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1. Introduction
We consider the nonconvex constrained optimization problem

minimize f(x)
X

st ¢g(x) <0 )
x €K,

where K C R" is a nonempty closed and convex set, and f : R” — R and g : R" — R" are C!"! (i.e., continuously
differentiable with locally Lipschitz gradients) functions on an open set containing K.

Penalty functions (differentiable or nondifferentiable, exact or sequential) are part of the folklore in op-
timization and have been widely used in analyzing optimality conditions, stability and sensitivity properties,
and in developing solution methods. In this paper, we put forward a new use of penalty functions in the
design of algorithms for the solution of (P). In particular, we consider the classical nondifferentiable pen-
alty function

W) 270 + 4 max{gi(x).

where a; = max{0,a} and ¢ is a positive penalty parameter. We propose a novel use of W(x; ¢) in that, contrary
to usual penalty algorithms, the penalty function only enters in the theoretical analysis of convergence, whereas
the algorithm itself is penalty free, hence the term ghost penalty. We establish (subsequential) convergence to
generalized stationary points under essentially no assumptions beyond the C!! requirement on the problem
functions. In particular, we assume neither feasibility of the problem nor any constraint qualification and
therefore (subsequential) convergence to generalized stationary point is the natural target for a well-behaved
algorithm (Birgin et al. [8], Burke[11], Burke [12], Burke and Han [13], Burke and Hoheisel [14], Cartis et al. [15],
Cartis et al. [16], Cartis et al. [17], Cartis et al. [18], Cartis et al. [19], El-Alem [29], Facchinei [30], Liu and Sun [40],
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Liu and Yuan [41], Martinez [44], Yuan [67]). Once our main convergence result has been established, the role
played by further classical assumptions, like feasibility or constraint qualifications, for example, is easily
understood and can be taken into account in a straightforward way.

Our framework is of a generalized sequential quadratic programming (SQP) type. At each iteration x¥, we
generate a search direction d(x") by solving a strongly convex optimization subproblem constructed along the
lines discussed in the seminal papers (Burke [11], Burke and Han [13]) and also taking into account the
developments in Facchinei et al. [32] and Scutari et al. [57]. The direction-finding subproblem reads as follows:

mini;nizef(d; ) st gd;x) <xk(xV)e, |l <B, d€eK—-x", (1)

where f(e;x") and 3i(e; x") are strongly convex and convex approximations of f and g, respectively, x(x*) € R is
nonnegative and defined to make the subproblem feasible, f is a user-chosen positive constant, and e € R” is
the vector with all components being one. The classical SQP subproblem is a particular instance of (1), when g
is just a linearization of ¢ and f a positive definite quadratic approximation of f. Our more general approach
leaves room for much flexibility in tailoring the direction finding subproblem to the problem at hand and to
exploit any available specific structure in (P) (see Section 3 for more details).

A step yV is then taken along this direction so that

= pvd(xY). ()

We consider both classical diminishing stepsize methods (DSMs) wherein )" is a positive stepsize such that

limy"=0 and Dy = oo, (3)
Ve v=0

and stepsize selection rules where " is chosen in a more problem-tailored way, typically fixed for at least a
subsequence of iterations if not for the entire sequence. Although the algorithms in this paper generate the
search direction in a (generalized) SQP fashion, they differ markedly from classical SQP methods in the way
they select stepsizes. Indeed, SQP methods traditionally have adopted effective globalization procedures
based, for example, on line-search or trust-region strategies. Here, instead, we mostly study different tech-
niques that may be useful, for example, in very large-scale or distributed settings and that, in addition, allow
us to perform an iteration complexity analysis. Given the effectiveness of the SQP approach in handling
nonconvex constraints, our results hopefully provide an alternative to expand the applicability of SQP-
like methods.

It may be interesting to mention at this juncture the two papers (Auslender et al. [2], Bolte and Pauwels [9]),
where, in the context of an extended SQP-like scheme, a stepsize of one is always taken, thus also foregoing
line-search, trust-region, or other standard globalization techniques. The possibility to use a fixed (large)
stepsize derives from the fact that the methods in Auslender et al. [2] and Bolte and Pauwels [9] are feasible
methods, and the surrogate for the objective function is always an upper convex approximation; in fact, the
algorithms analyzed in these two interesting works belong to the class of SQP-type majorization-minimization
schemes. The essential ingredient in developing such methods is the ability to build approximations that
majorize both the constraints and the objective function; we will discuss the consequences of this setting in the
context of our scheme in Sections 5 and 6.

