2) and the range of

optimal WLs (‘optimal ranges’) in the spectra in which some of the

variance (R2 > 0.15) in the solute concentrations was explained by the

absorbance at the WL or WLs analysed (Falk & Miller, 1992; Rights &

Sterba, 2019).

We then divided each solute data set into calibration and valida-

tion subsets. These data sets were divided into six subsets and we

randomly selected a 30% sample of each of them to compose the vali-

dation subset (Arsenault et al., 2018; Fernandez-Palomino

et al., 2020; Tantithamthavorn et al., 2017). We used the dplyr pack-

age (Wickham et al., 2020) of the R statistical language (R Core

Team, 2020) for subsetting and random sampling. Validation data

were used to estimate the prediction error after calibration. The

remaining 70% of the data was used for evaluating direct and indirect

calibration methods to find the most suitable one for inferring the

concentrations of each solute (for calibration and validation time

series please refer to Appendix S2 and S3):

1. Direct calibration methods used the absorbance at one or more

WLs directly against the laboratory-measured concentrations.

2. Indirect calibration methods were based on dimension reduction

or multivariate statistics.
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The direct methods included the single wavelength calibration,

the ratio calibration, and the area under the spectra calibration. The

identified optimal WL was tested against their respective solute con-

centrations as the single WL calibration method. The absorbance

ratios between all possible pairs of WLs absorbance (each 2.5 nm

within the whole measurement range of the spectrometer) were

tested against each set of solute concentrations as the ratio WL

method (Thomas & Burgess, 2007). The area under the UV–visible

spectra provided by the sensor was used as a combination of all the

WL absorbance values to infer the solute concentrations (Thomas &

Burgess, 2007; Wang & Hsieh, 2001).

The indirect or multivariate methods included the principal com-

ponent regression method (hereafter referred to as PCR) and the par-

tial least squares regression method (hereafter referred to as PLSR).

For these methods we used all the absorbance values at each WL

recorded in the UV–Vis range to infer solute concentrations. Both

methods are based on dimension reduction of the explanatory vari-

ables (spectral absorbance reduction) through Principal Component

Analysis (PCA). The main difference is that the PLSR method takes

into account the response variable (observed data) when maximizing

the criteria for the dimensionality reduction, while the PCR maximizes

the criteria extracting the most relevant information from the explana-

tory variables without taking into account the relationship between

the predictive variables (absorbance in this case) with the response

variable (Singh & Sarkar, 2018). The PCR and PLSR methods have

been shown to improve the prediction estimation of water samples

with interferences (e.g., in situ stream water samples). The improve-

ment is attributed to the simultaneous use of different spectra WLs

absorbance (Geladi & Kowalski, 1986; Haaland & Thomas, 1988;

Olivieri, 2018). These calculations were performed using the pls R

package (Mevik et al., 2020).

2.5 | Multi-solute calibration model performance

Three quantitative metrics were applied to evaluate the performance

of the aforementioned methods in calibration and validation and to

objectively select the best performing and most parsimonious model:

Nash–Sutcliffe efficiency in calibration (NSEc) and validation (NSEv;

Nash & Sutcliffe, 1970); normalized root mean square error in calibra-

tion (nRMSEc) and validation (nRMSEv); and Akaike's Information Cri-

terion in calibration (AICc) and validation (AICv; Akaike, 1974). Use of

nRMSE normalization around the mean concentration was chosen to

avoid bias among solutes because of the different concentration

ranges or scales. A nRMSE closer to zero indicates a better model fit.

AIC represents the level of model parsimoniousness aiding model

selection, as it penalizes the number of parameters used. A lower AIC

value indicates the most parsimonious model. The NSE was used to

determine the solutes that can be adequately inferred using UV–

visible spectrometry. NSE values >0.65 were considered as a good fit

and NSE > 0.50 as an acceptable fit to the laboratory-measured con-

centrations (Moriasi et al., 2007). For our purpose, we accepted a cali-

bration method as reasonable for NSE > 0.50.

