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SECOND-ORDER GUARANTEES OF DISTRIBUTED GRADIENT
ALGORITHMS\ast 
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Abstract. We consider distributed smooth nonconvex unconstrained optimization over net-
works, modeled as a connected graph. We examine the behavior of distributed gradient-based algo-
rithms near strict saddle points. Specifically, we establish that (i) the renowned distributed gradient
descent algorithm likely converges to a neighborhood of a second-order stationary (SoS) solution;
and (ii) the more recent class of distributed algorithms based on gradient tracking---implementable
also over digraphs---likely converges to exact SoS solutions, thus avoiding (strict) saddle points. Fur-
thermore, new convergence rate results for first-order critical points is established for the latter class
of algorithms.
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1. Introduction. We consider smooth unconstrained nonconvex optimization
over networks in the following form:

(P) min
\bfittheta \in \BbbR m

F (\bfittheta ) \triangleq 
n\sum 

i=1

fi(\bfittheta ),

where n is the number of agents in the network; and fi : \BbbR m \rightarrow \BbbR is the cost function
of agent i, assumed to be smooth and known only to agent i. Agents are connected
through a communication network, modeled as a (possibly directed, strongly) con-
nected graph. No specific topology is assumed for the graph (such as star or hierar-
chical structure). In this setting, agents seek to cooperatively solve problem (P) by
exchanging information with their immediate neighbors in the network.

Distributed nonconvex optimization in the form (P) has found a wide range of ap-
plications in several areas, including network information processing, machine learn-
ing, communications, and multiagent control; see, e.g., [58]. For instance, this is
the typical scenario of in-network data-intensive (e.g., sensor-network) applications
wherein data are scattered across the agents (e.g., sensors, clouds, robots), and the
sheer volume and spatial/temporal disparity of data render centralized processing and
storage infeasible or inefficient. Communication networks modeled as directed graphs
capture simplex communications between adjacent nodes. This is the case, e.g., in
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several wireless (sensor) networks wherein nodes transmit at different power and/or
communication channels are not symmetric.

Main objective. We call \bfittheta a critical point of F if \nabla F (\bfittheta ) = 0; a critical point
\bfittheta is a strict saddle of F if \nabla 2F (\bfittheta ) has at least one negative eigenvalue; and it is
a second-order stationary (SoS) solution if \nabla 2F (\bfittheta ) is positive semidefinite. Critical
points that are not minimizers are of little interest in the nonconvex setting. It is thus
desirable to consider methods for (P) that are not attracted to such points. When
F has a favorable structure, stronger guarantees can be claimed. For instance, a
wide range of salient objective functions arising from applications in machine learning
and signal processing have been shown to enjoy the so-called strict saddle property:
all the critical points of F are either strict saddles or local minimizers. Examples
include principal component analysis and fourth-order tensor factorization [26], low-
rank matrix completion [27], and some instances of neural networks [37], just to name
a few. In all these cases, converging to SoS solutions---and thus circumventing strict
saddles--guarantees finding a local minimizer.

This paper studies for the first time second-order guarantees of two renowned dis-
tributed gradient-based algorithms for problem (P), namely, the distributed gradient
descent (DGD) [49, 50] and the family of distributed algorithms based on gradient
tracking [21, 22, 68]. The former is implementable on undirected graphs while the
latter is suitable also for directed graphs. Convergence of these schemes applied to
convex instances of (P) is well understood; however, less is known in the nonconvex
case, let alone second-order guarantees; the relevant works are discussed next.

1.1. Literature review. Recent years have witnessed many studies proving
asymptotic solution---and convergence rate---grantees for a variety of algorithms for
specific classes of nonconvex optimization problems (e.g., satisfying suitable regularity
conditions); a good overview can be found in [16]. Since these analyses are heavily
tailored to specific applications and it is unclear how to generalize them to a wider
class of nonconvex functions, we omit further details and discuss next only results of
centralized and distributed algorithms for general nonconvex instances of (P).

1.1.1. Second-order guarantees of centralized optimization algorithms.
Second-order guarantees of centralized solution methods for general nonconvex opti-
mization (P) have been extensively studied in the literature.

Hessian-based methods: Algorithms based on second-order information have
long been known to converge to SoS solutions of (P); they rely on computing the
Hessian to distinguish between first- and SoS points. The classical cubic regularization
[29, 52, 14, 15, 3] and trust region (e.g., [46, 55, 17, 20]) methods can provably find
approximate SoS solutions in polynomial time (by approximate SoS we mean \bfittheta such
that | | \nabla F (\bfittheta )| | \leq \epsilon g and \lambda min(\nabla 2F (\bfittheta )) \geq  - \epsilon h for small \epsilon g, \epsilon h > 0); they however
require access to the full Hessian matrix. A recent line of works [13, 4, 12] show that
the requirement of full Hessian access can be relaxed to Hessian-vector products in
each iteration, hence solving simpler subproblems per iteration, but at the cost of
requiring more iterations to reach approximate SoS solutions.

First-order methods: For general nonconvex problems, gradient descent (GD)
is known to find a stationary point in polynomial time [51]. In [42], it was proved
that randomly initialized GD with a fixed step size converges to SoS solutions almost
surely. The elegant analysis of [42], leveraging tools from the theory of dynamical
systems (e.g., the stable manifold theorem), has been later extended in a number of
follow-up works establishing the same type of second-order guarantees for a variety
of first-order methods, including the proximal point algorithm, block coordinate de-
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scent, mirror descent [41]; the heavy-ball method and Nesterov's accelerated method
[53]; block coordinate descent and alternating minimization [43]; and a primal-dual
optimization procedure for solving linear equality constrained nonconvex optimization
problems [33]. These results are all asymptotic in nature and it is unclear whether
polynomial convergence rates can be obtained for these methods. In [23] it was ac-
tually proven that, even with fairly natural random initialization schemes and for
nonpathological functions, GD can be significantly slowed down by saddle points,
taking exponential time to escape. Recent work has analyzed variations of GD that
include stochastic perturbations. It has been shown that when perturbations are
incorporated into GD at each step the resulting algorithm can escape strict saddle
points in polynomial time [26]; the same conclusion was earlier established in [54] for
stochastic gradient methods, although without escape time guarantees. It has also
been shown that episodic perturbations suffice; in particular, [35] introduced an al-
gorithm that occasionally adds a perturbation to GD, and proved that the number
of iterations to escape saddle points depends only polylogarithmically on dimension
(i.e., it is nearly dimension independent). Fruitful follow-up results show that other
first-order perturbed algorithms escape from strict saddle points efficiently [36, 45].

1.1.2. Distributed algorithms for (P) and guarantees. Distributed algo-
rithms for convex instances of (P) have a long history; fewer results are available for
nonconvex objectives. Since the focus on this paper is on nonconvex problems, next,
we mainly comment on distributed algorithms for minimizing nonconvex objectives.

\bullet DGD and its variants: DGD (and its variants) is unquestionably among the
first and most studied decentralizations of the GD algorithm for (P) [49, 50]. The
instance of DGD considered in this paper reads given x0

i \in \BbbR m, i \in [n],

(1.1) x\nu +1
i =

n\sum 
j=1

Dij x\nu 
j  - \alpha \nabla fi(x

\nu 
i ), i \in [n],

where x\nu 
i is the agent i's estimate at iteration \nu of the vector variable \bfittheta ; the \{ Dij\} i,j

are a suitably chosen set of nonnegative weights (cf. Assumption 3.1), matching the
graph topology (i.e., Dij > 0 if there is a link between node i and j, and Dij = 0
otherwise); and \alpha > 0 is the step size. Roughly speaking, the update of each agent i in
(1.1) is the linear combination of two components: (i) the gradient \nabla fi evaluated at
the agent's latest iterate (recall that agents do not have access to the entire gradient
\nabla F ); and (ii) a convex combination of the current iterates of the neighbors of agent
i (including agent i itself). The latter term (also known as the consensus step) is
instrumental to asymptotically enforcing agreement among the agents' local variables.

When each fi in (P) is (strongly) convex, convergence of DGD is well understood.
With a diminishing step size, agents' iterates converge to a consensual exact solution;
if a constant step size is used, convergence is generally faster but only to a neighbor-
hood of the solution, and exact consensus is not achieved. When (P) is nonconvex, the
available convergence guarantees are weaker. In [70] it was shown that if a constant
step size is employed, every limit point (x\infty 

1 , . . . ,x\infty 
n ) of the sequence generated by

(1.1) satisfies
\sum n

i=1 \nabla xi
fi(x

\infty 
i ) = 0; the limit points of agents' iterates are not con-

sensual; asymptotic consensus is achieved only by using a diminishing step size. Since
in general fi are all different, such limit points are not critical points of F . Nothing is
known about the connection of the critical points of

\sum n
i=1 fi(xi) and those of F , let

alone its second-order guarantees. A first contribution of this paper is to establish
second-order guarantees of DGD (1.1) applied to (P) over undirected graphs.

Several extensions/variants of the vanilla DGD followed the seminal works [49,
50]. The projected (stochastic) DGD for nonconvex constrained instances of (P) was
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3032 A. DANESHMAND, G. SCUTARI, AND V. KUNGURTSEV

proposed in [11]; with a diminishing step size, the algorithm converges to a stationary
solution of the problem (almost surely, if noisy instances of the local gradients are
used). The extension of DGD to digraphs was studied in [47] for convex unconstrained
optimization, and later extended in [63] to nonconvex objectives. The algorithm,
termed push-sum DGD, combines a local gradient step with the push-sum algorithm
[9]. When a diminishing step size is employed, push-sum DGD converges to an exact
stationary solution of (P); and its noisy perturbed version almost surely converges
to local minimizers, provided that F does not have any saddle point [63]. To our
knowledge, no other guarantees are known for DGD-like algorithms in the nonconvex
setting. In particular, it is unclear whether DGD (1.1) escapes strict saddles of F .

\bullet Gradient tracking-based methods. To cope with the speed-accuracy dilemma
of DGD, [21, 22] proposed a new class of distributed gradient-based methods that
converge to an exact consensual solution of nonconvex (constrained) problems while
using a fixed step size. The algorithmic framework, termed NEXT, introduces the idea
of gradient tracking to correct the DGD direction and cancel the steady state error
in it while using a fixed step size: each agent updates its own local variables along
a surrogate direction that tracks the gradient \nabla F of the entire objective (the same
idea was proposed independently in [68] for convex unconstrained smooth problems).
The generalization of NEXT to digraphs---the SONATA algorithm---was proposed in
[62, 58, 59, 61], with [59, 61] proving convergence of the agents' iterates to consensual
stationary solutions of nonconvex problems at a sublinear rate. No second-order
guarantees have been established for these methods. Extensions of the SONATA family
based on different choices of the weight matrices were later introduced in [66, 56]
for convex smooth unconstrained problems. In this paper we consider the following
family of distributed algorithms based on gradient tracking, which encompasses the
majority of the above schemes (see, e.g., [59, section 5]), and refer to it as distributed
optimization with gradient gracking (DOGT):

x\nu +1
i =

n\sum 
j=1

Rijx
\nu 
j  - \alpha y\nu 

i ,(1.2)

y\nu +1
i =

n\sum 
j=1

Cijy
\nu 
j + \nabla fi

\bigl( 
x\nu +1
i

\bigr) 
 - \nabla fi

\bigl( 
x\nu 
i

\bigr) 
(gradient tracking),(1.3)

where (Rij)i,j and (Cij)i,j are suitably chosen nonnegative weights compliant with
the graph structure (cf. Assumption 4.1); and yi \in \BbbR m is an auxiliary variable, con-
trolled by agent i via the update (1.3), which aims at tracking locally the gradient sum\sum 

i \nabla fi(x
\nu 
i ). Overall, the update (1.3) in conjunction with the consensus step in (1.2)

is meant to ``correct"" the local gradient direction  - \nabla fi(x
\nu 
i ) (as instead used in the

DGD algorithm) and thus nulls asymptotically the steady error \nabla fi(x
\nu 
i )  - \nabla F (x\nu 

i ).
This permits the use of a constant step size \alpha while still achieving exact consen-
sus without penalizing the convergence rate. Another important difference between
DOGT and DGD in (1.1) is that the former serves as a unified platform for distrib-
uted algorithms applicable over both undirected and directed graphs. Convergence
of DOGT in the form (1.2)--(1.3) when F is nonconvex remains an open problem, let
alone second-order guarantees. A second contribution of this paper is to fill this gap
and provide a first- and second-order convergence analysis of DOGT.

\bullet Primal-dual distributed algorithms. We conclude this literature review by com-
menting on distributed algorithms for nonconvex (P) using a primal-dual form [72,
32, 30]. Because of their primal-dual nature, all these schemes are implementable
only over undirected graphs. In [72] a distributed approximate dual (sub)gradient
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algorithm, coupled with a consensus step, is introduced. Assuming zero-duality gap,
the algorithm is proved to asymptotically find a pair of primal-dual solutions of an
auxiliary problem, which however might not be critical points of F ; also, consensus
is not guaranteed. No rate analysis is provided. In [32], a proximal primal-dual al-
gorithm is proposed; the algorithm, termed Prox-PDA, employs either a constant or
an increasing penalty parameter (which plays the role of the step size); a sublinear
convergence rate of a suitably defined primal-dual gap is proved. A perturbed version
of Prox-PDA, P-Prox-PDA, was introduced in [30], which can also deal with non-
smooth convex, additive functions in the objective of (P). P-Prox-PDA converges to
an \epsilon -critical point (and thus also to inexact consensus), under a proper choice of the
penalty parameters that depends on \epsilon . A sublinear convergence rate is also proved.
No second-order guarantees have been established for the above schemes. The only
primal-dual algorithms we are aware of with provable convergence to SoS solutions is
the one in [33], proposed for a linearly constrained nonconvex optimization problem.
When linear constraints are used to enforce consensus, the primal-dual method [33]
becomes distributed and applicable to problem (P), but only for undirected graphs
(DOGT is instead implementable also over digraphs). Second-order guarantees of such
a scheme are established under slightly stronger assumptions than those required for
DOGT (cf. Remark 4.18, section 4.3.3). Finally, notice that, since [33] substantially
differs from DGD and DOGT---the former is a primal-dual scheme while the latter
are primal methods---the convergence analysis put forth in [33] is not applicable to
DGD and DOGT. Since DGD and DOGT in their general form encompass two clas-
sic algorithms for distributed optimization, the open problem of their second-order
properties leaves a significant gap in the literature.

1.2. Major results. We establish for the first time second-order guarantees of
DGD (1.1) and DOGT (1.2)--(1.3). The main results are summarized next.

1.2.1. DGD (1.1). We prove the following:
(i) For a sufficiently small step size \alpha , agents' iterates \{ x\nu \} generated by (1.1)

converge to an O(\alpha )-critical point of F for all initializations; see Lemma 3.6;
neighborhood convergence to critical points is also established (cf. Theorem
3.9). This complements the convergence results in [70].

(ii) The average sequence \{ x\nu \triangleq (1/n)
\sum n

i=1 x\nu 
i \} converges almost surely to a

neighborhood of an SoS solution of (P), where the probability is taken over
the initializations; see Theorem 3.12.

To prove (ii), we employ a novel analysis, which represents a major technical
contribution of this work. In fact, existing techniques developed to established second-
order guarantees of the centralized GD are not readily applicable to DGD---roughly
speaking, this is due to the fact that DGD (1.1) converges only to a neighborhood of
critical points of F (fixed points of (1.1) are not critical points of F ). We elaborate
next on this challenge and outline our analysis.

The elegant roadmap developed in [42, 41] to establish second-order guarantees
of the centralized GD builds on the stable manifold theorem: roughly speaking, fixed
points of the gradient map corresponding to strict saddles of the objective function
are ``unstable"" (more formally, the stable set1 of strict saddles has zero measure),
implying almost sure convergence of GD iterates to SoS points [41, Corollary 2]. It is
known that the DGD iterates (1.1) can be interpreted as instances of the GD applied
to the following auxiliary function [69, 70]: denoting x \triangleq [x\top 

1 , . . . ,x
\top 
n ]\top ,

1Given \scrX \subseteq \BbbR m, g : \BbbR m \rightarrow \BbbR m, and the fixed-point iterate x\nu +1 = g(x\nu ), the stable set of \scrX is
\{ x : lim\nu g\nu (x) \in \scrX \} , i.e., the set of initial points such that \{ x\nu \} converges to a member of \scrX .
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(1.4) L\alpha (x) \triangleq 
n\sum 

i=1

fi(xi)\underbrace{}  \underbrace{}  
\triangleq Fc(\bfx )

+
1

2\alpha 

n\sum 
i=1

n\sum 
i=j

(eij  - Dij)x
\top 
i xj ,

where eij = 1 if there is an edge in the graph between agent i and agent j; and eij = 0

otherwise. Using (1.4), (1.1) can be rewritten as: denoting x\nu \triangleq [x\nu \top 
1 , . . . ,x\nu \top 

n ]\top ,

(1.5) x\nu +1 = x\nu  - \alpha \nabla L\alpha (x\nu ).

One can then apply the above argument (cf. [41, Corollary 2]) to (1.5) and readily
establish the following result (see Theorem 3.6 for the formal statement).
Fact 1 (informal): For sufficiently small \alpha > 0, randomly initialized DGD (1.5)

[and thus (1.1)] converges almost surely to second-order critical point of
L\alpha .

Unfortunately, this result alone is not satisfactory, as no connection is known
between the critical points of L\alpha and those of F (note that L\alpha : \BbbR n\cdot m \rightarrow \BbbR whereas
F : \BbbR m \rightarrow \BbbR ). To cope with this issue we prove the following two facts.
Fact 2 (informal): Every limit point x\infty of the average sequence x\nu = 1/n

\sum n
i=1 x\nu 

i

can be made arbitrarily close to a critical point of F by using a sufficiently
small \alpha > 0 (Theorem 3.9).

Fact 3 (informal): Whenever the limit point \=x\infty = 1/n
\sum n

i=1 x\infty 
i belongs to a suf-

ficiently small neighborhood of a strict saddle of F , x\infty = [x\infty \top 
1 , . . . ,x\infty \top 

n ]\top 

must be a strict saddle of L\alpha (Proposition 3.10 and Corollary 3.11).
The above three facts will then ensure that, for sufficiently small \alpha > 0, with almost
complete certainty, \{ \=x\nu \} will not get trapped in a neighborhood of a strict saddle of
F---as x\infty would be a strict saddle of L\alpha ---thus landing in an neighborhood of an SoS
solution of (P).

Facts 2 and 3 above are proved under a regularity condition on F which recalls
(albeit slightly weaker than) [28]. Roughly speaking, the gradient flow over some
annulus must be uniformly positively correlated with any outward (from the origin)
direction (cf. Assumption 2.4). This condition is quite mild and is satisfied by func-
tions arising, e.g., from several machine learning applications, including distributed
principal component analysis (PCA), matrix sensing, and binary classification prob-
lems; see section 2 for more details. Furthermore, this condition is also sufficient to
prove convergence of DGD without assuming the objective function to be globally
L-smooth (but just locally L-smooth, LC1 for short), a requirement that instead is
common to existing (first-order) convergence conditions of DGD. Notice that the loss
functions arising from many of the aforementioned machine learning problems are not
globally L-smooth.