Some other related papers in the contemporary literature include Auslender [1], Cartis et al. [15], Fletcher [34],
and Solodov [59], where penalty algorithms are analyzed. The methods discussed in these works aim at
minimizing directly the penalty function by resorting to composite optimization approaches; this results in a
double-loop structure whereby the penalty function is (approximatively) minimized for a certain value of the
penalty parameter, and then the penalty parameter is possibly updated. Although there are some similarities
in the analysis, the algorithms presented in our paper rely on a pure SQP-like subproblem, and penalty
parameters enter only in the theoretical analysis and not in the subproblem definition.

Based on our ghost penalty approach, our main contributions are as follows:

a. the first (subsequential) convergence result for a wide class of DSMs for general nonconvex constrained
optimization problems; and

b. Iteration complexity results for some suitable choices of the stepsize )" leading, among other things, to the
first iteration complexity analysis for SQP-type methods in a general setting.
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The results related to (a) considerably widen the scope of applicability of DSMs. DSMs are part of the core
techniques in optimization, and their advantages and disadvantages are well known (Bertsekas [6], Polyak [50],
Shor [58]). However, DSMs are not yet fully understood when it comes to nonconvex problems. Indeed, the
very recent paper (Davis et al. [24]) is the first study to establish convergence results for DSMs applied to
unconstrained, nonsmooth, and nonconvex problems. The results in the present paper, therefore, close a
surprising gap in the literature, because DSMs have never been proved to lead to convergence when
addressing problems with nonconvex constraints except in some specialized settings where feasibility of the
iterates can be maintained throughout the optimization process and constraint qualifications are assumed
(Facchinei et al. [32], Scutari et al. [55]). We show that every limit point of the sequence {x"} produced
according to (2) and (3) is a generalized stationary solution for (P). By generalized stationary, we intend a
point that can be an infeasible stationary solution of the violation-of-the-constraint problem associated to (P), a
Fritz-John (F]), or a Karush-Kuhn-Tucker (KKT) point of (P). As mentioned previously, this is the natural
target of an algorithm for constrained optimization when neither blanket assumptions about feasibility of (P)
are made, nor constraint qualifications are assumed to hold. Many consider DSMs a necessary evil and
nevertheless they are currently used in many settings, for example, in parallel and distributed optimization, in
stochastic optimization, in multiagent settings, in incremental methods, and whenever the computation of the
objective function is very expensive or the problem is affected by noise (Bertsekas[5], Bertsekas [6], Bertsekas
and Tsitsiklis [7], Bottou et al. [10], Daneshmand et al. [21], Daneshmand et al. [22], Davis and Drusvyatskiy
[23], Davis et al. [24], Dean et al. [25], Di Lorenzo and Scutari [26], Facchinei et al. [32], Facchinei et al. [33],
Gupta et al. [35], Kingma and Ba [38], Nedic et al. [45], Nemirovski et al. [46], Ng and Yu [49], Polyak [50],
Scutari et al. [55], Scutari et al. [56], Suctari et al. [57], Tatarenko and Touri [63], Wang et al. [65], Zeng and Yin
[68]). In some cases, it might be hoped that soon more effective alternatives will be found; in other cases,
alternatives are harder to anticipate. In any case, as DSMs evolve to deal with new classes of problems of
contemporary interest, the need to tackle nonconvex constraints and to relax the conditions needed to analyze
convergence emerges. The developments in this paper, dealing with a standard nonconvex optimization
problem, are a first step in this direction and will hopefully pave the way for further advancements in the more
challenging settings mentioned previously.

