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Abstract

The Archean-Proterozoic transition marks a time of fundamental geologic, biologic, and atmospheric changes to the Earth
system, including oxygenation of the atmosphere (termed the Great Oxygenation Event; GOE), and the emergence of conti-
nents above sea level. The impacts of the GOE on Earth’s surface environment are imprinted on the geologic record, including
the disappearance of mass-independent fractionation of sulfur isotopes (S-MIF). Temporally overlapping geologic and geo-
chemical observations (e.g. a change in oxygen isotope ratio of sediments and an increase in subaerial volcanism) imply the
widespread subaerial emergence of continents was coeval with atmospheric oxygenation. Here we present triple sulfur isotope
ratios in pyrite and oxygen isotope ratios in garnet and zircon in a global suite of Archean and Proterozoic granitoids derived
from the partial melting of sedimentary protoliths. These crustal melts record an increase in average garnet and zircon §'%0
from 7.2%o before 2.3 Ga to 10.0%o post-2.3 Ga. Pre-2.3 Ga granitoids show small S-MIF signatures with A**S ranging from
—0.29%0 to 0.13%o, whereas post-2.3 Ga granitoids record S-MDF (i.e. A**S = 0%0). The combination of sulfur and oxygen
isotope signatures in the same sample with zircon U-Pb geochronology provides new insights on a potential causal link
between the emergence of continents and Paleoproterozoic atmospheric oxygenation.
© 2021 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The oxygenation of the Earth’s atmosphere and oceans
irreversibly changed many major biogeochemical cycles
(e.g. Fe, S, Mn) (Pufahl and Hiatt, 2012) and provided
the base for a highly efficient aerobic metabolism that
allowed the development of complex life (Catling et al.,
2005). During the Great Oxygenation Event (GOE)
(~2.3 Ga; Luo et al., 2016, c.f. Gumsley et al., 2017) atmo-
spheric oxygen increased from <0.001% of the present
atmospheric level (PAL) (Pavlov and Kasting, 2002) to
10-40% PAL (Kump, 2008), or perhaps much higher
approaching 100% PAL (Harada et al., 2015, and refer-
ences therein). The mechanism that led to atmospheric oxy-
genation remains controversial. Proposed scenarios for
oxygenation include: (1) an increase in O, production (i.e.
through the emergence of oxygenic photosynthesis) (Ward
et al., 2016), (2) a decrease in O, consumption (e.g. through
changing redox state of volcanic gases, increased burial of
organic carbon, or decreased pyrite weathering) (Holland,
2002; Bekker and Holland, 2012), and (3) a combination
of both these processes (through enhanced oxygenic photo-
synthesis combined with increased carbon burial)
(Campbell and Allen, 2008). One source of dispute is the
timing of the evolution of oxygenic photosynthesis — sug-
gestions range from >3.7 Ga to immediately preceding
atmospheric oxygenation (Rosing and Frei, 2004; Lyons
et al., 2014; Planavsky et al., 2014; Ward et al., 2016;
Fischer et al., 2016; Warke et al., 2020). Previous studies
imply that the widespread emergence of continents above
sea level is temporally correlated with atmospheric oxy-
genation (Kump and Barley, 2007). Furthermore, it has
been proposed that the subaerial emergence of continents
may have led to a flux of life-essential nutrients into the
ocean supporting a boost in photosynthetic activity
(Campbell and Allen, 2008; Hao et al., 2020).

Multiple sulfur isotopic signatures are a sensitive tracer
for atmospheric oxygen levels (Farquhar et al., 2000). Some
sulfur-bearing minerals (predominantly sulfides and minor
sulfates) in metasedimentary rocks deposited before the
GOE display mass-independent fractionation of sulfur (S-
MIF), whereas those deposited after the GOE exclusively
display mass-dependent fractionation (S-MDF) (Farquhar
et al., 2000; Johnston, 2011). Although the exact mecha-
nism is currently not known, S-MIF signatures are thought
to be generated in the atmosphere through ultraviolet pho-
tolysis of gas molecules (Lyons, 2007; Whitehill et al.,
2015). The establishment of an ozone shield as a conse-
quence of atmospheric oxygenation led to the blocking of
UV radiation and attenuation of the photolysis of volcanic
sulfur species (Farquhar et al., 2000). In addition, enhanced
oxidative weathering of sulfides and the formation of ocea-
nic sulfates facilitated the production of highly fractionated
sulfides by sulfur-metabolizing bacteria supporting the gen-
eration of S-MDF signatures (Guo et al., 2009). Recent
studies show that fluctuations in atmospheric oxygen levels
are also captured in the igneous rock record; namely,
through transport of S-MIF into the crust (Bekker et al.,
2009; LaFlamme et al., 2018a; Bucholz et al., 2020), and

a change in oxygen fugacity of strongly peraluminous gran-
ites (Bucholz et al., 2018).

Broadly coeval with atmospheric oxygenation, the
average oxygen isotope ratio of global felsic magmas
(recorded by zircon 5'®0) increases (Valley et al., 2005).
The oxygen isotopic composition of a magma is sensitive
to the recycling of supracrustal material that interacted
with surface water (Taylor, 1980). Igneous zircon in
high-temperature equilibrium with mantle-derived melts
(e.g. kimberlites) has remarkably homogenous 5'%0 values
which average 5.3 £ 0.6%o (Page et al., 2007) relative to
standard mean ocean water (VSMOW). Supracrustal
material (e.g. sedimentary and volcanic rocks), in contrast,
has a wide range of 5'%0 values (~0-40%0) with most
reservoirs being elevated in 3'®0 relative to the mantle
(Savin and Epstein, 1970). Hence, assimilation of supra-
crustal material commonly results in magmas with ele-
vated 8'80 compared to mantle-derived magmas. An
increase in average 5'%0 of zircon in the Paleoproterozoic
has been recognized for over a decade (Valley et al., 2005).
Contrasting models have been suggested to account for
this increase in 8'%0; (1) the formation of high §'%0 sed-
iments (and melts that have assimilated such sediments)
potentially linked to enhanced subaerial weathering and
erosion related to the widespread emergence of continents
above sea level (Spencer et al., 2019; Liebmann et al.,
2021a), and (2) enhanced crustal recycling associated with
the onset of collisional tectonics (Spencer et al., 2014).
However, Paleoproterozoic high-8'%0 sediment melts do
not show a concomitant depletion in radiogenic '"°HF,
as would be expected if the increase in 8'%0 was related
to enhanced supracrustal recycling (Liebmann et al.,
2021a). Therefore, a change in sediment oxygen isotope
composition, potentially associated with the subaerial
emergence of continents (Bindeman et al., 2018), seems
to be the likely driver for the Paleoproterozoic increase
in average zircon 8'®0 (Spencer et al., 2019; Liebmann
et al., 2021a).

We explore a potential link between the emergence of
continents above sea level and atmospheric oxygenation
through a coupled analysis of proxies for atmospheric
oxygen level (sulfur isotopes) and sedimentary recycling
(oxygen isotopes) in Archean to Mesoproterozoic
sediment-derived granitoids (i.e. granitoids that partially
or wholly derived from the partial melting of metasedi-
ments). The oxygen and sulfur isotope ratios in
sediment-derived granitoids are strongly influenced by
the isotopic composition of their sedimentary source rocks
(Bindeman, 2020; Bucholz et al., 2020). Hence, sediment-
derived granitoids provide a high-fidelity record of these
isotopic signatures in bulk siliciclastic sediments that can
be tied to magmatic crystallization ages. Furthermore,
the isotope ratios captured by granitoids are relatively
unaffected by secondary alteration processes, in contrast
to those recorded by sediments. Here we present both
multiple sulfur isotope ratios measured in pyrite, as well
as, zircon and garnet oxygen isotope ratios within the
same sample for a globally distributed suite of sediment-
derived granitoids. The combination of these proxies with
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zircon U-Pb geochronology allows us to provide new
insights into the coupled behaviour of crustal, biogenic,
and atmospheric evolution.