1.2.2. DOGT (1.2)--(1.3). For DOGT, we establish the following three results.
(i) When F is nonconvex and the graph is either undirected or directed, it is

proved that every limit point of the sequence generated by DOGT is a critical
point of F . Furthermore, a merit function, measuring distance of the iterates
from stationarity, and consensus disagreement is introduced, and proved to
vanish at a sublinear rate; see Theorem 4.5. This extends convergence re-
sults [56, 66], established only for convex functions. To deal with nonconvex-
ity, our analysis builds on a novel Lyapunov-like function (cf. (4.20)), which
properly combines optimization error dynamics, consensus, and tracking dis-
agreements. While these three terms alone do not ``sufficiently"" decrease
along the iterates---as local optimization and consensus/tracking steps might
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act as competing forces---a suitable combination of them, as captured by the
Lyapunov function, does monotonically decrease.

(ii) When F satisfies the Kurdyka--\Lojasiewicz (K\L) property [40, 39] at any of
its critical points, convergence of the entire sequence to a critical point of F
is proved (cf. Theorem 4.7), and a convergence rate is provided (cf. Theorem
4.8). Although inspired by [7], establishing similar convergence results (but no
rate analysis) for centralized first-order methods, our proof follows a different
path building on the descent of the Lyapunov function introduced in (i),
which does not satisfy [7, conditions H1--H2]); see section 4.2 for details.

(iii) The sequence of iterates generated by DOGT is shown to converge to SoS
solutions of (P) almost surely, when initial points are randomly drawn from
a suitably chosen linear subspace; see Theorem 4.17. This result is proved for
undirected and directed networks. The proofs build on the stable manifold
theorem, based upon the interpretation of DOGT dynamics as fixed-point it-
erates of a suitably defined map. The challenge in finding such a map is ensur-
ing that the stable set of its undesirable fixed-points---those associated with
the strict saddles of F---has measure zero in the subspace where the initial-
ization of DOGT takes place. Note that this subspace is not full dimensional.

While our paper was under review after its initial arXiv posting [18] and its com-
panion conference version [19], we became aware of a follow-up line of related works
[64, 65]. These schemes study second-order guarantees of variations of the DGD al-
gorithm (1.1). Specifically, [64, 65] studied the behavior of (the adapt-then-combine
version of) DGD wherein exact gradients are replaced by stochastic approximations;
the algorithm is proved to return approximate SoS points in a polynomial number
of iterations. Finally, [44] proposed a variant of DGD to solve the distributed low-
rank matrix factorization problem and they prove almost sure convergence to global
minima of the problem.

1.3. Paper organization. The rest of the paper is organized as follows. The
main assumptions on the optimization problem and network are introduced in sec-
tion 2. Section 3 studies guarantees of DGD over undirected graphs, along the fol-
lowing steps: (i) existing convergence results are discussed in section 3.1; (ii) section
3.2 studies convergence to a neighborhood of a critical point of F ; and (iii) section
3.3 establishes second-order guarantees. DOGT algorithms are studied in section 4
along the following steps: (i) subsequence convergence is proved in section 4.1; (ii)
section 4.2 establishes global convergence under the K\L property of F ; and (iii) sec-
tion 4.3 derives second-order guarantees over undirected and directed graphs. Finally,
section 5 presents some numerical results.

1.4. Notation. The set of nonnegative integers is denoted by \BbbN + and we use [n]
as a shorthand for \{ 1, 2, . . . , n\} . All vectors are denoted by bold letters and assumed to
be column vectors; given a vector x, | | x| | denotes the \ell 2 norm of x; any other specific
vector norm is subscripted accordingly. x is called stochastic if all its components
are nonnegative and sum to one; and 1 is the vector of all ones (we write 1m for the
m--dimensional vector, if the dimension is not clear from the context). Given sets
\scrX ,\scrY \subseteq \BbbR m, we denote \scrX \setminus \scrY \triangleq \{ x \in \scrX : x /\in \scrY \} , \scrX \triangleq \BbbR m \setminus \scrX (complement of \scrX ),
and x + \scrX = \{ x + z : z \in \scrX \} . \scrV \bfx and \scrB (x, r)d denote a neighborhood of x and the
d-dimensional closed ball of radius r > 0 centered at x, respectively; when the ball
is centered at 0, we will write \scrB d

r . We further define an annulus by \scrS r,\epsilon \triangleq \scrB d
r \setminus \scrB d

r - \epsilon 

with some r > \epsilon > 0. The Euclidean projection of x \in \BbbR m onto the convex closed set
\scrX \subseteq \BbbR m is proj\scrX (x) \triangleq arg min\bfy \in \scrX | | x  - y| | . The sublevel set of a function U at u is

denoted by \scrL U (u) \triangleq \{ x : U(x) \leq u\} .
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3036 A. DANESHMAND, G. SCUTARI, AND V. KUNGURTSEV

Matrices are denoted by capital bold letters; Aij is the the (i, j)th element of A;
\scrM m(\BbbR ) is the set of all m\times m real matrices; I is the identity matrix (if the dimension is
not clear from the context, we write Im for the m\times m identity matrix); A \geq 0 denotes
a nonnegative matrix; and A \geq B stands for A - B \geq 0. The spectrum of a square real
matrix M is denoted by spec(M) and its spectral radius is spradii(M) \triangleq max\{ | \lambda | : \lambda \in 
spec(M)\} ; the spectral norm is | | M| | \triangleq max| | \bfx | | \not =0 | | Mx| | /| | x| | , and any other matrix
norm is subscripted accordingly. Finally, the minimum (resp., maximum) singular
value are denoted by \sigma min(M) (resp., \sigma max(M)) and minimum (resp., maximum)
eigenvalue by \lambda min(M) (resp., \lambda max(M)).

The sequence generated by DGD (and DOGT) depends on the step-size \alpha and
the initialization x0. When necessary, we write \{ x\nu (\alpha ,x0)\} for \{ x\nu \} .

Throughout the paper, we assume that all the probability measures are absolutely
continuous with respect to the Lebesgue measure.

2. Problem and network setting. In this section, we introduce the various
assumptions on the functions fi and the graph, under which our results are derived.

Assumption 2.1 (on problem P). Given problem (P),
(i) fi (\forall i) is r + 1 times continuously differentiable for some r \geq 1, and \nabla fi is

Li-Lipschitz continuous. Denote Lmax \triangleq maxi Li;
(ii) F is coercive.

For some convergence results of DGD we need the following slightly stronger condition.

Assumption 2.1\prime . Assumption 2.1(i) is satisfied and (ii) each fi is coercive.

We also make the blanket assumption that each agent i knows only its own fi
but not the rest of the objective function.

Note that Assumption 2.1, particularly the global Lipschitz gradient continuity
of fi, is quite standard in the literature. Motivated by some applications of interest
(see examples below), we will also prove convergence of DGD under LC1 only and
the mild condition (2.2) below (cf. Assumption 2.4). Although strictly not necessary,
coercivity in Assumptions 2.1 and 2.1\prime simplifies some of our derivations; our results
can be extended under the weaker assumption that (P) has a solution.

Some of the convergence results of DGD and DOGT are established under the
assumption that F satisfies the K\L inequality [39, 40].

Definition 2.2 (K\L property). Given a function U : \BbbR N \rightarrow \BbbR \cup \{ +\infty \} , we set
[a < U < b] \triangleq \{ z \in \BbbR N : a < U(z) < b\} , and

(a) the function U has the K\L property at \'z \in dom \partial U if there exists \eta \in (0,+\infty ],
a neighborhood \scrV \'\bfz , and a continuous concave function \phi : [0, \eta ) \rightarrow \BbbR + such
that

(i) \phi (0) = 0,
(ii) \phi is \scrC 1 on (0, \eta ),

(iii) for all s \in (0, \eta ), \phi \prime (s) > 0,
(iv) for all z \in \scrV \'\bfz \cap [U(\'z) < U < U(\'z) + \eta ], the K\L inequality holds:

(2.1) \phi \prime (U(z)  - U(\'z)) dist(0, \partial U(z)) \geq 1;

(b) a proper lower-semicontinuous function U is called K\L if it satisfies the K\L
inequality at every point in dom \partial U .

Many problems involve functions satisfying the K\L inequality; real semialgebraic
functions provide a very rich class of functions satisfying the K\L; see [6] for a thorough
discussion.
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Second-order guarantees of DGD are obtained under the following two extra as-
sumptions; Assumption 2.3 is quite standard and widely used in the literature to estab-
lish second-order guarantees of centralized algorithms (e.g., [26, 35, 52, 14, 15, 3, 17])
as well as of distributed algorithms [33, 64, 65]. Assumption 2.4 is introduced for this
paper and commented on below.

Assumption 2.3. Each fi : \BbbR m \rightarrow \BbbR is twice differentiable and \nabla 2fi is L\nabla 2
i
-

Lipschitz continuous. The Lipschitz constant of \nabla 2F and \nabla 2Fc are L\nabla 2 =
\sum n

i=1 L\nabla 2
i

and L\nabla 2
c

= maxi L\nabla 2
i
, respectively, where Fc is defined in (1.4).

Assumption 2.4. (i) Each fi is LC1; and (ii) there exist 0 < \epsilon < R and \delta > 0
such that

(2.2) inf
\bfittheta \in \scrS R,\epsilon 

\langle \nabla fi(\bfittheta ),\bfittheta / \| \bfittheta \| \rangle \geq \delta \forall i \in [n].

Roughly speaking, the condition above postulates that the gradient \nabla fi(\bfittheta ) is pos-
itively correlated with any radial direction \bfittheta / \| \bfittheta \| for all \bfittheta in the annulus \scrS R,\epsilon . A
slightly more restrictive form of the above assumption has appeared in [28, Assump-
tion A3]. Many functions of practical interest satisfy this assumption; some examples
arising from machine learning applications are listed below.
Distributed PCA [25]: Given matrices Mi \in \BbbR m\times m, i \in [n], the distributed PCA

problem is to find the leading eigenvector of
\sum n

i=1 Mi by solving

(2.3) min
\bfittheta \in \BbbR m

1

4

\bigm\| \bigm\| \bigm\| \bfittheta \bfittheta \top  - 
n\sum 

i=1

Mi

\bigm\| \bigm\| \bigm\| 2
F
,

which can be rewritten in the form (P).
Phase retrieval [16]: Let \{ (ai, yi)\} ni=1, with ai \in \BbbR m and yi \in \BbbR such that

yi = a\top 
i M\ast ai = (a\top 

i \bfittheta 
\ast )2 and M\ast = \bfittheta \ast \bfittheta \ast \top \in \BbbR m\times m. The phase retrieval

problem reads

(2.4) min
\bfittheta \in \BbbR m

1

4

n\sum 
i=1

\bigl( 
| | a\top 

i \bfittheta | | 2  - yi
\bigr) 2

+
\lambda 

2
| | \bfittheta | | 2,

where \lambda > 0 is a given parameter.
Matrix sensing [16]: Let \{ (Ai, yi)\} ni=1, with Ai \in \BbbR m\times m and yi \in \BbbR such that

yi = \langle Ai,M
\ast \rangle and M\ast = \Theta \ast \Theta \ast \top \in \BbbR m\times m, \Theta \ast \in \BbbR m\times r. The matrix sensing

problem reads

(2.5) min
\bfTheta \in \BbbR m\times r

1

4

n\sum 
i=1

\Bigl( \Bigl\langle 
Ai,\Theta \Theta \top 

\Bigr\rangle 
 - yi

\Bigr) 2
+

\lambda 

2
\| \Theta \| 2F ,

where \lambda > 0 is a given parameter.
Gaussian mixture model [44]: Let \{ zi\} ni=1 be n points drawn from a mixture

of q Gaussian distributions, i.e., zi \sim 
\sum q

d=1 \scrN (\bfitmu \ast 
d,\Sigma ), where \scrN (\bfitmu \ast 

d,\Sigma ) is
the Gaussian distribution with mean \bfitmu \ast 

d \in \BbbR m and covariance \Sigma \in \BbbR m\times m.
The goal is to estimate the mean values \bfitmu \ast 

1, . . . ,\bfitmu 
\ast 
q by solving the maximum

likelihood problem

(2.6) min
\{ \bfittheta d\in \BbbR m\} q

d=1

 - 
n\sum 

i=1

log

\biggl( q\sum 
d=1

\phi m(zi  - \bfittheta d)

\biggr) 
+

\lambda 

2
\| \bfittheta d\| 2 ,

where \phi m(\bfittheta ) is the multivariate normal distribution with 0 mean and covari-
ance \Sigma .

D
ow

nl
oa

de
d 

12
/0

8/
21

 to
 1

28
.2

10
.1

26
.1

99
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3038 A. DANESHMAND, G. SCUTARI, AND V. KUNGURTSEV

Bilinear logistic regression [24]: The description of the problem along with some
numerical results can be found in section 5.2.

Artificial neuron [8, 71]: Let \{ (si, \xi i)\} ni=1 be n samples with si \in \BbbR m, \xi i \in 
\BbbR , and measurement model \xi i = \sigma (s\top i \bfittheta 

\ast ), where \bfittheta \ast is the optimal weight
and \sigma (\cdot ) is a transfer function; e.g., the logistic regression function \sigma (\theta ) =
1/(1 + exp( - \theta )). The goal is to estimate \bfittheta \ast by solving

(2.7) min
\bfittheta \in \BbbR m

n\sum 
i=1

1

2n

\biggl[ \bigl( 
\xi i  - \sigma (s\top i \bfittheta )

\bigr) 2
+

\lambda 

2
\| \bfittheta \| 2

\biggr] 
,

where \lambda > 0 is a given parameter. Further binary classification models satis-
fying Assumption 2.4 include fi functions such as [71]

(2.8)

fi(\bfittheta ) =1  - tanh \xi is
\top 
i \bfittheta +

\lambda 

2
\| \bfittheta \| 2 ,

fi(\bfittheta ) =
\bigl( 
1  - \sigma (\xi is

\top 
i \bfittheta )

\bigr) 2
+

\lambda 

2
\| \bfittheta \| 2 ,

fi(\bfittheta ) =  - ln\sigma (\xi is
\top 
i \bfittheta ) + ln\sigma (\xi is

\top 
i \bfittheta + \mu ) +

\lambda 

2
\| \bfittheta \| 2 ,

where \lambda > 0 and \mu > 0 are given parameters.
In all these examples, Assumption 2.4 is satisfied for any sufficiently large R and

R - \epsilon ; the proof can be found in Appendix A.1. Note that many of the functions listed
above are not L-smooth on their entire domain, violating thus (part of) Assumption
2.1(i). Motivated by these examples, we will extend existing convergence results of
DGD, replacing Assumption 2.1(i) with Assumption 2.4.

Network model: The network is modeled as a (possibly) directed graph \scrG =
(\scrV , \scrE ), where the set of vertices \scrV = [n] coincides with the set of agents, and the set
of edges \scrE represents the agents' communication links: (i, j) \in \scrE if and only if there is
a link directed from agent i to agent j. The in-neighborhood of agent i is defined as
\scrN in

i = \{ j| (j, i) \in \scrE \} \cup \{ i\} and represents the set of agents that can send information to
agent i (including agent i itself, for notational simplicity). The out-neighborhood of
agent i is similarly defined \scrN out

i = \{ j| (i, j) \in \scrE \} \cup \{ i\} . When the graph is undirected,
these two sets coincide and we use \scrN i to denote the neighborhood of agent i (with
a slight abuse of notation, we use the same symbol \scrG to denote either directed or
undirected graphs). Given a nonnegative matrix A \in \scrM n(\BbbR ), the directed graph
induced by A is defined as \scrG A = (\scrV A, \scrE A), where \scrV A \triangleq [n] and (j, i) \in \scrE A if and only
if Aij > 0. The set of roots of all the directed spanning trees in \scrG A is denoted by \scrR A.
We make the following blanket standard assumptions on \scrG .

Assumption 2.5 (on the network). The graph (resp., digraph) \scrG is connected
(resp., strongly connected).

3. The DGD algorithm. Consider Problem (P) and assume that the network
is modeled as an undirected graph \scrG . As described in section 1, the DGD algorithm
is based on a decentralization of GD as described in (1.1). It is convenient to rewrite
the update (1.1) in the matrix/vector form: Using the definition of aggregate function
Fc(x) (cf. (1.4)) and x\nu \triangleq [x\nu \top 

1 , . . . ,x\nu \top 
n ]\top , we have

(3.1) x\nu +1 = WD x\nu  - \alpha \nabla Fc(x
\nu ),

given x0 \in \BbbR mn, where WD \triangleq D \otimes Im and D \in \scrM n(\BbbR ) satisfying the following
assumption.

Assumption 3.1. D \in \scrM n(\BbbR ) is nonnegative, doubly stochastic, and compliant
to \scrG , i.e., Dij > 0 if and only if (j, i) \in \scrE , and Dij = 0 otherwise.
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3.1. Existing convergence results. Convergence of DGD applied to the non-
convex problem (P) has been established [69, 70], and is summarized below.

Theorem 3.2 (see [69, 70]). Let Assumptions 2.1\prime , 2.5 hold. Given arbitrary
x0 \in \BbbR mn and 0 < \alpha < \alpha max \triangleq \sigma min(I + D)/Lc, let \{ x\nu \} be the sequence generated
by the DGD algorithm (3.1) under Assumption 3.1. Then \{ x\nu \} is bounded and

(i) (almost consensus): for all i \in [n] and \nu \in \BbbN +,

\| x\nu 
i  - \=x\nu \| \leq (\sigma 2)\nu | | x0

i | | +
\alpha H

1  - \sigma 2
,

where \sigma 2 < 1 is the second largest singular value of D, and H is a universal
upper bound of \{ | | \nabla Fc(x

\nu )| | \} ;
(ii) (stationarity): every limit point x\infty of \{ x\nu \} is such that x\infty \in crit L\alpha .
In addition, if L\alpha is a K\L function, then \{ x\nu \} is globally convergent to some

x\infty \in crit L\alpha .

Although L-smoothness of fi's is a common assumption in the literature, above
convergence results can also be established without this condition but under Assump-
tion 2.4; see Remark 3.13 and Appendix A.2 for details.

Since (3.1) is the gradient update applied to L\alpha (cf. (1.5)), nonconvergence of
the DGD algorithm to strict saddle points of L\alpha can be established by applying [41,
Corollary 2] to (1.5); the statement is given in Theorem 3.4 below. The following
extra assumption on the weight matrix D is needed.

Assumption 3.3. The matrix D \in \scrM n(\BbbR ) is nonsingular.