Results indicated in (b) add to a thus-far sparse, but thriving, literature that just recently began appearing on
the topic of complexity analysis for nonconvex optimization problems. Disregarding classical results on the
gradient method (Nesterov [47]), this chapter was opened by the largely ignored paper by Vavasis [64] but
gained momentum only with the work of Nesterov and Polyak [48] on a cubic regularization method for the
unconstrained minimization of a nonconvex, smooth function. An excellent review of results in this field is
contained in Cartis et al. [18], to which we refer the interested reader for a broader view on the subject. Here
we only discuss results on algorithms for nonconvex, inequality constrained problems aimed at locating
generalized stationary points using first-order information, similarly to what we do in the present paper.

By using our ghost penalty approach, we are able to establish that O(67*) iterations are needed at worst to find a
O—approximate generalized stationary point (see Definition 3); this definition of 6—approximate generalized
stationarity relaxes the notion of an exact generalized stationary point and parallels similar developments in
Birgin et al. [8], Cartis et al. [17], Cartis et al. [18], and Cartis et al. [19]. In line with what was discussed
previously, we remark that our notion of (approximate) stationarity is naturally broader than the more
standard (approximate) KKT conditions. The bound of O(6™*) can be reduced to O(567°) if a feasible point is
known in advance and to O(672) if some further conditions are met (see Section 5 for details). As far as we are
aware of, these are the first iteration complexity results for SQP-type methods in a general setting, that is,
without assuming, for example, feasibility of iterates (see the later discussion about Auslender et al. [2] and
Bolte and Pauwels [9]). Indeed, with the exception of Cartis et al. [15], all other results for general nonconvex,
constrained problems obtained so far in the literature are based on phase I-phase II type methods wherein an
almost feasible point is first sought and then a second phase is started. More specifically, in Cartis et al. [15], a
penalty approach is shown to take either O(672) or O(67°) iterations to reach an approximate generalized
stationary point, depending on the behavior of the penalty parameter during the minimization process. Cartis
et al. [16] also describe a phase I-phase II cubic regularization method, possibly using Hessian information, for
the solution of equality constrained problems and show that the number of iterations needed to reach an
approximate generalized stationary point varies between O(63/2) and O(672) depending on certain algo-
rithmic choices. Building on the algorithm in Cartis et al.[16], and using a different definition of approximate
generalized stationary point, Birgin et al. [8] show that a phase I-phase II algorithm takes between O(67°) and
O(67°) iterations to declare a point approximate generalized stationary, according to the choice of an al-
gorithmic parameter. Finally, Cartis et al. [17] establish a bound of O(672), once again for a phase I-phase II



Facchinei et al.: Ghost Penalties in Nonconvex Constrained Optimization
598 Mathematics of Operations Research, 2021, vol. 46, no. 2, pp. 595-627, © 2021 INFORMS

method and using first-order information only. A detailed comparison of all these results is not straightforward,
because of the many subtleties involved, and we defer a more detailed discussion on this issue to Remark 5. We
conclude mentioning, once again, the SQP-like majorization-minimization methods proposed in Auslender
et al. [2] and Bolte and Pauwels [9]. Differently to what we propose here, these two papers discuss only
feasible-type methods and assume standard constraint qualifications. In this framework, interesting results are
obtained concerning the convergence rate to zero of the distance of the point generated by the method to a KKT
solution (as opposed to the more algorithmically oriented results in the papers discussed previously, where
bounds are obtained on the number of iterations needed to satisfy a given stopping criterion). The distinction
of iteration complexity and convergence rate is a subtle and sometimes blurred one. In a nutshell, the dif-
ference is that when we talk about complexity we are assuming that the constants appearing in the complexity
bound are conceptually known a priori (e.g., Lipschitz constants), whereas in the case of a convergence rate,
the bounds include constants that are possibly unknown in advance (e.g., the diameter of the region that
contains all iterates). In Auslender et al. [2], linear convergence of the sequence of iterates to the optimal
solution is obtained for strongly convex problems. The more general results in Bolte and Pauwels [9] dispense
with convexity by assuming the Kurdyka-Lojasiewicz property and obtaining a convergence rate that depends
on the Lojasiewicz exponent.

The paper is organized as follows. In Section 2, we introduce some mathematical preliminaries and, in
particular, the appropriate definition of a generalized stationary point for nonconvex, constrained problems.
In Section 3, we discuss in detail the direction finding subproblem and introduce some assumptions that
will be used to establish convergence. In Section 4, we show convergence to generalized stationary points
for DSMs, whereas in Section 5, we perform the iteration complexity analysis. We finish in Section 6 with a
discussion on the boundedness of the sequence of iterates.