In order to evaluate the effect of the sampling resolution to infer

solute concentrations we calibrated and evaluated all the models

using five data sets with different ‘sampling’ resolutions. The resulting

paired data sets included: two samples per day (�527 observations

for DOC and N, 264 for Al and �413 for the rest of solutes), one sam-

ple per day (�261 observations for DOC and N, 132 for Al and �206

for the rest of solutes), two samples per week (�74 observations for

DOC and N, 39 for Al and �60 for the rest of solutes), one sample per

week (�38 observations for DOC and N, 21 for Al and �31 for the

rest of solutes), and a biweekly sample (�18 observations for DOC

and N, 10 for Al and �15 for the rest of solutes).

Spearman correlation analysis was used to identify relationships

among the laboratory-determined concentrations of the studied sol-

utes. Relationships among solutes could identify co-linear solutes as

potential proxies (predictors) of the concentrations of other ones. A k-

means cluster method was used to order the solutes that were most

related to each other using the corrplot R package (Wei &

Simko, 2017). Finally, we tested different regression types to account

for potentially strong linear and/or non-linear relationships between

laboratory determined DOC concentrations and the laboratory deter-

mined concentrations of the rest of solutes. This analysis was carried

out to evaluate whether DOC laboratory-determined concentrations

could be used as a surrogate to calibrate other solute concentrations

without the need of the full WL spectra.

3 | RESULTS

3.1 | Analysing absorbance against solute
concentrations

Several of the analysed solutes showed a relationship between

laboratory-determined concentrations and specific WLs (Figure 2).

The solutes showing the highest R2 values (Ca, Mg, Na, Si, and Sr;

0.40 < R2 < .62) exhibited peak absorbance values at low WL values,

generally between 200 and 210 nm. In addition, some solutes pres-

ented the highest R2 values (0.62 for Al, 0.74 for DOC, and 0.63 for

Cu) at higher WL values (230 nm for Al and DOC and 352.5 nm for

Cu). This showed the importance of the UV range (200–400 nm) mea-

sured by the spectrometer for calibration. Only As, B, Fe, and V had

peaks at longer WL values (720, 557.5, 527.5, and 720 nm respec-

tively). However, their R2 values were the lowest of the analysed sol-

utes (R2 < 0.18).

3.2 | Multi-solute calibration performance

3.2.1 | Direct solute calibration methods

Applying a simple linear regression model, DOC (NSEc = 0.74;

NSEv = 0.70; WL = 230), showed a good fit (NSE ≥ 0.65) between

the observed and modelled concentrations in calibration and valida-

tion (Figure 3 and Table 1). Al (NSEc = 0.62; NSEv = 0.58;
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WL = 230 nm), Cu (NSEc = 0.63; NSEv = 0.65; WL = 352.5 nm), Si

(NSEc = 0.56; NSEv = 0.60; WL = 210 nm), and Na (NSEc = 0.54;

NSEv = 0.51; WL = 207.5 nm) gave an acceptable fit

(i.e., 0.50 < NSE < 0.65) in calibration and validation. For the other

solutes, the NSE was below 0.50 and considered not sufficient to be

calibrated with the single WL method. For the solutes that can be cali-

brated using this method the nRMSE was between 20 and 33% in cal-

ibration and validation, respectively (Figure 3).

The results of the ratio method were similar to those obtained

with the singleWL method (Table 1). DOC (NSEc= 0.73; NSEv= 0.75;

ratio WL = 210 / 202.5 nm) and Si (NSEc = 0.76; NSEv = 0.72; WL

ratio 200/210 nm) presented a good fit. Likewise, Cu, Mg, Na, Rb, Sr,

and Si had an acceptable fit. The NSEs of Mg, Rb, and Sr increased in

calibration and validation from non-acceptable (NSE < 0.50) using the

single WL methods to acceptable (0.53 < NSE <0.63) using the ratio

method (Table 1). These ratio method results are in accordance with

the single WL method and with the spectra behaviour related to the

solutes (Section 3.1.) that showed a preference for the lower WLs.

The nRMSE decreased by around 2.2% compared to the single WL

method for As, B, Ba, Ca, Cd, Cr, K, Mg, N, Rb, Si, Sr, V and Zn, and

increased for Al, DOC, Cu, Na, Pb and by around 1.6% (Figure 3). The

last direct method used was the area under the spectra. Figure 3 also

shows that the area under the spectra method reported similar NSE

values compared to the single WL and ratio methods. The errors were

also similar in relation to the other direct calibration methods.

