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Search for periodic modulations of the rate of double-β decay of 100Mo in the NEMO-3 detector
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F. Piquemal,11,20 P. Povinec,6 P. Přidal,15 W. S. Quinn,4 Y. A. Ramachers,17 A. Remoto,14 J. L. Reyss,21 C. L. Riddle,10

E. Rukhadze,15 R. Saakyan,4 A. Salamatin,7 R. Salazar,12 X. Sarazin,2 J. Sedgbeer,16 Yu. Shitov,7,16 L. Simard,2,22

F. Šimkovic,6 A. Smetana,15 A. Smolnikov,7 S. Söldner-Rembold,5 B. Soulé,11 I. Štekl,15 J. Suhonen,23 C. S. Sutton,24

G. Szklarz,2 H. Tedjditi,9 J. Thomas,4 V. Timkin,7 S. Torre,4 Vl. I. Tretyak,25 V. I. Tretyak,7 V. I. Umatov,3 I. Vanushin,3

C. Vilela,4 V. Vorobel,26 D. Waters,4 and F. Xie4

(The NEMO-3 Collaboration)
1IPHC, ULP, CNRS/IN2P3, F-67037 Strasbourg, France

2LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91405 Orsay, France
3NRC “Kurchatov Institute,” ITEP, 117218 Moscow, Russia

4UCL, London WC1E 6BT, United Kingdom
5University of Manchester, Manchester M13 9PL, United Kingdom

6FMFI, Comenius University, SK-842 48 Bratislava, Slovakia
7JINR, 141980 Dubna, Russia

8National Research Nuclear University MEPhI, 115409 Moscow, Russia
9Aix Marseille Université, CNRS, CPPM, F-13288 Marseille, France

10Idaho National Laboratory, Idaho Falls, Idaho 83415, USA
11Université de Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France

12University of Texas at Austin, Austin, Texas 78712, USA
13LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France

14LAPP, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France
15Institute of Experimental and Applied Physics, Czech Technical University in Prague, CZ-11000 Prague, Czech Republic

16Imperial College London, London SW7 2AZ, United Kingdom
17University of Warwick, Coventry CV4 7AL, United Kingdom

18Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043, Japan
19Saga University, Saga 840-8502, Japan

20Laboratoire Souterrain de Modane, F-73500 Modane, France
21LSCE, CNRS, F-91190 Gif-sur-Yvette, France

22Institut Universitaire de France, F-75005 Paris, France
23Jyväskylä University, FIN-40351 Jyväskylä, Finland

24MHC, South Hadley, Massachusetts 01075, USA
25Institute for Nuclear Research, 03028, Kyiv, Ukraine

26Charles University, Faculty of Mathematics and Physics, CZ-12116 Prague, Czech Republic

(Received 23 November 2020; revised 17 March 2021; accepted 28 September 2021; published 8 December 2021)

Double-beta decays of 100Mo from the 6.0195-year exposure of a 6.914 kg high-purity sample were recorded
by the NEMO-3 experiment that searched for neutrinoless double-beta decays. These ultrarare transitions to
100Ru have a half-life of approximately 7 × 1018 years and have been used to conduct the first-ever search
for periodic variations of this decay mode. The Lomb-Scargle periodogram technique, and its error-weighted
extension, were employed to look for periodic modulations of the half-life. Data show no evidence at the 95%
confidence level of modulations with amplitude greater than 2.5% in the frequency range of 0.33225 yr−1 to
360 yr−1.
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Introduction. The invariance of fundamental constants of
nature has been scrutinized in a broad range of physics con-
texts including considerations discussed by Milne [1], Walker
[2], Dirac [3,4], Chandrasekhar [5], and Kothari [6] during
the initial ascent of data-based cosmology of the expanding
Universe. Modern cosmology and the observed evolution of
the Universe are closely related to properties of interactions
of elementary particles, and impose tight bounds on possible
changes in constants that include the strength of gauge cou-
plings as a function of time elapsed since the Big Bang. A
number of authors studied these constraints and their impli-
cations, see, e.g., Refs. [7–16]. Many theoretical ideas and
implied phenomena are discussed in the literature and have
been reported in reviews [17,18] that also contain exhaustive
lists of references on this subject.

