
4604 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

Asynchronous Optimization Over Graphs: Linear
Convergence Under Error Bound Conditions

Loris Cannelli , Member, IEEE, Francisco Facchinei , Gesualdo Scutari , Senior Member, IEEE,
and Vyacheslav Kungurtsev , Member, IEEE

Abstract—We consider convex and nonconvex con-
strained optimization with a partially separable objective
function: Agents minimize the sum of local objective func-
tions, each of which is known only by the associated agent
and depends on the variables of that agent and those of
a few others. This partitioned setting arises in several ap-
plications of practical interest. We propose what is, to the
best of our knowledge, the first distributed, asynchronous
algorithm with rate guarantees for this class of problems.
When the objective function is nonconvex, the algorithm
provably converges to a stationary solution at a sublinear
rate whereas linear rate is achieved under the renowned
Luo-Tseng error bound condition (which is less stringent
than strong convexity). Numerical results on matrix com-
pletion and LASSO problems show the effectiveness of our
method.

Index Terms—Asynchronous algorithms, error bounds,
linear rate, multiagent systems, nonconvex optimization.

I. INTRODUCTION

W E STUDY distributed, nonsmooth, nonconvex opti-
mization with a partially separable sum-cost function.

Specifically, consider a set of N agents, each of them control-
ling/updating a subset of the n variables x ∈ Rn. Partitioning
x = (xT

1 , . . . ,x
T
N)T , xi ∈ Rni is the block of variables owned

by agent i ∈ N � {1, . . . , N}, with
∑

i ni = n. All agents

Manuscript received July 11, 2019; revised May 10, 2020; accepted
October 4, 2020. Date of publication October 23, 2020; date of current
version September 27, 2021. The work of Loris Cannelli and Gesu-
aldo Scutari was supported in part by the USA NSF under Grant CIF
1719205 and Grant CMMI 1832688 and in part by the ARO under
the Grant W911NF1810238. The work of Vyacheslav Kungurtsev was
supported by the OP VVV project CZ.02.1.01/0.0/0.0/16_019/0000765
“Research Center for Informatics.” Recommended by Associate Editor
R. M. Jungers. (Francisco Facchinei and Gesualdo Scutari contributed
equally to this work.) (Corresponding author: Gesualdo Scutari.)

Loris Cannelli is with the Istituto Dalle Molle di studi sull’Intelligenza
Artificiale (IDSIA), USI/SUPSI, 6900 Lugano, Switzerland, and also with
the School of Industrial Engineering, Purdue University, West-Lafayette,
IN 47907 USA (e-mail: loris.cannelli@idsia.ch).

Francisco Facchinei is with the Department of Computer, Control,
and Management Engineering, University of Rome La Sapienza, 00185
Rome, Italy (e-mail: facchinei@dis.uniroma1.it).

Gesualdo Scutari is with the School of Industrial Engineer-
ing, Purdue University, West-Lafayette, IN 47907 USA (e-mail:
gscutari@purdue.edu).

Vyacheslav Kungurtsev is with the Department of Computer Science,
Czech Technical University, 16636 Prague, Czech Republic (e-mail:
vyacheslav.kungurtsev@fel.cvut.cz).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2020.3033490

cooperatively aim at solving the following problem:

min
xi∈Xi,i∈N

V (x) �
N∑
i=1

fi(xNi
)︸ ︷︷ ︸

�F (x)

+

N∑
i=1

gi(xi)︸ ︷︷ ︸
�G(x)

(P)

where Ni denotes a small subset of N including the index i
and xNi

� [xj]j∈Ni
denotes the column vector containing the

blocks of x indexed by Ni; Xi ⊆ Rni is a closed convex set;
fi is a smooth (nonconvex) function that depends only on xNi

;
and gi is a convex (nonsmooth) function, instrumental to encode
structural constraints on the solution, such as sparsity. Both fi
and gi are assumed to be known only by agent i.

The above formulation is motivated by a variety of appli-
cations of practical interest. For instance, loss functions arising
from many machine learning problems have the “sparse” pattern
ofV in (P):n andN are both very large but each fi depends only
on a small number of components of x, i.e., each subvector xNi

contains just a few components ofx. The same partitioned struc-
ture in (P) is suitable also to model networked systems wherein
agents are connected through a physical communication network
and can communicate only with their immediate neighbors. In
this setting, often Ni represents the set of neighbors of agent i
(including agent i itself). Examples of such applications include
resource allocation problems and network utility maximization
[1], state estimation in power networks [2], cooperative local-
ization in wireless networks [3], and map building in robotic
networks. Some concrete instances of Problem (P) are discussed
in Section II.

A. Major Contributions

We focus on the design of distributed, asynchronous algo-
rithms for (P), in the following sense: i) Agents can update
their block variables at any time, without any coordination;
and ii) when updating their own variables, agents can use a
delayed out-of-sync information from the others. No constraint
is imposed on the delay profiles: Delays can be arbitrary, possibly
time-varying (but bounded). This model captures several forms
of asynchrony: Some agents execute more iterations than others;
some agents communicate more frequently than others; and
inter-agent communications can be unreliable and/or subject to
unpredictable, unknown, time-varying delays.

While several forms of asynchrony have been studied in the
literature—see Section I-B for an overview of most relevant
results—we are not aware of any distributed scheme that is
compliant to the asynchronous model (i)–(ii) and tailored to the
partitioned (nonconvex) distributed formulation (P). This article
fills this gap and proposes a general distributed, asynchronous

0018-9286 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7161-6414
https://orcid.org/0000-0002-7714-1210
https://orcid.org/0000-0002-6453-6870
https://orcid.org/0000-0003-2229-8824
mailto:loris.cannelli@idsia.ch
mailto:facchinei@dis.uniroma1.it
mailto:gscutari@purdue.edu
mailto:vyacheslav.kungurtsev@fel.cvut.cz
https://ieeexplore.ieee.org

CANNELLI et al.: ASYNCHRONOUS OPTIMIZATION OVER GRAPHS: LINEAR CONVERGENCE UNDER ERROR BOUND CONDITIONS 4605

algorithmic framework for convex and nonconvex instances of
(P). The algorithm builds on Successive Convex Approximation
(SCA) techniques: Agents solve asynchronously [in the sense (i)
and (ii) above] strongly convex approximations of the original
problem (P) by using (possibly) outdated information on the
variables and the gradients of the other agents. No specific
activation mechanism for the agents’ updates, coordination,
or communication protocol is assumed, but only some mild
conditions ensuring that information used in the updates does
not become infinitely old. For nonconvex instances of V , we
prove that 1) every limit point of the sequence generated by
the proposed asynchronous algorithm is a stationary solution
of (P); and 2) a suitable measure of stationarity vanishes at a
sublinear rate. When V further satisfies the Luo-Tseng error
bound condition [4], [5], both the sequence and the objective
value converge at an R-linear rate (when V is nonconvex, con-
vergence is to stationary solutions). This error bound condition
is weaker than strong convexity and it is satisfied by a variety
of problems of interest, such as LASSO, Group LASSO, and
Logistic Regression, just to name a few (cf. Section III-A). While
linear convergence under error bounds has been proved for many
centralized algorithms [4], [6]–[9], we are not aware of any
such a result in the distributed setting; current works require
strong convexity to establish linear rate of synchronous and
asynchronous distributed algorithms (see, e.g., [10]–[12] and
references therein). As a byproduct, our results provide also a
positive answer to the open question whether linear convergence
could be proved for distributed asynchronous algorithms solving
highly dimensional empirical risk minimization problems, such
as LASSO and Logistic Regression, a fact that was empirically
observed but, to our knowledge, never proved.

B. Related Works

Since the seminal work [13], asynchronous parallelism has
been applied to several centralized solution methods, including
(randomized) block-coordinate descent schemes [6], [13]–[17],
and stochastic gradient algorithms [18], [19]. However, those
methods are not applicable to Problem (P) , since they would
require each agent to know the entire objective function V .

Distributed schemes exploring (some form of) asynchrony
have been studied in [20]–[39]; next, we group them based upon
the asynchrony features (i) and (ii).

1) Random Activation and No Delays [20]–[27], [40]: While
substantially different in the form of the updates performed by
the agents, these schemes are all asynchronous in the sense of
feature (i) only. Agents (or edge-connected agents) are randomly
activated, but when performing their computations/updates, they
must use the current information from their neighbors. This
means that no form of delay is allowed. Furthermore, between
two activations, agents must be in idle mode (i.e., able to contin-
uously receive information). Some form of coordination is thus
needed to enforce the above conditions. All the schemes in this
group but [26] can deal with convex objectives only; and none
of the above works provide a convergence rate or complexity
analysis.

2) Synchronous Activation and Delays [28]–[33]: These
schemes consider synchronous activation/updates of the agents,
which can tolerate fixed computation delays (e.g., outdated gra-
dient information) [28], [29] or fixed [30], [33] or time-varying
[31], [32] communication delays. However delays cannot be
arbitrary, but must be such that no loss can ever occur in
the network: Every agent’s message must reach its intended

destination within a finite time interval. Finally, all these al-
gorithms are applicable only to convex problems.

3) Random/Cyclic Activations and Some Form of Delay [34]–
[39], [41]–[44]: These schemes allow for random [34]–[37],
[41] or deterministic uncoordinated [38], [39], [42]–[45] acti-
vation of the (edge-based) agents, together with the presence of
some form of delay in the updates/computations. Specifically,
[34], [35], [38] can handle link failures—the information sent
by an agent to its neighbors either gets lost or received with
no delay—but cannot deal with other forms of delay (e.g.,
communication delays). In [36], [37], [41] a probabilistic model
is assumed whereby agents are randomly activated and update
their local variables using possibly delayed information. The
model requires that the random variables modeling the activation
of the agents are i.i.d and independent of the delay vector used
by the agent to perform its update. While this assumption makes
the convergence analysis possible, in reality there is a strong
dependence of the delays on the activation index, as also noted by
the same authors [36], [37] (see [15] for a detailed discussion on
this issue and some counter examples). Closer to our setting are
the asynchronous methods in [10], [36], [39], [42]–[45]. These
models, however, assume that each function fi depends on the
entire vectorx. As a consequence, a consensus mechanism on all
the optimization variables is employed among the agents at each
iteration. Because of that, a direct application of these consensus-
based algorithms to the partitioned formulation (P) would lead
to very inefficient schemes calling for unnecessary computation
and communication overheads. Furthermore, the Alternating
Direction Method of Multipliers (ADMM)-like schemes [39],
[41]–[45] can be implemented only on very specific network
architectures, such as star networks or hierarchical topologies
with multiple master and worker nodes. Finally, notice that, with
the exception of [10], [35], [39], [41]–[45] (resp. [38]), all these
schemes are applicable to convex problems (resp. undirected
graphs) only, with [34] further assuming that all the functions
fi have the same minimizer.

The rest of the article is organized as follows: Section II
discusses some motivating applications. The proposed algorithm
is introduced and analyzed in Section III. Finally, numerical
results are presented in Section IV.

II. MOTIVATING EXAMPLES

We discuss next two instances of Problem (P), which will be
also used in our numerical experiments to test our algorithms
(cf. Section IV). The first case study is the matrix completion
problem—an example of large-scale nonconvex empirical risk
minimization. We show how to exploit the sparsity pattern in
the data to rewrite the problem in the form (P), so that efficient
asynchronous algorithms leveraging multicore architectures can
be developed. The second example deals with learning problems
from networked data sets; in this setting data are distributed
across multiple nodes, whose communication network is mod-
eled as a (directed) graph.