The AIC values in both calibration and validation (Figure 3e–f)

mostly coincided with the trends in NSE and nRMSE values for all

direct methods, especially for those in which the calibration was pos-

sible. The AIC values of the single WL and ratio methods were higher

(indicating less parsimoniousness) compared to the area under the

spectra method. The results from the single wavelength and the ratio

method showed similar AIC values.

3.2.2 | Indirect solute calibration methods

The indirect or multivariate PCR and PLSR methods were used to cali-

brate solute concentrations using spectrometry. The PCR showed an

F IGURE 2 Coefficient of determination (R2) variation between solute concentrations and absorbance at each wavelength (WL) analysed in
the UV–visible spectra range. The inset shows the peak R2 for the WL with the best correlation between solute concentration and absorbance
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improvement in the NSE and nRMSE compared to the direct methods

for the calibration and validation datasets. Nevertheless, the improve-

ment was not sufficient to infer the concentrations of additional sol-

utes than those found with the direct methods (Figure 3a–d).

Use of PLSR improved the NSE compared to PCR for all solutes.

The improvement allowed inferring the concentrations of N and Rb

with an acceptable fit (NSEc: N = 0.58; Rb = 0.63, NSEv: N = 0.51;

Rb = 0.69). Cu and Na improved significantly from an acceptable to a

good fit to high goodness of fit (NSEc: Cu = 0.66; Na = 0.68, NSEv:

Cu = 0.63; Na = 0.67). The nRMSE also improved for all solutes com-

pared to all other methods (Figure 3a–d).

The available EC measurements were included as an additional

predictor in the method that yielded the best results (i.e., PLSR) over

the entire range of absorbance under the different WLs. The latter

was because conducting salt species represented by EC can be an

indicator of the ionic materials that were calibrated (Thomas &

F IGURE 3 The Nash–Sutcliffe efficiency (NSE) in the calibration (a) and validation (b) datasets, the normalized root mean square error (%)
(nRMSE) in the calibration (c) and validation (d) datasets, and the Akaike information criteria (AIC) in the calibration (e) and validation (f) datasets
for each of the calibration methods applied in this study. In subplots (a) and (b) the red line represents an acceptable fit (i.e., 0.50 < NSE < 0.65)
and the grey line represents a good fit (NSE ≥ 0.65)
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Causse, 2017). When EC was included as a predictor in the PLSR

method (hereafter referred to as PLSR+EC method), the results

improved for all solutes (mean improvement: NSEc = + 0.06;

NSEv = +0.06; nRMSEc = � 1.36%, nRMSEv = �1.35%;

Figure 3a–d). PLSR+EC also allowed calibration of two additional sol-

utes, Ca and K, with an acceptable fit (NSEc: Ca = 0.62; K = 0.66,

TABLE 1 Best single wavelength
(WL) and WL ratios correlated to the
laboratory-measured concentration of
each solute. Below each predictor (best
single WL or best WL ratio) we show the
NSE in calibration. The NSE in validation
for the best single WL and best ratio
methods inference is in parentheses

Solutes
Best single WL (nm) Best WL ratios (nm)