2. Generalized Stationary Points
We consider Problem (P), under the blanket assumptions indicated in the Introduction, and denote the feasible
set of (P) by

X={deR": g(x)<0,deK}

We do not assume that problem (P) is feasible, let alone that it has a solution. Therefore, we aim at deriving
convergence results for both feasible and infeasible problems, in some suitable sense.

A general constrained problem (P) can be viewed as a combination of two problems: (i) the feasibility one,
that is, the problem of finding a feasible point; and (ii) the problem of finding a local minimum point of the
objective function over the feasible set. Even just the former problem is a hard one, because it essentially
requires computing a global minimum of the generally nonconvex function expressing the violation of the
constraints. Consistently, we design our algorithm to converge to stationary solutions in a generalized sense,
that is, to points that either are stationary for (P) or are infeasible and stationary for the following violation-of-
the-constraints optimization problem:

minimize mlax{ gi(x),},

4)

x ek,

where, we recall, a, = max{0,a} for all @ € R. Let

Mi(x) 2{&| & € Npr(8(x)), 0 € Vf(x) + Vg(x)& + Nk(x)}

and
M) 2 {£1 € N g0 = max{gi ). Je] 0 € Vg(m)e + N,

where Ng»(y) and Nk(x) are the classical normal cones to the convex sets R” and K at y and x, respectively, Vf
is the gradient of f and Vg is the transposed Jacobian of g. If g(x) < 0, the condition & € Ng»(g(x)) can be more
familiarly rewritten as &; >0, ;gi(x) = 0 for all 7 (a similar reasoning applies to the normal cone expression
in the definition of My(x)). We note explicitly that if x is not feasible, the set M;(x) is empty. Let X be a local
minimum point of (P), then it is well known that either M;(%) # 0 (the point is a KKT point), or My(%) # {0}
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(the point is a Fritz-John point), or both. On the contrary, it is classical to show that if X € K is not feasible; that
is, if gi(%) > 0 for at least one index i € {1,...,m}, in view of the regularity of the functions involved, then the
stationarity condition for problem (4),

0 € Imax{gi(%),} + Nk(2), ©)

is equivalent to My(%) # {0}. Hence, the (generalized) stationarity criteria for the original problem (P) can
naturally be specified by using the sets M; and M, as detailed in Definition 1.

Definition 1. A point % € K is, for problem (P),
e a KKT solution if g(*) <0 and M; (%) # 0;
e an FJ solution if g(%) <0 and My(%) # {0};
e an External Stationary (ES) solution if g;(%*) > 0 for some i€ {1,...,m} and My(X) # {0}.

We call X € K a generalized stationary solution of (P) if any of these cases occurs.

Because we did not make any regularity or feasibility assumptions on problem (P), finding a generalized
stationary solution in the sense just described is the appropriate requirement for a solution algorithm; we
show that our method does converge to generalized stationary points as defined previously. It also turns out
that, under classical regularity conditions, our algorithm actually converges to KKT points. The constraint
qualification (CQ) we use is the Mangasarian-Fromovitz one, suitably extended to (possibly) infeasible points.

Definition 2. We say that the extended Mangasarian-Fromovitz constraint qualification (eMFCQ) holds at & € K if
Mo(%) = {0}.

If X is feasible and K = R", this condition reduces to the classical MFCQ and, in turn, whenever the constraints
are convey, it is well known that the MFCQ is equivalent to Slater’s CQ, that is, to the existence of a point ¥
such that g(¥) < 0. The eMFCQ is rather standard and its definition goes back at least to Di Pillo and Grippo [27]
and Di Pillo and Grippo[28], having its roots in Rockafellar [52]; since its introduction, it has been used rather
often, especially in the analysis of penalty and SQP algorithms, because it arises quite naturally in these
contexts. By using Craven [20, Motzkin’s theorem of alternative 2.5.2], we see that the eMFCQ holds at & € K if
and only if

3d € Tx(®): Vg(®)Td <0, Vi:g®) = m]gax{gj(fc)+}. (6)

Because K is convex, simple continuity arguments show that the latter condition is equivalent to

3% € K: Vgi(®) (¥ —%) <0, Vi:gi#) =max{g/®),}. 7)
]

We state below a result that extends a standard property of the MFCQ for feasible points.