Example #1 –Matrix Completion: The matrix completion
problem consists of estimating a low-rank matrix Z ∈ RM×N
from a subsetΩ ⊆ {1, . . . ,M} × {1, . . . , N} of its entries. Pos-
tulating the low-rank factorization Z = XTY, with X ∈ Rr×M
and Y ∈ Rr×N , the optimization problem reads [46]:

min
X∈Rr×M
Y∈Rr×N

V (X,Y)� 1

2

∥∥(XTY−Z)Ω
∥∥2
F
+

λ

2
‖X‖2F +

ξ

2
‖Y‖2F ,

(1)

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

4606 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

where ‖ · ‖F is the Frobenius norm; (·)Ω is the projection
operator, defined as [(X)Ω](i,j) = X(i,j), if (i, j) ∈ Ω; and
[(X)Ω](i,j) = 0 otherwise; and λ, ξ > 0 are regularization pa-
rameters. In many applications, the amount of data is so large that
storage and processing from a single agent (e.g., core, machine)
is not efficient or even feasible. The proposed approach is then
to leverage multicore machines by first casting (1) in the form
(P), and then employing the parallel asynchronous framework
developed in this article.

Consider a distributed environment composed of N agents,
and assume that the known entries zmn, (m,n) ∈ Ω, are parti-
tioned among the agents. This partition along with the sparsity
pattern of (Z)Ω induce naturally the following splitting of the
optimization variables X and Y across the agents. Let xm and
yn denote themth and thenth column ofX andY, respectively;
the agent owning zmn will control/update the variables xm (or
yn), and it is connected to the agent that optimizes the column
yn (orxm). By doing so, we minimize the overlapping across the
block-variables and, consequently, the communications among
the agents. Problem (1) can be then rewritten in the multiagent
form (P), setting

fi((X,Y)Ni
) =

1

2

∑
(m,n)∈Ωi

(xT
m yn − zmn)

2 (2)

and
gi ({xm}m∈Xi

, {yn}n∈Yi
) =

λ

2

∑
m∈Xi

‖xm‖22 +
ξ

2

∑
n∈Yi

‖yn‖22,
(3)

whereΩi ⊆ Ω contains the indices associated to the components
of (Z)Ω owned by agent i, and Xi (resp. Yi) is the set of the
column indexes of X (resp. Y) controlled by agent i.

Example #2 – Empirical Risk Minimization Over Networks:
Consider now a network setting where data are distributed across
N geographically separated nodes. As concrete example, let us
pick the renowned LASSO problem [47]:

min
x=(xT

1 ,...,xT
N)T∈Rn

‖Ax− b‖22 + λ‖x‖1 , (4)

where A ∈ Rm×n,b ∈ Rm, and λ > 0 is a regularization pa-
rameter. Note that (4) easily falls into Problem (P); for each i ∈
N , it is sufficient to setfi(x) = ‖Aix+ bi‖22, withAi ∈ Rm×n

and bi ∈ Rm, such that A =
∑N

i=1 Ai and b =
∑N

i=1 bi; and
gi = ‖xi‖1. Ai and bi represent in fact the data stored at agent
i’s side. Under specific sparsity patterns in the data, the local
matrices Ai may be (or constructed to be), such that each local
function fi depends only on some of the block variables xi.
These dependencies will define the sets Ni associated to each
agent i. Note that Ni need not coincide with the neighbors of
agent i in the communication network (graph). That is, the graph
modeling the dependence across the block-variables—the one
with node setN and edge set E = {(i, j) : j ∈ Ni, for some i∈
N}—might not coincide with the communication graph. This
can be desirable, e.g., when the communication graph is pop-
ulated by inefficient communication links, which one wants to
avoid using.

III. DISTRIBUTED ASYNCHRONOUS ALGORITHM

In the proposed asynchronous model, agents update their
block-variables without any coordination. Let k be the iteration
counter: The iteration k → k + 1 is triggered when one agent,

say i, updates its own block xi from xk
i to xk+1

i . Hence,
xk and xk+1 only differ in the ith block xi. To perform its
update, agent i minimizes a strongly convex approximation of∑

j∈Ni
fj—the part of V that depends on xi—using possibly

outdated information collected from the other agents j ∈ Ni.

To represent this situation, letx
k−dk

j (i,i)

j , j ∈ Ni\{i}, denote the
estimate held by agent i of agent j’s variable xk

j , where dkj (i, i)
is a nonnegative (integer) delay (the reason for the double index
(i, i) in dkj will become clear shortly). If dkj (i, i) = 0, agent
i owns the most recent information on the variable of agent j,

otherwisex
k−dk

j (i,i)

j is some delayed version ofxk
j . We define as

dk(i, i) � [dkl (i, i)]l∈Ni
the delay vector collecting these delays;

for ease of notation dk(i, i) contains also the value dki (i, i), set
to zero, as each agent has always access to current values of
its own variables. Using the above notation and recalling that
fi depends on xNi

, agent i at iteration k solves the following
strongly convex subproblem:

x̂k
i � argmin

xi∈Xi

{
f̃i

(
xi;x

k−dk(i,i)
Ni

)

+
∑

j∈Ni\{i}

〈
∇xi

fj

(
x
k−dk(i,j)
Nj

)
,xi−xk

i

〉
+ gi(xi)

}
,

(5)

where we defined x
k−dk(i,j)
Nj

� [x
k−dk

l (i,j)

l]l∈Nj
, j ∈ Ni.

The term f̃i in (5) is a strongly convex surrogate that replaces
the nonconvex function fi known by agent i; an outdated value

of the variables of the other agents is used, xk−dk(i,i)
Ni

, to build
this function. Examples of valid surrogates are discussed in
Section III-A. The second term in (5) approximates

∑
j∈Ni\{i} fj

by replacing each fj by its first-order approximation at (possibly

outdated) x
k−dk(i,j)
Nj

(with ∇xi
fj denoting the gradient of fj

with respect to the block xi), where dk(i, j) � [dkl (i, j)]l∈Nj
,

with dkl (i, j) ≥ 0 representing the delay of the information that
i knows about the gradient ∇xi

fj . This source of delay on the
gradients is due to two facts, namely: 1) Agents j ∈ Ni \ {i}
may communicate to i its gradient ∇xi

fj occasionally; and 2)
∇xi

fj is generally computed at some outdated point, as agent j
itself may not have access of the last information of the variables
of the agents in Nj \ {j}.

Once x̂k
i has been computed, agent i sets

xk+1
i = xk

i + γ
(
x̂k
i − xk

i

)
, (6)

where γ ∈ (0; 1] is suitably chosen stepsize (cf. Section III-A).
The proposed distributed asynchronous algorithm, termed

Distributed Asynchronous FLEXible parallel Algorithm
(DAsyFLEXA), is formally described in Algorithm 1. We set
xt
i = x0

i , for all t < 0 and i ∈ N , without loss of generality.
We stress that agents need know neither the iteration counter

k nor the vector of delays. No one “picks agent ik and the
delays {dk(ik, j)}j∈N

ik
” in (S.1). This is just an a posteriori

view of the algorithm dynamics: All agents asynchronously and
continuously collect information from their neighbors and use
it to update xi; when one agent has completed an update the
iteration index k is increased and ik is defined.

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

CANNELLI et al.: ASYNCHRONOUS OPTIMIZATION OVER GRAPHS: LINEAR CONVERGENCE UNDER ERROR BOUND CONDITIONS 4607

Algorithm 1: Distributed Asynchronous FLEXible parallel
Algorithm (DAsyFLEXA).

Initialization: k=0; x0∈X�∏i Xi; xt=x0, t<0;
γ ∈ (0; 1].
while a termination criterion is not met do
(S.1): Pick agent ik and delays {dk(ik, j)}j∈N

ik
;

(S.2): Compute x̂k
ik according to (5);

(S.3): Update xk
ik according to (6);

(S.4): Update the global iteration counter k ← k + 1;
end while

A. Assumptions

Before studying convergence of Algorithm 1, we state the
main assumptions on Problem (P) and the algorithmic choices.

1) On Problem (P): Below, we will use the following conven-
tions: When a function is said to be differentiable on a certain
domain, it is understood that the function is differentiable on an
open set containing the domain. We say that fi is block-LC1

on a set if it is continuously differentiable on that set and∇xj
fi

are locally Lipschitz. We say V is coercive on X =
∏

i Xi, if
lim‖x‖→+∞,x∈X V (x) = +∞; this is equivalent to requiring that
all level sets of V in X are compact.

Assumption A (On Problem (P)):
(A1) Each set Xi ⊆ Rni is nonempty, closed, and convex;
(A2) At least one of the following conditions is satisfied

(a)L0 � {x ∈ X : V (x) ≤ V (x0)} is compact and all
fi are block-LC1 on XNi

� Π
j∈Ni

Xj ;

(b) All fi are C1 and their gradients ∇xj
fi, j ∈ Ni,

are globally Lipschitz on XNi
;

(A3) Each gi : Xi → R is convex;
(A4) Problem (P) has a solution;
(A5) The communication graph G is connected.

The above assumptions are standard and satisfied by many
practical problems. For instance, A2(a) holds if V is coercive on
X and all fi are block-LC1 onXNi

. Note that Example #2 satis-
fies A2(b); A2(a) is motivated by applications such as Example
#1, which do not satisfy A2(b). A3 is a common assumption in
the literature of parallel and distributed methods for the class
of problems (P); two renowned examples are gi(xi) = ‖xi‖1
and gi(xi) = ‖xi‖2. Finally, A4 is satisfied if, for example, V
is coercive or if X is bounded.

Remark 1: Extensions to the case of directed graphs or the
case where each agent updates multiple block-variables are easy,
but not discussed here for the sake of simplicity.

The aim of Algorithm 1 is to find stationary solutions of (P),
i.e., points x� ∈ X , such that

〈∇F (x�) + ξ,y − x�〉+G(y)−G(x�) ≥ 0, ∀y ∈ X .
Let X � ⊆ Rn denote the set of such stationary solutions.

2) On an Error Bound Condition: We prove linear conver-
gence of Algorithm 1 under the Luo-Tseng error bound condi-
tion, which is stated next. Recall the definition: Given α > 0,

proxαG(z) � argmin
y∈X

{
αG(y) +

1

2
‖y − z‖22

}
.

Furthermore, given x ∈ Rn, let

d(x,X �) � min
x�∈X�

‖x− x�‖2, PX�(x) � argmin
x�∈X�

‖x− x�‖2.

Note that PX�(x) �= ∅, as X � is closed.
Assumption B (Luo-Tseng error bound):
(B1) For any η > min

x∈X
V (x), there exist ε, κ > 0, such that:

V (x) ≤ η,
‖x− proxG (∇F (x)− x) ‖2 ≤ ε

}
⇒

d(x,X �) ≤ κ ‖x− proxG (∇F (x)− x)‖2 ,
(B2) there exists δ > 0 such that

x,y ∈ X∗,
V (x) �= V (y)

}
⇒ ‖x− y‖2 ≥ δ.

B1 is a local Lipschitzian error bound: The distance of x
from X � is of the same order of the norm of the residual
x− proxG(∇F (x)− x) at x. It is not difficult to check, that
x ∈ X � if and only if x− proxG(∇F (x)− x) = 0. Error
bounds of this kind have been extensively studied in the lit-
erature, see [4], [7] and references therein. Examples of prob-
lems satisfying Assumption B include: LASSO, Group LASSO,
Logistic Regression, unconstrained optimization with smooth
nonconvex quadratic objective orF (Ax), withF being strongly
convex andA being arbitrary. B2 states that the level curves ofV
restricted toX � are “properly separated”. B2 is trivially satisfied,
e.g., if V is convex, ifX is bounded, or if (P) has a finite number
of stationary solutions.

3) On the Subproblems (5): The surrogate functions f̃i satisfy
the following fairly standard conditions (∇f̃i denotes the partial
gradient of f̃i w.r.t. the first argument).

Assumption C: Each f̃i : Xi ×XNi
→ R is chosen, so that

(C1) f̃i(·;y) is C1 and τ -strongly convex on Xi, for all y ∈
XNi

;
(C2) ∇f̃i(yi;yNi

) = ∇yi
fi(yNi

), for all y ∈ X ;
(C3) ∇f̃i(y; ·) is Li-Lipschitz continuous on XNi

, for all
y ∈ Xi.