Al

230 200/210 200/212.5 210/202.5 210/200

0.62 (0.58) 0.46 (0.49) 0.62 0.62 0.26

As 720 445/457.5 557.5/640 567.5/637.5 557.5/605

0.18 (0.15) 0.26 (0.28) 0.24 0.24 0.26

B 557.5 662.5/667.5 662.5/667.5 530/527.5 662.5/710

0 (0) 0.03 (0.04) 0.04 0.03 0.04

Ba 200 620/662.5 657.5/690 432.5/435 432.5/437.5

0.27 (0.21) 0.30 (0.29) 0.30 0.30 0.30

DOC 230 210/202.5 200/210 212.5/202.5 210/200

0.74 (0.70) 0.73 (0.75) 0.71 0.71 0.72

Ca 205 205/200 207.5/200 210/200 212.5/200

0.40 (0.40) 0.49 (0.47) 0.39 0.37 0.35

Cd 202.5 510/502.5 507.5/502.5 507.5/505 525/502.5

0.08 (0.07) 0.12 (0.09) 0.06 0.05 0.12

Cr 202.5 685/642.5 685/630 685/607.5 685/605

0 (0) 0.05 (0.03) 0.05 0.05 0.05

Cu 352.5 200/217.5 200/220 200/215 200/222.5

0.63 (0.65) 0.58 (0.59) 0.57 0.56 0.57

Fe 527.5 707.5/680 707.5/692.5 657.5/677.5 485/482.5

0.13 (0.12) 0.07 (0.09) 0.11 0.1 0.13

K 207.5 337.5/340 330/340 330/342.5 452.5/457.5

0.19 (0.14) 0.45 (0.50) 0.35 0.34 0.33

Mg 205 205/200 207.5/200 210/200 202.5/200

0.46 (0.44) 0.57 (0.53) 0.5 0.47 0.47

N 207.5 210/200 207.5/200 212.5/200 200/210

0.43 (0.37) 0.44 (0.38) 0.27 0.26 0.27

Na 207.5 205/200 207.5/200 210/200 212.5/200

0.54 (0.51) 0.59 (0.51) 0.59 0.56 0.54

Pb 342.5 200/220 200/222.5 200/217.5 200/225

0.32 (0.31) 0.25 (0.12) 0.28 0.28 0.28

Rb 202.5 387.5/325 387.5/330 387.5/327.5 387.5/320

0.34 (0.34) 0.60 (0.62) 0.48 0.48 0.48

Si 210 200/210 200/207.5 200/210 200/212.5

0.56 (0.60) 0.76 (0.72) 0.68 0.66 0.64

Sr 202.5 205/200 207.5/200 210/200 202.5/200

0.46 (0.49) 0.53 (0.64) 0.42 0.40 0.37

V 720 460/480 655/210 655/212.5 235/245

0.03 (0.05) 0.18 (0.13) 0.09 0.09 0.17

Y 202.5 625/605 600/580 652.5/605 727.5/675

0.06 (0.08) 0.05 (0.05) 0.06 0.05 0.04

Zn 357.5 405/400 520/505 405/402.5 442.5/435

0.22 (0.20) 0.26 (0.21) 0.25 0.25 0.25

Abbreviation: NSE, Nash–Sutcliffe efficiency.
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F IGURE 4 X-Y scatter plots showing the 1:1 relation between the inferred (predicted) and laboratory-determined (observed) concentrations
of the 11 solutes that were calibrated using the PLSR + EC method with the UV–visible spectrometer. The black points represent the dataset
used in calibration and the red points the dataset used for validation
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NSEv: Ca = 0.60; K = 0.70). These solutes could only be calibrated

with the PLSR when EC was included. Solutes that could be calibrated

using PLSR + EC were: Al, DOC, Ca, Cu, K, Mg, N, Na, Rb, Si, and

Sr. For these solutes, scatter plots of laboratory-determined

(observed) versus inferred (predicted) concentrations showed a con-

sistent correlation along the 1:1 line (Figure 4). The AIC for the indi-

rect methods in both calibration and validation also supported the

findings of the goodness of fit and error metrics, showing that the

indirect methods outperformed the direct methods to infer solute

concentrations (most parsimonious model: PLSR + EC; Figure 3).

To investigate the influence of sampling frequency on solute con-

centration inference, we evaluated the NSE and nRMSE results during

validation (Figure 5). For most solutes, results did not change notably

compared to the use of samples collected every 4 h until a frequency

of two samples per week was used (NSE > 0.50; nRMSE <33%). The

only exceptions were Al, Ca, and DOC for which one sample per day

was necessary and N for which two samples per day were necessary

to reach at least an acceptable fit (i.e., NSE > 0.5).

3.2.3 | Relationship between laboratory-
determined DOC and solutes concentrations

We found similarities among the optimal WL values and optimal WL

ranges and all the observed laboratory-determined solute concentra-

tions (including those that could not be calibrated). The solutes that

presented an acceptable to good fit and can be inferred by spectrom-

etry (NSE > 0.50; Figure 3) were significantly correlated with DOC

(Spearman correlation >j0.50j; p-value <0.001; Figure 6). Furthermore,

most solutes that could not be inferred showed very little correlation

with DOC (Spearman correlation <j0.30j). Only Ba (Spearman

correlation = �0.49; p-value <0.001) and Y (Spearman correla-

tion = 0.51; p-value <0.001) were acceptably correlated with DOC

(Figure 6, Appendix S1), but could not be calibrated using the PLSR

+EC method (NSEc: Ba = 0.27; Y = 0.06, NSEv: Ba = 0.21; Y = 0.08).