Closely related to the time invariance of physical constants
is their periodicity, given the ubiquitous presence of cyclic
processes in nature at almost all distance and timescales.
There are ongoing searches and tests of such phenomena,
mostly but not only connected to dark matter and dark energy
[19–21]. Relevant to the study presented here are results of
a posteriori data analyses of measurements of nuclear de-
cay half-lives which have yielded unexpected periodicities,
including annual modulations that authors have linked to
the periodicity of the Earth-Sun distance and solar activity
[22–33]. However, other analyses of the same data do not
reveal any significant modulations [34–36].

Difficulties with precision testing the time variation of half-
lives of long-lived radioisotopes can be attributed, in part, to
two important factors: the time duration of measurements, and
the necessity of long-term control of background phenomena,
which often exhibit time and/or seasonal periodicities. Exam-
ples of such phenomena include the average environmental
temperature; radon levels in the ground, buildings, and cav-
erns; the seasonal cosmic-ray flux modulation; the solar wind
intensity related to the Earth-Sun distance; the phase of the
lunar cycle and tides, and solar activity.

In this Letter, we report results of a search for periodicity
of double-beta (ββ) decays of 100Mo → 100Ru. Data were
collected over a period of approximately eight years by the
NEMO-3 experiment [37,38]. The experiment, designed to
search for neutrinoless double beta decay (0νββ), had an
exquisite capability of background identification and suppres-
sion. NEMO-3 collected an unprecedentedly large data set
of two-neutrino ββ decays (2νββ). These extremely rare
events with two electrons in the final state of the 100Mo decay,
whose half-life is about 7 × 1018 years, served as a unique
testing ground for the first-ever search for periodicity of a
second-order weak transition on timescales shorter than or
comparable to the measuring period.

The NEMO-3 Experiment. The NEMO-3 detector [39] was
designed to detect two electrons in the final state of neu-
trinoless ββ decays. Thin foils of the source isotopes were
surrounded by a tracking chamber and plastic calorimeter
blocks that reconstructed the full kinematics of various decays
and interactions within the detector. The source foils were
strips about 65 mm wide, 2480 mm long, and 40–60 mg/cm2

thick and were made of various ββ decay isotopes (100Mo,
82Se, 130Te, 116Cd, 150Nd, 96Zr, and 48Ca) totaling about 10 kg.

These foil strips were arranged vertically to form a cylinder
such that the tracking and calorimetric volumes on either
side formed a toroidal geometry for the whole detector. For
the purposes of this analysis, only events from the 100Mo
foils were considered. This particular isotope constituted the
majority, 6.914 kg, of the total source mass in NEMO-3.
The tracking volume that surrounded either side of the foils
was comprised of 6180 drift wire cells, operating in Geiger
mode, within a gas mixture of helium-argon (95%–1%), and
ethanol with water vapor (4%). The tracking volume was then
further enclosed by the calorimeter walls composed of 1940
plastic scintillator blocks coupled to photomultiplier tubes.
Finally, a large solenoid encircled the detector to produce a
25 G magnetic field to help with e+/e− discrimination. The
entire detector was shielded from external backgrounds by a
combination of iron, wood, paraffin, and borated water. The
detector was placed in the Modane Underground Laboratory
in the Fréjus tunnel in the Alps which provided 4800 m.w.e.
overburden to shield from cosmic rays.

The detector was operated from early 2003 until early
2011 with data-taking split into two run periods known as
Phase 1 (February 2003 to September 2004) and Phase 2
(October 2004 to January 2011). During Phase 2, an addi-
tional enclosure was installed, surrounding the detector. Filled
with radon-filtered air, this enclosure greatly reduced radon
permeation into the detector resulting in a significant increase
in the purity of the signal channel for Phase 2. Only these
lower background runs were considered for the final analysis
presented herein. The total span of the runs from this period
amounts to 6.0195 y.

Event Selection. The purpose of this analysis was to search
for periodic trends in the rate of ββ decays (with no distinc-
tion between 2νββ and theoretical 0νββ decays) originating
in the 100Mo source foils, which required counting the number
of such decays per unit time recorded in the NEMO-3 de-
tector. Data taking was divided into specific run periods with
durations ranging from tens of minutes to just over two days.
The 100Mo activity yielding ββ events was about 0.1 Bq and,
since most runs lasted longer than 20 minutes, most of them
accumulated over 100 ββ events. A discrete time series of the
decay rate was constructed by taking the number of selected
events in a run divided by the duration of the run to yield a
value for the observed rate. The average ββ event rate for
each run was associated with a timestamp, corresponding to
the midpoint of the run.