A wide array of surrogate functions f̃i satisfying Assumption
C can be found in [48]; three examples are discussed next.

1) It is always possible to choose f̃i as the first-order approx-
imation of fi: f̃i(xi;yNi

) = 〈∇xi
f(yNi

),xi − yi〉+ c‖xi −
yi‖22, where c is a positive constant.

2) If fi is block-wise uniformly convex, instead of lin-
earizing fi one can exploit a second-order approximation and
set f̃i(xi;yNi

) = fi(yNi
) + 〈∇xi

fi(yNi
),xi − yi〉+ 1

2 (xi −
yi)

T∇2
xixi

fi(yNi
)(xi − yi) + c‖xi − yi‖22, for any y ∈ X ,

where c is a positive constant.
3) In the same setting as above, one can also better pre-

serve the partial convexity of fi and choose f̃i(xi;yNi
) =

fi(xi,yNi\{i}) + c‖xi − yi‖22, for any y ∈ X .
4) On the Asynchronous/Communication Model: The

way agent i builds its own estimates x
k−dk(i,i)
Ni

and

∇xi
fj(x

k−dk(i,j)
Nj

), j ∈ Ni\{i}, depends on the particular asyn-
chronous model and communication protocol under considera-
tion and it is immaterial to the convergence of Algorithm 1. This
is a major departure from previous works, such as [20], [22],
[26], which instead enforce specific asynchrony and communi-
cation protocols. We only require the following mild conditions.

Assumption D (On the asynchronous model).
(D1) Every block variable of x is updated at most every

B ≥ N iterations, i.e., ∪k+B−1
t=k it = N , for all k;

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

4608 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

(D2) ∃D ∈ [0, B], such that every component of dk(i, j),
i ∈ N , j ∈ Ni, is not greater than D, for any k ≥ 0.1

Assumption D is satisfied virtually in all practical scenarios.
D1 controls the frequency of the updates and is satisfied, for
example, by any essentially cyclic rules. In practice, it is auto-
matically satisfied, e.g., if each agent wakes up and performs an
update whenever some internal clock ticks, without any central-
ized coordination. D2 imposes a mild condition on the communi-
cation protocol employed by the agents: Information used in the
agents’ updates can not become infinitely old. While this implies
agents communicate sufficiently often, it does not enforce any
specific protocol on the activation/idle time/communication. For
instance, differently from several asynchronous schemes in the
literature [20]–[23], [26], [27], [34], agents need not be always
in “idle mode” to continuously receive messages from their
neighbors. Notice that time varying delays satisfying D2 model
also packet losses.

B. Convergence Analysis

We are now in the position to state the main convergence
results for DAsyFLEXA. For nonconvex instances of (P), an
appropriate measure of optimality is needed to evaluate the
progress of the algorithm toward stationarity. In order to define
such a measure, we first introduce the following quantities: For
any k ≥ 0 and i ∈ N ,

̂̄xk
i � argmin

xi∈Xi

{
f̃i
(
xi;x

k
Ni

)
+

∑
j∈Ni\{i}

〈
∇xi

fj

(
xk
Nj

)
,xi−xk

i

〉
+ gi(xi)

}
, (7)

where ̂̄xk
i is a “synchronous” instance of x̂k

i [cf. (5)] wherein all
dk(i, j) = 0. Convergence to stationarity is monitored by the
following merit function:

MV (x
k) � ‖̂̄xk − xk‖22, with ̂̄xk �

[̂̄xk
i

]
i∈N

. (8)

Note that MV is a valid measure of stationarity, as MV is
continuous and MV (x

k) = 0 if and only if xk ∈ X �.
The following theorem shows that, when agents use a suffi-

ciently small stepsize, the sequence of the iterates produced by
DAsyFLEXA converges to a stationary solution of (P), driving
MV (x

k) to zero at a sublinear rate. In the theorem we use
two positive constants, L and C1, whose definition is given
in Appendix A and C3 [cf. (28)], respectively. Suffices to say,
here, that L is essentially a Lipschitz constant for the partial
gradients ∇xi

fi whose definition varies according to whether
A2(a) or A2(b) holds. In the latter case, L is simply the largest
global Lipschitz constant for all∇xj

fi’s. In the former case, the
sequences {xk} and {x̂k}, with x̂k � [x̂k

i]i∈N , are proved to be
bounded [cf. Theorem 2(c)]; L is then the Lipschitz constant of
all ∇xj

fi’s over the compact set confining these sequences.
Theorem 2: Given Problem (P) under Assumption A; let{xk}

be the sequence generated by DAsyFLEXA, under Assumptions

1While (S.2) in Algorithm 1 is defined once dk(ik, j), j ∈ Nik is given,
here we extend the definition of the delay vectorsdk(i, j) to all i, j ∈ N , whose
values are set to the delays of the information known by the associated agent
on the variables and gradients of the others, at the time agent ik performs its
update. This will simplify the notation in some of the technical derivations.

C and D. Choose γ ∈ (0, 1], such that γ < 2τ
L(2+ρ2D2) , with ρ �

maxi∈N |Ni|. Then, there hold the following:
a) Any limit point of {xk} is a stationary solution of (P).
b) In at most Tε iterations, DAsyFLEXA drives the station-

arity measure MV (x
k) below ε, ε > 0, where

Tε =

⌈
C1

(
V (x0)−min

x∈X
V (x)

)
· 1
ε

⌉
,

where C1 > 0 is a constant defined in the Appendix [cf.
(28)], which depends on ρ, Li, i ∈ N , L, τ, γ,N,B, and
D.

c) If, in particular A2(a) is satisfied, {xk} is bounded.
Proof: See the Appendix C. �
Theorem 2 provides a unified set of convergence conditions

for several algorithms, asynchronous models, and communi-
cation protocols. Note that when D = 0, the condition on γ,
reduces to the renowned condition used in the synchronous
proximal-gradient algorithm. The term D2 in the denominator
of the upper-bound on γ should then be seen as the price to pay
for asynchrony: The larger the possible delay D, the smaller γ,
to make the algorithm robust to asynchrony/delays.

Theorem 3 improves on the convergence of DAsyFLEXA,
when V satisfies the error bound condition in Assumption B.
Specifically, convergence of the whole sequence {xk} to a sta-
tionary solution x� is established [in contrast with subsequence
convergence in Theorem 2 (b)], and suitable subsequences that
converge linearly are identified.

Theorem 3: Given Problem (P) under Assumptions A and
B, let {xk} be the sequence generated by DAsyFLEXA, under
Assumptions C and D. Suppose that γ/τ > 0 is sufficiently
small. Then, {xt+kB} and {V (xt+kB)}, t ∈ {0, . . . , B − 1},
converge at least R-linearly to some x�∈ X � and V � � V (x�),
respectively, that is

V (xt+kB)− V � = O (λt+kB
)
,

‖xt+kB − x�‖ = O
(√

λt+kB
)
,

where λ ∈ (0, 1) is a constant defined in the Appendix [cf. (38)],
which depends on ρ, Li, i ∈ N , L, τ, γ,N,B, and D.

Proof: See the Appendix D. �
In essence, the theorem proves a B-steps linear convergence

rate. To the best of our knowledge, this is the first (linear)
convergence rate result in the literature for an asynchronous
algorithm in the setting considered in this article.

IV. NUMERICAL RESULTS

In this section we report some numerical results on the two
problems described in Section II. All our experiments were
run on the Archimedes1 cluster computer at Purdue University,
equipped with two 22-cores Intel E5-2699Av4 processors (44
cores in total) and 512GB of RAM. Code for the LASSO
problem was written in MATLAB R2019a; code for the Matrix
Completion problem was written in C++ using the OpenMPI
library for parallel and asynchronous operations.

A. Distributed LASSO

1) Problem Setting: We simulate the (convex) LASSO prob-
lem stated in (4). The underlying sparse linear model is generated
as follows: b = Ax� + e, where A∈ R15000×30000. A, x�,
and e have i.i.d. elements, drawn from a Gaussian N (0, σ2)

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

CANNELLI et al.: ASYNCHRONOUS OPTIMIZATION OVER GRAPHS: LINEAR CONVERGENCE UNDER ERROR BOUND CONDITIONS 4609

distribution, with σ = 1 for A and x�, and σ = 0.1 for the noise
vector e. Entries of A are then normalized by ‖A‖. To impose
sparsity on x� and A, we randomly set to zero 95% of their
components. Finally, in (4), we set λ = 1.

2) Network Setting: We consider a fixed, undirected network
composed of 50 agents; x ∈ R30000 is partitioned in 50 block-
variables xi ∈ R600, i ∈ {1, . . . , 50}, each of them controlled
by one agent. We define the local functions fi and gi as described
in Section II (cf. Example #2); each Ai (resp. bi) is all zeros
but its ith row (resp. component), which coincides with that of
A (resp. b). This induces the following communication pattern
among the agents: Each agent i is connected only to the agents
js owning the xjs corresponding to the nonzero column-entries
of Ai.

Algorithms: We simulated the following algorithms.
• DAsyFLEXA: We used the surrogate functions

f̃i

(
xi;x

k−dk(i,i)
Ni

)
=
〈
∇xi

fi

(
x
k−dk(i,i)
Ni

)
,xi − xk

i

〉
+
τi
2
‖xi − xk

i ‖22, (9)

where τi > 0 is a tunable parameter, which is updated following
the same heuristic used in [49]. The stepsize γ is set to 0.9. Note
that, using (9), problem (5) has a closed-form solution via the
renowned soft-thresholding operator.

• PrimalDual asynchronous algorithm [36]: This seems to be
the distributed asynchronous scheme closest to DAsyFLEXA.
Note that there are some important differences between the two
algorithms. First, the PrimalDual algorithm [36] does not exploit
the sparsity pattern of the objective function V ; every agent
instead controls and updates a local copy of the entire vector x,
which requires employing a consensus mechanism to enforce
an agreement on such local copies. This leads to an unnecessary
communication overhead among the agents. Second, no explicit
estimate of the gradients of the other agents is employed; the
lack of this knowledge is overcome by introducing additional
communication variables, which lead to contribute to increase
the communication cost. Third, the PrimalDual algorithm does
not have convergence guarantees in the nonconvex case. In our
simulations we tuned the stepsizes of [36] by hand in order
to obtain the best performances; specifically we set α = 0.9,
and ηi = 1.5 for i = 1, . . . , 50 (see [36] for details on these
parameters).

• AsyBADMM: This is a block-wise asynchronous ADMM,
introduced in [41] to solve nonconvex and nonsmooth opti-
mization problems. Since AsyBADMM requires the presence
of master and worker nodes in the network, to implement it on
a meshed network, we selected uniformly at random 5 nodes of
the network as servers while the others acting as workers. The
parameters of the algorithm (see [41] for details) are tuned by
hand in order to obtain the best performances; specifically we
set γ = 0.06, C = 104, and ρij = 50, for all (i, j).

All the algorithms are initialized from the same randomly
chosen point, drawn from N (0, 1).

Asynchronous Model: We simulate the following asyn-
chronous model. Each agent is activated periodically, every time
a local clock triggers. The agents’ local clocks have the same
frequency but different phase shift, which are selected uniformly
at random within [5, 50]. Based upon its activation, each agent:
1) performs its update and then broadcasts its gradient vector
∇xi

fi together with its own block-variable xi to the agents in

Fig. 1. LASSO problem: Relative error versus # of iterations.

Fig. 2. LASSO problem: Relative error versus # of message ex-
changes.

Ni\{i}; and 2) modifies the phase shift of its local clock by
selecting uniformly at random a new value.

Fig. 1 plots relative error (V (xk)− V �)/V � of the different
methods versus the number of iterations. Fig. 2 shows the same
function versus the number of message exchanges per agent;
each scalar variable sent from an agent to one of its neighbors is
counted as one message exchanged. All the curves are averaged
over ten independent realizations.