In addition, we compared the laboratory-determined DOC con-

centrations against the laboratory-determined concentrations of each

successfully inferred solute, in order to evaluate the value of the

absorbance in the spectra for calibration compared to only inferring

concentrations using DOC as predictor. The mean of the difference in

terms of NSE, nRMSE, and AIC metrics comparing the results

obtained through the regression analysis and the PLSR + EC method

for the solutes that could be inferred using spectrometry resulted in

0.39 for NSE, �9.74% for nRMSE, and �1598.80 for AIC. Even the

best regressions were outperformed in terms of NSE, nRMSE, and

AIC by the PLSR+EC for all calibrated solutes (see Appendix S4).

4 | DISCUSSION

We compared laboratory-determined solute concentrations with the

WL absorbance of a UV–visible sensor and found that the highest R2

values coincided with the lowest WLs. This outcome for DOC is in

accordance with other studies that found a high correlation between

the absorbance at low WLs (in UV range) and the concentrations of

organic compounds, particularly for DOC (Cook et al., 2017; Peacock

et al., 2014; Tunaley et al., 2017; Wei et al., 2018). Our results

showed peak R2 values for metals at low WLs (similar or even lower

than those for DOC, i.e., >230 nm). These findings differ from studies

that analysed metals using complexometry or reagents in which the

peak depended on the reagent used (Aguerssif et al., 2008; Zhou

et al., 2019).

Comparing the direct calibration methods (Table 1), most values

for the best ratios (those that can be calibrated with the method) were

in the UV range. These findings and those for DOC are consistent

with those of Peacock et al. (2014) who found the best WL to cali-

brate DOC was 230 nm. The latter could be attributed to similar or

even higher DOC concentrations in the stream (0–40 mg/L). Further-

more, our findings present different optimal WLs and ratios for metals

(between 200 and 222.5 nm; Table 1), except for K and Rb (between

F IGURE 5 Nash–Sutcliffe efficiency (NSE) (a) and the normalized root mean square error (%) (nRMSE) (b) datasets in the validation for
different sampling resolution data sets. In (a) the red line represents an acceptable fit (i.e., 0.50 < NSE < 0.65) and the grey line represents a good
fit (NSE ≥ 0.65)
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330 and 390 nm) compared to those studied elsewhere (Aguerssif

et al., 2008; Zhou et al., 2019). The latter is related to the fact that

metals were previously analysed using complexometry and the WL for

the calibration depends on the reagent used (Aguerssif et al., 2008;

Garcia Rodriguez et al., 1998; Kulkarni et al., 2015). The direct calibra-

tion results for various metals at the same time have not been previ-

ously described for in situ analysis in tropical regions. Similar NSE

values and errors to the single WL and the ratio methods were found

for the area under the spectra method for both nutrients and metals.

This result is similar to previous studies that found the area under the

spectra was a good predictor of organic matter compared to single

WL or ratio methods (Peacock et al., 2014; Wang & Hsieh, 2001).

Indirect multivariate methods showed an important improvement

in calibration compared to the direct methods. These results support

the findings from previous studies that recommended the use of the

PLSR method to infer solutes concentrations (Aguerssif et al., 2008;

Carré et al., 2017; Chen et al., 2021; Garcia Rodriguez et al., 1998;

Khatri et al., 2020; Xu et al., 2014). This is likely because using the

whole spectrum allows accounting for interferences (e.g., suspended

solids) in light absorbance of stream water (Shi et al., 2020, 2021).

Further, the use of EC as a predictor for solute concentrations can be

beneficial as it accounts for the conductive nature of the calibrated

solutes (Thomas & Burgess, 2007). This physicochemical parameter

can be monitored in situ at a high temporal frequency and relatively

low cost (Mosquera et al., 2018). It is worth highlighting that this

technique worked even to a low sampling resolution (daily or twice

weekly) which supports the use of spectrometry to calibrate and

subsequently infer important solute concentrations to achieve

improved understanding of catchment functioning (e.g., Correa

et al., 2016, 2019).