2. MATERIALS AND METHODS
2.1. Sample context

Samples of this study derive from various localities
within the Superior, North China, West African, and East
European Cratons, and the Yavapai province (USA). The
sample areas were selected based on previous documenta-
tions of sediment-derived melts in these regions.

Granitoids containing at least one peraluminous indica-
tor mineral (e.g. garnet, muscovite, cordierite) were tar-
geted during sample collection. A  peraluminous
mineralogy is a first indication of the derivation from sedi-
mentary sources (Clarke, 1981, 2019; Barbarin, 1996).
Bulk-rock major element concentrations and oxygen iso-
topic ratios were used to confirm the origin of the studied
samples (see Section 2.2). A list of all samples including
location is given in Table 1.

2.1.1. Superior Craton

The Superior Craton forms the Archean core of the
Canadian Shield and can be divided into the Western and
Eastern Superior Province, which are further subdivided
into 17 distinct tectonic terranes (Percival et al., 2012).
(Meta-)granitoid- and greenstone-dominated terranes
evolved independently from 3.7-2.75 Ga, followed by accre-
tionary events associated with the trapping of sedimentary
basins and high-temperature metamorphism, leading to
the formation of a coherent Superior Craton by 2.60 Ga
(Percival et al., 2012). Peraluminous granites are wide-
spread within the Superior Craton, and their occurrence
is described in detail by others (Larbi et al., 1999; Breaks
et al., 2003; Yang et al., 2019).

2.1.2. North China Craton

The North China Craton comprises Archean to Paleo-
proterozoic basement overlain by Mesoproterozoic to
Cenozoic cover sequences (Zhao and Zhai, 2013). Recent
publications subdivide the Precambrian basement of this
region into three tectonic domains; Archean to Proterozoic
Western and Eastern Blocks and a central Paleoproterozoic
collisional Trans-North China Orogen (Zhao and Zhai,
2013). The Western Block comprises the Yinshan Block
in the north and the Ordos Block in the south, which amal-
gamated at ~1.95 Ga along the Inner Mongolia Suture
Zone (Santosh, 2010). The Inner Mongolia Suture Zone
is dominated by a metasedimentary series associated with
minor TTG gneisses, sediment-derived granites, and mafic
granulites (Zhao and Zhai, 2013). The Neoarchean Yinshan
Block comprises tonalite-trondhjemite-granodiorite (TTG)
gneisses and minor supracrustal rocks that were metamor-
phosed at ~2.5 Ga (Zhao et al., 1999).

2.1.3. Baoulé-Mossi domain, West African Craton
The Paleoproterozoic (~2.3-2.0 Ga) Baoulé-Mossi
domain in the southern portion of the West African

Craton comprises sedimentary basins and volcanic/vol-
caniclastic rocks that are intruded by multiple generations
of granitic rock (Parra-Avila et al., 2019, and references
therein). The emplacement of felsic intrusions across the
Baoulé-Mossi domain is associated with the 2.2-1.8 Ebur-
nean Orogeny (Lompo, 2009). Based on whole rock major
element and zircon oxygen isotope geochemistry a deriva-
tion from metasediments or pre-existing igneous rocks has
been suggested for some of the Paleoproterozoic felsic
intrusions in the Baoulé-Mossi domain (Petersson et al.,
2018; Parra-Avila et al., 2019). No agreement has been
reached on the tectonic model for the Paleoproterozoic
evolution of this area. Proposed scenarios include plume-
related, subduction-related, and continental collision-
related models (Parra-Avila et al., 2019, and references
therein).

2.1.4. Ukrainian Shield, East European Craton

The Ukrainian Shield is a region of exposed Archean
and Proterozoic crust within Samartia in the southwestern
part of the East European Craton. The Ukrainian Shield
is comprised of several tectonic blocks separated by suture
zones described in detail by Claesson et al., (2006). High-
grade metamorphism and associated magmatism occurred
in multiple domains of the Ukrainian Shield at ~2.8 and
2.1-2.0 Ga and may reflect an active-margin setting
(Claesson et al., 2006). This episode of high-grade meta-
morphic and magmatic activity was associated with the
reworking of older igneous and metasedimentary rocks
(Claesson et al., 2006).

2.1.5. Svecofennian domain, Baltic Shield, East European
Craton

The Svecofennian Orogeny in Finland between 1.91 and
1.87 Ga involved accretion of island arc complexes and
older crustal fragments to the Archean basement of the
Karelian Craton (Viisdnen et al., 2000). In southernmost
Finland, ~2.0-1.8 Ga old crust was intruded by sediment-
derived granites at 1.84-1.83 Ga associated with high-
temperature, low-pressure granulite facies metamorphism
and migmatization (Huhma, 1986). This complex, referred
to as the late Svecofennian granite-migmatite zone, includes
the Sulkava, West Uusuma, and Turku areas (Ehlers et al.,
1993). Granitic material is abundant in the Turku area.
Mostly, these magmas occur as garnet and cordierite-
bearing leucosomes in migmatitic metapelites (Viisidnen
et al., 2000).

2.1.6. Yavapai province

The Yavapai province (or Colorado province) south of
the Wyoming Craton comprises ~1.79-1.66 Ga volcanic-
plutonic suites and sediments that are interpreted to have
formed in a convergent margin setting (Reed et al., 1987).
These rocks experienced multiple deformational episodes
associated with metamorphism and plutonism between
1.71 and 1.62 Ga (Hoffman, 1988). The deformational epi-
sodes were followed by two pulses of magmatism at 1.50—
1.42 Ga and 1.40-1.34 Ga (Hoffman, 1988) associated with
the emplacement of peraluminous granites (Anderson and
Thomas, 1985).



Table 1

Summary of sample locations, lithologies, and mineralogy. Minerals in parentheses are accessory phases. Mineral abbreviations: Qz, quartz; Afs, alkali feldspar; Pl, plagioclase; Grt, garnet; Ms,

muscovite, Bt, biotite. (1) Liebmann et al. (2021a), (2) Bucholz and Spencer (2019), and (3) Bucholz et al. (2018).

Sample ID Locality Latitude Longitude Lithology Mineralogy Reference
17FINO1 Turku Area, Svecofennian domain 60.498 22.262 Grt migmatite Grt + Qz + Afs + PI + Bt This study
17FINO02 Turku Area, Svecofennian domain 60.470 22.368 Grt migmatite Grt + Qz + Afs + Pl + Bt This study
17FINO3B Turku Area, Svecofennian domain 60.425 22.382 Grt migmatite Grt + Qz + Afs + Pl + Bt This study
17FINO04A Turku Area, Svecofennian domain 60.461 22.176 Grt migmatite Grt + Qz + Afs + Pl + Bt This study
17FINO5B Turku Area, Svecofennian domain 60.546 22.128 Grt migmatite Grt + Qz + Afs + Pl + Bt This study
17FINO06 Turku Area, Svecofennian domain 60.482 22.018 Grt migmatite Grt + Qz + Afs + Pl + Bt This study
19GHI11B Baoulé-Mossi domain, West African Craton —1.609 5.140 Bt Ms granite Ms + Qz + Afs + Pl + Bt This study
19GH9 Baoulé-Mossi domain, West African Craton —1.377 5.340 Bt Ms granite Ms + Qz + Afs + Pl + Bt This study
19GH3 Baoulé-Mossi domain, West African Craton —1.156 5.160 Grt granite Grt + Qz + Afs + Pl + Bt This study
18IM19 Dagingshan-Wulashan Complex, North China 40.693 109.641 Grt granite Grt + Qz + Afs + Pl + Bt 1