DAsyFLEXA outperforms the PrimalDual scheme [36] and
AsyBADMM [41]. Also, as anticipated, PrimalDual requires
much more communications than DAsyFLEXA.

B. Distributed Matrix Completion

In this section we consider the Distributed Matrix Completion
problem (1). We generate a 2200× 2200 matrix Z with samples
drawn fromN (0, 1); and we set λ = ξ = 1 and r = 4. Each core
of our cluster computer represents a different agent; the columns
ofX andY are equally partitioned across the 22 cores, and those
of Y uniformly among the other 11 cores; and all cores access a
shared memory where the data are stored. We sampled uniformly
at random 10% of the entries of Z, and distributed these samples
zmn to the agents owing the corresponding column xm of X or
yn of Y, choosing randomly between the two.

We applied the following instance of DAsyFLEXA to (1).
Consider one of the agents that optimizes some columns of X,
say agent i. Since each fi is biconvex in X and Y, the following

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

4610 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

Fig. 3. Matrix completion: Stationarity distance versus # CPU time (in
seconds).

Fig. 4. Matrix completion: Stationarity distance versus # of message
exchanges.

surrogate function satisfies Assumption C:

f̃i

(
{xm}m∈Xi

; (X,Y)
k−dk(i,i)
Ni

)
=

1

2

∑
(m,n)∈Ωi

(
xT
my

k−dk
j(n)

(i,i)
n −zmn

)2

+
τi
2

∑
(m,n)∈Ωi

‖xm−xk
m‖22,

(10)

where j(n) is the index j ∈ Ni of the agent that controlsyn, and
τi > 0 is updated following the same heuristic used in [49] [the
surrogate function for the agents that update columns ofY is the
same as (10), with the obvious change of variables]. Note that
(10) preserves the block-wise convexity present in the original
function fi, which contrasts with the common approach in the
literature based on the linearization of fi. Problem (5) with the
surrogate (10) has a closed-form solution.

We compare our algorithm with the decentralized ADMM
version of ARock, as presented in [37]. Even if this method has
convergence guarantees for convex problems only, its perfor-
mances on this experiment appeared to be good. For ARock we
fixed ηk = 0.9, for all k, and γ = 10, which are the values that
gave us the best performances in the experiments.

The rest of the setup is the same as that described for the
LASSO problem. Figs. 3 and 4 plot ‖x̂k − xk‖∞ (a valid
measure of stationarity), with x̂i defined as in (5), obtained
by DAsyFLEXA and the PrimalDual algorithm [36] versus the
CPU time (measured in seconds) and message exchanges per

agent. On our tests, we observed that all the algorithms con-
verged to the same stationary solution. The results confirm the
behavior observed in the previous section for convex problems:
DAsyFLEXA has better performances than PrimalDual, and the
difference is mostly significant is terms of communication cost.
DAsyFLEXA is also more efficient than ARock, which suffers
from a similar drawback of PrimalDual for what concerns the
number of message exchanges; this is due to the fact that ARock
requires the use of dual variables, which cause a communication
overhead.

APPENDIX

In this Appendix we prove Theorems 2 and 3.

A. Notation

Vectors x
k−dk(i,j)
Nj

have different length. It is convenient
to replace them with equal-length vectors retaining of course
the same information. This is done introducing the following
(column) vectors xk(i, j) � (xk

l (i, j))
N
l=1 ∈ X , defined as:

[xk
l (i, j)]l∈Nj

� x
k−dk(i,j)
Nj

, (11a)

xk
l (i, j) = xk

l , l /∈ Nj . (11b)

In other words, the blocks of xk(i, j) indexed byNj coincide

with x
k−dk(i,j)
Nj

whereas the other block-components, irrelevant
to the proofs, are conveniently set to their most up-to-date values.
We will use the shorthand xk

Nj
(i, j) � [xk

l (i, j)]l∈Nj
.

Since at each iteration k ≥ 0 only one block of xk is updated,
and because of Assumption D2, it is not difficult to check that
the delayed vector xk(i, j) can be written as

xk(i, j) = xk +
∑

l∈Kk(i,j)

(xl − xl+1), (12)

where Kk(i, j) is a subset of {k −D, . . . , k − 1} whose ele-
ments depend on which block variables have been updated in
the window [max{0, k −D},max{0, k − 1}]. Recall that it is
assumed xt = x0, for t < 0.

Finally, notice that the notation x̂k
i for the best-response map

(5) is a shorthand for the formal expression x̂i(x̃
k(i)), where

x̃k(i) � [x
k−dk(i,j)
Nj

]j∈Ni
. Similarly, ̂̄xk

i (resp. ̂̄xk
) in (7) is a

shorthand for x̂i(x̄
k(i)) (resp. x̂(x̄k)), where x̄k(i) � [xk

Nj
]j∈Ni

(resp. x̄k � [x̄k(i)]i∈N). We also define the following short-
hands:

Δx̂k �
[
Δx̂k

i

]
i∈N , Δx̂k

i � x̂k
i − xk

i . (13)

Table I summarizes the main notation used in the article.
On the constant L: The proofs rely on some Lipschitz prop-

erties of∇xj
fi’s. To provide a unified proof under either A2(a)

or A2(b), we introduce a constant L > 0 whose value depends
on whether A2(a) or A2(b) hold. Specifically:

1) A2(a) holds: The gradients ∇xj
fi’s are not globally Lip-

schitz on the sets XNi
’s; our approach to study convergence is

to ensure that they are Lipschitz continuous on suitably defined
sets containing the sequences generated by Algorithm 1. We
define these sets as follows. Define first the set Cube � {w ∈
X : ‖w‖∞ ≤ U}, where U is positive constant that ensures
L0 ⊆ Cube (note thatU < +∞ becauseL0 is bounded). Then,

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

CANNELLI et al.: ASYNCHRONOUS OPTIMIZATION OVER GRAPHS: LINEAR CONVERGENCE UNDER ERROR BOUND CONDITIONS 4611

TABLE I
TABLE OF NOTATION

we define a proper widening L̄0 of L0: L̄0 � (L0 + ψB) ∩ X ,
where B is the unitary ball centered in the origin, and ψ > 0 is
a finite positive constant defined as

ψ � max
i∈N

max
w̃(i)�[wNj (j)]j∈Ni

w(j)∈Cube

‖x̂i (w̃(i))−wi(i)‖2. (14)

Note that L̄0 is compact, because L0 is bounded and ψ < +∞
[given that Cube is bounded and x̂(·) is continuous, due to (5),
A2, A3, and C3]. Consider now any vector x ∈ L̄0. A2(a) and
compactness of L̄0 imply that the gradients∇xj

fi’s are globally
Lipschitz over the sets containing the subvectors xNi

’s, with L
being the maximum value of the Lipschitz constant of all the
gradients over these sets.

2) A2(b) holds: In this case, L is simply the global Lipschitz
constant ∇xi

fi over the whole space.
Remark 4: To make sense of the complicated definition of L

under A2(a), we anticipate how this constant will be used. Our
proof leverages the descent lemma to majorize V (xk+1). To do
so, each ∇xj

fi needs to be globally Lipschitz on a convex set
containing xk and xk+1. This is what the convex set L̄0 is meant
for: xk and xk+1 belong to L̄0 and thus ∇xj

fi is L-Lipschitz
continuous.

B. Preliminaries

We summarize next some properties of the map x̂k
i in (5).

Proposition 5: Given Problem (P) under Assumption A, let
{xk} be the sequence generated by DAsyFLEXA under As-
sumptions B and C. Suppose also that xk ∈ L̄0 for all k. There
hold:

a) [Optimality] For any i ∈ N and k ≥ 0∑
j∈Ni

〈
∇xi

fj(x
k
Nj
(i, j)),Δx̂k

i

〉
+ gi(x̂

k
i)− gi(xk

i) ≤ −τ‖Δx̂k
i ‖22. (15)

b) [Lipschitz continuity] For any i ∈ N and k, h ≥ 0

‖x̂k
i − x̂h

i ‖2 ≤
Lm

τ
‖xk(i, i)− xh(i, i)‖2

+
L

τ

∑
j∈Ni\{i}

‖xk(i, j)− xk(i, j)‖2, (16)

where Lm � max
i∈N

Li.

c) [Fixed-points] x̂(x̄k) = xk if and only ifxk is a stationary
solution of Problem (P) (recall the definition of x̄k in
Table I).

d) [Error bound] For any k ≥ 0

‖xk − proxG

(
xk −∇F (xk)

) ‖2
≤ (1 + L+NLm)‖x̂(x̄k)− xk‖2. (17)

Proof: See the technical report [50]. �

C. Proof of Theorem 2

The proof is organized in the following steps.
Step 1–Lyapunov function & its descent: We define an appro-

priate Lyapunov function Ṽ and prove that it is monotonically
nonincreasing along the iterations. This also proves Theorem
2(c);

Step 2–Vanishing x-stationarity: Building on the de-
scent properties of the Lyapunov function, we prove
limk→+∞ ‖x̂(x̄k)− xk‖2 = 0 [Theorem 2(a)];

Step 3–Convergence rate: We prove the sublinear conver-
gence rate of {MV (x

k)} as stated in Theorem 2(c).
The above steps are proved under Assumptions A, C, and D.
1) Step 1–Lyapunov Function & Its Descent: Introduce

the following Lyapunov-like function:

Ṽ (xk, . . . ,xk−D)

� V (xk) +
DLρ2

2

(
k−1∑

l=k−D
(l − (k − 1) +D) ‖xl+1 − xl‖22

)
,

(18)

where L is defined in Appendix A. Note that

Ṽ � � min
[yi∈X]D+1

i=1

Ṽ (y1, . . . ,yD+1) = min
x∈X

V (x).

The following lemma establishes the descent properties of Ṽ
and also proves Theorem 2(c).

Lemma 6: Given Ṽ defined in (18), the following hold:
a) For any k ≥ 0:

Ṽ (xk+1 . . . ,xk+1−D)

≤ Ṽ (xk, . . . ,xk−D)− γ
(
τ − γL

(
2 +D2ρ2

)
2

)
‖Δx̂k

ik‖22.

(19)

b) If, in particular, A2(a) is satisfied: xk ∈ L0, for all k ≥ 0.

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

4612 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

Proof: We prove the two statements by induction. For k = 0,

V (x1) =

N∑
i=1

fi(x
1
Ni
) + gi0(x

1
i0) +

∑
i �=i0

gi(x
1
i)

(6)
=

N∑
i=1

fi(x
1
Ni
) + gi0(x

1
i0) +

∑
i�=i0

gi(x
0
i)

(a)
≤

N∑
i=1

fi(x
0
Ni
) + γ

∑
j∈Ni0

〈
∇xi0

fj(x
0
Nj
)

+∇xi0
fj

(
x0
Nj
(i0, j)

)
−∇xi0

fj

(
x0
Nj
(i0, j)

)
,Δx̂0

i0

〉
+
γ2L

2
‖Δx̂0

i0‖22 + gi0(x
1
i0) +

∑
i �=i0

gi(x
0
i)

A3≤
N∑
i=1

fi(x
0
Ni
) + γ

〈 ∑
j∈Ni0

∇xi0
fj

(
x0
Nj
(i0, j)

)
,Δx̂0

i0

〉

+ γ
〈 ∑

j∈Ni0

(
∇xi0

fj(x
0
Nj
)

−∇xi0
fj

(
x0
Nj
(i0, j)

))
,Δx̂0

i0

〉
+
γ2L

2
‖Δx̂0

i0‖22

+
N∑
i=1

gi(x
0
i) + γgi0(x̂

0
i0)− γgi0(x0

i0)

(15),A2

≤ V (x0)− γ
(
τ − γL

2

)
‖Δx̂0

i0‖22

+ γL‖Δx̂0
i0‖2

∑
j∈Ni0

‖x0 − x0(i0, j)‖2

(b)
≤ V (x0)− γ (τ − γL) ‖Δx̂0

i0‖22

+
Lρ

2

∑
j∈Ni0

‖x0 − x0(i0, j)‖22︸ ︷︷ ︸
term I

(20)

where (a) follows from the descent lemma and the definition of
L; and in (b) we used Young’s inequality. Note that in (a) we
used the fact that x0 and x1 belong to L̄0 (cf. Remark 4).