Events that were selected for inclusion into this calculation
were chosen based on a wide range of criteria to minimize the
contribution from background processes which could mimic
topologies of a ββ decay. The primary characteristics of a ββ

decay event are the identification of two tracks with curvatures
consistent with negatively charged particles, with common
origins in the 100Mo foil supported by time-of-flight mea-
surements and geometric extrapolation, and with associated
energy deposits in scintillator blocks; also with no coincident
alpha particles (short straight tracks); and no gamma particles
(unassociated scintillator hits) with energy deposits greater
than or equal to 150 keV.

The resultant sample had a very high purity (a very similar
event selection resulted in a signal to background ratio of
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FIG. 1. Results of applying both of the periodogram techniques to the ββ decay rate time series of Phase 2 100Mo data. The upper plot
shows the efficiency-corrected time series that was analyzed. The lower plot shows the periodograms obtained from applying the LS and GLS
techniques. The horizontal lines denote the threshold powers, in each technique, for reaching a 90% confidence level based on the “shuffle
test” method described in “Significance and Sensitivity Studies”.

76 [40]) and no background subtraction was performed in
calculating per-run event rates. The possibility of time varying
backgrounds was also considered, in particular due to the
potential seasonal variation of radon levels. No modulations
appeared in the analysis, of either the Phase 1 or Phase 2 data,
at frequencies corresponding to such processes.

The decay rate based on the raw number of events that
passed these selection requirements had to be corrected by
the efficiency of the detector during each run period. This
correction scaling could vary from one run to the next and was
accounted for using precise and comprehensive Monte Carlo
simulations of the NEMO-3 experiment. The data yielded an
average per-run rate of 3.9 mHz with a standard deviation
of 0.52 mHz. The average run was 8.3 hours in duration
(standard deviation of 4.7 hours) and saw approximately 115.9
events in that time (standard deviation of 66.7 events). In total,
449 733 events were collected, with a mean efficiency of 4.6%
(standard deviation of 0.34), across the 3869 run periods.
After scaling for this efficiency on a per-run basis, the resul-
tant decay rate time series is shown in Fig. 1. A study of the
most significant systematic errors showed that their contribu-
tions were small compared with statistical fluctuations from
one run to the next.

The Search for Periodicities. Periodic trends in data can
be identified by constructing a power spectrum, or peri-
odogram, for a range of frequencies. Two related approaches
are used here in order to both compare with other analyses
and cross-check the conclusions: the more commonly used
Lomb-Scargle (LS) [41,42] method which is used on unevenly
sampled data, and the Generalized LS (GLS) [43] method
which allows data to be weighted and accounts for an overall
offset term.

Periodogram analyses, which are commonplace in astron-
omy and astrophysics, have also seen use in the fields of

nuclear and particle physics. For example, see Refs. [25–28]
and [33]. Of particular note are searches for periodic varia-
tions in neutrino fluxes across different experiments, see e.g.,
Refs. [44–49], and, more recently, Refs. [36,50,51].

For a discrete time series X (t j ) consisting of N entries,
the basic Lomb-Scargle power, PLS(ω) can be calculated at
a given sample frequency f (where ω = 2π f ) by

PLS(ω) = 1

2σ 2

⎧⎨
⎩

(∑N
j=1 [X (t j ) − X̄ ] cos [ω(t j − τ )]

)2
∑N

j=1 cos
2 [ω(t j − τ )]

+
(∑N

j=1 [X (t j ) − X̄ ] sin [ω(t j − τ )]
)2

∑N
j=1 sin

2 [ω(t j − τ )]

⎫⎬
⎭, (1)

where X̄ is the mean of the data points, σ is their stan-
dard deviation, and τ is defined by the relation tan(2ωτ ) =∑N

j=1 sin(2ωt j )/
∑N

j=1 cos(2ωt j ). The periodogram is con-
structed by calculating this power over a range of frequencies
of interest.

A well-known property of the LS technique is its equiv-
alence to least-squares fitting of sine waves [42]. By taking
into account an offset term and weights, the GLS technique
extends this equivalence to a full χ2 fitting approach. The end
result is a new expression for the Generalized Lomb-Scargle
power, PGLS(ω), given by

PGLS(ω) = 1

XX · D [SS · (XC)2 +CC · (XS)2

− 2CS · XC · XS], (2)

where D = CC · SS − (CS)2 and the following abbreviations
are used [with summations running over the same indices as
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in Eq. (1)]:

XX =
∑

w j[X (t j ) − X̄ ]2,

XC =
∑

w j[X (t j ) − X̄ ] cos(ωt j ),

XS =
∑

w j[X (t j ) − X̄ ] sin(ωt j ),

CC =
∑

w j cos
2(ωt j ) −

[ ∑
w j cos(ωt j )

]2

,

SS =
∑

w j sin
2(ωt j ) −

[ ∑
w j sin(ωt j )

]2

,

CS =
∑

w j cos(ωt j ) sin(ωt j )

−
[ ∑

w j cos(ωt j )
∑

w j sin(ωt j )

]
.