Craton
18IM20 Dagqingshan-Wulashan Complex, North China 40.709 109.643 Grt granitoid Grt + Qz + Afs + Pl + Bt 1

Craton
18IM23D Dagingshan-Wulashan Complex, North China 40.811 110.258 Grt granite Grt + Qz + Afs + Pl 1

Craton
18IM25C Guyang Area, North China Craton 41.182 109.479 Ms Bt granite Ms + Qz + Afs + Pl(+Bt) 1
18IM11B Jining Complex, North China Craton 40.604 112.500 Grt granitoid Grt + Qz + Afs + Pl + Bt 1
18IM12B Jining Complex, North China Craton 40.839 112.565 Grt quartz rich granitoid ~ Grt + Qz + Afs + Pl 1
18IM13C Xiwulanbulang Area, North China Craton 41.084 110.924 Grt granite Grt + Qz + Afs + Pl + Bt(+Ms) 1
18IM15B Xiwulanbulang Area, North China Craton 40.994 110.947 Grt granitoid Grt + Qz + Afs + Pl 1
18IM3 Huaian Complex, North China Craton 40.848 113.921 Grt granite Grt + Ms + Qz + Afs + PI(+Bt) 1
15K-2 Ukrainian Shield 50.980 28.680 Granite Qz + Pl + Bt This study
CO-17-8 Silver Plume granite, Yavapai province 39.776 105.780 Bt Ms granite Ms + Qz + Afs + Pl + Bt 2
SP-16-2b Shannon Lake batholith, Superior Craton 47.661 92.939 Bt Ms granite Ms + Qz + Afs + Pl + Bt 3
SP-16-20a Ghost Lake batholith, Superior Craton 49.815 93.020 Bt Ms granite Ms + Qz + Afs + Pl + Bt 3
SP-16-34 Ghost Lake batholith, Superior Craton 49.848 92.694 Bt Ms Grt granite Ms + Qz + Grt + Afs + Pl + Bt 3
SP-17-43 Wenasaga Lake batholith, Superior Craton 50.741 93.209 Bt Ms Grt granite Ms + Qz + Grt + Afs + Pl + Bt This study
SP-17-33 Medicine Lake stock, Superior Craton 50.284 94.495 Bt Grt granite Grt + Bt + Qz + Afs + Pl This study
SP-17-38 Medicine Lake stock, Superior Craton 49.863 93.771 Ms Grt granite Grt + Ms + Qz + Afs + Pl This study
SP-17-82 Allison Lake batholith, Superior Craton 51.200 92.383 Ms Grt granite Grt + Ms + Qz + Afs + PI 2
SP-17-71 Allison Lake batholith, Superior Craton 50.994 92.328 Ms Grt granite Grt + Ms + Qz + Afs + Pl 2
SP-17-13 Quetico Belt, Superior Craton 48.906 89.213 Bt Grt granite Grt + Qz + Afs + Pl + Bt This study
SP-17-50 Sharpe Lake batholith, Superior Craton 50.847 92.105 Bt Ms Grt granite Grt + Ms + Qz + Afs + Pl + Bt This study
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74



246 J. Liebmann et al./ Geochimica et Cosmochimica Acta 307 (2021) 242-257

2.2. Methodology

Samples were prepared by trimming off weathered sur-
faces using a rock saw. Melanosome was removed from
migmatite samples. The remaining material was washed
with water and crushed. A ~10 g aliquot per sample was
powdered using a tungsten carbide ring mill for bulk-rock
geochemistry. Zircon, pyrite, and garnet crystals were
extracted using standard separation techniques. Hand-
picked zircon and pyrite crystals were mounted in epoxy
resin and polished to approximately half grain thickness
to expose an interior cross-section through the individual
crystals. To reveal internal growth structures, CL images
of zircon grains were taken prior to SIMS analysis. SIMS
U-Pb and oxygen isotope analyses were located on the same
zircon growth zone (Supplementary Fig. A2). Magmatic
rims of zircon grains were targeted for SIMS analyses to
avoid inherited older growth zones. SIMS U-Pb analysis
was conducted subsequent to SIMS oxygen isotope analy-
sis. Backscatter electron (BSE) images and energy disper-
sive X-ray analysis (EDX) of pyrite grains were obtained
prior to SIMS analysis. Field Emission Scanning Electron
Microscope (FESEM) element maps and BSE images of
garnet grains were obtained using a Tescan Integrated Min-
eral Analyzer (TIMA). In addition, this study reports
legacy zircon U-Pb and whole-rock major element data
for one sample (15K-2) that were acquired using laser abla-
tion inductively coupled plasma mass spectrometry (LA-
ICPMS) and solution ICPMS, respectively. A summary
of the methodology is provided below. See Appendix for
a full description of the methods.

2.2.1. SIMS zircon oxygen and pyrite sulfur isotope ratios

In situ oxygen and sulfur isotope analyses were con-
ducted on a CAMECA IMS 1280 secondary ion mass spec-
trometer (SIMS) at the Centre for Microscopy,
Characterisation, and Analysis (CMCA) at the University
of Western Australia and at the Guangzhou Institute of
Geochemistry (GIG), Chinese Academy of Sciences, China.
Oxygen and sulfur isotope compositions are reported in the
conventional delta notation; expressed as 3'%0 and &S,
respectively. The delta notation reflects the permil deviation
in the isotope ratio of the sample (*¥0/'°0, 3*S/32S, and
338/328 in this case) relative to a reference material. Refer-
ence materials are standard mean ocean water (VSMOW)
(Baertschi, 1976) for 8'80, and the Cafion Diabolo Troilite
(VCDT) (Ding et al., 2001) for 8**S and §*S. The triple sul-
fur isotopic composition of pyrite is expressed as A®S,
defined as §%3S-1000((1 + §3*S/1000)*>1 — 1).

For zircon oxygen isotope analysis, the '80 and '°O ions
were detected simultaneously by two faraday cups. Instru-
mental mass fractionation and drift were determined
through repetitive analyses of zircon standard 91500
(8"80 = 9.9 £ 0.6%0) (Wiedenbeck et al., 2004). Zircon ref-
erence materials Temora-2 (8'%0 = 8.2 + 0.03%0) (Black
et al., 2004), and Penglai (8'80 = 5.31 + 0.1%0) (Li et al.,
2010) were used as a secondary reference to monitor the
quality of the applied corrections. The analysis of the sec-
ondary standard Temora-2 yielded 3'%0 of 8.0 + 0.5%,
and 7.8 £ 0.4%o (20) in accordance with the accepted value

(but see Schmitt et al. (2019) for a discussion of oxygen iso-
topic heterogeneity in different batches of Temora-2). The
analysis of the secondary standard Penglai yielded 'O
of 5.0 + 0.3%0 (20) in accordance with the accepted value.
Repeat analyses of the primary standard indicate a repeata-
bility of <0.2%o (10) for all runs. To ensure that the oxygen
isotope values reflect a primary signature, the zircon OH-
content, an indicator of secondary alteration (Pidgeon
et al., 2017; Liebmann et al., 2021b) was determined quali-
tatively as compared to reference zircon 91500 (Supplemen-
tary Fig. A7) for all but six samples.