We now bound term I in (20). It is convenient to study the
more general term ‖xk − xk(ik, j)‖22, j ∈ Nik . There holds:

‖xk − xk(ik, j)‖22
(12)

≤
(

k−1∑
l=k−D

‖xl+1 − xl‖2
)2

≤ D
k−1∑

l=k−D
‖xl+1 − xl‖22

= D

(
k−1∑

l=k−D
(l − (k − 1) +D) ‖xl+1 − xl‖22

−
k∑

l=k+1−D
(l − k +D)‖xl+1 − xl‖22

)
+D2‖xk+1 − xk‖22.

(21)

Combining (20) and (21) one can check that state-
ments (a) and (b) of the lemma hold at k = 0, that
is, Ṽ (x1, . . . ,x0) ≤ Ṽ (x0, . . . ,x0), and V (x1) ≤ Ṽ (x1, . . . ,
x0) ≤ Ṽ (x0, . . . ,x0) = V (x0), respectively. Assume now that
the two statements hold at iteration k. It is easy to check that
the analogous of (20) also holds at iteration k + 1 with the
term

∑
j∈N

ik
‖xk − xk(ik, j)‖2 in the analogous of term I

at iteration k, majorized using (21). Combining (20) at k + 1
with (21) one can check that statement (a) of the lemma holds

at k + 1. We also get: V (xk+1) ≤ Ṽ (xk+1, . . . ,xk+1−D)
(20)

≤
Ṽ (xk, . . . ,xk−D) ≤ Ṽ (x0, . . . ,x0) = V (x0), which proves
statement (b) of the lemma at k + 1. This completes the
proof. �

2) Step 2 – Vanishing x-Stationarity: It follows from A4
and Lemma 6 that, if γ < 2τ

L(2+ρ2D2) , {Ṽ (xk−D, . . . ,xk)} and

thus {V (xk)} converge. Therefore

lim
k→+∞

‖Δx̂k
ik‖2 = 0. (22)

The next lemma extends the vanishing properties of a single
block Δx̂k

ik to the entire vector Δx̂k.
Lemma 7: For any i ∈ N , k ≥ 0, and h, t ∈ [k, k +B − 1],

there hold:

‖x̂i(x̃
t(i))− x̂i(x̃

h(i))‖22 ≤ C2

k+B−2∑
l=k−D

‖Δx̂l
il‖22, (23)

‖Δx̂h‖22 ≤ 2 (NC2 + 1)

k+B−1∑
l=k−D

‖Δx̂l
il‖22, (24)

with

C2 �
3γ2(B + 2D −N + 1)ρ

(
L2
m + (ρ− 1)L2

)
τ2

.

Proof: See Appendix E. �
Using (24) and (22) yields

lim
k→+∞

‖Δx̂k‖2 = 0. (25)

Furthermore, invoking (22), (23), and (25) together with
‖x̂(x̄k)− xk‖2 ≤ ‖Δx̂k‖2 + ‖x̂(x̄k)− x̂k‖2, leads to

lim
k→+∞

‖x̂(x̄k)− xk‖2 = 0, (26)

which, together with Proposition 5(c), proves Theorem 2(a).
3) Step 3 – Convergence Rate: We use the Lyapunov

function Ṽ to study the vanishing rate of {MV (x
k)}. Due to

(26) and the definition of MV , we know that MV is converg-
ing to 0. Therefore Tε is finite. Using MV (x

k) > ε, for all
k ∈ {0, . . . , Tε − 1}, we have

Tεε ≤
Tε−1∑
k=0

MV (x
k) ≤ 2

Tε−1∑
k=0

(‖Δx̂k‖22 + ‖x̂(x̄k)− x̂k‖22
)

(16),(24)

≤ 2

Tε−1∑
k=0

(
2 (NC2 + 1)

k+B−1∑
l=k−D

‖Δx̂l
il‖22

+

N∑
i=1

(
L2
mρ

τ2
‖xk(i, i)− xk‖22

+
L2ρ

τ2

∑
j∈Ni\{i}

‖xk(i, j)− xk‖22
))

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

CANNELLI et al.: ASYNCHRONOUS OPTIMIZATION OVER GRAPHS: LINEAR CONVERGENCE UNDER ERROR BOUND CONDITIONS 4613

(12)

≤ 2

(
2 (NC2 + 1) +

DC2

3(B + 2D −N + 1)

)

·
Tε−1∑
k=0

k+B−1∑
l=k−D

‖Δx̂l
il‖22

(a)

≤ C3

Tε−1∑
k=0

k+B−1∑
l=k−D

(
Ṽ
(
xl, . . . ,xl−D)

− Ṽ (xl+1, . . . ,xl+1−D))

= C3

Tε−1∑
k=0

(
Ṽ
(
xk−D, . . . ,xk−2D)

− Ṽ (xk+B, . . . ,xk+B−D))

≤ C3(B +D − 1)

(
V (x0)−min

x∈X
V (x)

)
, (27)

where in (a) we used (19) and defined C3 as

C3 �
4
(
2 (NC2 + 1) + DC2

3(B+2D−N+1)

)
γ (2τ − γL (2 +D2ρ2))

.

Statement (b) of the theorem follows readily by defining

C1 � C3(B +D − 1). (28)

D. Proof of Theorem 3

We study now convergence of Algorithm 1 under the addi-
tional Assumption B.

First of all, note that one can always find η, ε, κ > 0, such
that B1 holds. In fact, 1) by Lemma 6, there exist some η
and sufficiently small γ/τ , such that V (xk) ≤ η, for all k ≥ 0;
and 2) since ‖xk − proxG(∇F (xk)− xk)‖2 is asymptotically
vanishing [Proposition 5(d) and (26)], one can always find some
ε > 0, such that ‖xk − proxG(∇F (xk)− xk)‖2 ≤ ε, for all
k ≥ 0.

The proof proceeds along the following steps. Step 1: We
first show that the liminf of {V (xk)} is a stationary point V �

[see (33)]. Step 2 shows that {V (xk)} approaches V � linearly,
up to an error of the order O(∑k+B−1

l=k−D ‖Δx̂l
il
‖22) [see (37)].

Finally, in Step 3 we show that the term
∑k+B−1

l=k−D ‖Δx̂l
il
‖22 is

overall vanishing at a geometric rate, implying the convergence
of {V (xk)} to V � at a geometric rate.

1) Step 1: Pick any vector x�(xk) ∈ PX�(xk), where
PX�(x) � argminx�∈X�‖x− x�‖2, x ∈ Rn. Note that

d(xk,X �) = ‖x�(xk)− xk‖2
B1≤ κ‖xk − proxG

(∇xF (x
k)−xk

)‖2. (29)

Using (29), (26), and (17), yields

lim
k→+∞

‖x�(xk)− x�(xk+1)‖ = 0. (30)

This, together with B2, imply that there exists an index k̄ ≥ 0
and a scalar V �, such that

V (x�(xk)) = V �, ∀ k ≥ k̄. (31)

By the Mean Value Theorem, there exists a vector ξk =
βkx�(xk) + (1− βk)xk, for some βk ∈ (0, 1), such that, for
any k ≥ k̄
V � − V (xk) =

〈∇xF (ξ
k),x�(xk)− xk

〉
+G(x�(xk))

−G(xk) ≤ 〈∇xF (ξ
k)−∇xF (x

�(xk)),x�(xk)− xk
〉

(a)

≤ N(ρ2L2 + 1)

2
‖x�(xk)− xk‖22

(17),(29)

≤ Nκ(ρ2L2 + 1)(1 + L+NLm)

2
‖x̂(x̄)k − xk‖2

(32)

where (a) follows from A2 and ‖ξk − x�(xk)‖22 =
‖βkx�(xk) + (1− βk)xk − x�(xk)‖22 ≤ ‖x�(xk)− xk‖22.

By invoking (32), together with (26), we obtain

lim inf
k→+∞

V (xk) ≥ V �. (33)

2) Step 2: We next show that V (xk) approaches V � at a
linear rate.

To this end, consider (20) with 0 and 1 replaced by k and
k + 1, respectively; we have the following:

V (xk+1) ≤ V (xk)− γ (τ − γL) ‖Δx̂ik‖22

+
Lρ

2

∑
j∈N

ik

‖xk − xk(ik, j)‖22
(12)

≤ V (xk)

− γ (τ − γL) ‖Δx̂ik‖22 +
γ2DLρ2

2

k−1∑
l=k−D

‖Δx̂l
il‖22. (34)

It is easy to see that, for any k ≥ k̄, (34) implies

V (xk+B)− V � ≤ V (xk)− V �

− γ
(
τ − γL(2 +BDρ2)

2

) k+B−1∑
l=k

‖Δx̂l
il‖22

+
Bγ2DLρ2

2

k−1∑
l=k−D

‖Δx̂l
il‖22. (35)

To prove the desired result we will combine next (35) with
the following lemma.

Lemma 8: For any k ≥ 0, there holds

V (xk+B)− V (x�(xk)) ≤ (1− γ) (V (xk)− V (x�(xk))
)

+ γ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖Δx̂l
il‖22, (36)

where α1 and α2 are two positive constants defined in Appendix
E [see (60) and (62), respectively]. �

Proof: See Appendix E.
Multiplying the two sides of (35) and (36) by (Nα1 + (B −

N)α2) and τ − γL(2 +BDρ2)/2, respectively, and adding the

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

4614 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

two inequalities together, yields

V (xk+B)− V � ≤ θ (V (xk)− V �
)
+ ζ

k−1∑
l=k−D

‖Δx̂l
il‖22,

(37)

for all k ≥ k̄, where

θ� (1− γ)(2τ − γL(BDN 2
m + 2)) + 2Nα1 + 2(B −N)α2

2τ − γL(BDN 2
m + 2) + 2Nα1 + 2(B −N)α2

,

and

ζ� (Nα1 + (B −N)α2)(2τ + γL(BDρ2(γ − 1) + 2))

2τ − γL(BDN 2
m + 2) + 2Nα1 + 2(B −N)α2

.

3) Step 3: We can now apply Lemma 4.5 in [6] by noticing
that (35), (33), and (37) correspond, respectively, to (4.21),
(4.22), and to the first inequality after (4.23) in [6]. Theorem
3 readily follows, setting

λ � 1− γ2

2

2τ − γL(BDρ2 + 2)

2Nα1 + 2(B −N)α2

·
+γ(2− γ)(2τ − γL(BDρ2 + 2))

. (38)

E. Miscellanea Results

This section contains the proofs of Lemma 7 and Lemma 8.
Proof of Lemma 7: i) Assume without loss of generality that

t ≤ h. We have

‖x̂i(x̃
t(i))− x̂i(x̃

h(i))‖22
(16)

≤ ρL2
m

τ2
‖xt(i, i)− xh(i, i)‖22

+
ρL2

τ2

∑
j∈Ni\{i}

‖xt(i, j)− xh(i, j)‖22

(12),(6)

≤
(
3ρ
(
L2
m + (ρ− 1)L2

)
τ2

)(
γ2(B −N + 1)

h−1∑
l=t

‖Δx̂l
il‖22 +Dγ2

(
t−1∑

l=t−D
‖Δx̂l

il‖22 +
h−1∑

l=h−D
‖Δx̂l

il‖22
))

.

ii) Define rh,ki � argmin
t∈[k;k+B−1]:it=i

|t− h|. We have:

‖Δx̂h‖22 ≤ 2
N∑
i=1

(
‖x̂h

i − x̂
rh,k
i

i ‖22 + ‖Δx̂
rh,k
i

i ‖22
)

(23)

≤ 2
N∑
i=1

(
C2

k+B−2∑
l=k−D

‖Δx̂l
il‖22 + ‖Δx̂

rh,k
i

i ‖22
)
.