Theorem 3.4. Consider problem (P), under Assumptions 2.1\prime , 2.5, and further
assume that each fi is a K\L function. Let \{ x\nu \} be the sequence generated by the DGD

algorithm with step size 0 < \alpha < \sigma min(\bfD )
Lc

and weight matrix D satisfying Assumptions
3.1 and 3.3. Then, the stable set of strict saddles has measure zero. Therefore, \{ x\nu \} 
convergences almost surely to an SoS solution of L\alpha , where the probability is taken
over the random initialization x0 \in \BbbR mn.

As anticipated in section 1.2.1, the above second-order guarantees are not satis-
factory as they do not provide any information on the behavior of DGD near critical
points of F , including the strict saddles of F . In the following, we fill this gap. We
first show that the DGD algorithm convergences to a neighborhood of the critical
points of F , whose size is controlled by the step size \alpha > 0 (cf. section 3.2). Then,
we prove that, for sufficiently small \alpha > 0, such critical points are almost surely SoS
solutions of (P), where the randomization is taken on the initial point (cf. section
3.3).

3.2. DGD converges to a neighborhood of critical points of \bfitF . Let us
begin with introducing the definition of \epsilon -critical points of F .

Definition 3.5. A point \bfittheta \in \BbbR m such that | | \nabla F (\bfittheta )| | \leq \varepsilon with \varepsilon > 0, is called
an \varepsilon -critical point of F . The set of \varepsilon -critical points of F is denoted by crit\varepsilon F .

In this section, we prove that when the step size is sufficiently small and DGD
is initialized in a compact set, the iterates \{ x\nu 

i \} , i \in [n], converge to an arbitrarily
small neighborhood of critical points of F---the result is formally stated in Theorem
3.9. Roughly speaking, this is proved chaining the following intermediate results:

(i) Lemma 3.6: Every limit point of DGD is an \scrO (\alpha )-critical point of F .
(ii) Lemma 3.7: Every sequence generated by DGD for given \alpha > 0 and initial-

ization in a compact set, is enclosed in some compact set, for all \alpha \downarrow 0.
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(iii) Lemma 3.8: Any \epsilon -critical point of F achievable by DGD is arbitrarily close
to a critical point of F , when \epsilon is sufficiently small.

Lemma 3.6 implies that, for any given \epsilon > 0, one can find an arbitrarily small \alpha > 0
so that every limit point of each \{ x\nu 

i \} (whose existence is guaranteed by Lemma 3.7)
is an \epsilon -critical point of F . Finally, Lemma 3.8 guarantees that every such \epsilon -critical
point can be made arbitrarily close to a critical point of F as \epsilon \downarrow 0. The proof of the
above three lemmas follows.

Lemma 3.6. Let Assumptions 2.1\prime and 2.5 hold. Given arbitrary x0 \in \BbbR mn and
0 < \alpha < \sigma min(I + D)/Lc, every limit point x\infty = [x\infty \top 

1 , . . . ,x\infty \top 
n ]\top of \{ x\nu \} generated

by the DGD algorithm satisfies \=x\infty \in critK\prime \alpha F with \=x\infty \triangleq (1/n)
\sum n

i=1 x\infty 
i and K \prime =

n
\surd 
nLcH/ (1  - \sigma 2), where H and \sigma 2 are defined in Theorem 3.2.

Proof. By Theorem 3.2(ii), (1 \otimes I)\top \nabla L\alpha (x\infty ) = 0, which using (1.4) and the
column stochasticity of D yields (1 \otimes I)\top \nabla Fc(x

\infty ) = 0. Hence,

(3.2)
\| \nabla F (\=x\infty )\| =

\bigm\| \bigm\| (1 \otimes I)\top (\nabla Fc(1 \otimes \=x\infty )  - \nabla Fc(x
\infty ))

\bigm\| \bigm\| 
\leq Lc

\surd 
n \| x\infty  - 1 \otimes \=x\infty \| 

(a)

\leq \alpha \cdot n
\surd 
nLcH

1  - \sigma 2
,

where in (a) we used Theorem 3.2(i).

To proceed, we limit DGD initialization to x0
i \in \scrX i, i \in [n], where \scrX 0

i \subseteq \BbbR m is
some compact set with positive Lebesgue measure.

Lemma 3.7. Consider problem (P), under Assumptions 2.1\prime , 2.4, and 2.5. Let
\{ x\nu (\alpha ,x0)\} be any sequence generated by DGD under Assumption 3.1, with step size
\alpha and initialization x0. Then, there exists a bounded set \scrY such that \{ x\nu (\alpha ,x0)\} \subseteq \scrY 
for all 0 < \alpha \leq \alpha max = \sigma min(I+D)/Lc and x0

i \in \scrX i \subseteq \scrB m
R , i \in [n], where R is defined

in Assumption 2.4.

Proof. We proceed by induction. For the sake of notation, throughout the proof,
we will use for x\nu (\alpha ,x0) the shorthand x\nu . Define h \triangleq maxi\in [n],\bfittheta \in \scrB m

R
| | \nabla fi(\bfittheta )| | . By

assumption, there holds x0
i \in \scrB m

R for all i. Suppose x\nu 
i \in \scrB m

R for all i. If x\nu 
i \in \scrB m

R - \epsilon 

and \alpha \leq \epsilon Dii/h, then x\nu 
i  - \alpha 

Dii
\nabla fi(x

\nu 
i ) \in \scrB m

R , since

(3.3)

\bigm\| \bigm\| \bigm\| \bigm\| x\nu 
i  - \alpha 

Dii
\nabla fi(x

\nu 
i )

\bigm\| \bigm\| \bigm\| \bigm\| \leq \| x\nu 
i \| +

\alpha 

Dii
\| \nabla fi(x

\nu 
i )\| \leq R - \epsilon +

\alpha h

Dii
.

If x\nu 
i \in \scrS R,\epsilon and \alpha \leq 2Dii\delta (R - \epsilon )/h2, then x\nu 

i  - \alpha 
Dii

\nabla fi(x
\nu 
i ) \in \scrB m

R , since

(3.4)

\bigm\| \bigm\| \bigm\| \bigm\| x\nu 
i  - \alpha 

Dii
\nabla fi(x

\nu 
i )

\bigm\| \bigm\| \bigm\| \bigm\| 2 = \| x\nu 
i \| 

2  - 2\alpha | | x\nu 
i | | 

Dii

\biggl\langle 
x\nu 
i

| | x\nu 
i | | 

,\nabla fi(x
\nu 
i )

\biggr\rangle 
+

\alpha 2

D2
ii

\| \nabla fi(x
\nu 
i )\| 2

\leq R2  - 2\alpha \delta (R - \epsilon )

Dii
+

\alpha 2h2

D2
ii

.

By agents' updates x\nu +1
i =

\sum 
j \not =i Dijx

\nu 
j + Dii(x

\nu 
i  - \alpha 

Dii
\nabla fi(x

\nu 
i )) and convex-

ity of the norm, we conclude that if x\nu 
i \in \scrB m

R for all i, and 0 < \alpha \leq \alpha b \triangleq 
mini min\{ \epsilon Dii/h, 2Dii\delta (R - \epsilon )/h2\} , then x\nu +1

i \in \scrB m
R . This proves that, for \alpha \in (0, \alpha b],

any sequence \{ x\nu 
i \} initialized in \scrB m

R lies in \scrB m
R for all i.

We prove now the same result for \alpha \in [\alpha b, \sigma min(I + D)/Lc]. Note that since each
fi is coercive (cf. Assumption 2.1\prime (ii)), any sublevel set of L\alpha is compact. Also, since
\{ L\alpha (x\nu )\} is nonincreasing for all \alpha \in (0, \sigma min(I + D)/Lc] (cf. [69, Lemma 2]), then

D
ow

nl
oa

de
d 

12
/0

8/
21

 to
 1

28
.2

10
.1

26
.1

99
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SECOND-ORDER GUARANTEES OF DISTRIBUTED GRADIENT 3041

\{ x\nu \} \subseteq \scrL L\alpha 
(Fc(x

0) + 1
2\alpha | | x

0| | 2\bfI  - \bfW ) and, furthermore,
(3.5)

\scrL L\alpha 

\biggl( 
Fc(x

0) +
1

2\alpha 
| | x0| | 2\bfI  - \bfW 

\biggr) 
\subseteq \scrL L\alpha 

\biggl( 
Fc(x

0) +
1

2\alpha b
| | x0| | 2\bfI  - \bfW 

\biggr) 
\subseteq \scrL Fc

\biggl( 
Fc(x

0) +
1

2\alpha b
| | x0| | 2\bfI  - \bfW 

\biggr) 
\subseteq \scrL Fc

\biggl( 
max

\bfx 0
i\in \scrB m

R ,i\in [n]

\biggl\{ 
Fc(x

0) +
1

2\alpha b
| | x0| | 2\bfI  - \bfW 

\biggr\} \biggr) 
.

Since | | x0| | 2\bfI  - \bfW \leq 2| | x0| | 2, it follows that

(3.6) \scrL L\alpha 

\biggl( 
Fc(x

0) +
1

2\alpha 
| | x0| | 2\bfI  - \bfW 

\biggr) 
\subseteq \scrL Fc

\Biggl( 
max

\bfx 0
i\in \scrB m

R ,i\in [n]

\Biggl\{ 
n\sum 

i=1

fi(x
0
i )

\Biggr\} 
+

R2

\alpha b

\Biggr) 
\underbrace{}  \underbrace{}  

\triangleq \=\scrL 

.

The statement of the lemma holds with \scrY = \=\scrL \cup 
\prod n

i=1 \scrB m
R .

The following lemma shows that any \epsilon -critical point of F achievable by DGD (i.e.,
any point in crit\varepsilon F \cap \=\scrY ) can be made arbitrarily close to a critical point of F , when
\epsilon > 0 (and thus \alpha > 0) is sufficiently small.

Lemma 3.8. Suppose F : \BbbR m \rightarrow \BbbR is continuously differentiable. For any given
compact set \=\scrY \subseteq \BbbR m, there holds

(3.7) lim
\varepsilon \rightarrow 0

max
\bfq \in crit\varepsilon F\cap \=\scrY 

dist(q, crit F ) = 0.

Proof. We prove the lemma by contradiction. Suppose

(3.8) lim sup
\varepsilon \rightarrow 0

max
\bfq \in crit\varepsilon F\cap \=\scrY 

dist(q, crit F ) = \gamma > 0.

Then, one can construct \{ q\nu \} with q\nu \in crit1/\nu F \cap \=\scrY such that dist(q\nu , critF ) \geq \gamma for
all \nu \in \BbbN . Since \nabla F is continuous, crit1F is closed and crit1F \cap \=\scrY is compact. Note
that \{ q\nu \} \subseteq crit1F \cap \=\scrY , which ensures \{ q\nu \} is bounded. Let \{ qt\nu \} be a convergent
subsequence of \{ q\nu \} ; its limit point q\infty satisfies dist(q\infty , crit F ) \geq \gamma . By construc-
tion, for any \'\nu \in \BbbN , \{ qt\nu \} eventually settles in crit1/\'\nu F \cap \=\scrY , thus q\infty \in crit1/\'\nu F \cap \=\scrY .

This means that | | \nabla F (q\'\nu )| | \leq 1/\'\nu , for all \'\nu \in \BbbN , implying | | \nabla F (q\infty )| | = 0. Hence
dist(q\infty , crit F ) = 0, which contradicts (3.8).

We can now combine Lemmas 3.6--3.8 with Theorem 3.2(i) and state the main
result of this section.

Theorem 3.9. Let Assumptions 2.1\prime , 2.4, and 2.5 hold. Let \epsilon > 0. There exists
\=\alpha > 0 (which depends on \epsilon ) such that with any initialization x0

i \in \scrX 0
i \subseteq \scrB m

R (R > 0 is
defined in Assumption 2.4), i \in [n], and any step size 0 < \alpha \leq \=\alpha , all the limit points
x\infty (\alpha ,x0) = [x\infty 

1 (\alpha ,x0)\top , . . . ,x\infty 
n (\alpha ,x0)\top ]\top of the sequence \{ x\nu (\alpha ,x0)\} , generated

by DGD satisfy

(3.9) dist
\bigl( 
\=x\infty (\alpha ,x0), crit F

\bigr) 
< \epsilon and

\bigm\| \bigm\| x\infty (\alpha ,x0)  - 1 \otimes \=x\infty (\alpha ,x0)
\bigm\| \bigm\| < \epsilon ,

where \=x\infty (\alpha ,x0) \triangleq (1/n)
\sum n

i=1 x\infty 
i (\alpha ,x0).

Proof. Combining Lemmas 3.6--3.8 proves that there exists some \alpha 1 > 0 such
that dist(\=x\infty (\alpha ,x0), crit F) < \epsilon for all \alpha \leq \alpha 1. In addition, Theorem 3.2(i) with
H = sup\bfx \in \scrY Fc(x), implies that there exists some \alpha 2 > 0 such that | | x\infty (\alpha ,x0) - 1\otimes 
\=x\infty (\alpha ,x0)| | < \epsilon for all \alpha \leq \alpha 2. Hence, choosing \=\alpha = min\{ \alpha 1, \alpha 2\} proves (3.9).
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3.3. DGD likely converges to a neighborhood of SoS solutions of \bfitF . We
study now second-order guarantees of DGD. Our path to prove almost sure conver-
gence to a neighborhood of SoS solutions of (P) will pass through the nonconvergence
of DGD to strict saddles of L\alpha (cf. Theorem 3.6). Roughly speaking, our idea is to
show that whenever \=x\infty = 1/n

\sum n
i=1 x\infty 

i belongs to a sufficiently small neighborhood
of a strict saddle of F inside the region (3.9), x\infty = [x\infty \top 

1 , . . . ,x\infty \top 
n ]\top must be a strict

saddle of L\alpha . The escaping properties of DGD from strict saddles of L\alpha will then
ensure that it is unlikely that \{ \=x\nu = 1/n

\sum n
i=1 x\nu 

i \} gets trapped in a neighborhood of
a strict saddle of F , thus ending in a neighborhood of an SoS solution of (P). Propo-
sition 3.10 makes this argument formal; in particular, conditions (i)--(iii) identify the
neighborhood of a strict saddle of F with the mentioned escaping properties.

Proposition 3.10. Consider the setting of Lemma 3.7 and further assume that
Assumption 2.3 holds. Let \=\scrY be the image of the compact set \scrY (defined in Lemma
3.7) through the linear operator (1n \otimes Im)\top . Suppose that the limit point x\infty =
[x\infty \top 

1 , . . . ,x\infty \top 
n ]\top of \{ x\nu \} , along with \=x\infty = 1/n

\sum n
i=1 x\infty 

i , satisfy

(i) dist(\=x\infty , crit F) <
\delta 

2L\nabla 2

;

(ii) \| x\infty  - 1 \otimes \=x\infty \| <
\delta 

2nL\nabla 2
c

;

(iii) there exists \bfittheta \ast \in projcrit F(\=x\infty ) \cap \Theta \ast 
ss

for some \delta such that \delta \leq  - \lambda min

\bigl( 
\nabla 2F (\bfittheta \ast )

\bigr) 
for all \bfittheta \ast \in \Theta \ast 

ss\cap \=\scrY . Then, x\infty is a strict
saddle point of L\alpha .

Proof. Given \bfittheta \in \BbbR m, let \bfitupsilon (\bfittheta ) denote the unitary eigenvector of \nabla 2F (\bfittheta ) associ-
ated with the smallest eigenvalue, and define \~\bfitupsilon (\bfittheta ) \triangleq 1 \otimes \bfitupsilon (\bfittheta ). Then, we have
(3.10)

\~\bfitupsilon (\bfittheta )\top \nabla 2L\alpha (x\infty )\~\bfitupsilon (\bfittheta )
(a)
= \~\bfitupsilon (\bfittheta )\top \nabla 2Fc(x

\infty )\~\bfitupsilon (\bfittheta )

\leq \bfitupsilon (\bfittheta )\top \nabla 2F (\bfittheta )\bfitupsilon (\bfittheta )

+ | | \nabla 2F (\=x\infty )  - \nabla 2F (\bfittheta )| | \| \bfitupsilon (\bfittheta )\| 2 + | | \nabla 2Fc(x
\infty )  - \nabla 2Fc(1 \otimes \=x\infty )| | \| \~\bfitupsilon (\bfittheta )\| 2

(b)

\leq \bfitupsilon (\bfittheta )\top \nabla 2F (\bfittheta )\bfitupsilon (\bfittheta ) + L\nabla 2 \| \=x\infty  - \bfittheta \| + nL\nabla 2
c
\| x\infty  - 1 \otimes \=x\infty \| ,

where (a) follows from \~\bfitupsilon (\bfittheta ) \in null(WD - I) and (b) is due to Assumption 2.3. Let us
now evaluate (3.10) at some \bfittheta \ast as defined in condition (iii) of the proposition; using
\bfitupsilon (\bfittheta \ast )\top \nabla 2F (\bfittheta \ast )\bfitupsilon (\bfittheta \ast ) \leq  - \delta , and conditions (i) and (ii), yields \~\bfitupsilon (\bfittheta \ast )\top \nabla 2L\alpha (x\infty )
\~\bfitupsilon (\bfittheta \ast ) < 0. By the Rayleigh--Ritz theorem, it must be \lambda min(\nabla 2L\alpha (x\infty )) < 0. This,
together with x\infty \in crit L\alpha (cf. Theorem 3.2(ii)), proves the proposition.

Invoking now Theorem 3.9, we infer that there exists a sufficiently small \alpha > 0
such that conditions (i) and (ii) of Proposition 3.10 are always satisfied, implying that
x\infty is a strict saddle of L\alpha , if there exists a strict saddle of F ``close"" to \=x\infty (in the
sense of (iii)). This is formally stated next.

Corollary 3.11. Consider the setting of Theorem 3.9 and Proposition 3.10.
There exists a sufficiently small \alpha > 0 such that, if projcrit F(\=x\infty )\cap \Theta \ast 

ss \not = \emptyset , then x\infty 

is a strict saddle of L\alpha .

To state our final result, let us introduce the following merit function: given
x = [x\top 

1 , . . . ,x
\top 
n ]\top let

M(x) \triangleq max
\Bigl( 

dist(\=x,\scrX SOS), \| x  - 1 \otimes \=x\| 
\Bigr) 
,

where \scrX SOS denotes the set of SoS solutions of (P), and \=x = 1/n
\sum n

i=1 xi. M(x)
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captures the distance of the average \=x from the set of SoS solutions of (P) as well as
the consensus disagreement of the agents' local variables \=xi.