For pyrite sulfur isotope analysis, the **S, **S, and *?S
ions were detected simultaneously by three faraday cups.
Instrumental mass fractionation and drift were determined
through repeated analyses of pyrite standard Sierra
(3%*S = 2.17 + 0.28%0, A*¥*S = —0.02 + 0.01%0) (LaFlamme
et al., 2016). Pyrite standards Ruttan (5**S = 1.2 & 0.35%,
APS = 0 + 0.22%0) (Crowe and Vaughan, 1996) and Balmat
(5**S = 16.02 + 1.18%0, A**S = 0 + 0.23%0) (Whitehouse,
2013) were used as secondary standards to monitor the qual-
ity of the applied corrections. The analysis of Ruttan pyrite
yielded 8*S of 1.2 & 0.3%0, and A**S of —0.01 % 0.08%o;
the analysis of Balmat pyrite yielded 8**S of 16.3 + 0.2%o,
and A®S of —0.03 & 0.08%0 (20) in accordance with the
accepted values. Repeat analyses of the primary standard
indicate a repeatability of <0.15%c (lo) for 8**S and
<0.04%o (1) for A**S for all runs (Supplementary Table A4).

Oxygen and sulfur isotope measurement results and field
centering values of reference materials are given in Supple-
mentary Fig. A7, and Supplementary Tables A3 and A4.
Images of representative zircon and pyrite grains are given
in Supplementary Figs. A2 and A3. Delta values of each
sample are reported as weighted means (weighted based
on an error of single spot analysis) with 2c errors (i.e. 2
standard deviations) unless stated otherwise.

2.2.2. Laser fluorination oxygen isotope geochemistry
Garnet grains were handpicked under a binocular to
ensure they were free of inclusions and alteration. Approx-
imately 1.6-1.8 mg of garnet was used per analysis. Laser
fluorination oxygen isotope analysis was conducted at the
California Institute of Technology using a CO, laser with
BrFs as fluorinating agent following the procedure
described by (Sharp, 1990; Valley et al., 1995). All samples
were analyzed in duplicate and yielded 8'30 within 0.01—
0.36%0 of the replicate for each sample. Six to seven mea-
surements per analytical session of Gore mountain garnet
(UWG-2) (Valley et al., 1995) were interspersed with mea-
surements of the unknowns. The analyses of UWG-2 indi-
cate a precision of <0.07%o (10) for all runs. For all but one
analysed aliquot oxygen yields were close to the predicted
yields (92-98%) indicating quantitative fluorination. One
aliquot had a lower than predicted oxygen yield (80%)
due to single garnet grains jumping ot of the sample holder
during lasing, but reproduced the 5'%0 value of the dupli-
cate within 0.09%o (Supplementary Table D1). Delta values
are reported as weighted means with 2 errors unless stated
otherwise. Garnet of all samples is almandine-rich with
varying minor spessartine components and occurs as euhe-
dral to subhedral grains (Supplementary Figs. A5 and A6).
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2.2.3. SIMS zircon U-Pb geochronology

For eight samples of this study, zircon U-Pb ages were
obtained using an A.S.I. SHRIMP II sensitive high-
resolution ion microprobe at the John de Laeter Centre,
Curtin University, Western Australia. Operating proce-
dures are described in detail by Wingate and Kirkland
(2015). Zircon reference materials Temora-2 (417 4+ 2 Ma,
130 £ 21 U ppm; Black et al, 2004), 91500
(1065 £ 1 Ma, 81 + 5 U ppm; Wiedenbeck et al., 2004),
and OGI1 (3465 + 0.6 Ma, 163 4+ 48 U ppm; Stern et al.,
2009) were used for U-Pb standardization, U concentra-
tion, and Pb-Pb referencing, respectively. Secondary refer-
ence material OG1 yielded weighted mean 2°’Pb/?°Pb*
ages of 3452 + 35 Ma (MSWD = 0.6; n = 4), and
3470 + 13 Ma (MSWD = 0.47; n = 6); and 91500 yielded
a 2%U/%%Pb* age of 1078 + 31 Ma (MSWD = 0.68,
n = 5) within uncertainty of the accepted values. Details
of calibration and instrumental uncertainties can be found
in Supplementary Table Al.

Raw data were reduced using the Microsoft Excel
add-ins SQUID 2.50 and Isoplot 3.75 with the decay con-
stants of Steiger and Jager (1977). Measured composi-
tions were corrected for the presence of common Pb
using measured 2**Pb/?*°Pb and the contemporaneous
Pb isotopic composition determined according to the ter-
restrial Pb model of Stacey and Kramers (1975). Calcu-
lated mean ages are quoted in the text at the 2o level
(unless stated otherwise) and include propagated internal
and external uncertainty components. No 2°’Pb/?°°Pb
fractionation correction was deemed necessary as OGl
yielded  weighted mean  2°’Pb/?°°Pb*  ages  of
3452 + 35 Ma (MSWD = 0.6; n = 4), and
3470 £+ 13 Ma (MSWD = 0.47; n = 6) within uncertainty
of the accepted value.

2.2.4. LA ICP-MS zircon U-Pb geochronology

For one sample of this study (sample 15K-2) U-Pb iso-
topic data were collected by laser ablation inductively cou-
pled plasma mass spectrometry (LA ICP-MS) at the
GeoHistory Facility, John de Laeter Centre, Curtin Univer-
sity. Zircon was ablated using a Resonetics RESOlution M-
50A-LR system, incorporating a COMPex 102-193 nm
excimer UV laser coupled to an Agilent 8900 QQQ mass
spectrometer. Zircon standard OG1 (3465 + 0.6 Ma)
(Stern et al., 2009) was used as the primary reference mate-
rial. Secondary zircon standards yielded weighted mean
ages within uncertainty of their accepted values (Supple-
mentary Table A2).

2.2.5. XRF and ICPMS bulk-rock geochemistry

Bulk-rock major and minor element concentrations of
12 samples of this study were determined using a Pana-
Iytical Zetium 4 kW X-ray fluorescence spectrometer
(XRF) at the California Institute of Technology, USA.
Full analytical methods and uncertainties are given in
Bucholz and Spencer (2019). For one sample (15K-2)
bulk-rock major element concentrations were determined
in solution by ICP-MS analysis at Bureau Veritas Miner-
als, Canada.

3. RESULTS
3.1. Mineralogy and bulk-rock geochemistry

Samples include granitoids comprised of quartz + alkali
feldspar + plagioclase + biotite in varying proportions, and
contain one or more peraluminous indicator minerals, such
as garnet or muscovite. The samples for which bulk-rock
geochemical data is available are strongly peraluminous
with A/CNK values of >1.1 (defined as molecular Al/[C
a + Na + KJ; Table 2). The mineralogy of all samples is
summarized in Table 1 and thin section photomicrographs
can be found in Supplementary Fig. A4. Bulk-rock major
element concentrations are given in Table 2.

3.2. Geochronology

Magmatic crystallization ages of the 30 sediment-
derived granitoids in this study are Neoarchean to Meso-
proterozoic, ranging from 2664 + 45 Ma to
1447 £ 50 Ma. For nine of these samples the magmatic
crystallization age was determined in this study (as zircon
concordia, upper intercept, or weighted mean 2°7Pb*/2°¢-
Pb* ages). For nine samples zircon U-Pb SIMS ages were
determined in previous studies (Licbmann et al., 2021a).
For the remaining 12 samples for which no or only metam-
ict zircon was extracted, preferred ages use robust published
dates from the same batholith or are estimates based on the
age of proximal magmatism. A detailed description of the
geochronology is given in Appendix; a summary is given
in Table 3. Single-spot zircon U-Pb results can be found
in Supplementary Table BI.