(39)

Proof of Lemma 8: Define T k
i + 1 as the number of

times agent i performs its update within [k, k +B − 1]; let
lki,0, . . . , l

k
i,Tk

i
,be the iteration indexes of such updates. By the

mean value theorem, there exists a vector ξk = βkx�(xk) +
(1− βk)xk, for some βk ∈ (0, 1), such that

V (xk+B)− V (x�(xk)) =
〈∇xF (ξ

k),xk+B − x�(xk)
〉

+G(xk+B)−G(x�(xk))

=

N∑
i=1

(〈
∇xi

F (ξk),x
lki,1
i − x�

i (x
k)

〉
︸ ︷︷ ︸

term II

+

Tk
i −1∑
t=1

〈
∇xi

F (ξk),x
lki,t+1

i − x
lki,t
i

〉
︸ ︷︷ ︸

term III

+

〈
∇xi

F (ξk),xk+B
i − x

lk
i,Tk

i
i

〉
︸ ︷︷ ︸

term IV

)

+G(xk+B)−G(x�(xk)). (40)

To prove (36), it is then sufficient show that term II, term
III, and term IV in (40) converge at a geometric rate up to
an error of the order O(∑k+B−1

l=k−D ‖Δx̂l
il
‖22). To do this, we first

show that term II, term III, and term IV converges
at a geometric rate up to the error terms aki,4, bki,t,4, and cki,4,
respectively [see (41), (44), and (47)]. Then, we prove that each
of these errors is of the order O(∑k+B−1

l=k−D ‖Δx̂l
il
‖22), as desired

[see (59) and (61)].
Term II can be upper bounded as

〈
∇xi

F (ξk),x
lki,1
i − x�

i (x
k)

〉
A2≤
〈
∇xi

F
(
x̂lki,0

)
,x

lki,1
i − x�

i (x
k)

〉
+ ρL

∥∥∥x̂lki,0 − ξk
∥∥∥
2

∥∥∥∥xlki,1
i − x�

i (x
k)

∥∥∥∥
2︸ ︷︷ ︸

�ak
i,1

A2,C2,C3

≤
〈
∇f̃i

(
x̂
lki,0
i ;x

lki,0
Ni

(i, i)

)

+
∑

j∈Ni\{i}
∇xi

fj

(
x
lki,0
Nj

(i, j)

)
,x

lki,1
i − x�

i (x
k)

〉

+

∥∥∥∥xlki,1
i − x�

i (x
k)

∥∥∥∥
2

(
Li

∥∥∥∥x̂lki,0
Ni
− x

lki,0
Ni

(i, i)

∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥x̂lki,0
Nj
− x

lki,0
Nj

(i, j)

∥∥∥∥
2

)
+ aki,1

(a)

≤ (γ − 1)

〈
∇f̃i

(
x̂
lki,0
i ;x

lki,0
Ni

(i, i)

)

+
∑

j∈Ni\{i}
∇xi

fj

(
x
lki,0
Nj

(i, j)

)
,Δx̂

lki,0
i

〉
+ gi

(
x�
i (x

k)
)

− gi
(
x̂
lki,0
i

)
+ aki,2

C2≤ gi(x
�
i (x

k))− gi
(
x̂
lki,0
i

)

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

CANNELLI et al.: ASYNCHRONOUS OPTIMIZATION OVER GRAPHS: LINEAR CONVERGENCE UNDER ERROR BOUND CONDITIONS 4615

+ (γ − 1)

〈∑
j∈Ni

∇xi
fj

(
x
lki,0
Nj

(i, j)

)
,Δx̂

lki,0
i

〉

+ (1−γ)
∥∥∥∥∥∇f̃i

(
x̂
lki,0
i ;x

lki,0
Ni

(i, i)

)
−∇f̃i

(
x
lki,0
i ;x

lki,0
Ni

(i, i)

)∥∥∥∥∥
2

·
∥∥∥∥Δx̂

lki,0
i

∥∥∥∥
2

+ aki,2
(b)

≤ gi
(
x�
i (x

k)
)− gi(x̂lki,0

i

)
+

1− γ
γ

(
V
(
xlki,0

)
− V

(
xlki,0+1

))

+ (1− γ)
∥∥∥∥∥∥
∑
j∈Ni

(
∇xi

fj

(
x
lki,0
Nj

)
−∇xi

fj

(
x
lki,0
Nj

(i, j)

))∥∥∥∥∥∥
2

·
∥∥∥∥Δx̂

lki,0
i

∥∥∥∥
2

+
Lγ(1− γ)

2

∥∥∥∥Δx̂
lki,0
i

∥∥∥∥2
2

+ aki,3

+ (1− γ)
(
gi

(
x̂
lki,0
i

)
− gi

(
x
lki,0
i

))
(c)
=

1− γ
γ

(
V
(
xlki,0

)
− V

(
xlki,0+1

))
+ gi

(
x�
i (x

k)
)

+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ aki,4, (41)

where the quantities aki,2 in (a), and aki,3 in (b) are defined in
(42) and (43) shown at the bottom of this page, respectively;
furthermore in (b) we used the descent lemma, and in (c) we
defined

aki,4 � aki,3 +
Lγ(1− γ)

2

∥∥∥∥Δx̂
lki,0
i

∥∥∥∥2
2

+ (1− γ)

·
∥∥∥∥∥∥
∑
j∈Ni

(
∇xi

fj

(
x
lki,0
Nj

)
−∇xi

fj

(
x
lki,0
Nj

(i, j)

))∥∥∥∥∥∥
2

∥∥∥∥Δx̂
lki,0
i

∥∥∥∥
2︸ ︷︷ ︸

term VII

.

Term III can be upper bounded as: for any i and t ∈ [1, T k
i −

1]〈
∇xi

F (ξk),x
lki,t+1

i − x
lki,t
i

〉
A2≤
〈
∇xi

F
(
x̂lki,t

)
,x

lki,t+1

i − x
lki,t
i

〉
+ ρL

∥∥∥x̂lki,t − ξk
∥∥∥
2

∥∥∥∥xlki,t
i − x

lki,t+1

i

∥∥∥∥
2︸ ︷︷ ︸

�bki,t,1

A2,C2,C3

≤
〈
∇f̃i

(
x̂
lki,t
i ;x

lki,t
Ni

(i, i)

)

+
∑

j∈Ni\{i}
∇xi

fj

(
x
lki,t
Nj

(i, j)

)
,x

lki,t+1

i − x
lki,t
i

〉

+

∥∥∥∥xlki,t
i − x

lki,t+1

i

∥∥∥∥
2

(
Li

∥∥∥∥x̂lki,t
Ni
− x

lki,t
Ni

(i, i)

∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥x̂lki,t
Nj
− x

lki,t
Nj

(i, j)

∥∥∥∥
2

)
+ bki,t,1

(a)

≤ (γ − 1)

〈
∇f̃i

(
x̂
lki,t
i ;x

lki,t
Ni

(i, i)

)

+
∑

j∈Ni\{i}
∇xi

fj

(
x
lki,t
Nj

(i, j)

)
,Δx̂

lki,t
i

〉
+ gi

(
x
lki,t
i

)

− gi
(
x̂
lki,t
i

)
+ bki,t,2

C2≤ gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

)

+ (γ − 1)

〈∑
j∈Ni

∇xi
fj

(
x
lki,t
Nj

(i, j)

)
,Δx̂

lki,t
i

〉

+ (1− γ)
∥∥∥∥∇f̃i(x̂lki,t

i ;x
lki,t
Ni

(i, i)

)
−∇f̃i

(
x
lki,t
i ;x

lki,t
Ni

(i, i)

)∥∥∥∥
2

·
∥∥∥∥Δx̂

lki,t
i

∥∥∥∥
2

+ bki,t,2
(b)

≤ gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

)
+

1− γ
γ

(
V
(
xlki,t

)
− V

(
xlki,t+1

))

+ (1− γ)
∥∥∥∥∥∥
∑
j∈Ni

(
∇xi

fj

(
x
lki,t
Nj

)
−∇xi

fj

(
x
lki,t
Nj

(i, j)

))∥∥∥∥∥∥
2∥∥∥∥Δx̂

lki,t
i

∥∥∥∥
2

+
Lγ(1− γ)

2

∥∥∥∥Δx̂
lki,t
i

∥∥∥∥2
2

+ bki,t,3

+ (1− γ)
(
gi

(
x̂
lki,t
i

)
− gi

(
x
lki,t
i

))
=

1− γ
γ

(
V
(
xlki,t

)
− V

(
xlki,t+1

))
+ γ

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ bki,t,4 (44)

aki,2 � aki,1 +

∥∥∥∥xlki,1
i − x�

i (x
k)

∥∥∥∥
2

⎛⎝Li

∥∥∥∥x̂lki,0
Ni
− x

lki,0
Ni

(i, i)

∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥x̂lki,0
Nj
− x

lki,0
Nj

(i, j)

∥∥∥∥
2

⎞⎠
︸ ︷︷ ︸

term V

(42)

aki,3 � aki,2 + (1− γ)
∥∥∥∥∇f̃i(x̂lki,0

i ;x
lki,0
Ni

(i, i)

)
−∇f̃i

(
x
lki,0
i ;x

lki,0
Ni

(i, i)

)∥∥∥∥
2

∥∥∥∥Δx̂
lki,0
i

∥∥∥∥
2︸ ︷︷ ︸

term VI

(43)

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

4616 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

bki,t,2 � bki,t,1 +

∥∥∥∥xlki,t
i − x

lki,t+1

i

∥∥∥∥
2

⎛⎝Li

∥∥∥∥x̂lki,t
Ni
− x

lki,t
Ni

(i, i)

∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥x̂lki,t
Nj
− x

lki,t
Nj

(i, j)

∥∥∥∥
2

⎞⎠
︸ ︷︷ ︸

term VIII

(45)

bki,t,3 � bki,t,2 + (1− γ)
∥∥∥∥∇f̃i(x̂lki,t

i ;x
lki,t
Ni

(i, i)

)
−∇f̃i

(
x
lki,t
i ;x

lki,t
Ni

(i, i)

)∥∥∥∥
2

∥∥∥∥Δx̂
lki,t
i

∥∥∥∥
2︸ ︷︷ ︸

term VI

. (46)

where the quantities bki,t,2 in (a), and bki,t,3 in (b) are defined
in (45) and (46) shown at the top of this page, respectively;
furthermore in (b) we used the descent lemma, and in (c) we
defined

bki,t,4 � bki,t,3 +
Lγ(1− γ)

2

∥∥∥∥Δx̂
lki,t
i

∥∥∥∥2
2

+ (1− γ)

·
∥∥∥∥∥∥
∑
j∈Ni

(
∇xi

fj

(
x
lki,t
Nj

)
−∇xi

fj

(
x
lki,t
Nj

(i, j)

))∥∥∥∥∥∥
2

∥∥∥∥Δx̂
lki,t
i

∥∥∥∥
2︸ ︷︷ ︸

term VII

.

Following similar steps, we can bound term IV as (we omit
the details because of the space limit, see [50])〈

∇xi
F (ξk),xk+B

i − x
lk
i,Tk

i
i

〉

≤ 1− γ
γ

(
V

(
x
lk
i,Tk

i

)
− V

(
x
lk
i,Tk

i

+1
))

+ γ

(
gi

(
x
lk
i,Tk

i
i

)
− gi

(
x̂
lk
i,Tk

i
i

))
+ cki,4, (47)

with

cki,4 � cki,3 +
Lγ(1− γ)

2

∥∥∥∥∥Δx̂
lk
i,Tk

i
i

∥∥∥∥∥
2

2

+ (1− γ)

·
∥∥∥∥∥∥
∑
j∈Ni

(
∇xi

fj

(
x
lk
i,Tk

i

Nj

)
−∇xi

fj

(
x
lk
i,Tk

i

Nj
(i, j)

))∥∥∥∥∥∥
2

∥∥∥∥∥Δx̂
lk
i,Tk

i
i

∥∥∥∥∥
2︸ ︷︷ ︸

term VII

,

where cki,3 is defined in (48) shown at the bottom of this page.
We now show that the error terms aki,4, bki,t,4, and cki,4, are of

the order O(∑k+B−1
l=k−D ‖Δx̂l

il
‖22). To do so, in the following we

properly upper bound each term inside aki,4, bki,t,4, and cki,4.