Theorem 3.12. Consider problem (P) under Assumptions 2.1\prime , 2.3, 2.4, and 2.5;
further assume that each fi is a K\L function. For every \epsilon > 0, there exists sufficiently

small 0 < \=\alpha < \sigma min(\bfD )
Lc

such that

\BbbP \bfx 0

\bigl( 
M(x\infty ) \leq \epsilon 

\bigr) 
= 1,

where x\infty = [x\infty \top 
1 , . . . ,x\infty \top 

n ]\top is the limit point of the sequence \{ x\nu \} generated by
the DGD algorithm (3.1) with \alpha \in (0, \=\alpha ], the weight matrix D satisfying Assumptions
3.1 and 3.3, and initialization x0 \in 

\prod n
i=1 \scrX 0

i \subseteq 
\prod n

i=1 \scrB m
R ; R is defined in Assumption

2.4 and each \scrX 0
i has positive Lebesgue measure; and the probability is taken over the

initialization x0 \in 
\prod n

i=1 \scrX 0
i . Furthermore, any \bfittheta \ast \in projcrit F(\=x\infty ) is almost surely

an SoS solution of F , where \=x\infty = (1/n)
\sum n

i=1 x\infty 
i .

Proof. For sufficiently small \alpha < \=\alpha 1, if projcrit F(\=x\infty ) contains a strict saddle
point of F , then x\infty is also a strict saddle point of L\alpha (by Corollary 3.11). Let
also \=\alpha 2 be a sufficiently small step size such that every limit point x\infty satisfies
dist(\=x\infty , crit F ) \leq \epsilon and \| x\infty  - 1 \otimes \=x\infty \| \leq \epsilon (by Theorem 3.9). Now consider DGD
update (3.1) with \alpha < min\{ \=\alpha 1, \=\alpha 2\} and x0 being drawn randomly from the set of
probability one measures

\prod n
i=1 \scrX 0

i for which the algorithm converges to an SoS so-
lution of L\alpha (by2 Theorem 3.4). Finally, by the above properties of \alpha , it holds that
M(x\infty ) \leq \epsilon and projcrit F(\=x\infty ) must contain only SoS solutions of F . Therefore, there
exists a \bfittheta \ast \in crit F such that \bfittheta \ast \in \scrX SoS and \| \=x\infty  - \bfittheta \ast \| \leq \epsilon .

Remark 3.13. All (first- and second-order) convergence results of DGD estab-
lished in this section remain valid when \nabla fi's are not globally Lipschitz continuous
(Assumption 2.1(i)) but Assumption 2.4 holds. Specifically, Theorems 3.2, 3.4, 3.9,
and Lemmas 3.6--3.7 hold if one replaces Assumption 2.1(i) with Assumption 2.4 and
the global Lipschitz constant Lc with the Lipschitz constant of \nabla Fc restricted to the
compact set \~\scrY , defined in Appendix A.2, which we refer to for the technical details.

4. DOGT algorithms. The family of DOGT algorithms is introduced in section
1.1.2. We begin here rewriting (1.2)--(1.3) in matrix/vector form. Denoting x\nu \triangleq 
[x\nu \top 

1 , . . . ,x\nu \top 
n ]\top and y\nu \triangleq [y\nu \top 

1 , . . . ,y\nu \top 
n ]\top , we have

(4.1)

\biggl\{ 
x\nu +1 = WR x\nu  - \alpha y\nu ,

y\nu +1 = WC y\nu + \nabla Fc

\bigl( 
x\nu +1

\bigr) 
 - \nabla Fc

\bigl( 
x\nu 
\bigr) 
,

where WR \triangleq R \otimes Im and WC \triangleq C \otimes Im with R \triangleq (Rij)
n
i,j=1 and C \triangleq (Cij)

n
i,j=1

being some column-stochastic and row-stochastic matrices (respectively) compliant to
the graph \scrG (cf. Assumption 4.1 below). The initialization of (4.1) is set to x0 \in \BbbR mn

and y0 \in \nabla Fc(x
0) + span (WC  - I). Note that the latter condition is instrumental

to preserve the total-sum of the y-variables, namely,
\sum 

i y\nu 
i =

\sum 
i fi(x

\nu 
i ) (which holds

due to the column-stochasticity of matrix C; cf. Assumption 4.1). This property is im-
perative for the y-variables to track the sum-gradient. Notice that the condition used
in the literature [22, 57, 59, 48, 66]---y0 = \nabla Fc(x

0)---is a special case of the proposed
initialization. On the practical side, this initialization can be enforced in a distrib-
uted way, with minimal coordination. For instance, agents first choose independently

2Note that the conclusion of Theorem 3.4 is valid also when the set of initial points is restricted
to

\prod n
i=1 \scrX 0

i , as
\prod n

i=1 \scrX 0
i has positive measure (the Cartesian product of sets with positive measure;

has positive measure; cf. [31, section 35]).
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a vector y - 1
i \in \BbbR m; then they run one step of consensus on the y-variables using the

values y - 1
i and weights matrix C, and set y0

i = \nabla fi(x
0
i ) +

\sum 
j\in \scrN in

i
Cijy

 - 1
j  - y - 1

i ,

resulting in y0 \in \nabla Fc(x
0) + span(WC  - I).

Different choices for R and C are possible, resulting in different existing algo-
rithms. For instance, if R = C \in \scrM n(\BbbR ) are doubly stochastic matrices compliant to
the graph \scrG , (4.1) reduces to the NEXT algorithm [21, 22] (or the one in [68], when
(P) is convex). If R and C are allowed to be time varying (suitably chosen) (4.1)
reduces to the SONATA algorithm applicable to (possibly time-varying) digraphs
[62, 58, 59, 61] (or the one later proposed in [48] for strongly convex instances of (P)).
Finally, if R and C are chosen according to Assumption 4.1 below, the scheme (4.1)
becomes the algorithm proposed independently in [56] and [66], for strongly convex
objectives in (P), and implementable over fixed digraphs.

Assumption 4.1 (on the matrices R and C). The weight matrices R,C \in \scrM n(\BbbR )
satisfy the following:

(i) R is nonnegative row-stochastic and Rii > 0 for all i \in [n];
(ii) C is nonnegative column-stochastic and Cii > 0 for all i \in [n];

(iii) The graphs \scrG R and \scrG C\top each contain at least one spanning tree; and \scrR R \cap 
\scrR C\top \not = \emptyset .

It is not difficult to check that matrices R and C above exist if and only if the digraph
\scrG is strongly connected; however, \scrG R and \scrG C\top need not be so. Several choices for
such matrices are discussed in [56, 66]. Here, we only point out the following property
of R and C, as a consequence of Assumption 4.1, which will be used in our analysis.
The result is a consequence of [67, Lemma 1].

Lemma 4.2. Given R and C satisfying Assumption 4.1 with stochastic left eigen-
vector r (resp., right eigenvector c) of R (resp., C) associated with the eigenvalue
one, then there exist matrix norms

| | X| | R \triangleq | | diag(
\surd 

r)X diag(
\surd 

r) - 1| | 2,(4.2)

| | X| | C \triangleq | | diag(
\surd 

c) - 1X diag(
\surd 

c)| | 2,(4.3)

such that \rho R \triangleq \| R  - 1r\top \| R < 1 and \rho C \triangleq \| C  - c1\top \| C < 1. Furthermore, r\top c > 0.

Using Lemma 4.2, it is not difficult to check that the following properties hold:

\rho R = \sigma 2

\bigl( 
diag(

\surd 
r)R diag(

\surd 
r) - 1

\bigr) 
,(4.4)

\rho C = \sigma 2

\bigl( 
diag(

\surd 
c) - 1C diag(

\surd 
c)
\bigr) 
,(4.5)

| | R| | R = | | 1rT | | R = | | I  - 1rT | | R = 1,(4.6)

| | C| | C = | | c1T | | C = | | I  - c1T | | R = 1.(4.7)

The vector norms associated with the above matrix norms are

| | x| | R = | | diag(
\surd 

r)x| | 2,(4.8)

| | x| | C = | | diag(
\surd 

c) - 1x| | 2;(4.9)

and | | \cdot | | a \leq Ka,b| | \cdot | | b holds for a, b \in \{ R,C, 2\} with

(4.10)
KR,2 =

\surd 
rmax, K2,R = 1/

\surd 
rmin,

KC,2 = 1/
\surd 
cmin, K2,C =

\surd 
cmax,

KR,C =
\surd 
rmaxcmax, KC,R = 1/

\surd 
cminrmin,
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where rmin (resp., cmin) and rmax (resp., cmax) are minimum and maximum elements
of r (resp., c).

Convergence of DOGT algorithms in the form (4.1) (with R and C satisfying
Assumption 4.1) has not been studied in the literature when F is nonconvex. In
next subsection we fill this gap and provide a full characterization of the convergence
behavior of DOGT including its second-order guarantees.

4.1. First-order convergence and rate analysis. In this section, we study
asymptotic convergence to first-order stationary solutions; we assume m = 1 (scalar
optimization variables); while this simplifies the notation, all the conclusions hold for
the general case m > 1. As in [56], define the weighted sums

(4.11) \=x\nu \triangleq r\top x\nu , \=y\nu \triangleq 1\top y\nu , and \=g\nu \triangleq 1\top \nabla Fc(x
\nu ),

where we recall that r is the Perron vector associated with R (cf. Lemma 4.2). Note
that \nabla Fc is Lc-Lipschitz continuous with Lc \triangleq Lmax.

Using (4.1), it is not difficult to check that the following holds:

(4.12) \=x\nu +1 = \=x\nu  - \zeta \alpha \=y\nu  - \alpha r\top (y\nu  - c\=y\nu ) and \=y\nu = \=g\nu ,

where c is the Perron vector associated with C, and \zeta \triangleq r\top c > 0 (cf. Lemma 4.2).

4.1.1. Descent on \bfitF . Using the descent lemma along with (4.12) yields

F (\=x\nu +1) = F
\bigl( 
\=x\nu  - \zeta \alpha \=y\nu  - \alpha r\top (y\nu  - c\=y\nu )

\bigr) 
\leq F (\=x\nu )  - \zeta \alpha \langle \nabla F (\=x\nu ), \=y\nu \rangle  - \alpha 

\bigl\langle 
\nabla F (\=x\nu ), r\top (y\nu  - c\=y\nu )

\bigr\rangle 
+

L

2

\bigm\| \bigm\| \zeta \alpha \=y\nu + \alpha r\top (y\nu  - c\=y\nu )
\bigm\| \bigm\| 2 .

Adding/subtracting suitably chosen terms we obtain
(4.13)

F (\=x\nu +1) \leq F (\=x\nu )  - \zeta \alpha \langle \nabla F (\=x\nu )  - \=y\nu , \=y\nu \rangle  - \zeta \alpha | \=y\nu | 2

 - \alpha 
\bigl\langle 
\nabla F (\=x\nu )  - \=y\nu , r\top (y\nu  - c\=y\nu )

\bigr\rangle 
 - \alpha 

\bigl\langle 
\=y\nu , r\top (y\nu  - c\=y\nu )

\bigr\rangle 
+ L\zeta 2\alpha 2| \=y\nu | 2 + L\alpha 2 \| y\nu  - c\=y\nu \| 2

\leq F (\=x\nu ) +
\zeta \alpha 

2\epsilon 1
| \nabla F (\=x\nu )  - \=y\nu | 2 +

\zeta \alpha \epsilon 1
2

| \=y\nu | 2  - \zeta \alpha | \=y\nu | 2

+
\alpha 

2
| \nabla F (\=x\nu )  - \=y\nu | 2 +

\alpha 

2
\| y\nu  - c\=y\nu \| 2 +

\alpha \epsilon 2
2

| \=y\nu | 2 +
\alpha 

2\epsilon 2
\| y\nu  - c\=y\nu \| 2

+ L\zeta 2\alpha 2| \=y\nu | 2 + L\alpha 2 \| y\nu  - c\=y\nu \| 2

= F (\=x\nu ) +

\biggl( 
\zeta \alpha \epsilon 1

2
 - \zeta \alpha +

\alpha \epsilon 2
2

+ L\zeta 2\alpha 2

\biggr) 
| \=y\nu | 2

+

\biggl( 
\zeta \alpha 

2\epsilon 1
+

\alpha 

2

\biggr) 
| \nabla F (\=x\nu )  - \=y\nu | 2 +

\biggl( 
\alpha 

2
+

\alpha 

2\epsilon 2
+ L\alpha 2

\biggr) 
\| y\nu  - c\=y\nu \| 2 ,

where \epsilon 1 and \epsilon 2 are some arbitrary positive quantities (to be chosen). By \=y\nu = \=g\nu 

(cf. (4.12)), it holds that

(4.14) | \nabla F (\=x\nu )  - \=y\nu | =

\bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 

i=1

\nabla fi(\=x\nu )  - 
n\sum 

i=1

\nabla fi(x
\nu 
i )

\bigm| \bigm| \bigm| \bigm| \bigm| \leq Lc

\surd 
n \| x\nu  - 1\=x\nu \| .D
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Combining (4.13) and (4.14) yields
(4.15)

F (\=x\nu +1)

\leq F (\=x\nu ) +

\biggl( 
\zeta \alpha \epsilon 1

2
 - \zeta \alpha +

\alpha \epsilon 2
2

+ L\zeta 2\alpha 2

\biggr) 
| \=y\nu | 2

+ nL2
cK

2
2,R

\biggl( 
\zeta \alpha 

2\epsilon 1
+

\alpha 

2

\biggr) 
\| x\nu  - 1\=x\nu \| 2R + K2

2,C

\biggl( 
\alpha 

2
+

\alpha 

2\epsilon 2
+ L\alpha 2

\biggr) 
\| y\nu  - c\=y\nu \| 2C ,

where K2,R = 1/
\surd 
rmin and K2,C =

\surd 
cmax (cf. (4.36)).

4.1.2. Bounding the consensus and gradient tracking errors. Let us
bound the consensus error \| x\nu  - 1\=x\nu \| R. Using \| z+w| | 2R \leq (1+\epsilon ) \| x\| 2R+(1+1/\epsilon ) \| y\| 2R
for arbitrary z,w \in \BbbR m and \epsilon > 0, along with Lemma 4.2, yields
(4.16)\bigm\| \bigm\| x\nu +1  - 1\=x\nu +1

\bigm\| \bigm\| 2
R

=
\bigm\| \bigm\| \bigl( R  - 1r\top 

\bigr) 
(x\nu  - 1\=x\nu )  - \alpha 

\bigl( 
I  - 1r\top 

\bigr) 
(y\nu  - 1\=y\nu )

\bigm\| \bigm\| 2
R

\leq (1 + \epsilon x)
\bigm\| \bigm\| \bigl( R  - 1r\top 

\bigr) 
(x\nu  - 1\=x\nu )

\bigm\| \bigm\| 2
R

+ \alpha 2

\biggl( 
1 +

1

\epsilon x

\biggr) \bigm\| \bigm\| \bigl( I  - 1r\top 
\bigr) 

(y\nu  - 1\=y\nu )
\bigm\| \bigm\| 2
R

\leq \rho 2R(1 + \epsilon x) \| x\nu  - 1\=x\nu \| 2R + \alpha 2

\biggl( 
1 +

1

\epsilon x

\biggr) 
\| I  - 1r\top \| 2R \| y\nu  - 1\=y\nu \| 2R

(4.6)

\leq \rho 2R(1 + \epsilon x) \| x\nu  - 1\=x\nu \| 2R + 2\alpha 2

\biggl( 
1 +

1

\epsilon x

\biggr) 
\| y\nu  - c\=y\nu \| 2R

+ 2\alpha 2

\biggl( 
1 +

1

\epsilon x

\biggr) 
\| (1  - c)\=y\nu \| 2R

\leq \rho 2R(1 + \epsilon x) \| x\nu  - 1\=x\nu \| 2R + \alpha 2K2 \| y\nu  - c\=y\nu \| 2C + \alpha 2K3| \=y\nu | 22,
where \epsilon x > 0 is arbitrary and we defined

(4.17) K2 \triangleq 2K2
R,C

\biggl( 
1 +

1

\epsilon x

\biggr) 
, K3 \triangleq 2n

\biggl( 
1 +

1

\epsilon x

\biggr) 
.

Similarly, the tracking error can be bounded as
(4.18)\bigm\| \bigm\| y\nu +1  - c\=y\nu +1

\bigm\| \bigm\| 2
C

=
\bigm\| \bigm\| \bigl( C  - c1\top \bigr) y\nu +

\bigl( 
I  - c1\top \bigr) \bigl( \nabla Fc(x

\nu +1)  - \nabla Fc(x
\nu )
\bigr) \bigm\| \bigm\| 2

C

\leq (1 + \epsilon y)
\bigm\| \bigm\| \bigl( C  - c1\top \bigr) (y\nu  - c\=y\nu )

\bigm\| \bigm\| 2
C

+

\biggl( 
1 +

1

\epsilon y

\biggr) \bigm\| \bigm\| \bigl( I  - c1\top \bigr) \bigl( \nabla Fc(x
\nu +1)  - \nabla Fc(x

\nu )
\bigr) \bigm\| \bigm\| 2

C

(4.7)

\leq \rho 2C(1 + \epsilon y) \| y\nu  - c\=y\nu \| 2C + K2
C,2L

2
c

\biggl( 
1 +

1

\epsilon y

\biggr) \bigm\| \bigm\| x\nu +1  - x\nu 
\bigm\| \bigm\| 2

(a)
= \rho 2C(1 + \epsilon y) \| y\nu  - c\=y\nu \| 2C
+ 3K2

C,2L
2
c

\biggl( 
1 +

1

\epsilon y

\biggr) \Bigl[ 
\| (R  - I)(x\nu  - 1\=x\nu )\| 2 + \alpha 2 \| y\nu  - c\=y\nu \| 2 + \alpha 2| \=y\nu | 2 \| c\| 2

\Bigr] 
(4.6)

\leq \rho 2C(1 + \epsilon y) \| y\nu  - c\=y\nu \| 2C
+ 3K2

C,2L
2
c

\biggl( 
1 +

1

\epsilon y

\biggr) \Bigl[ 
K2

2,R \| x\nu  - 1\=x\nu \| 2 + K2
2,C\alpha 

2 \| y\nu  - c\=y\nu \| 2C + \alpha 2| \=y\nu | 2
\Bigr] 

= \rho 2C(1 + \epsilon y) \| y\nu  - c\=y\nu \| 2C
+ 3K2

C,2L
2
c

\biggl( 
1 +

1

\epsilon y

\biggr) \Bigl[ 
K2

2,R \| x\nu  - 1\=x\nu \| 2 + K2
2,C\alpha 

2 \| y\nu  - c\=y\nu \| 2C + \alpha 2| \=y\nu | 2
\Bigr] 

\leq 
\biggl( 
\rho 2C +

\alpha 2K4

\epsilon y

\biggr) 
(1 + \epsilon y) \| y\nu  - c\=y\nu \| 2C + \alpha 2K5| \=y\nu | 22 + K6

\biggl( 
1 +

1

\epsilon y

\biggr) 
\| x\nu  - 1\=x\nu \| 2R ,
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where in (a) we used x\nu +1 - x\nu = (R - I)(x\nu  - 1\=x\nu ) - \alpha (y\nu  - c\=y\nu ) - \alpha c\=y\nu and Jensen's
inequality; and in the last inequality we defined

(4.19) K4 = 3K2
C,2K

2
2,CL

2
c , K5 = 3K2

C,2L
2
c , K6 = 3K2

C,2K
2
2,RL

2
c .