3.3. Zircon and garnet oxygen isotope geochemistry

Twenty-six out of 28 granitoids yield zircon 8'30 values
ranging from 6.9 £ 0. 9%o0 to 11.4 4+ 1.0%0. Two samples
(19GH9 and 19GH11B) show distinctly lower zircon §'0
values of 4.9 + 0.8%0 and 5.3 + 0.8%0. Garnet 8'30 values
range from 7.1 + 0.1%o to 11.5 & 0.1%.. On average 3'30
values increase post-2.3 Ga; from 7.2%o to 9.9%o in zircon,
from 7.2%o0 to 10.2%oc in garnet, and from 7.2%o to 10.0%o
combining the data of both zircon and garnet (Fig. 2). Note
that samples 19GH9 and 19GHI11B with distinct zircon
3'%0 values are excluded from these averages. Including
these two samples yields post-2.3 Ga averages §'%0 values
of 9.1%o (in zircon) and 9.3%o0 (combining zircon and gar-
net). Equilibrium fractionation of oxygen isotopes between
zircon and almandine-rich garnet is small at temperatures
typical for granitoid melts (<0.1%o at temperatures >650 °
C) (Valley et al., 2003). The garnet-zircon pairs of all sam-
ples indicate oxygen isotopic equilibrium (Fig. 1). Two sam-
ples (17FINO2 and 17FIN04A) yield heterogeneous single
spot zircon 8'*0 values (26 > 3%o0) and are interpreted to
reflect secondary signatures related to metamictization
(Pidgeon et al., 2017; Liebmann et al., 2021b). This is fur-
ther supported by CL images revealing that some areas in
some zircon grains are affected by metamictization (Supple-
mentary Fig. A2). Therefore, the oxygen isotopic
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Bulk rock major element concentrations. The aluminum saturation index (A/CNK) is calculated as molecular Al/(Ca + Na + K). (1)

Liebmann et al. (2021a), (2) Bucholz et al. (2018), (3) Bucholz and Spencer (2019).

Sample ID  Major element concentrations (reported as oxide wt %)

Si0, TiO, ALO; Fe0O; MgO CaO Na,O K,0 P,Os MnO LOI Total A/CNK  Reference
I9GH11B  73.78 0.08 14.74  0.55 0.15 1.25  3.39 5.63  0.01 0.01 022 99.81 1.1 This study
19GH9 73.23  0.11 15.67  1.06 0.28 291 5.02 1.14  0.03 0.02 0.63  100.09 1.1 This study
19GH3 73.16 0.05 1696 0.33 0.14 091 436 234 0.08 0.01 1.31  99.64 1.5 This study
17FINO1 74.00 0.04 1338 2.13 0.28 026  2.05 740 0.11  0.02 0.58 100.26 1.1 This study
17FINO2 61.87 085 1724 795 2.94 1.18 245 3.84  0.06 0.03 1.41  99.81 1.7 This study
17FINO3B  60.20 0.82 1737 8.76 2.41 215 373 353 0.07 0.08 0.69 99.81 1.3 This study
17FINO4A  71.01 023 1458  3.56 0.95 1.62  3.02 440 0.08 0.07 0.49 100.01 1.2 This study
17FINOSB  56.62 0.89 18.71  8.63 391 142 2.63 586 0.08 0.04 1.24  100.02 14 This study
17FINO6A 6484 0.66 1599  6.92 2.21 1.62 292 345  0.07  0.05 1.16  99.89 1.4 This study
17FINO6B  70.66 0.06  15.00  3.88 0.72 147 3.14 428 0.10 0.04 0.71  100.06 1.2 This study
18IM19 72.13  0.31 14.05  3.51 1.41 1.27 249 3.68 0.06 0.05 0.73  99.69 1.4 This study
15K-2 6229 0.57 1740 597 1.76 323 515 2.10 033  0.06 090 99.81 1.1 This study
18IM11B 6193 1.06 18.04 6.58 2.18 2.88  2.80 3.58 0.07  0.06 022 99.38 1.3 1
18IM12B 69.05 0.14 1473 597 1.90 285 232 1.03 003 0.13 0.77  98.92 1.5 1
18IM13C 70.74 033 14.84  3.06 0.87 3.0 3.29 1.73  0.10  0.01 1.00  99.01 1.2 1
18IM15B 6523 0.58 1548 7.01 2.12 352 284 096 0.09 0.09 1.34  99.25 1.3 1
18IM19 72.13  0.31 14.05  3.51 1.41 1.27 249 3.68 0.06 0.05 0.73  99.69 1.4 1
18IM20 63.52 026 1778 6.13 1.81 2,63 3.50 3.05  0.07 0.07 0.85  99.69 1.3 1
18IM23D 71.76  0.11 14.05 2.83 0.79 0.60 2.01 6.51 012  0.04 0.50  99.32 1.2 1
18IM25C 7442  0.06 13.17 095 0.17 095 271 580 0.02  0.00 0.89  99.15 1.1 1
18IM3 77.57 037 10.88 3.0l 0.87 1.03 223 272 005 0.05 0.68 99.45 1.3 1
SP-16-20a  74.14 0.10 1397 092 0.27 0.65 2.70 6.62 012  0.01 035  99.86 1.1 2
SP-16-2b 72.83 0.18 1450 1.33 0.31 1.11  4.05 458 0.07 0.03 0.53  99.53 1.1 2
SP-16-34 75.30  0.08 1430 0.73 0.25 0.84 280 5.00 0.05 0.02 0.61  99.97 1.3 2
SP-17-71 75.31  0.05 1411  0.71 0.06 0.60 545 1.58 011 0.17 0.97 98.08 1.3 3
SP-17-82 7545 0.05 1427 044 0.01 032 485 374 0.02  0.08 0.74  99.18 1.2 3
CO-17-8 70.54 039 1437 295 0.49 1.24  2.56 578 0.28  0.03 1.25  99.58 1.3 3

composition recorded by garnet from these two samples
provides the best estimate of their parental magma '%0.
Data tables with single spot O isotopic data are given in
Supplementary Table D1, a summary of weighted means
is given in Table 3.

3.4. Sulfur isotope geochemistry

Pyrite grains are euhedral to sub-euhedral, with
homogenous BSE intensity, and largely free of inclusions
and intergrown phases. Images of representative pyrite
grains are provided in Supplementary Figs. A3 and A8. Sin-
gle spot pyrite 8**S and A*3S values cluster tightly around
discrete values for each sample, and seemingly define single
populations (Fig. 2). No sulfur isotopic intra-grain hetero-
geneity is observed. The weighted mean pyrite 8°*S values
range from —13.3 £ 0.9%o0 to 9.7 + 1.0%0 but are mostly
(11 out of 13 samples) between —4%o and 4%o0. Four samples
contain pyrite with non-zero A®S values (Fig. 2). These
samples include three ~2.7 Ga granites from the Superior
province that exhibit positive A**S values of 0.13 & 0.06
%o t0 0.18 £ 0.05 %0 and a ~2.5 Ga granite from the North
China Craton with a negative A**S value of —0.29 + 0.12
%o. Five out of 13 granitoids contain individual pyrite
grains with sulfur isotope ratios distinct from the main pop-
ulation (i.e. outside of the 2o uncertainty of the weighted
mean), including three out of 19 grains in sample SP-16-
20a, one out of 11 grains in sample SP-16-2b, two out of

27 grains in sample 15K-2, two out of 29 grains in sample
17FINO3B, and one out of 12 grains in samples
19GH11B. These individual grains with distinct sulfur iso-
topic composition may reflect incomplete homogenization
of sulfur between the melt and assimilated material or pyr-
ite growth associated with secondary processes (despite the
removal of melanosomes and weathered surfaces, if initially
present, prior to mineral separation as thoroughly as possi-
ble). Single spot analyses obtained from these isotopically
distinct grains are not considered further. Data tables with
single spot sulfur isotopic data are given in Supplementary
Table C1, a summary of weighted means is given in Table 3.