Here the w j are the weights for each X (t j ), given by w j =
1
W

1
σ j

for W = ∑ 1
σ j

where the σ j are the errors, and so the

mean is now X̄ = ∑
w jX (t j ). Another known feature of

(G)LS periodograms is that, if the time series X (t j ) is made
up of Gaussian random values with no underlying modulation,
then the resultant powers should be exponentially distributed
with unit mean [42]. The false alarm probability (FAP) of
finding a power larger than P is found via the expression

FAP(P) = 1 − (1 − e−P )M, (3)

where the power M, equal to the number of frequencies sam-
pled, acts as a statistical penalty to mitigate the increased
chance of finding spurious large peaks due to the sheer size of
the sample space. This allows a confidence level (CL) value
to be calculated for a given power:

CL(P) = (1 − e−P )M × 100%. (4)

The resultant significance of periodogram peaks depends crit-
ically on the initial assumption of the Gaussian distribution
of the data points. The GLS periodogram expression given
in Eq. (2) also requires a normalization factor [43] in order
for Eq. (4) to apply and the normalization scheme proposed
by Baluev [52] was used. However, the most reliable way to
assess the significance of periodogram peaks is via statistical
methods, which are described in “Significance and Sensitivity
Studies”. The simple but rough significance approximation
obtained from Eq. (4) was thus employed for sensitivity stud-
ies which were optimized to reduce computational loads.

It should be stated that all the analysis reported was first
developed on the Phase 1 data in order to carry out a blind
analysis which was then applied to the Phase 2 data, which
were used to extract the final result.

The Phase 2 data series contained 3869 runs and for cre-
ating the periodogram, an oversampling factor of two was
used. This meant that 7738 frequencies, twice the number
of data points, were sampled. These frequencies were evenly
distributed in the range [0.33225, 365.25] yr−1 which was
chosen based on the maximum and minimum modulation
periods that could be detectable within the given duration
of data taking. The minimum period was limited by the av-
erage run spacing 	Tavg such that fmax = 1/(2 × 	Tavg). A
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FIG. 2. A distribution of the maximal LS (left) and GLS (right)
powers in 10 000 randomly shuffled null-hypothesis data sets (no
applied modulations). These distributions are used to calculate the
90% CL lines in Fig. 1.

conservative value of 12 hours was used for the average run
spacing which translates to a minimum period of one day
or fmax = 365.25 yr−1. Similarly, the maximum period was
determined by the total span of the data such that at least two
full periods of a modulation were contained in the data. This
implies that fmin = 2/(span) = 0.33225 yr−1. The resultant
LS and GLS periodograms are shown in the lower plot of
Fig. 1.

The largest and therefore most significant LS power of
8.78 was found at the frequency of 76.26 yr−1, corresponding
to a periodicity of approximately 4.8 days, while the largest
GLS power of 6.16 was found at the frequency of 0.47 yr−1,
corresponding to a periodicity of approximately 777 days
or 2.1 years. The fact that the locations of these peaks dis-
agreed between the two techniques and that neither had any
correlation with periodicities found in any of the previously
mentioned references indicates they are very likely random
fluctuations.

Significance and Sensitivity Studies. The significance of
the periodogram peaks was calculated by testing how often
a specific power was exceeded in many similar time series
comprised of randomized pseudodata with no modulation.
Such pseudodata sets were created from the Phase 2 data by
randomizing, 10 000 times, the mapping of rate values and
uncertainties to associated runtimes. This procedure destroyed
any temporal dependencies and preserved the structure of the
original data in terms of the actual values and their associated
errors as well as their temporal spacing. This is called the
“shuffle test” [53]. The LS and GLS techniques were then
applied to each of these 10 000 new time series and the largest
powers were recorded for each resultant periodogram. The
largest powers from the true data could then be compared
against these maximal powers from the pseudodata to estimate
their significance. The results are shown in Fig. 2 where the di-
vision in each distribution shows what percentage of maximal
powers lie above the largest power found in the data. For the
LS (GLS) technique where the largest power was 8.78 (6.16),
a larger power was found in the randomized pseudodata sets
54.1% (44.8%) of the time.