4.1.3. Lyapunov function. Let us introduce now the candidate Lyapunov
function: denoting JR \triangleq 1r\top and JC \triangleq c1\top , define

(4.20) L(x,y) \triangleq Fc(JRx) + \| (I  - JR)x\| 2R + \varkappa \| (I  - JC)y\| 2C ,

where \varkappa > 0 is a positive constant (to be properly chosen). Combining (4.15)--(4.18)
and using \=y\nu = \=g\nu =

\sum n
i=1 \nabla fi(x

\nu 
i ) (cf. (4.12)) leads to the following descent property

for L:

(4.21) L(x\nu +1,y\nu +1) \leq L(x\nu ,y\nu )  - d(x\nu ,y\nu )2,

where
(4.22)

d(x,y) \triangleq 

\sqrt{}    (1  - \~\rho R) \| (I  - JR)x\| 2R + \varkappa (1  - \~\rho C) \| (I  - JC)y\| 2C + \Gamma 
\bigm| \bigm| \bigm| n\sum 
i=1

\nabla fi(xi)
\bigm| \bigm| \bigm| 2

and

(4.23)

\~\rho R \triangleq \rho 2R(1 + \epsilon x) +
\alpha nL2

cK
2
2,R

2

\biggl( 
1 +

\zeta 

\epsilon 1

\biggr) 
+ \varkappa K6

\biggl( 
1 +

1

\epsilon y

\biggr) 
,

\~\rho C \triangleq \rho 2C(1 + \epsilon y) +
\alpha K2

2,C

2\varkappa 

\biggl( 
1 +

1

\epsilon 2

\biggr) 
+ \alpha 2

\Biggl( 
LK2

2,C + K2

\varkappa 
+ K4

\biggl( 
1 +

1

\epsilon y

\biggr) \Biggr) 
,

\Gamma \triangleq 

\biggl( 
\zeta  - \epsilon 1\zeta 

2
 - \epsilon 2

2

\biggr) 
\alpha  - 

\bigl( 
L\zeta 2 + K3 + K5\varkappa 

\bigr) 
\alpha 2.

Note that the function d(\bullet , \bullet ) is a valid measure of optimality/consensus for
DOGT: (i) it is continuous and (ii) d(x,y) = 0 implies xi = xj = x\ast for all i, j \in [n]
and some x\ast such that

\sum n
i=1 \nabla fi(x

\ast ) = 0, meaning that all xi are consensual and
equal to a critical point of F .

To ensure \~\rho R < 1, \~\rho C < 1, and \Gamma > 0 in d(x,y), we choose the free parameters
\epsilon x, \epsilon y, \epsilon 1, \epsilon 2, and \varkappa as follows:

(4.24)

0 < \epsilon x <
1  - \rho 2R

2\rho 2R
, 0 < \epsilon y <

1  - \rho 2C
\rho 2C

,

\epsilon 1 = \epsilon 2 = \epsilon , 0 < \epsilon <
2\zeta 

1 + \zeta 
, 0 < \varkappa \leq \rho 2R\epsilon x

K6(1 + 1/\epsilon y)
,

and, finally, \alpha > 0 must satisfy

(4.25)

\alpha <
2

nL2
cK

2
2,R

\Bigl( 
1 + \zeta 

\epsilon 

\Bigr) \bigl( 1  - \rho 2R(1 + 2\epsilon x)
\bigr) 
,

\alpha <
1  - \rho 2C(1 + \epsilon y)

1
2\varkappa K

2
2,C

\bigl( 
1 + 1

\epsilon + 2L
\bigr) 

+ K2

\varkappa + K4

\Bigl( 
1 + 1

\epsilon y

\Bigr) ,
\alpha <

\zeta  - \epsilon 
2 (\zeta + 1)

L\zeta 2 + K3 + K5\varkappa 
.
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Substituting (4.10), (4.17), and (4.19) in (4.25) and setting for simplicity

(4.26) \epsilon x =
1  - \rho 2R

4\rho 2R
, \epsilon y =

1  - \rho 2C
2\rho 2C

, \epsilon =
\xi 

1 + \xi 
, \varkappa =

cminrmin

24L2
c

(1  - \rho 2R)(1  - \rho 2C),

we obtain the following sufficient conditions for (4.25):

(4.27)

\alpha \leq \~\alpha 1 \triangleq 
rmin(1  - \rho 2R)

3nL2
c

,

\alpha \leq \~\alpha 2 \triangleq 
(1  - \rho 2R)2(1  - \rho 2C)2r2minc

2
min

1152L2
c(2 + L)

,

\alpha \leq \~\alpha 3 \triangleq 
rmincmin(1  - \rho 2R)

2(L + 16n)
.

A further simplification leads to the following final more restrictive condition on \alpha :

(4.28) 0 < \alpha \leq (1  - \rho 2R)2(1  - \rho 2C)2r2minc
2
min

1152L2
c(L + 16n)

.

The descent property (4.21) readily implies the following convergence result for
\{ L(x\nu ,y\nu )\} and \{ d(x\nu ,y\nu )\} .

Lemma 4.3. Under Assumptions 2.1, 2.5, and 4.1, and the above choice of pa-
rameter, there hold

(i) the sequence \{ L(x\nu ,y\nu )\} converges;
(ii)

\sum \infty 
\nu =0 d(x\nu ,y\nu )2 < \infty and thus lim\nu \rightarrow \infty d(x\nu ,y\nu ) = 0.

We conclude this subsection by lower bounding d(x\nu ,y\nu ) by the magnitude of the
gradient of the Lyapunov function L. This will allow us to transfer the convergence
properties of \{ d(x\nu ,y\nu )\} to \{ | | \nabla L(x\nu ,y\nu )| | \} . The lemma below will also be useful to
establish global convergence of DOGT under the K\L property (cf. section 4.2.1).

Lemma 4.4. Let \nabla L(x\nu ,y\nu ) \triangleq (\nabla \bfx L(x\nu ,y\nu ),\nabla \bfy L(x\nu ,y\nu )), where \nabla \bfx L (resp.,
\nabla \bfy L) are the gradient of L with respect to the first (resp., second) argument. In the
setting above, there holds
(4.29) \| \nabla L(x\nu ,y\nu )\| \leq Md(x\nu ,y\nu ), \nu \geq 0,

with

(4.30) M =
\surd 

2 max

\biggl( 
(2rmax + Lc

\surd 
n)2

rmin(1  - \~\rho R)
,

2\varkappa cmax

c2min(1  - \~\rho C)
,

1

\Gamma 

\biggr) 1
2

.

Proof. Recall that JR = 1r\top and JC = c1\top . By definition (4.20) and Lemma
4.2, we can write

(4.31)

\nabla \bfx L(x\nu ,y\nu ) = J\top 
R\nabla Fc(JRx\nu ) + 2(I  - JR)\top diag(r)(I  - JR)x\nu 

(a)
= r \=y\nu + J\top 

R (\nabla Fc(JRx\nu )  - \nabla Fc(x
\nu ))

+ 2(I  - JR)\top diag(r)(x\nu  - 1\=x\nu ),

\nabla \bfy L(x\nu ,y\nu ) = 2\varkappa (I  - JC)\top diag(c) - 1(I  - JC)y\nu 

= 2\varkappa (I  - JC)\top diag(c) - 1(y\nu  - c\=y\nu ),

where (a) is due to \=y\nu = \=g\nu (cf. (4.12)). Thus there holds

(4.32)

| | \nabla \bfx L(x\nu ,y\nu )| | \leq | | r| | | \=y\nu | + | | J\top 
R (\nabla Fc(JRx\nu )  - \nabla Fc(x

\nu )) | | 
+ 2| | (I  - JR)\top diag(r)(x\nu  - 1\=x\nu )| | 

(b)

\leq | \=y\nu | + K2,R

\bigl( 
2rmax + Lc

\surd 
n
\bigr) 
| | x\nu  - 1\=x\nu | | R,

| | \nabla \bfy L(x\nu ,y\nu )| | 
(c)

\leq 2\varkappa K2,Cc
 - 1
min| | y

\nu  - c\=y\nu | | C ,
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where (b) holds due to | | diag(r)| | R = | | diag(r)| | 2 = rmax, | | r| | \leq 1, | | JR| | 2 \leq 
\surd 
n, and

(4.6); (c) is due to | | diag(c) - 1| | C = | | diag(c) - 1| | 2 = c - 1
min and (4.7). Equation (4.29)

follows readily from (4.32).

4.1.4. Main result. We can now state the main convergence result of DOGT
to critical points of F .

Theorem 4.5. Consider problem (P), and suppose that Assumptions 2.1 and 2.5
are satisfied. Let \{ (x\nu ,y\nu )\} be the sequence generated by the DOGT Algorithm (4.1)
with R and C satisfying Assumption 4.1, and \alpha chosen according to (4.28) (or (4.26));
let \{ \=x\nu \} and \{ \=y\nu \} be defined in (4.11); and let \{ d(x\nu ,y\nu )\} be defined in (4.22). Given
\epsilon > 0, let T\epsilon = min\{ \nu \in \BbbN + : d(x\nu ,y\nu ) \leq \epsilon \} . Then, there hold

(i) (consensus): lim\nu \rightarrow \infty \| x\nu  - 1\=x\nu \| = 0 and lim\nu \rightarrow \infty \=y\nu = 0;
(ii) (stationarity): let x\infty be a limit point of \{ x\nu \} ; then, x\infty = \theta \infty 1 for some

\theta \infty \in crit F ;
(iii) (sublinear rate): T\epsilon = o(1/\epsilon 2).

Proof. (i) follows readily from Lemma 4.3(ii).
We prove (ii). Let (x\infty ,y\infty ) be a limit point of \{ (x\nu ,y\nu )\} . By (i), it must be

(I - JR)x\infty = 0, implying x\infty = 1\theta \infty for some \theta \infty \in \BbbR . Also, lim\nu \rightarrow \infty 1\top \nabla Fc(x
\nu ) =

lim\nu \rightarrow \infty \=g\nu = lim\nu \rightarrow \infty \=y\nu = 0, which together with the continuity of \nabla Fc, yields
0 = 1\top \nabla Fc(1\theta 

\infty ) = \nabla F (\theta \infty ). Therefore, \theta \infty \in crit F .
We now prove (iii). Using (4.21) and the definition of T\epsilon , we can write

(4.33)
T\epsilon 

2
\epsilon 2 \leq 

T\epsilon \sum 
t=\lfloor T\epsilon 

2 \rfloor +1

d(xt,yt)2 \leq l\lfloor 
T\epsilon 
2 \rfloor +1  - lT\epsilon +1,

where we used the shorthand l\nu \triangleq L(x\nu ,y\nu ). Consider the following two cases: (1)

T\epsilon \rightarrow \infty as \epsilon \rightarrow 0, then l\lfloor 
T\epsilon 
2 \rfloor +1  - lT\epsilon +1 \rightarrow 0 (recall that \{ l\nu \} converges; cf. Lemma

4.3(i)); and (2) T\epsilon < \infty as \epsilon \rightarrow 0, then \{ l\nu \} converges in a finite number of iterations.
Therefore, by (4.33), we have T\epsilon = o(1/\epsilon 2).

Note that, as a direct consequence of Lemma 4.4, one can infer the following
further property of the limit points (x\infty ,y\infty ) of the sequence \{ (x\nu ,y\nu )\} : any such
(x\infty ,y\infty ) is a critical point of L [defined in (4.20)].

4.2. Convergence under the K\L property. We now strengthen the subse-
quence convergence result in Theorem 4.5, under the additional assumption that F is
a K\L function [40, 39]: we prove that the entire sequence \{ x\nu \} converges to a critical
point of F (cf. Theorem 4.7), and establish asymptotic convergence rates (cf. Theorem
4.8). We extend the analysis developed in [5, 7] for centralized first-order methods to
our distributed setting and complement it with a rate analysis. The major difference
with [7] is that the sufficient descent condition postulated in [7] is neither satisfied
by the objective value sequence \{ F (x\nu )\} (as requested in [7]), due to consensus and
gradient tracking errors, nor by the Lyapunov function sequence \{ L(x\nu ,y\nu )\} , which
instead satisfies (4.21). A key step to cope with this issue is to establish necessary
connections between \nabla L(x,y) and d(x,y) (defined in (4.20) and (4.22), respectively);
see Lemma 4.29 and Proposition 4.6.

4.2.1. Convergence analysis. We begin proving the following abstract inter-
mediate results similar to [7] but extended to our distributed setting, which is at the
core of the subsequent analysis; we still assume m = 1 without loss of generality.
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Proposition 4.6. In the setting of Theorem 4.5, let L defined in (4.20) is K\L
at some \'z \triangleq (\'x, \'y). Denote by \scrV \'\bfz , \eta , and \phi : [0, \eta ) \rightarrow \BbbR + the objects appearing
in Definition 2.2. Let \rho > 0 be such that \scrB (\'z, \rho )2mn \subseteq \scrV \'\bfz . Consider the sequence
\{ z\nu \triangleq (x\nu ,y\nu )\} generated by the DOGT algorithm (4.1), with initialization z0 \triangleq 
(x0,y0); and define \'l \triangleq L(\'z) and l\nu \triangleq L(z\nu ). Suppose that

(4.34) \'l < l\nu < \'l + \eta \forall \nu \geq 0,

and

(4.35) KM \phi (l0  - \'l) +
\bigm\| \bigm\| z0  - \'z

\bigm\| \bigm\| < \rho ,

where

(4.36) K =
\surd 

3(1 + Lc) max

\Biggl( 
4nK2

| | 

1  - \~\rho R
,

K2
| | 

\varkappa (1  - \~\rho C)

\biggl( 
\alpha +

2
\surd 
n

1 + Lc

\biggr) 2

, \alpha 2/\Gamma 

\Biggr) 1/2

,

and M > 0 is defined in (4.29) (cf. Lemma 4.4).
Then, \{ z\nu \} satisfies
(i) z\nu \in \scrB (\'z, \rho )2mn for all \nu \geq 0;

(ii)
\sum \nu 

t=k

\bigm\| \bigm\| zt+1  - zt
\bigm\| \bigm\| \leq KM

\Bigl( 
\phi (lk  - \'l)  - \phi (l\nu +1  - \'l)

\Bigr) 
for all \nu , k \geq 0 and \nu \geq k;

(iii) l\nu \rightarrow \'l, as \nu \rightarrow \infty .

Proof. Throughout the proof, we will use the following shorthand d\nu \triangleq d(x\nu ,y\nu ).
Let d\nu > 0, for all integers \nu \geq 0; otherwise, \{ x\nu \} converges in a finite number of
steps, and its limit point is x\infty = 1\theta \infty for some \theta \infty \in crit F .

We first bound the ``length""
\sum \nu 

t=k

\bigm\| \bigm\| zt+1  - zt
\bigm\| \bigm\| . By (4.1), there holds

x\nu +1  - x\nu = (R  - I) (x\nu  - 1\=x\nu )  - \alpha (y\nu  - c\=y\nu )  - \alpha c\=y\nu ,

y\nu +1  - y\nu = (C  - I) (y\nu  - c\=y\nu ) + \nabla Fc(x
\nu +1)  - \nabla Fc(x

\nu ).

Using | | A| | 2 \leq 
\surd 
n| | A| | \infty and | | A| | 2 \leq 

\surd 
n| | A| | 1 with A \in \scrM n(\BbbR ) and | | R - I| | \infty \leq 2

and | | C  - I| | 1 \leq 2, we get

\nu \sum 
t=k

\bigm\| \bigm\| xt+1  - xt
\bigm\| \bigm\| \leq 

\nu \sum 
t=k

2
\surd 
n
\bigm\| \bigm\| xt  - 1\=xt

\bigm\| \bigm\| + \alpha 
\bigm\| \bigm\| yt  - c\=yt

\bigm\| \bigm\| + \alpha | \=yt| ,

\nu \sum 
t=k

\bigm\| \bigm\| yt+1  - yt
\bigm\| \bigm\| \leq 

\nu \sum 
t=k

2
\surd 
n
\bigm\| \bigm\| yt  - c\=yt

\bigm\| \bigm\| + Lc

\nu \sum 
t=k

\bigm\| \bigm\| xt+1  - xt
\bigm\| \bigm\| ,

where Lc is the Lipschitz constant of \nabla Fc. The above inequalities imply

(4.37)

\nu \sum 
t=k

\bigm\| \bigm\| zt+1  - zt
\bigm\| \bigm\| 

\leq 
\nu \sum 

t=k

2(1 + Lc)
\surd 
nK| | 

\bigm\| \bigm\| xt  - 1\=xt
\bigm\| \bigm\| 
R

+ K| | 
\bigl( 
\alpha (1 + Lc) + 2

\surd 
n
\bigr) \bigm\| \bigm\| yt  - c\=y\nu 

\bigm\| \bigm\| 
C

+ \alpha (1 + Lc)| \=yt| \leq K

\nu \sum 
t=k

dt,

where K is defined in (4.36).
We prove now the proposition, starting from statement (ii). Multiplying both

sides of (4.21) by \phi \prime (l\nu  - \'l) and using \phi \prime (l\nu  - \'l) > 0 [due to property (iii) in Defini-
tion 2.2 and (4.34)] and the concavity of \phi , yield

(4.38) (d\nu )2 \phi \prime (l\nu  - \'l) \leq \phi \prime (l\nu  - \'l)
\bigl( 
l\nu  - l\nu +1

\bigr) 
\leq \phi (l\nu  - \'l)  - \phi (l\nu +1  - \'l).
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For all z \in \scrV \'\bfz \cap (\'l < L < \'l + \eta ), the K\L inequality (2.1) holds; hence, assuming
zt \in \scrB (\'z, \rho )2mn for all t = 0, . . . , \nu , yields

(4.39) \phi \prime (lt  - \'l)| | \nabla L(zt)| | \geq 1, t = 0, . . . , \nu ,

which together with (4.38) and (4.29) (cf. Lemma 4.4), gives

M
\Bigl( 
\phi (lt  - \'l)  - \phi (lt+1  - \'l)

\Bigr) 
\geq dt, t = 0, . . . , \nu ,

and thus

(4.40) M
\Bigl( 
\phi (lk  - \'l)  - \phi (l\nu +1  - \'l)

\Bigr) 
\geq 

\nu \sum 
t=k

dt.

Combining (4.40) with (4.37), we obtain

(4.41)

\nu \sum 
t=k

\bigm\| \bigm\| zt+1  - zt
\bigm\| \bigm\| \leq KM

\Bigl( 
\phi (lk  - \'l)  - \phi (l\nu +1  - \'l)

\Bigr) 
.