4. DISCUSSION
4.1. Magmatic origin of zircon and garnet O isotope ratios

Strongly peraluminous granitoids are generally inter-
preted to derive from the partial melting of sedimentary
sources (Shand, 1943; Chappell and White, 1992). Hence,
the presence of magmatic aluminous mineral phases other
than biotite and feldspars and/or A/CNK > 1.1 suggests
that the studied granitoids were derived from the partial
melting of metasedimentary protoliths (Shand, 1943;
Chappell and White, 1992). Twenty-six out of 28 samples
have garnet and zircon 8'80 values that are elevated with
respect to the mantle value of 5.3 + 0.6%0 (2o; Page
et al., 2007) as expected for melts that assimilated
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Summary of O and S geochemistry, and crystallization ages. Isotopic data is given as weighted average with 2SD uncertainty. (1) Liecbmann

et al. (2021a).

Sample ID  Locality Age + 20 Zircon Garnet Pyrite Reference
Ma 3180 [%o] 20 380 [%] 20  &*S[%] 206 ABS[%] 20

17FINO1 Svecofennian domain  1850'" - - 10.39 020 1.54 0.99 —0.01 0.08 This study
17FIN02 Svecofennian domain 1896 + 26 8.78 322 9.87 0.24 —-0.87 0.90 —-0.02 0.07 This study
17FINO3B  Svecofennian domain 1824 £ 13 9.32 1.16 9.48 0.51 —-0.09 0.88 0.01 0.08 This study
17FINO4A  Svecofennian domain  1850'" 10.37 3.46 10.02 0.10 0.85 141 0.01 0.06  This study
17FINO5B  Svecofennian domain 1836 + 11 10.52 0.77 10.30 0.11 1.61 0.55 —0.01 0.06 This study
17FIN06 Svecofennian domain 1815 + 16 10.20 0.61 10.28 0.11 1.58 0.93 —0.01 0.07 This study
I9GHI1B  West African Craton 2188 £ 20 5.34 0.83 - - -3.71 1.51 —0.04 0.07 This study
15K-2 Ukrainian Shield 2144 + 28 8.86 0.81 - - 9.72 0.99 —0.04 0.06 This study
CO-17-8 Yavapai province 1447 £+ 50 8.74 0.61 - - 3.31 0.26 —0.02 0.05 This study
SP-16-20a  Superior Craton 2654 + 24 - - - - 0.60 0.56 0.13 0.06  This study
SP-16-2b Superior Craton 2664 + 45 - - - - 1.79 0.61 0.18 0.05 This study
SP-17-43 Superior Craton 2690 - - 7.06 0.09 —13.33 092 0.16 0.05 This study
18IM19 North China Craton 2478 + 18 7.21 0.58 7.50 041 -1.26 1.29 —-0.29 0.12  This study, 1
18IM20 North China Craton 2374 + 48 7.39 0.70 7.22 0.05 - - - - This study, 1
18IM11B  North China Craton 1901 £ 17 10.80 0.90 10.77 0.14 - - - - This study, 1
18IM12B  North China Craton 1929 + 29 9.74 1.16 10.05 0.12 - - — — This study, 1
18IM3 North China Craton 1917 + 70 11.41 1.00 11.52 0.12 - - - - This study, 1
18IM25C  North China Craton 2493 + 28 6.86 089 - - - - - - This study, 1
18IM13C  North China Craton 2536 + 13 8.12 070 - - - - - - 1

18IM15B  North China Craton 2530 + 60 8.57 042 - - - - - - 1

18IM23D  North China Craton 2453 £+ 11 6.31 0.63 - - - - - - 1

19GH9 West African Craton 2183 + 14 493 0.82 - - - - - - This study
19GH3 West African Craton  2180'" - - 9.72 0.09 - - - - This study
SP-16-34 Superior Craton 2654 + 24 - - 7.99 0.10 - - — - This study
SP-17-33 Superior Craton 2650'" - - 7.85 0.13 - - - - This study
SP-17-38 Superior Craton 26501 - - 6.93 0.11 - - - - This study
SP-17-82  Superior Craton 26501 - - 6.06 0.12 - - - - This study
SP-17-71 Superior Craton 26501 - - 6.92 0.09 - - - - This study
SP-17-13 Superior Craton 2660 + 10 — - 7.15 0.10 - - - - This study
SP-17-50 Superior Craton 26501 - - 7.55 0.09 - - - - This study

M) Expected age (see Appendix).
@ Age from Corfu et al. (1995).
® Age from Percival (1989).

sedimentary material (Mattey et al., 1994; Valley, 2003).
The exception are two granitoids from the West African
Craton (19GH11B and 19GHY9) with zircon §'%0 values
of 4.9 + 0.8%c and 5.3 4 0.8%0 which are within the mantle
range. These two samples could reflect assimilation of
hydrothermally altered supracrustal rocks or assimilation
of a relatively low-8'0 sedimentary component. Occur-
rences of low-3'%0 melts with a sedimentary component
are rare, but have been reported in previous studies
(Feeley and Sharp, 1995; Watts et al., 2019) and siliciclastic
sedimentary rocks with 8'30 values within the mantle range
(e.g. tillites) have been documented in the compilations of
Payne et al., (2015) and Bindeman (2020). However, peralu-
minous melts with 5'0 values within the mantle range can
also be produced from igneous protoliths; i.e. through
highly fractionated melts (Cawthorn and Brown, 1976;
Wu et al., 2003) or a melt sourced from hydrothermally
altered volcanic rocks (Peck and Valley, 2000; Peck and
Smith, 2005). Thus, these two samples cannot unequivo-
cally be linked to the partial melting of sedimentary pro-
toliths, and their oxygen and sulfur isotopic signatures are
therefore not considered further in the discussion below.

Zircon and garnet tend to preserve a record of the oxygen
isotope composition of their parental melt due to slow
intracrystalline diffusion rates of oxygen in these minerals
(Valley et al., 1994; Vielzeuf, 2005). Given the small equilib-
rium fractionation (smaller than the analytical uncertainty)
of oxygen isotopes between almandine-rich garnet and zir-
con at temperatures typical for granitoid melts (Valley
et al., 2003) (Fig. 1) 8'80 values recorded by garnet and zir-
con in the granitoids of this study are directly comparable.
Garnet in granitic rocks can have a number of origins,
including magmatic, peritectic, and xenocrystic (Stevens
et al.,, 2007; Erdmann et al., 2009; Lackey et al., 2011).
The within error identical 8'%0 values of garnet-zircon pairs
indicates equilibrium crystallization (Valley et al., 2003),
and thus, a magmatic origin of garnet in these granitoids
(Lackey et al., 2011). Garnet in samples without zircon
3'80 data (samples 17FINOI, 19GH3, and samples from
the Superior Craton) is also interpreted to be of magmatic
origin based on the following observations. Entrainment of
peritectic garnet is thought to be associated with increasing
ferromagnesian contents (up to 9 wt% FeO + MgO;
Stevens et al., 2007). However, the available whole-rock
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Fig. 1. Zircon 3'30 vs garnet 8'%0 color-coded by crystallization age of sediment-derived igneous rocks. Isotherms at 650 °C (dashed line) and
1200 °C (solid line) are after Valley et al. (2003). Oxygen isotope data is shown as weighted averages. Single spot results of O isotope analysis
are given in the Appendix. Error bars are shown at 2 level. Note that large error bars for zircon 3'%0 are due to heterogeneity in these
samples interpreted to be related to secondary processes (discussed in the text).
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Fig. 2. Single spot (A) and weighted mean (B) 8**S vs. A**S of pyrite-bearing granitoids. Error bars are shown at 2o level. Grey area marks
the range of A>3S values that can be produced through mass-dependent fractionation processes (LaFlamme et al., 2018b). Legend at the right-
hand side applied to both parts of the figure. Single spot results of sulfur isotope analysis are given in the Appendix.

major element concentrations (Table 2, see Tindle et al.,
2002, for the Superior Craton batholiths) show low ferro-
magnesian contents in these granitoids (FeO + MgO <2.2
wt%) implying no or limited entrainment of peritectic gar-
net (Stevens et al., 2007). Furthermore, the analysis of gar-
net aliquots in duplicate indicates homogenous garnet
oxygen isotopic ratios in these samples with 2SD < 0.2%o,
implying that a xenocrystic origin of garnet in these samples
is unlikely, as xenocrystic garnet commonly results in mul-
tiple garnet populations with distinct oxygen isotope ratio
(Harris and Vogeli, 2010; Lackey et al., 2011).