Further studies with these pseudodata sets were also
undertaken to estimate the sensitivity of the data to detect-
ing different modulations. To do this, a modulation to the
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TABLE I. A Summary of amplitude and frequency values used
for the injected modulations to test detection sensitivity.

Amplitude (A) [%] Step size (	A) [%]

0.5–4 0.1

Range Freq. ( f ) [yr−1] Step size (	 f ) [yr−1]

Low 0.03–0.1 0.005
Mid 0.15–2 0.05
High 15–360 15

pseudodata sets was applied in the form of

R(ti ) = N[1 + A sin (2π f ti + φ)], (5)

where N is a normalization constant to match the mean of
the unmodulated data, A represents a fractional or relative
amplitude (which will be denoted as a percentage relative to
the mean rate) for the applied modulation, f is the frequency
of the applied modulation, and φ is the modulation phase.

Although the final analysis only sampled frequencies cor-
responding to modulations in which at least two full periods
are present in the data, the sensitivity studies sampled down to
even smaller frequencies. This helped determine an appropri-
ate lower bound and allowed for the study of the behavior of
the two techniques in the low-frequency domain. Due to the
computationally intensive nature of these studies, the sample
frequency range was broken down into three regimes (low,
mid, and high) that included different spacing between fre-
quencies to limit the total number of trials that were needed.
A summary of the various amplitudes and frequencies that
were used for the injected modulations are shown in Table I.
It should be noted that, due to these computational efficiency

needs, the final results statement can only be applied to a
maximum frequency range up to 360 yr−1.

For each point in this amplitude-frequency phase space
100 different pseudodata sets were analyzed to average out
random variations. At each combination of modulation am-
plitude and frequency, the LS and GLS periodograms were
constructed and the average (across all 100 sets) of the largest
power was recorded, as well as its estimated CL value derived
from Eq. (4). This was used to create a contour plot of CL
values in the modulation-amplitude frequency space. These
are shown in Fig. 3 for the three frequency regimes and with
the input modulation phase set to zero.

The results showed that for mid and high ranges of mod-
ulation frequencies, the detection sensitivity only depended
on the input modulation amplitudes. In these two regimes,
any applied modulation of amplitude greater than or equal to
2% (2.5%) was detected at the 95% CL or higher using the
LS (GLS) technique, regardless of the frequency. In the low-
frequency regime, where modulation periods varied between
10–33 years, larger amplitudes were generally required before
being detected at 95% CL Here there was also a dependence
on both the input frequency and the phase value. This is
because only partial wave forms were being captured in the
pseudodata and if a more linear slice of the waveform was
observed, the sensitivity was reduced compared with other
values of input frequency and phase.

Summary andConclusions.A power spectrum analysis was
used to search for temporal variations of the second-order
weak process of ββ decay, in the highly pure sample of
6.0195 y 100Mo decay events in the NEMO-3 detector. The
analyzed data set was sensitive to modulations with periods
between one day and three years.

Power spectra consistent with the null hypothesis were
obtained for an amplitude of greater than 2.0% (2.5%) at 95%
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FIG. 3. (a) LS and (b) GLS detection sensitivity as a function of modulation parameters A and f (φ = 0) in three frequency regimes: low,
mid, and high. The z axis, color, at each point denotes the estimated CL value of the largest peak, averaged over 100 periodograms.
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CL in the frequency range from 0.33225–360 yr−1 using the
LS (GLS) method. Of particular interest are frequencies of
order 1 yr−1 relating to the Earth’s orbital period and those in
the range 10–15 yr−1 relating to solar synodic rotation rates
[22–33].

This result can be translated into a limit on the temporal
stability of the weak coupling constant GF. The ββ decay
lifetime is proportional to G4

F and so a 2% change in the life-
time would correspond to a 0.5% change in the value of GF.
While claims of modulations in single-beta decays were on
the order of 0.1% [23], corresponding to potential changes in
GF of 0.05% (owing to a proportionality to the second power),

the constraint presented herein represents a result very robust
against environmental effects owing to the event selection
criteria, and therefore quite different systematics from that
of other measurements. It is the first-ever such limit achieved
measuring the second-order weak process of ββ decay.
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