Inequality (4.41) proves (ii) if z\nu \in \scrB (\'z, \rho )2mn for all \nu \geq 0, which is shown next.
Now let us prove statement (i). Letting k = 0 in (4.41), by (4.35), we obtain\bigm\| \bigm\| z\nu +1  - \'z

\bigm\| \bigm\| \leq KM
\Bigl( 
\phi (l0  - \'l)  - \phi (l\nu +1  - \'l)

\Bigr) 
+
\bigm\| \bigm\| z0  - \'z

\bigm\| \bigm\| < \rho .

Therefore, z\nu \in \scrB (\'z, \rho )2mn for all \nu \geq 0.
We finally prove statement (iii). Inequalities (4.29) (cf. Lemma 4.4) and (4.39)

imply

(4.42) \phi \prime (l\nu  - \'l) d\nu \geq 1/M, \nu \geq 0.

On the other hand, by Lemma 4.3(i), as \nu \rightarrow \infty , we have l\nu \rightarrow p for some p \geq \'l. In

fact, p = \'l, otherwise p  - \'l > 0, which would contradict (4.42) (because d\nu \rightarrow 0 as

\nu \rightarrow \infty and \phi \prime (p - \'l) < \infty ).

Roughly speaking, Proposition 4.6 states that, if the algorithm is initialized in
a suitably chosen neighborhood of a point at which L satisfies the K\L property,
then it will converge to that point. Combining this property with the subsequence
convergence proved in Theorem 4.7 we can obtain global convergence of the sequence
to critical points of F , as stated next.

Theorem 4.7. Consider the setting of Theorem 4.5 and, furthermore, assume
that F is real-analytic. Any sequence \{ (x\nu ,y\nu )\} generated by the DOGT algorithm
(4.1) converges to some (x\infty ,y\infty ) \in crit L. Furthermore, x\infty = 1 \otimes \theta \infty for some
\theta \infty \in crit F .

Proof. Let z\infty \triangleq (x\infty ,y\infty ) be a limit point of \{ z\nu \triangleq (x\nu ,y\nu )\} . Since \{ l\nu \triangleq 
L(z\nu )\} is convergent (cf. Lemma 4.3) and L is continuous, we deduce l\nu \rightarrow l\infty \triangleq 
L(z\infty ). Since F is real-analytic, L is real-analytic (due to Lemma 4.2 and the fact that
summation/composition of functions preserve the real-analytic property [38, Propo-

sition 2.2.8]) and thus K\L at at z\infty [40]. Set \'z = z\infty and \'l = l\infty ; denote by \scrV \'\bfz , \eta ,
and \phi : [0, \eta ) \rightarrow \BbbR + the objects appearing in Definition 2.2; and let \rho > 0 be such
that \scrB (\'z, \rho )2mn \subseteq \scrV \'\bfz . By the continuity of \phi and the properties above, we deduce

that there exists an integer \nu 0 such that (i) l\nu \in (\'l, \'l + \eta ) for all \nu \geq \nu 0 and (ii)

K M \phi (l\nu 0  - \'l) + \| z\nu 0  - \'z\| < \rho , with K and M defined in (4.36) and (4.29), respec-
tively. Global convergence of the sequence \{ z\nu \} follows by applying Proposition 4.6
to the sequence \{ z\nu +\nu 0\} .
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Finally, by Lemma 4.3(ii), d(x\nu ,y\nu ) \rightarrow 0 as \nu \rightarrow \infty . Invoking the continuity of
\nabla L and Lemma 4.4, we have \nabla L(x\infty ,y\infty ) = 0, thus (x\infty ,y\infty ) \in crit L. By Theorem
4.5(ii), x\infty = 1 \otimes \theta \infty with \theta \infty \in crit F .

In the following theorem, we provide some convergence rate estimates.

Theorem 4.8. In the setting of Theorem 4.7, let L be a K\L function with \phi (s) =
cs1 - \theta for some constant c > 0 and \theta \in [0, 1). Let \{ z\nu \triangleq (x\nu ,y\nu )\} be a sequence
generated by DOGT algorithm (4.1). Then, there hold

(i) if \theta = 0, \{ z\nu \} converges to z\infty in a finite number of iterations;
(ii) if \theta \in (0, 1/2], then | | z\nu  - z\infty | | \leq C\tau \nu for all \nu \geq \=\nu for some \tau \in [0, 1),

\=\nu \in \BbbN +, C > 0;

(iii) if \theta \in (1/2, 1), then | | z\nu  - z\infty | | \leq C\nu  - 
1 - \theta 
2\theta  - 1 for all \nu \geq \=\nu for some \=\nu \in \BbbN +,

C > 0.

Proof. For the sake of simplicity of notation, denote d\nu \triangleq d(x\nu ,y\nu ) and define
D\nu \triangleq 

\sum \infty 
t=\nu d

t. By (4.37), we have

(4.43)
\bigm\| \bigm\| z\nu +1  - z\infty 

\bigm\| \bigm\| \leq 
\infty \sum 
t=\nu 

\bigm\| \bigm\| zt+1  - zt
\bigm\| \bigm\| \leq KD\nu .

It is then sufficient to establish the convergence rates for the sequence \{ D\nu \} .
By K\L inequality (2.1) and (4.29), we have

(4.44) Md\nu \phi \prime (l\nu  - l\infty ) \geq 1 =\Rightarrow \~M(d\nu )(1 - \theta )/\theta \geq (l\nu  - l\infty )1 - \theta \forall \nu \geq \=\nu 

for sufficiently large \=\nu , where \~M = (Mc(1  - \theta ))
(1 - \theta )/\theta 

, l\nu \triangleq L(z\nu ), and l\infty \triangleq L(z\infty ).

In addition, by (4.40) (setting \'l = l\infty ), we have D\nu \leq M\phi (l\nu  - l\infty ) = Mc(l\nu  - l\infty )1 - \theta ,
which together with (4.44), yields

(4.45) D\nu \leq \~MMc(d\nu )(1 - \theta )/\theta = \~MMc(D\nu  - D\nu +1)(1 - \theta )/\theta \forall \nu \geq \=\nu .

The convergence rate estimates as stated in the theorem can be derived from (4.45),
using the same line of analysis introduced in [5]. The remaining part of the proof is
provided in Appendix A.3 for completeness.

4.3. Second-order guarantees. We prove that the DOGT algorithm almost
surely converges to SoS solutions of (P) under a suitably chosen initialization and
some additional conditions on the weight matrices R and C. Following a path first
established in [42] and further developed in [41], the key to our argument for the non-
convergence to strict saddle points of F lies in formulating the DOGT algorithm as
a dynamical system while leveraging an instantiation of the stable manifold theorem,
as given in [41, Theorem 2]. The nontrivial task is finding a self-map representing
DOGT so that the stable set of the strict saddles of F is zero measure with respect
to the domain of the mapping; note that the domain of the map---which is the set
of initialization points---is not full dimensional and is the same as the support of the
probability measure.

Our analysis is organized in the following three steps: (1) section 4.3.1 introduces
the preparatory background; (2) section 4.3.2 tailors the results of step 1 to the DOGT
algorithm; and (3) finally, section 4.3.3 states our main results about convergence of
the DOGT algorithm to SoS solutions of (P).

4.3.1. The stable manifold theorem and unstable fixed points. Let g :
\scrS \rightarrow \scrS be a mapping from \scrS to itself, where \scrS is a manifold without boundary.
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Consider the dynamical system u\nu +1 = g(u\nu ) with u0 \in \scrS ; we denote by g\nu the \nu -fold
composition of g. Our focus is on the analysis of the trajectories of the dynamical
system around the fixed points of g; in particular we are interested in the set of
unstable fixed points of g. We begin by introducing the following definition.

Definition 4.9 (Chapter 3 of [1]). The differential of the mapping g : \scrS \rightarrow \scrS ,
denoted as Dg(u), is a linear operator from \scrT (u) \rightarrow \scrT (g(u)), where \scrT (u) is the tan-
gent space of \scrS at u \in \scrS . Given a curve \gamma in \scrS with \gamma (0) = u and d\gamma 

dt (0) = v \in \scrT (u),

the linear operator is defined as Dg(u)v = d(g\circ \gamma )
dt (0) \in \scrT (g(u)). The determinant of

the linear operator det(Dg(u)) is the determinant of the matrix representing Dg(u)
with respect to a standard basis.3

We can now introduce the definition of the set of unstable fixed points of g.

Definition 4.10 (unstable fixed points). The set of unstable fixed points of g is
defined as

(4.46) \scrA g =
\Bigl\{ 

u : g(u) = u, spradii
\bigl( 
Dg(u)

\bigr) 
> 1
\Bigr\} 
.

The theorem below, which is based on the stable manifold theorem [60, Theorem
III.7], provides tools to let us connect \scrA g with the set of limit points which \{ u\nu \} can
escape from.

Theorem 4.11 (see [41, Theorem 2]). Let g : \scrS \rightarrow \scrS be a \scrC 1 mapping and

det (Dg(u)) \not = 0 \forall u \in \scrS .
Consider any nonatomic probability measure \BbbP \bfu 0 on \scrS defining the choice of an initial
point. Then, the set of initial points that converge to an unstable fixed point (termed
stable set of \scrA g) is of measure zero, i.e.,

\BbbP \bfu 0

\Bigl( 
lim
\nu \rightarrow \infty 

g\nu (u0) \in \scrA g

\Bigr) 
= 0.

4.3.2. DOGT as a dynamical system. Theorem 4.11 sets the path to the
analysis of the convergence of the DOGT algorithm to SoS solutions of F : it is
sufficient to describe the DOGT algorithm by a proper mapping g : \scrS \rightarrow \scrS satisfying
the assumptions in the theorem and such that the nonconvergence of g\nu (u0), u0 \in \scrS ,
to \scrA g implies the nonconvergence of the DOGT algorithm to strict saddles of F .

We begin rewriting the DOGT in an equivalent and more convenient form. Define
h\nu \triangleq y\nu  - \nabla Fc(x

\nu ); (4.1) can be rewritten as

(4.47)

\biggl\{ 
x\nu +1 = WRx\nu  - \alpha (h\nu + \nabla Fc(x

\nu )) ,

h\nu +1 = WCh\nu + (WC  - I)\nabla Fc(x
\nu ),

with arbitrary x0 \in \BbbR nm and h0 \in span(WC  - I). By Theorem 4.5, every limit point
(x\infty ,h\infty ) of \{ (x\nu ,h\nu )\} has the form x\infty = 1n \otimes \bfittheta \infty and h\infty =  - \nabla Fc(1n \otimes \bfittheta \infty ), for
some \bfittheta \infty \in crit F . We are interested in the nonconvergence of (4.47) to such points
whenever \bfittheta \infty \in crit F is a strict saddle of F . This motivates the following definition.

Definition 4.12 (consensual strict saddle points). Let

\Theta \ast 
ss = \{ \bfittheta \ast \in crit F : \lambda min(\nabla 2F (\bfittheta \ast )) < 0\} 

3This determinant may not be uniquely defined, in the sense of being completely invariant to the
basis used for the geometry. In this work, we are interested in properties of the determinant that are
independent of scaling, and thus the potentially arbitrary choice of a standard basis does not affect
our conclusions.
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denote the set of strict saddles of F . The set of consensual strict saddle points is
defined as

(4.48) \scrU \ast \triangleq 

\biggl\{ \biggl[ 
1n \otimes \bfittheta \ast 

 - \nabla Fc(1n \otimes \bfittheta \ast )

\biggr] 
: \bfittheta  \star \in \Theta \ast 

ss

\biggr\} 
.

Roughly speaking, \scrU \ast represents the candidate set of ``adversarial"" limit points
which any sequence generated by (4.47) should escape from. The next step is then
to write (4.47) as a proper dynamical system whose mapping satisfies conditions in
Theorem 4.11 and its set of unstable fixed points \scrA g is such that \scrU \ast \subseteq \scrA g.

Identification of \bfitg and \bfscrS . Define u \triangleq (x,h), where x \triangleq [x\top 
1 , . . . ,x

\top 
n ]\top ,

h \triangleq [h\top 
1 , . . . ,h

\top 
n ]\top , and each xi,hi \in \BbbR m; its value at iteration \nu is denoted by

u\nu \triangleq (x\nu ,h\nu ). Consider the dynamical system

(4.49) u\nu +1 = g(u\nu ) with g (u) \triangleq 

\biggl[ 
WRx  - \alpha \nabla Fc (x)  - \alpha h

WCh + (WC  - I)\nabla Fc (x)

\biggr] 
,

and u0 \in \BbbR nm\times span(WC - I). The fixed-point iterate (4.49) describes the trajectory
generated by the DOGT algorithm (4.47). However, the initialization imposed by
DOGT leads to a g that maps \BbbR nm \times span(WC  - I) into \BbbR nm \times \BbbR nm. We show next
how to unify the domain and codomain of g to a subspace \scrS \subseteq \BbbR nm \times \BbbR nm as in the
form of the mapping in Theorem 4.11.

Applying (4.47) telescopically to the update of the h-variables yields h\nu = W\nu 
Ch0+

(WC  - I) g\nu 
acc for all \nu \geq 1, where g\nu 

acc \triangleq 
\sum \nu  - 1

t=0 Wt
C\nabla Fc

\bigl( 
x\nu  - t - 1

\bigr) 
. Denoting \=h\nu \triangleq 

(1\top 
n \otimes Im)h\nu , we have

(4.50) \=h\nu = \cdot \cdot \cdot = \=h0 and h\nu \in W\nu 
Ch0 + span (WC  - I) \forall \nu \geq 1.

The initialization h0 \in span (WC  - I) in (4.47) naturally suggests the following
(2n - 1)m-dimensional linear subspace as the candidate set \scrS :

(4.51) \scrS \triangleq \BbbR nm \times span (WC  - I) .

Such an \scrS also ensures that g : \scrS \rightarrow \scrS . In fact, by (4.50), h\nu \in span(WC  - I) for all
\nu \geq 1, provided that h0 \in span (WC  - I). Therefore, \{ g\nu (u0)\} \subseteq \scrS , for all u0 \in \scrS .

Equipped with the mapping g in (4.49) and \scrS defined in (4.51), we check next
that the condition in Theorem 4.11 is satisfied; we then prove that \scrU \ast \subseteq \scrA g.

(1) g is a diffeomorphism. To establish this property, we add the following extra
assumption on the weight matrices R and C, which is similar to Assumption 3.3 for
the DGD scheme.

Assumption 4.13. Matrices R \in \scrM n(\BbbR ) and C \in \scrM n(\BbbR ) are nonsingular.

The above condition is not particularly restrictive and it is compatible with As-
sumption 4.1. A rule of thumb is to choose R = ( \~R+ I)/2 and C = ( \~C+ I)/2 with \~R
and \~C satisfying Assumption 4.1. The new matrices still satisfy Assumption 4.1 due
to the following fact: given two nonnegative matrices A,B \in \scrM n(\BbbR ), if the directed
graph associated with matrix A has a spanning tree and B \geq \rho A for some \rho > 0,
then the directed graph associated with matrix B has a spanning tree as well.

We build now the differential of g. Let \~g be a smooth extension of (4.49) to
\BbbR mn \times \BbbR mn, that is, g = \~g| \scrS . The differential D\~g(u) of \~g at u \in \scrS reads

(4.52) D\~g(u) =

\biggl[ 
WR  - \alpha \nabla 2Fc(x)  - \alpha I

(WC  - I)\nabla 2Fc(x) WC

\biggr] 
;
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D\~g(u) is related to the differential of g by Dg(u) = D\~g(u)P\scrT (\bfu ) [2], where P\scrT (\bfu )

is the orthogonal projector onto \scrT (u). Using \scrT (u) = \scrS for all u \in \scrS (recall that
\scrS is a linear subspace) and denoting by Uh \in \BbbR mn\times m(n - 1) an orthonormal basis of
span(WC  - I), Dg(u) reads

(4.53) Dg(u) =

\biggl[ 
WR  - \alpha \nabla 2Fc(x)  - \alpha I

(WC  - I)\nabla 2Fc(x) WC

\biggr] 
UU\top with U \triangleq 

\biggl[ 
I 0
0 Uh

\biggr] 
.

Note that P\scrS = UU\top . We establish next the conditions for g to be a \scrC 1 diffeomor-
phism, as stated in Theorem 4.11.

Proposition 4.14. Consider the mapping g : \scrS \rightarrow \scrS defined in (4.49), under
Assumptions 2.1(i), 4.1, and 4.13, with \scrS defined in (4.51). If the step size is chosen
according to

(4.54) 0 < \alpha <
\sigma min(CR)

Lc
,

where Lc = Lmax, then det (Dg(u)) \not = 0 for all u \in \scrS .

Proof. Since Dg(u) : \scrS \rightarrow \scrS , it is sufficient to verify that Dg(u) is an invertible
linear transformation for every u \in \scrS . Using the definition of U, this is equivalent to
show that UT Dg(u)U is invertible for all u \in \scrS . Invoking (4.53), U\top Dg(u)U reads

(4.55) U\top Dg(u)U = U\top D\~g(u)U =

\biggl[ 
WR  - \alpha \nabla 2Fc(x)  - \alpha Uh

U\top 
h (WC  - I)\nabla 2Fc(x) UT

hWCUh

\biggr] 
.

Since U\top 
h WCUh is nonsingular, we can use the Schur complement of U\top Dg(u)U

with respect to U\top 
h WCUh and write

(4.56)

U\top Dg(u)U = S1

\biggl[ 
WR  - \alpha \nabla 2Fc(x) + \alpha \Phi (WC  - I)\nabla 2Fc(x) 0

0 U\top 
h WCUh

\biggr] 
S2,

where \Phi \triangleq Uh

\bigl( 
U\top 

h WCUh

\bigr)  - 1
U\top 

h , and S1 and S2 are some nonsingular matrices.
By (4.56), it is sufficient to show that

(4.57)
S \triangleq WR  - \alpha \nabla 2Fc(x) + \alpha \Phi (WC  - I)\nabla 2Fc(x)

= WR  - \alpha W - 1
C \nabla 2Fc(x) + \alpha 

\bigl( 
\Phi  - W - 1

C

\bigr) 
(WC  - I)\nabla 2Fc(x)

is nonsingular. Using WC  - I = Uh\Delta for some \Delta \in \BbbR m(n - 1)\times mn (recall that Uh is
an orthonormal basis of span(WC  - I)), we can write

(4.58)

\Phi = Uh

\bigl( 
U\top 

h WCUh

\bigr)  - 1
U\top 

h = Uh (I + \Delta Uh)
 - 1

U\top 
h

(a)
= UhU\top 

h  - Uh\Delta (I + Uh\Delta )
 - 1

UhU\top 
h

= UhU\top 
h  - (WC  - I) W - 1

C UhU\top 
h

= W - 1
C UhU\top 

h ,

where for (a) we used the Woodbury identity of inverse matrices. Using (4.58) in
(4.57), we obtain

S = WR  - \alpha W - 1
C \nabla 2Fc(x)  - \alpha W - 1

C

\bigl( 
I  - UhU\top 

h

\bigr) 
(WC  - I)\underbrace{}  \underbrace{}  

=\bfzero 

\nabla 2Fc(x).