4.2. The influence of continental emergence on $'%0 in
sediment melts

The average zircon and garnet 3'30 values of sediment-
derived melts increase 7.2%o0 pre-2.3 Ga to 10.0%o post-
2.3 Ga (Fig. 3) in accord with previous studies (Spencer
et al., 2019; Bindeman, 2020; Liebmann et al., 2021a).
The average 5'%0 value of shales increases from the early
Archean to present (Payne et al., 2015; Bindeman, 2020).
An increase in shale 5'%0 value can be achieved through
a higher ratio of secondary (authigenic) to primary (detri-
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Fig. 3. Oxygen and sulfur isotopic data vs. crystallization age. Timing of atmospheric oxygenation (Luo et al., 2016) is shown as the blue bar.
Legend on the right applies to both parts of the figure. (A) Zircon and garnet 8'%0 vs. granitoid crystallization ages. Oxygen isotope data is
shown as weighted averages. Black bars mark average 3'®0 (as recorded by zircon and garnet) pre- and post-2.3 Ga, respectively. The two
samples marked by asterisks show evidence for complex petreogeneses (see text for discussion) and have been omitted from the calculation of
the 8'%0 averages. Single spot results of O isotope analysis are given in the Appendix. Error bars for oxygen isotope data and age are 2c.
Zircon oxygen isotope data from sediment-derived granitoids in Suomussalmi and Helanshan are from (1) Mikkola et al. (2011), and (2) Dan
et al. (2014). (B) Pyrite A**S vs. granitoids crystallization shown as violin plots; white circles mark medians. Black bar marks A**S = 0%o. The
white asterisk marks a sample with complex petrogenesis (see text for discussion) that has been omitted from the interpretation.

tal) mineral components, on average lower temperatures of
fluid-rock interaction during diagenesis and chemical
weathering, and changes in the oxygen isotope composition
of the weathering fluid (Savin and Epstein, 1970; Knauth
and Lowe, 2003). A change in the triple oxygen isotope
ratio in shales between 2.43 and 2.31 Ga has been linked
to a change in the oxygen isotope composition of the fluid
involved in the weathering of the continents (Bindeman
et al., 2018; Bindeman, 2020). It has been proposed that
the timing of this change in shale triple oxygen isotope ratio
marks the onset of a modern hydrological cycle associated
with the emergence of continents (Bindeman et al., 2018).
Furthermore, an increased subaerial land area may have
facilitated high-5'%0 shale formation through enhanced
chemical weathering and erosion of continents supporting
clay-mineral formation (the high-8'%0 component in shales;
Hazen et al., 2013; Payne et al., 2015). Therefore, increased
subaerial exposure of continents may have resulted in the
formation of high-3'%0 shales that upon subsequent recy-
cling caused an increase in zircon 8'®0 (Payne et al.,
2015; Spencer et al., 2019; Bindeman, 2020). Archean con-
tinents were at least locally raised above sea level as evident
from siliciclastic sediments and subaerial volcanism (e.g.
Eriksson et al., 1999). However, geochemical proxies and
numerical models suggest that the subaerial exposure of
Archean continents was limited (Flament et al., 2013;
Johnson and Wing, 2020). The widespread emergence of
continents (i.e. a change from locally subaerial continents
to large-scale subaerial exposure of continents) at the
Archean-Proterozoic transition is supported by changes to
geochemical proxies at this time, such as an increase in sea-
water 37Sr/%®Sr (Flament et al., 2013), a decrease in shale
A0 (Bindeman et al., 2018; Bindeman, 2020), as well as

an increase in subaerial large igneous province volcanism
(Kump and Barley, 2007).

4.3. Origin of pyrite S isotope ratios and the influence of
atmospheric oxygenation

Pyrite-bearing sediment-derived granitoids with crystal-
lization ages >2.3 Ga yield non-zero A*’S values, whereas
those younger than 2.3 Ga uniformly show A*S of 0%o.
Previous studies demonstrated strong mass-depended frac-
tionation of S isotopes in post-GOE sedimentary sulfur spe-
cies (i.e. 8**S ranging from ~—50%0 to 50%0 and A*’S of
~0%o), whereas pre-GOE sedimentary sulfur species show
a slightly smaller range in 8°*S values (~—20 to 30%o) and
a large range in A**S values (~—2 to 14%0) (Johnston,
2011; Killingsworth et al., 2019). Furthermore, A**S and
534S values in pre-GOE sediments and igneous rocks that
assimilated sediments are overall positively correlated
(Farquhar and Wing, 2003; Ono et al., 2003; Johnston,
2011; LaFlamme et al., 2018a). The granitoids of this study
fall within the range of previously reported 8**S and A*3S
values of Archean and Proterozoic sedimentary sulfur
phases. Within the comparatively restricted range of 5>*S
and A**S values (ranging from —13%o to 10%0 and —0.3%o
to 0.2%o, respectively) no increase in range of 8**S values
post-GEO nor a correlation between 5>*S and A**S values
pre-GOE is apparent from the granitoids of this study.
The magnitude of A*S values of the >2.3 Ga granitoids
are small (—0.29%o0 to 0.18%c) compared to those in pre-
GOE sedimentary rocks (~—2%o to 14%o) (Johnston, 2011;
Killingsworth et al., 2019). Small non-zero A**S values
can be produced through reactions controlled by S-MDF
(e.g. Ono et al., 2006). The generation of non-zero
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A®S + 1%o through MDF processes requires strong frac-
tionation of the **S/*?S isotope ratio (LaFlamme et al.,
2018b). Therefore, threshold A**S values for MDF can be
calculated based on §**S (LaFlamme et al., 2018b). The
534S values of the four >2.3 Ga granitoids correspond to
threshold MDF A**S values of —0.053%0 and 0.093%o for
sample SP-17-43 (measured A¥S = 0.16 + 0.05%0),
—0.005%0 and 0.009%0 for sample 18IM19C (measured
APS = —0.29 + 0.12%0), —0.013%0 and 0.007%o for sample
SP-16-2b (measured A>*S = 0.18 % 0.05%o), and —0.004%o
and 0.002%o for sample SP-16-20a (measured A*’S = 0.13
+ 0.06). Hence, the magnitude of non-zero A**S values
observed in the >2.3 Ga granitoids is too large to be the
result of S-MDF processes alone (Fig. 2). Therefore, the
S-MIF signatures in these granitoids are interpreted to
record the recycling of sedimentary sulfur species (i.e.
through assimilation and partial melting of sediments)
formed under the anoxic pre-GOE atmosphere. The trans-
fer of sulfur isotope signatures from sediments into the
igneous rock record has been documented in previous stud-
ies (Bekker et al., 2009; LaFlamme et al., 2018a; Bucholz
et al., 2020). A previous study on an Archean sediment-
derived granitic batholith and its source rocks demon-
strated that during the process of metamorphism and par-
tial melting, 5°*S values are fractionated from the
sedimentary protolith values by at most +2%o to +3%o
and that S-MIF values are preserved (Bucholz et al.,
2020). This gives us confidence that we can interpret the S
isotope signature of our samples in the context of the bulk
sedimentary packages from which they were derived. Three
of the >2.3 Ga granitoids of this study show positive A*3S
values, one sample shows a negative A**S value. The pre-
GOE sedimentary record is skewed towards positive A**S
values (Johnston, 2011; Killingsworth et al., 2019). Positive
A®S anomalies are commonly found in Archean sedimen-
tary pyrite that may have formed from reduced sulfur spe-
cies (e.g. Sg aerosols) produced through photodissociation
in the oxygen-poor atmosphere (Farquhar et al., 2000;
Farquhar et al., 2002). Based on the dominance of negative
A>3S values in Archean barites, it has been posited that
oceanic sulfates (formed from oxidized sulfur species pro-
duced through photodissociation; e.g. SO, aerosols) carry
the complementary negative A®’S signatures required by
isotopic mass balance (Farquhar et al., 2000). The recycling
of marine sediments into the mantle may explain the ‘miss-
ing’ negative A%S reservoir (Farquhar and Jackson, 2016).
A negative A*¥S reservoir in the mantle is supported by
plume-fed hotspot lavas with negative A™S signatures
(Cabral et al., 2013; Delavault et al., 2016). However, stud-
ies that report predominantly positive or zero A**S values in
Archean oceanic sulfate, mid-ocean ridge basalts, and
trapped sulfides in diamonds from the lithospheric mantle
challenge this view (Farquhar et al., 2002; Paris et al.,
2014; Labidi et al., 2015; Smit et al., 2019). The inconsistent
sulfur isotopic budget is a yet unsolved scientific problem,
and the complementary negative A**S reservoir remains
cryptic.
The low &°*S value (~—13%o0) of pyrite in sample SP-17-
43 from the Wenasaga Lake batholith, Superior province,
could derive from the contribution of organic sulfur.