We begin noticing that, by the definition of ξk, it follows

‖x̂h − ξk‖2

= ‖(1− βk)xk + βkx�(xk)− x̂h‖2
≤ ‖xk − x�(xk)‖2 + ‖x̂h − xk‖2
≤ ‖xk − x�(xk)‖2 + ‖Δx̂h‖+ ‖xh − xk‖, (49)

for all h ∈ [k, k +B − 1]
1) Bounding aki,1: There holds

aki,1
(a)

≤ 3ρL

2

(
2‖xk − x�(xk)‖22 + (1 + γ2)‖Δx̂lki,0‖22

+ 2‖xlki,0 − xk‖22
)

(b)

≤ 3ρL

(
κ2(1 + L+NLm)2

(‖Δx̂k‖22

+C2

k+B−2∑
l=k−D

‖Δx̂l
il‖22

)
+ (NC2 + 1)(1 + γ2)

k+B−1∑
l=k−D

‖Δx̂l
il‖22

+ γ2(B −N + 1)

k+B−2∑
l=k−D

‖Δx̂l
il‖22

)
(c)

≤ ρLβ1

k+B−1∑
l=k−D

‖Δx̂l
il‖22,

(50)

where in (a) we used (49) and the Young’s inequality; (b) follows
from (23), (24), and the fact that, for any k ≥ 0

‖xk − x�(xk)‖2
B1≤ κ‖xk − proxG

(∇xF (x
k)− xk

) ‖2
(17)

≤ κ(1 + L+NLm)‖x̂(x̄k)− xk‖2
≤ κ(1 + L+NLm)

(‖x̂(x̄k)− x̂k‖2 + ‖Δx̂k‖2
)
, (51)

and in (c) we used (24) and defined

β1 � C2

(
κ2(1 + L+NLm)2(2N + 1) +N(1 + γ2)

)
+ κ2(1 + L+NLm)2 + 1 + γ2(B −N + 2).

cki,3 � ρL

∥∥∥∥x̂lk
i,Tk

i − ξk
∥∥∥∥
2

∥∥∥∥∥xlk
i,Tk

i
i − xk+B

i

∥∥∥∥∥
2︸ ︷︷ ︸

cki,1

+(1− γ)
∥∥∥∥∥∇f̃i

(
x̂
lk
i,Tk

i
i ;x

lk
i,Tk

i

Ni
(i, i)

)
−∇f̃i

(
x
lk
i,Tk

i
i ;x

lk
i,Tk

i

Ni
(i, i)

)∥∥∥∥∥
2

∥∥∥∥∥Δx̂
lk
i,Tk

i
i

∥∥∥∥∥
2︸ ︷︷ ︸

term VI

+

∥∥∥∥∥xlk
i,Tk

i
i − xk+B

i

∥∥∥∥∥
2

⎛⎝Li

∥∥∥∥∥x̂lk
i,Tk

i

Ni
− x

lk
i,Tk

i

Ni
(i, i)

∥∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥∥x̂lk
i,Tk

i

Nj
− x

lk
i,Tk

i

Nj
(i, j)

∥∥∥∥∥
2

⎞⎠
︸ ︷︷ ︸

term IX

. (48)

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

CANNELLI et al.: ASYNCHRONOUS OPTIMIZATION OVER GRAPHS: LINEAR CONVERGENCE UNDER ERROR BOUND CONDITIONS 4617

2) Bounding bki,t,1 and cki,1: for t ∈ [1, T k
i − 1]

bki,t,1
(a)

≤ ρL

2

(
3‖xk − x�(xk)‖22 + (3 + γ2)‖Δx̂lki,t‖22

+ 3‖xlki,t − xk‖22
) (b)

≤ ρL

2

(
6κ2(1 + L+NLm)2

(
‖Δx̂k‖22

+ C2

k+B−2∑
l=k−D

‖Δx̂l
il‖22

)
+ 2(NC2 + 1)(3 + γ2)

k+B−1∑
l=k−D

‖Δx̂l
il‖22

+ 3γ2(B −N + 1)

k+B−2∑
l=k−D

‖Δx̂l
il‖22

)
(c)

≤ ρLβ2

k+B−1∑
l=k−D

‖Δx̂l
il‖22,

(52)

where in (a) we used (49) and the Young’s inequality; (b) follows
from (23), (24), (51); and in (c) we used (24) and defined

β2 � C2

(
3κ2(1 + L+NLm)2(2N + 1) +N(3 + γ2)

)

+ 6κ2(1 + L+NLm)2 + 3 +
γ2

2
(3B − 3N + 5).

Following the same steps as in (52), it is not difficult to prove

cki,1 ≤ ρLβ2
k+B−1∑
l=k−D

‖Δx̂l
il‖22. (53)

3) Bounding term V : There holds

term V
(a)

≤ 2‖xk − x�(xk)‖22 + 2γ2
∥∥∥∥Δx̂

lki,0
i

∥∥∥∥2
2

+ (L2
i + L2(ρ− 1))

(
‖Δx̂lki,0‖22 +Dγ2

lki,0−1∑
l=lki,0−D

‖Δx̂l
il‖22

))

(b)

≤ β4

k+B−1∑
l=k−D

‖Δx̂l
il‖22, (54)

where in (a) we used (12) and the Young’s inequality; and in (b)
we used (23), (24), (51), and defined

β4 � 2C2

(
2κ2(1 + L+NLm)2(2N + 1)

+N
(
L2
m + L2(ρ− 1)

))
+ 2κ2(1 + L+NLm)2

+
(
L2
m + L2(ρ− 1)

)
(1 +Dγ2) + 2γ2.

4) Bounding term VI : For t ∈ [0, T k
i],

term VI
(a)

≤ (L2 + L2
i)‖xlki,t(i, i)− x̂lki,t‖22 +

1

2

∥∥∥∥Δx̂
lki,t
i

∥∥∥∥2
2

(12)

≤ (L2 + L2
i)

⎛⎝2
∥∥∥Δx̂lki,t

∥∥∥2
2
+ 2Dγ2

lki,t−1∑
h=lki,t−D

‖Δx̂h
ih‖22

⎞⎠
+

1

2

∥∥∥∥Δx̂
lki,t
i

∥∥∥∥2
2

(b)

≤ β3

k+B−1∑
l=k−D

‖Δx̂l
il‖22, (55)

where in (a) we used A2, B2, B3, and the Young’s inequality;
and in (b) we used (24) and defined

β3 � 2(L2 + L2
m)
(
2NC2 +Dγ2 + 1

)
+

1

2
.

5) Bounding term VII : For t ∈ [0, T k
i],

term VII
(a)

≤ 1

2

⎛⎝ρL2
∑
j∈Ni

∥∥∥xlki,t − xlki,t(i, j)
∥∥∥2
2
+

∥∥∥∥Δx̂
lki,t
i

∥∥∥∥2
2

⎞⎠
(12)

≤ 1

2

⎛⎝ρ2L2D2γ2
lki,t−1∑

l=lki,t−D
‖Δx̂l

il‖22 +
∥∥∥∥Δx̂

lki,t
i

∥∥∥∥2
2

⎞⎠
≤ ρ2L2D2γ2 + 1

2

k+B−2∑
l=k−D

‖Δx̂l
il‖22, (56)

where in (a) we used A2 and the Young’s inequality.
6) Bounding term VIII and term IX : For t ∈ [1, T k

i −
1]

term VIII
(a)

≤ γ2
∥∥∥∥Δx̂

lki,t
i

∥∥∥∥2
2

+(L2
i + L2(ρ− 1))

(∥∥∥Δx̂lki,t

∥∥∥2
2

+Dγ2
lki,t−1∑

l=lki,t−D
‖Δx̂l

il‖22
))

(b)

≤ β5

k+B−1∑
l=k−D

‖Δx̂l
il‖22, (57)

where in (a) we used (12) and the Young’s inequality; and in (b)
we used (24), and defined

β5 �
(
L2
m + L2(ρ− 1)

) (
2NC2 +Dγ2 + 2

)
+ γ2.

As done in (57), it is easy to prove that

term IX ≤ β5
k+B−1∑
l=k−D

‖Δx̂l
il‖22. (58)

Using the above results, we can bound aki,4, bki,t,4, and cki,4.
According to definition of aki,4, we have

aki,4
(50),(55)−(54)

≤ α1

k+B−1∑
l=k−D

‖Δx̂l
il‖22, (59)

where

α1�
(
(1−γ)

(
β3 +

Lγ(ρ2LD2γ + 1) + 1

2

)
+ ρLβ1 + β4

)
.

(60)

For bki,t,4 and cki,4, we have: t ∈ [1, T k
i − 1],

bki,i,4; c
k
i,4

(52)−(56),(57),(58)
≤ α2

k+B−1∑
l=k−D

‖Δx̂l
il‖22, (61)

where

α2 �
(
(1− γ)

(
β3+

Lγ(ρ2LD2γ+1)+1

2

)
+ ρLβ2+β5

)
.

(62)

Combining (40), (41), (44), (47), (59), and (61) yields:

V (xk+B)− V (x�(xk)) ≤ 1− γ
γ

(
V (xk)− V (xk+B)

)

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

4618 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 10, OCTOBER 2021

+

N∑
i=1

(
γ

(
gi

(
x
lk
i,Tk

i
i

)
− gi

(
x̂
lk
i,Tk

i
i

))

+ γ

Tk
i −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)

− γgi
(
x̂
lki,0
i

)
+ gi

(
xk+B
i

))
+ (Nα1

+ (B −N)α2)

k+B−1∑
l=k−D

‖Δx̂l
il‖22

A3≤ 1− γ
γ

(
V (xk)

−V (xk+B)
)
+

N∑
i=1

(
γ

(
gi

(
x
lk
i,Tk

i
i

)
− gi

(
x̂
lk
i,Tk

i
i

))

+ γ

Tk
i −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)

− γgi
(
x̂
lki,0
i

)
+ (1− γ)gi

(
x
lk
i,Tk

i
i

)
+ γgi

(
x̂
lk
i,Tk

i
i

))

+ (Nα1 + (B −N)α2))
k+B−1∑
l=k−D

‖Δx̂l
il‖22

=
1− γ
γ

(
V (xk)− V (xk+B)

)
+

N∑
i=1

(
gi

(
x
lk
i,Tk

i
i

)

+ γ

Tk
i −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))

+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ (Nα1

+ (B −N)α2)

k+B−1∑
l=k−D

‖Δx̂l
il‖22

A3≤ 1− γ
γ

(
V (xk)

−V (xk+B)
)
+

N∑
i=1

(
(1− γ)gi

(
x
lk
i,Tk

i
−1

i

)
+ γgi

(̂
x
lk
i,Tk

i
−1

i

)

+ γ

Tk
i −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))

+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)

+ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖Δx̂l
il‖22

=
1− γ
γ

(
V (xk)− V (xk+B)

)
+

N∑
i=1

(
gi

(
x
lk
i,Tk

i
−1

i

)

+ γ

Tk
i −2∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))

+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)

+ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖Δx̂l
il‖22 ≤

1− γ
γ

(
V (xk)

−V (xk+B)
)
+ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖Δx̂l
il‖22.

REFERENCES

[1] R. Carli and G. Notarstefano, “Distributed partition-based optimization
via dual decomposition,” in Proc. IEEE 52nd Conf. Decis. Control, 2013,
pp. 2979–2984.