Therefore, if \alpha < \sigma min(\bfC \bfR )
Lc

, S is invertible and, consequently, so is U\top Dg(u)U.
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(2) The consensual strict saddle points are unstable fixed points of g (\scrU \ast \subseteq \scrA g).
First of all, note that every limit point of the sequence generated by (4.47) is a fixed
point of g on \scrS ; the converse might not be true. The next result establishes the
desired connection between the set \scrA g of unstable fixed points of g (cf. Definition
4.10) and the set \scrU \ast of consensual strict saddle points (cf. Definition 4.12). This will
let us infer the instability of \scrU \ast from that of \scrA g.

Proposition 4.15. Suppose that Assumptions 2.1(i) and 4.1 hold along with one
of the following two conditions:

(i) The weight matrices R and C are symmetric.
(ii) m = 1.

Then, any consensual strict saddle point is an unstable fixed point of g, i.e.,

(4.59) \scrU \ast \subseteq \scrA g

with \scrA g and \scrU \ast defined in (4.46) and (4.48), respectively.

Proof. Let u\ast \in \scrU \ast ; u\ast is a fixed point of g defined in (4.49). It is thus sufficient
to show that Dg(u\ast ) has an eigenvalue with magnitude greater than one.

To do so, we begin showing that the differential D\~g(u\ast ) of \~g at u\ast has an eigenvalue
greater than one. Using (4.52), D\~g(u\ast ) reads

(4.60) D\~g(u\ast ) =

\biggl[ 
WR  - \alpha \nabla 2F \ast 

c  - \alpha I
(WC  - I)\nabla 2F  \star 

c WC

\biggr] 
,

where we defined the shorthand \nabla 2F \ast 
c \triangleq \nabla 2Fc (1 \otimes \bfittheta \ast ) and \bfittheta \ast \in \Theta \ast 

ss. We need to
prove

(4.61) det (D\~g(u\ast )  - \lambda uI) = 0 for some | \lambda u| > 1.

If | \lambda u| > 1, WC  - \lambda uI is nonsingular (since spradii(C) = 1). Using the Schur com-
plement of D\~g(u\ast )  - \lambda uI with respect to WC  - \lambda uI, we have

(4.62) D\~g(u\ast )  - \lambda uI = \~S1

\biggl[ 
(D\~g(u\ast )  - \lambda uI) / (WC  - \lambda uI) 0

0 WC  - \lambda uI

\biggr] 
\~S2

for some \~S1, \~S2 \in \scrM 2mn(\BbbR ) with det(\~S1) = det(\~S2) = 1. Given (4.62), (4.61) holds
if and only if

det

\biggl[ 
WR  - \lambda uI  - \alpha \nabla 2F  \star 

c + \alpha (WC  - \lambda uI)
 - 1

(WC  - I)\nabla 2F \ast 
c 0

0 WC  - \lambda uI

\biggr] 
= 0

or, equivalently,

(4.63) det
\Bigl( 
WR  - \lambda uI  - \alpha \nabla 2F \ast 

c + \alpha (WC  - \lambda uI)
 - 1

(WC  - I)\nabla 2F \ast 
c

\Bigr) 
= 0.

Multiplying both sides of (4.63) by det(WC  - \lambda uI) yields

(4.64) Q(\lambda u) \triangleq det

\biggl( 
(WC  - \lambda uI) (WR  - \lambda uI) + \alpha (\lambda u  - 1)\nabla 2F \ast 

c\underbrace{}  \underbrace{}  
\triangleq \bfT (\lambda u)

\biggr) 
= 0.

Trivially Q(\lambda u) > 0 if \lambda u \gg 1. Therefore, to show that (4.61) holds, it is sufficient to
prove that there exists some \lambda u > 1 such that Q(\lambda u) \leq 0. Next, we prove this result
under either condition (i) or (ii).
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Suppose (i) holds; R and C are symmetric. Define \~\bfitupsilon \triangleq 1 \otimes \bfitupsilon , where \bfitupsilon is
the unitary eigenvector associated with a negative eigenvalue of \nabla 2F (\bfittheta \ast ), and let
\lambda min(\nabla 2F (\bfittheta \ast )) =  - \delta ; we can write

(4.65) \~\bfitupsilon \top T(\lambda u)\~\bfitupsilon = n(\lambda u  - 1) (\lambda u  - 1  - \alpha \delta /n) < 0

for all 1 < \lambda u < 1 + \alpha \delta /n. By the Rayleigh--Ritz theorem, T(\lambda u) has a negative
eigenvalue, implying that there exists some real value \=\lambda u > 1 such that Q(\=\lambda u) = 0.

Suppose now that conditions (ii) holds; WR and WC reduce to R and C, respec-
tively. Note that R and C are now not symmetric. Let \lambda u = 1 + \epsilon , and consider the
Taylor expansion of

(4.66) Q(1 + \epsilon ) = det

\biggl( 
(C  - I) (R  - I) + \epsilon 

\bigl( 
\alpha \nabla 2F \ast 

c + 2I  - C  - R
\bigr) 

+ \epsilon 2I

\biggr) 
around \epsilon = 0. Define M \triangleq (C  - I) (R  - I) and N \triangleq \alpha \nabla 2F \ast 

c + 2I - C - R. It is clear
that Q(1) = 0; then, by Jacobi's formula, we have

(4.67) Q(1 + \epsilon ) = tr
\Bigl( 

adj (M) N
\Bigr) 
\epsilon + O(\epsilon 2).

Expanding (4.67) yields

(4.68)
Q(1 + \epsilon ) = tr

\Bigl( 
adj (R  - I) adj (C  - I) N

\Bigr) 
\epsilon + O(\epsilon 2)

= tr
\Bigl( 
1\~r\top \~c1\top N

\Bigr) 
\epsilon + O(\epsilon 2) = (\~r\top \~c)1\top N1\epsilon + O(\epsilon 2),

where \~r and \~c are the Perron vectors of R and C, respectively. The second equality
in (4.68) is due to the following fact: a rank-(n  - 1) matrix A \in \scrM n(\BbbR ) has rank-1
adjugate matrix adj (A) = ab\top , where a and b are nonzero vectors belonging to the
1-dimensional null space of A and A\top , respectively [34, section 0.8.2]. We also have
\~\zeta \triangleq \~r\top \~c > 0, due to Lemma 4.2. Furthermore, since \bfittheta \ast \in \Theta \ast 

ss, 1\top \nabla 2F \ast 
c 1 \leq  - \delta for

some \delta > 0, and

(4.69) Q(1 + \epsilon ) \leq  - \delta \~\zeta \alpha \epsilon + O(\epsilon 2),

which implies the existence of a sufficiently small \epsilon > 0 such that Q(1 + \epsilon ) < 0.
Consequently, there must exist some \=\lambda u > 1 such that (4.61) holds. Moreover, such
\=\lambda u is a real eigenvalue of D\~g(u\ast ).

To summarize, we proved that there exists an eigenpair (\=\lambda u,vu) of D\~g(u\ast ) with
\=\lambda u > 1. Next we show that (\=\lambda u,vu) is also an eigenpair of Dg(u\ast ). Let us partition
vu \triangleq (vx

u,v
h
u) such that

(4.70)

\biggl[ 
WR  - \alpha \nabla 2Fc (x\ast )  - \alpha I

(WC  - I)\nabla 2Fc (x\ast ) WC

\biggr] \biggl[ 
vx
u

vh
u

\biggr] 
= \=\lambda u

\biggl[ 
vx
u

vh
u

\biggr] 
.

In particular, we have (WC  - I)
\bigl( 
\nabla 2Fc (x\ast ) vx

u + vh
u

\bigr) 
= (\=\lambda u  - 1)vh

u, which implies
vh
u \in span(WC  - I), since \=\lambda u  - 1 \not = 0. Therefore, vu \in \scrS .

Now, let P\scrS be the orthogonal projection matrix onto \scrS . Since vu \in \scrS , we have

(4.71) D\~g(u\ast )vu = \=\lambda uvu =\Rightarrow D\~g(u\ast )P\top 
\scrS vu = \=\lambda uvu

(a)
=\Rightarrow Dg(u\ast )vu = \=\lambda uvu,

where (a) is due to Dg(u\ast ) = D\~g(u\ast )P\top 
\scrS (cf. (4.53)). Hence (\=\lambda u,vu) is also an

eigenpair of Dg(u\ast ), which completes the proof.

Remark 4.16. Note that condition (i) in Proposition 4.15 implies that \scrG C and
\scrG R are undirected graphs. Condition (ii) extends the network model to directed
topologies under assumption m = 1. For sake of completeness, we relax condition (ii)
in Appendix A.4 to arbitrary m \in \BbbN , under extra (albeit mild) assumptions on the
set of strict saddle points and the weight matrices R and C.
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4.3.3. DOGT likely converges to SoS solutions of (P). Combining Theo-
rem 4.11 and Propositions 4.14, and 4.15, we can readily obtain the following second-
order guarantees of the DOGT algorithms.

Theorem 4.17. Consider problem (P) under Assumptions 2.1 and 2.5 and let
\{ u\nu \triangleq (x\nu ,h\nu )\} be the sequence generated by the DOGT algorithm (4.47) under the
following tuning: the step size \alpha satisfies (4.25) (or (4.28)) and (4.54); the weight
matrices C and R are chosen according to Assumptions 4.1 and 4.13; and the initial-
ization is set to u0 \in \scrS , with \scrS defined in (4.51). Furthermore, suppose that either
(i) or (ii) in Proposition 4.15 holds. Then, we have

(4.72) \BbbP \bfu 0

\Bigl( 
lim
\nu \rightarrow \infty 

u\nu \in \scrU \ast 
\Bigr) 

= 0.

In addition, if F is a K\L function, then \{ x\nu \} converges almost surely to 1 \otimes \bfittheta \infty 

at a rate determined in Theorem 4.8, where \bfittheta \infty is an SoS solution of (P).

Note that (4.72) implies the desired second-order guarantees only when the se-
quence \{ u\nu \} converges (i.e., the limit in (4.72) exists); otherwise (4.72) is trivially
satisfied, and some limit point of \{ u\nu \} can belong to \scrU \ast with nonzero probability.
A sufficient condition for the required global convergence of \{ u\nu \} is that F is a K\L
function, which is stated in the second part of the above theorem.

Remark 4.18 (comparison with [33]). As already discussed in section 1.1.2, the
primal-dual method in [33] is applicable to (P); it is proved to almost surely converge
to SoS solutions. Convergence of [33] is proved under stricter conditions on the prob-
lem than DOGT, namely, (i) the network must be undirected; and (ii) the Hessian of
each local fi must be Lipschitz continuous. It does not seem possible to extend the
analysis of [33] beyond this assumption.

5. Numerical results. In this section we test the behavior of DGD and DOGT
around strict saddles on three classes of nonconvex problems, namely, (i) a quadratic
function (cf. section 5.1), (ii) a classification problem based on the cross-entropy risk
function using sigmoid activation functions (cf. section 5.2), and (iii) a two Gaussian
mixture model (cf. section 5.3).

5.1. Nonconvex quadratic optimization. Consider

(5.1) min
\bfittheta \in \BbbR m

F (\bfittheta ) =
1

2

n\sum 
i=1

(\bfittheta  - bi)
\top 

Qi (\bfittheta  - bi) ,

where m = 20, n = 10, bi's are independent and identically distributed (i.i.d.)
Gaussian zero mean random vectors with standard deviation 103, and the Qi's are
m\times m randomly generated symmetric matrices, where

\sum n
i=1 Qi has m - 1 eigenval-

ues \{ \lambda i\} m - 1
i=1 uniformly distributed over (0, n], and one negative eigenvalue \lambda m =  - n\delta 

with \delta = 0.01. Clearly (5.1) is an instance of problem (P), with F having a unique

strict saddle point \bfittheta \ast = (
\sum 

i Qi)
 - 1\sum 

i Qib\bfi . The network of n agents is modeled

as a ring; the weight matrix W \triangleq \{ wij\} ni,j=1, compliant to the graph topology, is
generated to be doubly stochastic.

To test the escaping properties of DGD and DOGT from the strict saddle of
F , we initialize the algorithms in a randomly generated neighborhood of \bfittheta \ast . More
specifically, every agent's initial point is x0

i = \bfittheta \ast + \bfitepsilon x,i, i \in [n]. In addition, for the
DOGT algorithm, we set y0

i = \nabla fi(x
0
i ) + (wii  - 1)\bfitepsilon y,i +

\sum 
j \not =i wij\bfitepsilon y,j , where \bfitepsilon x,i's

and \bfitepsilon y,i's are realizations of i.i.d. Gaussian random vectors with standard deviation
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Fig. 1. Escaping properties of DGD and DOGT, applied to Problem (5.1). Left plot: distance of
the average iterates from \bfittheta \ast projected onto the unstable manifold Eu versus the number of iterations.
Right plot: distance of the average iterates from \bfittheta \ast versus the number of iterations.

equal to 1. Both algorithms use the same step size \alpha = 0.99\sigma min(I + W)/Lc with
Lc = maxi\{ | \lambda i| \} ; this is the largest theoretical step size guaranteeing convergence of
the DGD algorithm (cf. Theorem 3.2).

In the left panel of Figure 1, we plot the distance of the average iterates \=x\nu =
(1/n)

\sum n
i=1 x\nu 

i from the critical point \bfittheta \ast projected on the unstable manifold Eu =
span(uu), where uu is the eigenvector associated with the negative eigenvalue \lambda m =
 - n\delta . In the right panel, we plot \| \=x\nu  - \bfittheta \ast \| versus the number of iterations. All the
curves are averaged over 50 independent initializations. The figure in the left panel
shows that, as predicted by our theory, both algorithms almost surely escape from the
unstable subspace Eu, at an indistinguishable practical rate. The right panel shows
that DOGT gets closer to the strict saddle; this can be justified by the fact that,
differently from DGD, DOGT exhibits exact convergence to critical points.

5.2. Bilinear logistic regression [24]. Consider a classification problem with
distributed training data set \{ si, \xi i\} ni=1, where si \in \BbbR d is the feature vector associated
with the binary class label \xi i \in \{ 0, 1\} . The bilinear logistic regression problem aims
at finding the bilinear classifier \zeta i(Q,w; si) = s\top i Qw, with Q \in \BbbR d\times p and w \in \BbbR p

that best separates data with distinct labels. Let (si, \xi i) be private information for
agent i. Using the sigmoid activation function \sigma (x) \triangleq 1/(1 + e - x) together with the
cross-entropy risk function, the optimization problem reads
(5.2)

min
\bfQ ,\bfw 

 - 1

n

n\sum 
i=1

\Bigl[ 
\xi i ln

\bigl( 
\sigma (s\top i Qw)

\bigr) 
+ (1  - \xi i) ln

\bigl( 
1  - \sigma (s\top i Qw)

\bigr) \Bigr] 
+

\tau 

2

\Bigl( 
\| Q\| 2F + \| w\| 2

\Bigr) 
.

It is not difficult to show that (5.2) is equivalent to the following instance of (P):

(5.3) min
\bfQ ,\bfw 

F (Q,w) =

n\sum 
i=1

1

n

\Bigl[ 
 - ln

\bigl( 
\sigma (\~\xi is

\top 
i Qw)

\bigr) 
+

\tau 

2

\Bigl( 
\| Q\| 2F + \| w\| 2

\Bigr) \Bigr] 
\underbrace{}  \underbrace{}  

=fi(\bfQ ,\bfw )

with

\~\xi i \triangleq 

\biggl\{ 
 - 1 if \xi i = 0,
1 if \xi i = 1.

To visualize the landscape of F (Q,w) (2-dimensional plot), we consider the following
setting for the free parameters. We set d = p = 1; \tau = 0.2; n = 5; and we generate
uniformly random \~\xi i \in \{ 0, 1\} , and we draw si from a normal distribution with mean
\xi i and variance 1. The gradient of the local loss fi reads\biggl[ 

\nabla Qfi(Q,w)
\nabla wfi(Q,w)

\biggr] 
=

1

n

\biggl[ 
\tau Q - \~\xi isiw\sigma ( - \~\xi isiQw)

\tau w  - \~\xi isiQ\sigma ( - \~\xi isiQw)

\biggr] 
.
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Fig. 2. Escaping properties of the DGD and DOGT, applied to the bilinear logistic regression
problem (5.2). Left (resp., middle) plot: directed (resp., undirected) network; trajectory of the
average iterates on the contour of F ((0, 0) is the strict saddle point and the \times are the local minima);
DGD and DOGT are initialized at \square and terminated after 100 iterations at \ast . Right plot: plot of
F .

A surface plot of F (Q,w) in the above setting is plotted in the right panel of Figure
2. Note that such an F has three critical points, two of which are local minima (see
the location of minima in the left or middle panel of Figure 2 marked by \times ) and one
strict saddle point at (0, 0)---the Hessian at (0, 0),

\nabla 2F (0, 0) =

\biggl[ 
\tau  - 1

2n

\sum 
i

\~\xi isi
 - 1

2n

\sum 
i

\~\xi isi \tau 

\biggr] 
,

has an eigenvalue at \tau  - 1
2n

\sum 
i

\~\xi isi =  - 0.26.
We test DGD and DOGT over a network of n = 5 agents; for DGD we considered

undirected graphs whereas we run DOGT on both undirected and directed graphs.
Both algorithms are initialized at the same random point and terminated after 100
iterations; the step size is set to \alpha = 0.9. We denote by Q\nu 

i and w\nu 
i the agent in i's

\nu th iterate of the local copies of Q and w, respectively. The trajectories of the average
iterates ( \=Q\nu , \=w\nu ) \triangleq 1

n (
\sum 

i Q
\nu 
i ,
\sum 

i w
\nu 
i ) are plotted in Figure 2; the left panel refers to

the directed graph while the middle panel reports the same results for the undirected
network. As expected, the DOGT algorithm converges to an exact critical point (local
minimum) avoiding the strict saddle (0, 0) while DGD converges to a neighborhood of

the local minimum. The consensus error is 1/n
\sqrt{} \sum n

i=1 | | (Q\nu 
i , w

\nu 
i )  - ( \=Q\nu , \=w\nu )| | 2; at the

termination, it reads 2.33\times 10 - 4 for DOGT over the directed network, and 2.18\times 10 - 4

and 9.74 \times 10 - 2 for DOGT and DGD, respectively, over undirected networks.