Microbial sulfate reduction commonly produces sulfides
that are strongly depleted in the heavy >*S isotope
(Johnston et al., 2007). The S-MIF signature in this sample
(A¥S = 0.16 + 0.04%o0) indicates atmospheric influence.
Therefore, the recorded sulfur isotopic composition of this
sample may be the result of mixing between two reservoirs
(i.e. atmospheric and microbial sulfur). A similar scenario
has been suggested to be responsible for the negative 5>*S
values and positive A**S values of pyrite in the Archean
upper Mount McRae Shale in the Hamersley Basin, Wes-
tern Australia (Ono et al., 2003; Kaufman et al., 2007). Sul-
fide 8**S values below —10%o (as observed in sample SP-17-
43) are exceedingly rare in pre-GOE sediments (Canfield,
2001; Johnston, 2011). This absence of strongly fraction-
ated sulfides in pre-GOE sediments has been linked to
low seawater sulfate concentration resulting in small S iso-
tope fractionation during microbial sulfate reduction
(Canfield, 2001). Alternatively, the low §**S value in this
sample could arise during fractionation between S* in the
melt and H,S in a vapor phase (produced through meta-
morphic devolatilization) as documented for other samples
from the Superior Craton (Bucholz et al., 2020). Note that
at the low oxygen fugacities recorded by some pre-GOE
sediment-derived granitoids (Bucholz et al., 2018) H,S (as
opposed to SO,) is the dominant sulfur-bearing vapor
phase (Poulson and Ohmoto, 1989). While devolatilization
can strongly influence 3**S, A**S is unaffected (Bucholz
et al., 2020).

4.4. A link between continental emergence and atmospheric
oxygenation?

Sediment-derived granitoids inherit their oxygen and
sulfur isotopic ratios from their sedimentary sources
(Bindeman, 2020; Bucholz et al., 2020) and therefore, pro-
vide an archive of these signatures in bulk siliciclastic sed-
iments that is relatively unaffected by secondary alteration
and can be tied directly to zircon crystallization ages. The
youngest sediment-derived granitoid of this study that
shows S-MIF and oxygen isotopic signatures respectively
implying an anoxic atmosphere and widely submerged
continents (sample 18IM19) has a crystallization age of
2478 + 18 Ma. The oldest sample (15K-2) showing only
S-MDF and O isotopic signatures indicating respectively
an oxygenized atmosphere and emergent continents yields
a crystallization age of 2144 + 28 Ma. The evolution of
oxygen and sulfur isotopic signatures (towards highly frac-
tionated 5'0 values and the disappearance of S-MIF sig-
natures post-2.3 Ga) appear to be temporally coupled in
the samples of this study. However, the data is inconclu-
sive for the ~300 Myr interval between the youngest S-
MIF and the oldest S-MDF sample. The preserved rock
record between 2.4 and 2.2 Ga is sparse (Condie et al.,
2009; Spencer et al., 2018) making it challenging to fill this
temporal gap. The lifespan of sedimentary basins ranges
from <1 Myr for trench basins to >100 Myr for intracra-
tonic basins (Woodcock, 2004). Hence, due to the lag time
between sediment deposition and partial melting, the gran-
itoids studied here only provide minimum ages for the sec-
ular changes in the oxygen and sulfur isotopic systems in
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sediment-derived granitoids. Importantly, however, this is
inconsequential for the fact that the evolution of oxygen
and sulfur isotopic signatures seems to be coupled. If
the evolution of sulfur and oxygen isotopic signatures in
sediment-derived melts is indeed coupled, this would pro-
vide strong evidence for a temporal and potentially causal
connection of the emergence of continents and atmo-
spheric oxygenation.

Numerical models demonstrate the strong influence of
subaerial continental emergence on nutrient flux (such as
P) to the oceans (Hao et al., 2020). The availability of nutri-
ents is thought to control marine primary productivity on
geologic timescales (Howarth, 1988; Tyrrell, 1999;
Holland, 2020). Elevated, emerged continental crust and
associated enhanced erosion would increase the supply of
life-essential nutrients into the ocean, increasing that avail-
able for oxyphotobacteria (Campbell and Allen, 2008; Cox
et al., 2018; Hao et al., 2020). Furthermore, a shift in ocean
nutrient availability from P to Fe limiting may have
resulted in ecological conditions favourable for oxygenic
photoautotrophs over anoxygenic photoautotrophs (Jones
et al., 2015; Ozaki et al., 2019). However, marine sediments
show relatively constant, low P contents until 800-700 Ma
(Planavsky et al., 2010; Reinhard et al., 2017). This appar-
ent disagreement may be explained through (1) the GOE
facilitating efficient recycling of P through remineralization
of sinking biomass limiting P burial in sediments (Kipp and
Stiieken, 2017), (2) an adaptation of photosynthetic bacte-
ria to low P availability (i.e. high C/R ratios) inhibiting P
burial in marine sediments (Reinhard et al., 2017; Kipp
and Stiieken, 2017), (3) pre-GOE primary production was
limited by continentally-derived trace metals rather than
P (Scott et al., 2008; Planavsky et al., 2010). Increased ero-
sion and sediment supply from the elevated continents
would facilitate the burial of organic carbon leading to
diminished O, consumption (Campbell and Allen, 2008).
The proportion of submarine to subaerial volcanism would
also change, which in turn alters the redox state of volcanic
gases towards more oxidizing (Kump and Barley, 2007;
Galillard et al., 2011).

5. CONCLUDING REMARKS

Sediment-derived granitoids provide a record of bulk
siliciclastic sediment composition and demonstrate an
increase in average 8'%0 and a disappearance of S-MIF
signatures post-2.3 Ga. These changes in the O and S iso-
topic signatures are influenced by subaerial continental
exposure and atmospheric oxygen level, respectively,
and change concomitantly in this sample suite. The impli-
cation is that the subaerial emergence of continents and
atmospheric oxygenation were coeval and that the former
could have contributed to atmospheric oxygenation by
facilitating primary production and/or attenuating O,
sinks.
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