Proposition 1. If the eMFCQ holds at X € K, then there exists a neighborhood V of X such that, for every x € KNV, the
eMFCQ is satisfied.

Proof. If ¥ € K is feasible, this is a classical result. If * € K is not feasible, the condition My(%) = {0} implies that % is
not a stationary point for the feasibility problem (4), that is, 0 ¢ d max;{gi(X), } + Nx(%). The assertion then easily
follows from the outer semicontinuity and local boundedness of the subdifferential mapping d max;{gi(e), } and by
(see Rockafellar and Wets [54, proposition 6.6]) the outer semicontinuity relative to K of the set valued mapping Nk
(see Rockafellar and Wets [54] for the definition of outer semicontinuity). ©

3. Direction Finding Subproblem

At each iteration of our algorithm, we move from the current iteration x* along the direction d(x") with a
stepsize )", see (2). Although the stepsize is chosen according to several rules to be discussed in the following
sections, the direction d(x") is the solution of the strongly convex subproblem (1), briefly described in the
Introduction, that we repeat here for the reader’s convenience.
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Given a (base) point x € K (which will actually be the current iterate x" in the algorithm), d(x) is the unique
solution of the following strongly convex optimization problem:

mini[}nize f(d; %)
sit. §(d;x) < x(x)e
ldllw < B, (Px)
deK-—x,
where e € R™ is the vector with all components being one and  is a user-chosen positive constant. Moreover, f
is a strongly convex surrogate of the original objective function f, whereas g is a convex surrogate of the
original constraints ¢ (see Assumption A for the conditions these surrogates must obey). Finally, following

Burke [11], the quantity x(x) in the surrogate constraints, which serves to suitably enlarge the feasible set of the
subproblem to ensure it is always nonempty, is defined, for every x € K, as follows:

k() 2 (1= Ay max{gi(x), } + A mdin{maX{Qi(d; O}l < p, d €K - x}, (8)

1 1
with A € (0,1) and p € (0, B). Note that (8) requires the computation of the optimal value of the convex problem
i max{65 ), Ml < p, € K=} ©)

that always has an optimal solution because the feasible set is nonempty and compact. If x is feasible for (P),
x(x) = 0. The additional constraint [|d||,, < allows us to avoid issues of ever-increasing search directions.
Overall, in the sequel we denote by X (x) and d(x) the convex feasible set and the unique solution of sub-
problem (Py), respectively, that is,

X(x)2{deR" : 3(d;x) < x(x)e, ||, <, d € K—x}
d(x) 2 arg;nm{]f(d; ¥)lde Fz(x)},

and we equivalently refer to constraint ||d||,, < f as d € fB”,, where B, is the closed unit ball in R" associated
with the infinity norm.

For our approach to be legitimate and lead to useful convergence results, we obviously need to make
assumptions on the surrogate functions f and g.

Assumption A
Let Oy and Oy be open neighborhoods of B, and K, respectively, and f : Oy x O, — R and §; : R" x O, — R
for every i=1,...,m be continuously differentiable on O; with respect to the first argument and such that

Al. f(e;x) is a strongly convex function on Oy for every x € K with modulus of strong convexity ¢ > 0
independent of x;

A2. f(O; e) is continuous on Oy X Oy;

A3. VJ'(O; o) is continuous Oy X O,;

A4. VJ(O; x) = Vf(x) for every x € K;

A5. gi(e;x) is a convex function on Oy for every x € K;

A6. 3i(e; @) is continuous on R" X O,;

A7. 3/(0;x) = gi(x) for every x € K;

A8. V13i(e; @) is continuous on Oy X O;