5.3. Gaussian mixture model. Consider the Gaussian mixture model defined
in section 2. The data \{ zi\} ni=1, where zi \in \BbbR m are realizations of the mixture model
zi \sim 1

2\scrN (\bfitmu 1,\Sigma 1) + 1
2\scrN (\bfitmu 2,\Sigma 2). Let each agent i own zi. Both parameters (\bfitmu 1,\bfitmu 2)

and (\Sigma 1,\Sigma 2) are unknown. The goal is to approximate (\bfitmu 1,\bfitmu 2) while (\Sigma 1,\Sigma 2) is set
to an estimate ( \~\Sigma , \~\Sigma ). The problem reads

(5.4) min
\bfittheta 1,\bfittheta 2\in \BbbR m

 - 
n\sum 

i=1

log (\phi m(zi  - \bfittheta 1) + \phi m(zi  - \bfittheta 2)),

where \phi m(\bfittheta ) is the m-dimensional normal distribution with mean 0 and covariance \~\Sigma .
Consider the case of a mixture of two scalar Gaussians, i.e., m = 1. We draw \{ zi\} 5i=1

from this model, with means \mu 1 = 0, \mu 2 =  - 5, and variance \sigma 1 = \sigma 2 = 25. The
estimate of variance in problem (5.4) is pessimistically set to \~\sigma = 1. A surface plot of
a random instance of the above problem is depicted in the right panel of Figure 3. Note
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Fig. 3. Escaping properties of the DGD and DOGT applied to the Gaussian mixture problem
(5.4). Left (resp., middle) plot: directed (resp., undirected) network; trajectory of the average iterates
on the contour of F (the global minima are marked by \times ); DGD and DOGT are initialized at \square 
and terminated after 250 iterations at \ast . Right plot: plot of F .

that this instance of problem has 2 global minima (marked by \times ) and multiple local
minima. We test DGD and DOGT on the above problem over the same networks as
described in section 5.2. Both algorithms are initialized at the same random point and
terminated after 250 iterations; the step size is set to \alpha = 0.1. In Figure 3, we plot the
trajectories of the average iterates (\=\theta \nu 1 ,

\=\theta \nu 2 ) \triangleq 1
n (
\sum 

i \theta 
\nu 
1,i,
\sum 

i \theta 
\nu 
2,i), where \theta \nu 1,i and \theta \nu 2,i

are the agent i's \nu th iterate of the local copies of \theta 1 and \theta 2, respectively; the left (resp.,
middle) panel refers to the undirected (resp., directed) network. DOGT converges to
the global minimum while DGD happens to converge to a neighborhood of a local

minima. The consensus error is measured by (1/n)
\sqrt{} \sum n

i=1 | | (\theta \nu 1,i, \theta \nu 2,i)  - (\=\theta \nu 1 ,
\=\theta \nu 2 )| | 2

and at the termination it is equal to 1.9\times 10 - 3 for DOGT on the directed graph; and
2.8 \times 10 - 3 and 1.135 for DOGT and DGD, respectively over the undirected graph.

Appendix A. Appendix.

A.1. On the problems satisfying Assumption 2.4. We prove that all the
functions arising from the examples in section 2 satisfy Assumption 2.4, for sufficiently
large R and R  - \epsilon . To do so, for each function, we establish lower bounds implying
\langle \nabla fi(\bfittheta ),\bfittheta / \| \bfittheta \| \rangle \rightarrow \infty as | | \bfittheta | | \rightarrow \infty .

(a) Distributed PCA. Let us expand the objective function in (2.3) as

F (\bfittheta ) =
1

4
tr
\Bigl( 
\bfittheta \bfittheta \top \bfittheta \bfittheta \top 

\Bigr) 
 - 1

2
tr

\Biggl( 
\bfittheta \top 

n\sum 
i=1

Mi\bfittheta 

\Biggr) 
+

1

4
tr

\Biggl( 
n\sum 

i=1

M\top 
i

n\sum 
i=1

Mi

\Biggr) 

=

n\sum 
i=1

1

4

\biggl\{ 
1

n

\bigm\| \bigm\| \bfittheta \bfittheta \top \bigm\| \bigm\| 2
F
 - 2tr

\Bigl( 
\bfittheta \top Mi\bfittheta 

\Bigr) \biggr\} 
\underbrace{}  \underbrace{}  

\triangleq fi(\bfittheta )

+
1

4
tr

\Biggl( 
n\sum 

i=1

M\top 
i

n\sum 
i=1

Mi

\Biggr) 
.

We have

\langle \nabla fi(\bfittheta ),\bfittheta / \| \bfittheta \| \rangle =

\biggl\langle 
1

n
\bfittheta \bfittheta \top \bfittheta  - Mi\bfittheta ,\bfittheta 

\biggr\rangle 
/ \| \bfittheta \| 

=
1

n

\bigm\| \bigm\| \bigm\| \bfittheta \bfittheta \top 
\bigm\| \bigm\| \bigm\| 2
F
/ \| \bfittheta \|  - \bfittheta \top Mi\bfittheta / \| \bfittheta \| 

\geq 1

nK4
2,4

\| \bfittheta \| 3  - \sigma max(Mi) \| \bfittheta \| 
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for some K2,4 > 0, where in the last inequality we used the equivalence of \ell 4 and \ell 2
norms, i.e., | | \bfittheta | | 2 \leq K2,4| | \bfittheta | | 4 for all \bfittheta \in \BbbR m.

(b) Phase retrieval. It is not difficult to show that for the objective function in
(2.4), it holds that

\langle \nabla fi(\bfittheta ),\bfittheta / \| \bfittheta \| \rangle =
\bigl( 
| | a\top 

i \bfittheta | | 2  - yi
\bigr) 
| | a\top 

i \bfittheta | | 2/ \| \bfittheta \| + \lambda \| \bfittheta \| 

=
\bigl( 
| | a\top 

i \bfittheta | | 2  - yi/2
\bigr) 2

/ \| \bfittheta \|  - y2i
4 \| \bfittheta \| 

+ \lambda \| \bfittheta \| .

(c) Matrix sensing. Consider the objective function in (2.4); it is not difficult to
show that

\langle \nabla fi(\Theta ),\Theta / \| \Theta \| F \rangle =
\Bigl( 

tr
\Bigl( 
\Theta \top Ai\Theta 

\Bigr) 
 - yi

\Bigr) 
tr
\Bigl( 
\Theta \top Ai\Theta 

\Bigr) 
/ \| \Theta \| F + \lambda \| \Theta \| F

= tr
\Bigl( 
\Theta \top Ai\Theta 

\Bigr) 2
/ \| \Theta \| F  - yitr

\Bigl( 
\Theta \top Ai\Theta 

\Bigr) 
/ \| \Theta \| F + \lambda \| \Theta \| F

=
\Bigl( 

tr
\Bigl( 
\Theta \top Ai\Theta 

\Bigr) 
 - yi/2

\Bigr) 2
/ \| \Theta \| F  - y2i

4 \| \Theta \| F
+ \lambda \| \Theta \| F .

(d)--(f). We prove the property only for the Gaussian mixture model; a similar
proof applies also to the other classes of problems. Denote \bfittheta = (\bfittheta d)qd=1. Since \phi m is
a bounded function, we have

\langle \nabla \theta dfi(\bfittheta d),\bfittheta d\rangle \geq  - Cd + \lambda \| \bfittheta d\| 2

for some Cd > 0. Hence, \langle \nabla \theta fi(\bfittheta ),\bfittheta / \| \bfittheta \| \rangle \geq  - C/ \| \bfittheta \| + \lambda \| \bfittheta \| with C =
\sum 

d Cd.

A.2. Convergence of DGD without \bfitL --smoothness of \bfitf \bfiti 's. We sketch here
how to extend the convergence results of DGD stated in section 3 to the case when
the gradient of the agents' loss functions is not globally Lipschitz continuous (i.e.,
removing Assumption 2.1(i)). Due to the space limitation, we prove only the counter-
part of Theorem 3.2; the other results in section 3 can be extended following similar
arguments.

We begin introducing some definitions. Under Assumptions 2.4 and 3.1, define
the set \~\scrY \triangleq \scrY + \scrB mn

b with \scrY = \=\scrL \cup 
\prod n

i=1 \scrB m
R and

(A.1) \=\scrL = \scrL Fc

\Biggl( 
max

\bfx 0
i\in \scrB m

R ,i\in [n]

\Biggl\{ 
n\sum 

i=1

fi(x
0
i )

\Biggr\} 
+

R2

\alpha b

\Biggr) 
,

where

(A.2)

\alpha b = min
i\in [n]

min\{ \epsilon Dii/h, 2Dii\delta (R - \epsilon )/h2\} > 0,

h = max
i\in [n],\bfz \in \scrB m

R

| | \nabla fi(z)| | , and b = max
\alpha \in [\alpha b,1],\bfittheta \in \scrY 

| | \nabla L\alpha (\bfittheta )| | .

Note that, under Assumption 2.1\prime (ii), \scrY and \~\scrY are compact. Hence, \nabla Fc is globally
Lipschitz on \~\scrY , and so is \nabla L\alpha ; we denote such Lipschitz constants as \~L\nabla Fc

and \~L\nabla L\alpha 
,

respectively; it is not difficult to check that

(A.3) \~L\nabla L\alpha 
= \~L\nabla Fc

+
1  - \sigma min(D)

\alpha b
.

The following result replaces Theorem 3.2 in the above setting.
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Theorem A.1. Consider problem (P) under Assumptions 2.1\prime (ii), 2.4, and 2.5.
Let \{ x\nu \} be the sequence generated by DGD in (3.1) under Assumption 3.1, with
x0
i \in \scrB m

R , i \in [n], and 0 < \alpha < \=\alpha max \triangleq \sigma min(I + D)/\~L\nabla Fc
. Then the same conclusion

of Theorem 3.2 holds.

Proof. It is sufficient to show that \{ x\nu \} \subseteq \scrY ; the rest of the proof follows similar
steps as those in [69, Lemma 2] replacing Lc with \~L\nabla Fc

.
When \alpha < \alpha b, \{ x\nu \} \subseteq \scrY can be proved leveraging the same arguments used

in the proof of Lemma 3.7. Therefore, in the following, we consider only the case
\alpha b \leq \alpha < \sigma min(I + D)/\~L\nabla Fc with \alpha b < \sigma min(I + D)/\~L\nabla Fc . We prove the theorem by
induction. Clearly x0 \in \scrL L\alpha (L\alpha (x0)) and, by (3.6) (cf. Lemma 3.7),

\scrL L\alpha 
(L\alpha (x0)) \subseteq \=\scrL \subseteq \scrY \forall \alpha \in [\alpha b, 1].

Assume \scrL L\alpha 
(L\alpha (x\nu )) \subseteq \scrY . Since x\nu \in \scrY , there hold x\nu +1 = x\nu  - \alpha \nabla L\alpha (x\nu ) \in \~\scrY 

and \theta x\nu + (1  - \theta )x\nu +1 \in \~\scrY for all \theta \in [0, 1]. Invoking the descent lemma on L\alpha at
x\nu +1 [recall that L\alpha is \~L\nabla L\alpha -smooth on \~\scrY ], we have

(A.4) L\alpha (x\nu +1) \leq L\alpha (x\nu )  - \alpha 

\biggl( 
\sigma min(I + D)  - \alpha \~L\nabla Fc

2

\biggr) 
\| \nabla L\alpha (x\nu )\| 2 \leq L\alpha (x\nu ).

Therefore, \scrL L\alpha (L\alpha (x\nu +1)) \subseteq \scrL L\alpha (L\alpha (x\nu )) \subseteq \scrY , which completes the induction.

A.3. Proof of Theorem 4.8: Supplement. We first show that, if there exists
some \nu 0 such that d\nu 0 = 0, z\nu = z\nu 0 for all \nu \geq \nu 0 [see updates in (4.1)]; this
means that \{ z\nu \} converges in finitely many iterations. Define \scrD \triangleq \{ \nu : d\nu \not = 0\} and
take \nu in \scrD . Let \theta = 0, then the K\L inequality yields | | \nabla L(x\nu ,y\nu )| | \geq 1/c for all
\nu \in \scrD . This, together with (4.21) and Lemma 4.4, lead to l\nu +1 \leq l\nu  - 1/(Mc)2, which
by Assumption 2.1(ii), implies that \scrD must be finite and \{ z\nu \} converges in a finite
number of iterations.

Consider (4.45). Let \theta \in (0, 1/2], then (1  - \theta )/\theta \geq 1. Since D\nu \rightarrow 0 as \nu \rightarrow \infty 
(by Lemma 4.3(ii)), there exists a sufficiently large \nu 0 such that (D\nu  - D\nu +1)(1 - \theta )/\theta \leq 
D\nu  - D\nu +1. By (4.45), we have

D\nu +1 \leq 
\~MMc - 1

\~MMc
D\nu ,

which proves case (ii).
Finally, let us assume \theta \in (1/2, 1), then \theta /(1  - \theta ) > 1. Equation (4.45) implies

1 \leq 
\=M(D\nu  - D\nu +1)

(D\nu )
\theta /(1 - \theta )

,

where \=M = (M \~Mc)\theta /(1 - \theta ). Define h : (0,+\infty ) \rightarrow \BbbR by h(s) \triangleq s - 
\theta 

1 - \theta . Since h is
monotonically decreasing over [D\nu +1, D\nu ], we get

(A.5) 1 \leq \=M(D\nu  - D\nu +1)h(D\nu ) \leq \=M

\int D\nu 

D\nu +1

h(s)ds = \=M
1  - \theta 

1  - 2\theta 

\bigl( 
(D\nu )p  - (D\nu +1)p

\bigr) 
with p = 1 - 2\theta 

1 - \theta < 0. By (A.5) one infers that there exists a constant \mu > 0 such that

(D\nu +1)p  - (D\nu )p \geq \mu . The following chain of implications then holds: (D\nu +1)p \geq 
\mu \nu + (D1)p =\Rightarrow D\nu +1 \leq 

\bigl( 
\mu \nu + (D1)p

\bigr) 1/p
=\Rightarrow D\nu +1 \leq C0\nu 

1/p for some constant
C0 > 0. This proves case (iii).
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A.4. Extension of Proposition 4.15. We relax conditions (i)--(ii) of Proposi-
tion 4.15 under the following additional mild assumptions on the set of strict saddle
points and the weight matrices R and C.

Assumption A.2. There exists \delta > 0 such that \lambda min(\nabla 2F (\bfittheta \ast )) \leq  - \delta for all \bfittheta \ast \in 
\Theta \ast 

ss (\Theta \ast 
ss is the set of strict saddle points of F ; cf. Definition 4.12).

Assumption A.3. The matrices R and C are chosen according to

R =
\widetilde R + (t - 1)I

t
, C =

\widetilde C + (t - 1)I

t

for some t \geq 1 and some matrices \widetilde R and \widetilde C satisfying Assumption 4.1.

Note that R and C satisfy Assumption 4.1 as well. The main result is given in
Proposition A.5. Before proceeding, we recall the following result on spectral variation
of nonnormal matrices.

Theorem A.4 (see [10, Theorem VIII.1.1]). For arbitrary d\times d matrices A and
B, it holds that

s (\sigma (A), \sigma (B)) \leq (\| A\| + \| B\| )
1 - 1/d \| A  - B\| 1/d

with

s (\sigma (A), \sigma (B)) \triangleq max
j

min
i

| \alpha i  - \beta j | ,

where \alpha 1, . . . , \alpha d and \beta 1, . . . , \beta d are the eigenvalues of A and B, respectively.

Following the same reasoning as in the proof of the proposition, it is sufficient to
show that for any u\ast \in \scrU \ast , the Jacobian matrix (recall from (4.60)),

D\~g(u\ast ) =

\biggl[ 
WR  - \alpha \nabla 2F \ast 

c  - \alpha I
(WC  - I)\nabla 2F  \star 

c WC

\biggr] 
,

has an eigenvalue with absolute value strictly greater than 1; proving that such an
eigenpair is also a member of \sigma (Dg(u\ast )) follows equivalent steps as in the proof of
the proposition and thus is omitted. Decompose D\~g(u\ast ) as

(A.6) D\~g(u\ast ) =

\biggl[ 
I  - \alpha \nabla 2F \ast 

c  - \alpha I
0 I

\biggr] 
\underbrace{}  \underbrace{}  

\triangleq \bfQ 

+
1

t

\Biggl[ \widetilde WR  - I 0

(\widetilde WC  - I)\nabla F  \star 
c

\widetilde WC  - I

\Biggr] 
\underbrace{}  \underbrace{}  

\triangleq \bfP t

,

where \widetilde WR \triangleq \widetilde R\otimes Im and \widetilde WC \triangleq \widetilde C\otimes Im. Equation (A.6) reads the Jacobian matrix
D\~g(u\ast ) as a variation of Q by perturbation Pt. For any u\ast \in \scrU \ast , the spectrum of Q
consists of n \cdot m counts of 1 along with the eigenvalues of I - \alpha \nabla 2F \ast 

c , which contains
a real eigenvalue \lambda 1 \geq 1 + \alpha \delta /(mn), since \bfittheta \ast \in \Theta \ast 

ss . Theorem A.4 guarantees that
the spectrum variation of any perturbed arbitrary nonnormal matrix is bounded by
the norm of the perturbation matrix. Thus it is sufficient to show that the perturbed
\lambda 1, as a member of \sigma (D\~g(u\ast )), is strictly greater than 1.

Applying Theorem A.4 gives the following sufficient conditions: denote \~d \triangleq 2mn,

(A.7) (\| Q + Pt\| + \| Q\| )
1 - 1/ \~d \| Pt\| 1/

\~d < 2\alpha \delta / \~d.

By subadditivity of the matrix norm, it is sufficient for (A.7) that

(A.8) (\| Pt\| + 2\| Q\| )
1 - 1/ \~d \| Pt\| 1/

\~d \leq \alpha \delta 
\~d
.
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Since each \nabla fi is Lipschitz continuous (cf. Assumption 2.1), there exist constants
CQ > 0 and CP > 0 such that max\bfu \ast \in \scrU \ast \| Q\| \leq CQ and max\bfu \ast \in \scrU \ast \| Pt\| \leq CP /t. It
is not difficult to show that a sufficient condition for (A.8) is

(A.9) t \geq (CP + 2CQ)
\~d - 1CP

(\alpha \delta / \~d) \~d
, \~d = 2mn.

Proposition A.5. Let Assumptions 4.1 and A.2 hold, and matrices R and C be
chosen according to Assumption A.3 with t satisfying (A.9). Then, any consensual
strict saddle point is an unstable fixed point of g, i.e., \scrU \ast \subseteq \scrA g with \scrA g and \scrU \ast 

defined in (4.46) and (4.48), respectively.

Note that the above proposition ensures \scrU \ast \subseteq \scrA g under (A.9) and given step
size \alpha . Convergence of the sequence is proved under (4.28) and (4.54) for step size \alpha .
However, (4.28) may not hold for some large t (there can be instances where the set
of step-size satisfying conditions (A.9) and (4.28) is empty). Hence, when m > 1, the
statement in Theorem 4.17 is conditioned to the convergence of the algorithm.
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