[2] V. Kekatos and G. B. Giannakis, “Distributed robust power system state
estimation,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1617–1626,
May 2013.

[3] T. Erseghe, “A distributed and scalable processing method based upon
ADMM,” IEEE Signal Process. Lett., vol. 19, no. 9, pp. 563–566,
Sep. 2012.

[4] Z.-Q. Luo and P. Tseng, “Error bounds and convergence analysis of feasible
descent methods: A general approach,” Ann. Oper. Res., vol. 46, no. 1,
pp. 157–178, 1993.

[5] Z.-Q. Luo and P. Tseng, “On the linear convergence of descent methods for
convex essentially smooth minimization,” SIAM J. Control Optim., vol. 30,
no. 2, pp. 408–425, 1992.

[6] P. Tseng, “On the rate of convergence of a partially asynchronous gradient
projection algorithm,” SIAM J. Optimiz., vol. 1, no. 4, pp. 603–619, 1991.

[7] P. Tseng and S. Yun, “A coordinate gradient descent method for nonsmooth
separable minimization,” Math. Program., vol. 117, no. 1\2, pp. 387–423,
2009.

[8] H. Zhang, J. Jiang, and Z.-Q. Luo, “On the linear convergence of a proximal
gradient method for a class of nonsmooth convex minimization problems,”
J. Oper. Res. Soc. China, vol. 1, no. 2, pp. 163–186, 2013.

[9] D. Drusvyatskiy and A. S. Lewis, “Error bounds, quadratic growth, and
linear convergence of proximal methods,” Math. Oper. Res., vol. 43, no. 3,
pp. 919–948, 2018.

[10] Y. Tian, Y. Sun, and G. Scutari, “Achieving linear convergence in dis-
tributed asynchronous multi-agent optimization,” IEEE Trans. Autom.
Control, to be published.

[11] Y. Sun, A. Daneshmand, and G. Scutari, “Distributed optimization based
on gradient-tracking revisited: Enhancing convergence rate via surroga-
tion,” 2020, arXiv:1905.02637.

[12] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm
for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2,
pp. 944–966, 2015.

[13] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms,” IEEE Trans.
Autom. Control, vol. 31, no. 9, pp. 803–812, Sep. 1986.

[14] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent:
Parallelism and convergence properties,” SIAM J. Optimiz., vol. 25, no. 1,
pp. 351–376, 2015.

[15] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asyn-
chronous parallel algorithms for nonconvex optimization,” Math. Pro-
gram., vol. 184, pp. 121–154, 2020.

[16] D. Davis, B. Edmunds, and M. Udell, “The sound of APALM clapping:
Faster nonsmooth nonconvex optimization with stochastic asynchronous
PALM,” in Proc. 30th Conf. Adv. Neural Inf. Process. Syst. 29, 2016,
pp. 226–234.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Englewood Cliffs, NJ, USA: Prentice Hall, vol. 23,
1989.

[18] F. Niu, B. Recht, C. Ré, and S. J. Wright, “HOGWILD: A lock-free
approach to parallelizing stochastic gradient descent,” in Proc. Adv. Neural
Inf. Process. Syst. 24, 2011, pp. 693–701.

[19] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Proc. Adv. Neural Inf. Process.
Syst. 28, 2015, pp. 2719–2727.

[20] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous dis-
tributed optimization using a randomized alternating direction method
of multipliers,” in Proc. IEEE 52nd Conf. Decis. Control, 2013,
pp. 3671–3676.

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

CANNELLI et al.: ASYNCHRONOUS OPTIMIZATION OVER GRAPHS: LINEAR CONVERGENCE UNDER ERROR BOUND CONDITIONS 4619

[21] E. Wei and A. Ozdaglar, “On the o (1= k) convergence of asynchronous
distributed alternating direction method of multipliers,” in Proc. IEEE
Glob. Conf. Signal Inf. Process., 2013, pp. 551–554.

[22] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithm and application to distributed asynchronous optimiza-
tion,” IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 2947–2957,
Oct. 2016.

[23] K. Srivastava and A. Nedić, “Distributed asynchronous constrained
stochastic optimization,” IEEE J. Sel. Top. Signal Process., vol. 5, no. 4,
pp. 772–790, Aug. 2011.

[24] I. Notarnicola and G. Notarstefano, “Asynchronous distributed optimiza-
tion via randomized dual proximal gradient,” IEEE Trans. Autom. Control,
vol. 62, no. 5, pp. 2095–2106, May 2017.

[25] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous dis-
tributed gradient methods over stochastic networks,” IEEE Trans. Autom.
Control, vol. 63, no. 2, pp. 434–448, Feb. 2018.

[26] I. Notarnicola and G. Notarstefano, “A randomized primal distributed
algorithm for partitioned and big-data non-convex optimization,” IEEE
55th Conf. Decis. Control, 2016, pp. 153–158.

[27] A. Nedić, “Asynchronous broadcast-based convex optimization over a
network,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1337–1351,
Jun. 2011.

[28] H. Wang, X. Liao, T. Huang, and C. Li, “Cooperative distributed opti-
mization in multiagent networks with delays,” IEEE Trans. Syst., Man,
Cybern., Syst, vol. 45, no. 2, pp. 363–369, Feb. 2015.

[29] J. Li, G. Chen, Z. Dong, and Z. Wu, “Distributed mirror descent method
for multi-agent optimization with delay,” Neurocomputing, vol. 177,
pp. 643–650, 2016.

[30] K. I. Tsianos and M. G. Rabbat, “Distributed dual averaging for convex
optimization under communication delays,” IEEE Amer. Control Conf.,
2012, pp. 1067–1072.

[31] K. I. Tsianos and M. G. Rabbat, “Distributed consensus and optimiza-
tion under communication delays,” IEEE 49th Allerton Conf. Commun.,
Control, Comput., pp. 974–982, 2011.

[32] P. Lin, W. Ren, and Y. Song, “Distributed multi-agent optimization sub-
ject to nonidentical constraints and communication delays,” Automatica,
vol. 65, pp. 120–131, 2016.

[33] T. T. Doan, C. L. Beck, and R. Srikant, “Impact of communication delays
on the convergence rate of distributed optimization algorithms,” 2017,
arXiv:1708.03277.

[34] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning
over networks-part I/part II/part III: Modeling and stability analy-
sis/performance analysis/comparison analysis,” IEEE Trans. Signal Pro-
cess., vol. 63, no. 4, pp. 811–858, Feb. 2015.

[35] S. Kumar, R. Jain, and K. Rajawat, “Asynchronous optimization over
heterogeneous networks via consensus ADMM,” IEEE Trans. Signal Inf.
Process. Netw., vol. 3, no. 1, pp. 114–129, Mar. 2017.

[36] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed, “Decentralized
consensus optimization with asynchrony and delays,” IEEE Trans. Signal
Inf. Process. Netw., vol. 4, no. 2, pp. 293–307, Jun. 2018.

[37] Z. Peng, Y. Xu, M. Yan, and W. Yin, “Arock: An algorithmic framework for
asynchronous parallel coordinate updates,” SIAM J. Sci. Comput., vol. 38,
no. 5, pp. A2851–A2879, 2016.

[38] N. Bof, R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo,
“Newton-Raphson consensus under asynchronous and lossy communi-
cations for peer-to-peer networks,” 2017, arXiv:1707.09178.

[39] M. Hong, “A distributed, asynchronous and incremental algorithm for
nonconvex optimization: An ADMM approach,” IEEE Trans. Control
Netw. Syst., vol. 5, no. 3, pp. 935–945, Sep. 2018.

[40] S. M. Shah and K. E. Avrachenkov, “Linearly convergent asynchronous
distributed ADMM via Markov sampling,” 2020, arXiv:1810.05067.

[41] R. Zhu, D. Niu, and Z. Li, “A block-wise, asynchronous and dis-
tributed ADMM algorithm for general form consensus optimization,”
2018, arXiv:1802.08882.

[42] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous
distributed ADMM for large-scale optimization part I: Algorithm and
convergence analysis,” IEEE Trans. Signal Process, vol. 64, no. 12,
pp. 3118–3130, 2016.

[43] M. Ma, J. Ren, G. B. Giannakis, and J. Haup, “Fast asynchronous decen-
tralized optimization: Allowing multiple masters,” in Proc. IEEE Glob.
Conf. Signal Inf. Process., 2018, pp. 633–637.

[44] R. Zhang and J. Kwok, “Asynchronous distributed ADMM for con-
sensus optimization,” in Proc. 31st Int. Conf. Mach. Learn., 2014,
pp. 1701–1709.

[45] S. Jiang, Y. Lei, S. Wang, and D. Wang, “An asynchronous ADMM
algorithm for distributed optimization with dynamic scheduling strategy,”
in Proc. IEEE 21st Int. Conf. HPCC; IEEE 17th Int. Conf. SmartCity;
IEEE 5th Int. Conf. DSS, 2019.

[46] N. Srebro, J. Rennie and T. S. Jaakkola, “Maximum-margin matrix factor-
ization,” in Proc. Adv. Neural Inf. Process. Syst. 17, 2005, pp. 1329–1336.

[47] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Stat. Soc. Ser. B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[48] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms
for nonconvex big data optimization,” IEEE Trans. Signal Process., vol. 63,
no. 7, pp. 1874–1889, Apr. 2015.

[49] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous
parallel algorithms for nonconvex big-data optimization Part II: Complex-
ity and numerical results,” 2017, arXiv:1701.04900.

[50] L. Cannelli, F. Facchinei, G. Scutari, and V. Kungurtsev, “Asynchronous
optimization over graphs: Linear convergence under error bound condi-
tions,” 2020, arXiv:2010.09057.

Loris Cannelli (Member, IEEE) received the
B.S. and M.S. degrees in electrical and telecom-
munication engineering from the University of
Perugia, Italy, in 2010 and 2013, respectively,
the M.S. degree in electrical engineering from
State University of New York at Buffalo, NY,
USA, in 2015, and the Ph.D. degree in industrial
engineering from the Purdue University, West
Lafayette, IN, USA, in 2019.

His research interests include optimization
algorithms, machine learning, and big-data

analytics.

Francisco Facchinei received the Ph.D. de-
gree in system engineering from the University
of Rome, “La Sapienza,” Rome, Italy, in 1990.

He is a Full Professor of operations research,
Engineering Faculty, University of Rome, “La
Sapienza.” His research interests include the-
oretical and algorithmic issues related to non-
linear optimization, variational inequalities, com-
plementarity problems, equilibrium program-
ming, and computational game theory.

Gesualdo Scutari (Senior Member, IEEE) re-
ceived the electrical engineering and Ph.D. de-
grees (both with honors) from the University of
Rome “La Sapienza,” Rome, Italy, in 2001 and
2005, respectively.

He is the Thomas and Jane Schmidt Rising
Star Associate Professor with the School of In-
dustrial Engineering, Purdue University, West
Lafayette, IN, USA. His research interests in-
clude continuous and distributed optimization,
equilibrium programming, and their applications

to signal processing and machine learning.
Dr. Scutari was the recipient of the 2006 Best Student Paper Award at

the IEEE ICASSP 2006, the 2013 NSF CAREER Award, and the 2015
IEEE Signal Processing Society Young Author Best Paper Award. He is
a Senior Area Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING
and an Associate Editor for SIAM Journal on Optimization.

Vyacheslav Kungurtsev (Member, IEEE) re-
ceived the B.S. degree in mathematics from
Duke University, Durham, NC, USA, in 2007,
and the Ph.D. degree in mathematics with a
specialization in computational science from the
University of California - San Diego, La Jolla,
CA, USA, in 2013.

He spent one year as Postdoctoral Re-
searcher with the KU Leuven, Leuven, Belgium,
for the Optimization for Engineering Center, and
since 2014, he has been a Researcher at Czech

Technical University in Prague, Czechia, working on various aspects of
continuous optimization.

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 03:39:14 UTC from IEEE Xplore. Restrictions apply.