Finally, we analysed the possibility of calibrating models to infer

metal solutes and found high correlations between DOC and other

solutes, indicating that DOC can be a proxy for metals. These similari-

ties could be attributed to a complexation phenomenon between

metals and carbon which likely results in a specific water coloration

(Nieder & Benbi, 2008), increasing or decreasing the absorbance

under different wavelengths and helping to determine their concen-

trations. In the Páramos, a complexation phenomenon between car-

bon and metals (organocomplexation) was reported earlier (Buytaert

et al., 2006; Correa et al., 2019), and thus could be the factor that

allows the determination of some metals. Complexation was also

reported to allow identification of metals by spectrometry under con-

trolled laboratory conditions (Brown et al., 2005; Kulkarni et al., 2015;

Thomas & Burgess, 2007). Interestingly, some solutes (Sr, Rb, Si, Na,

Mg, K, and Ca) that were not positively correlated (Appendix S2–S4)

or collocated with DOC, could be adequately calibrated. Here, the

influence of water from mineral soil horizons increases (Correa

et al., 2017, 2019), resulting in decreased DOC concentrations from

F IGURE 6 Spearman
correlation analysis between pairs
of laboratory-determined
(observed) solute concentrations.
Circles are shown only when the
correlation is statistically
significant (p-value <0.05). Colour
intensity and the area of each
circle represent the absolute

value of the corresponding
correlation coefficient. Positive
correlations are displayed in blue
and negative correlations in red.
(*) Satisfactorily calibrated solutes
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shallower horizons. Therefore, these solutes can be inferred. Despite

this relationship between DOC and water source, inferring solutes

concentrations directly from DOC had a lower performance than the

PLSR + EC method using the entire UV–visible spectrum (see

Appendix S4). Without the information provided by the complete

UV–visible spectra, the calibration of such solutes that are not related

positively to DOC would not have been possible (see Appendix S4). In

addition, it indicated that the DOC by itself would not be a predictor

of the rest of the solutes that were possible to infer. Although the

extrapolation of our correlation analysis to systems with low DOC

concentrations but relatively high trace metal concentrations may not

be possible, our findings for the Páramos with organic-rich soils and

stream waters are likely to be representative of other peatland catch-

ments in temperate and sub-alpine regions of, for example, the USA,

UK and Germany (Aitkenhead & McDowell, 2000; Birkel et al., 2017;

Dawson et al., 2008), respectively. Our findings contribute to advanc-

ing the quantification of solutes used as tracers to improve under-

standing of water quality dynamics at a high temporal frequency in

ecosystems dominated by organic rich soils.

5 | CONCLUSIONS

We assessed the use of in stream UV–visible absorbance spectrometry

sensors to infer solutes (e.g., nutrients and metals) concentrations at

high temporal resolution using calibration methods of different mathe-

matical complexity. We found that in addition to DOC and nitrogen

some metals can be inferred in situ at our study catchment. The latter

can be likely attributed to a complexation phenomenon between fluvial

carbon and metals. Such complexation provides novel research avenues

to infer solutes in situ, particularly in organic-rich peatland dominated

ecosystems. The solutes whose concentrations could be satisfactorily

inferred (i.e., Al, DOC, Ca, Cu, K, Mg, N, Na, Rb, Si, and Sr) yielded the

highest performance when calibrated using multivariate statistical

methods, particularly the PLSR + EC method. It is important to high-

light that using EC permitted calibration of Ca and K, solutes that could

not have been calibrated without including EC as a predictor in the

PLSR method. Evaluating different sampling resolutions for calibration

showed that similar results could be obtained when using two samples

per week for most solutes in comparison to the original 4-hourly fre-

quency of the original dataset presented in the study, with only a few

exceptions, namely Al, Ca, DOC, and N, which require a finer sample

frequency (i.e., daily sampling). Lower sampling frequencies for calibra-

tion could broaden the use of UV–visible sensors to sites with similar

conditions (organic-rich ecosystems). Our findings indicate that calibrat-

ing in-stream UV–visible spectrometers to infer solute concentrations

can be valuable for hydrology, biogeochemistry, and water quality field

studies as it could potentially allow monitoring concentrations of sev-

eral solutes, including metals, at high temporal frequency (e.g., 5-min

resolution). A further study could assess different sites or ecosystem

conditions (e.g., low organic load), which represent a limitation of this

study, in order to generalize the calibration methods to infer solutes in

stream waters.
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