A9. V13i(0;x) = Vgi(x), for every x € K;
where Vlf (1;x) and V;§;(u; x) denote the partial gradient of f(O;x) and 3;(e; x) evaluated at u. These conditions
are easily satisfied in practice and have been used in many recent papers. While we refer the reader to
Facchinei et al. [32] and Scutari et al. [57] as good sources of examples, we nevertheless pause to consider some
possible choices for the surrogate functions f and ¢ and to make a few general considerations.
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3.1. On the Choice of f and §
The direction finding subproblem (P,) is a direct generalization of traditional SQP subproblems and, in
particular, of the subproblems considered in Burke [11]. The most classical choice for f and g is

F(d; x) 2 VF(x)Td + %dTH(x)d, 3(d; x) 2 g(x) + Vg(x)'d, (10)

where H(x) is a positive definite symmetric matrix. With this choice, Assumption A can be easily satisfied
provided that, classically, the smallest eigenvalue of the positive definite matrix H(x) is uniformly bounded
away from zero. If we use the surrogates (10) in (Py), and assuming K = R", (P,) becomes the more classical
SQP-type subproblem 1
minidmize fx) + Vf(x)Td + EdTH (x)d

s.t. g(x) + Vg(x)Td < x(x)
ldlles < B.

Regarding x, we remark that, with the classical choice given in (10), problem (9) in its definition reduces to a
linear program if K is polyhedral and thus can be efficiently solved.

Although the previous discussion shows that we can cover classical SQP schemes using linear/quadratic
approximations, it is interesting to at least hint at how the flexibility allowed by Assumption A can be
exploited to define better approximations to the original problem (P). Suppose for example that f(x) =
f1(x) + f2(x) with both functions C!!, but with f; convex and f, not necessarily so. Instead of approximating the
whole function with a quadratic model, we could well preserve the convex part and only approximate the
nonconvex one, therefore setting

Ff(d;x) = fi(x +d) + fo(x) + Vo(x)Td + %dTH(x)d,

with H(x) as before. It is clear that this f satisfies Assumption A and is presumably a better approximation to f
than Vf(x)'d + 1d"H(x)d considered previously.

As a further example, assume that f is the product of two functions fi(x)f>(x) with f; and f, convex and (for
simplicity of presentation) positive. This is a rather frequent case in applications (Scutari et al. [56]). Because
we have Vf(x) = /L (x)VA(x) + 1(x)Vfa(x), it seems rather natural to set

i) = i+ d) + i@+ d) + 5 H@A

which, again, should result in a sensibly tailored approximation that preserves part of the structure of the
objective function.

Of course, an underlying assumption of our approach is that subproblem (P;) can be solved efficiently. We
do not insist on this point because it is very dependent on the choice of f and g, which in turn is dictated by the
original problem (P). But the use of models that go beyond the classical quadratic/linear one in constrained
optimization is emerging consistently in the literature because it permits one to exploit any potentially fa-
vorable structure in problem (P) and, in any case, to better tailor the subproblems to the original problem
(Beck et al. [4], Facchinei et al. [32], Lipp and Boyd [39], Scutari et al. [57], Sun et al. [61], Svanberg [62]). This
use is also motivated by the possibility to solve efficiently more complex subproblems than the classical
quadratic ones, sometimes even in closed form, and by the desire for faster convergence behaviors (see
Facchinei et al. [32], Hong et al. [36], Mairal [43], Martinez [44], Razaviyayn et al. [51], Scutari et al. [56], Sun
et al. [61], and references therein).

Among all the possible choices for the approximating functions, the case where we take the g;s to be Upper
Convex Approximations (UCA) of g;s is worth to be pointed out. More precisely, suppose that, in addition to
Assumption A, for every x € K, we have

Rild;x) = gi(x+d), Vi=1,...,m, Vd € K—x. (11)

The main consequence of this choice is that if x € X, then 0 € X(x) and, by (11), x + X(x) C X. This means that if
x" € X and, according to (2), we set x'*! = x” + "d(x") with y” € (0,1] (a condition that will always be satisfied
by all algorithms considered in this paper), also x'*! is feasible, that is, x**! € X. This simple observation has
important algorithmic ramifications that will be explored further in the next three sections. The main issue if
one wants to use UCAs is finding suitable majorants. It turns out this can be done in a host of situations; the
interested reader can find a very rich array of examples in Facchinei et al. [32], Hong et al. [36], Hunder and
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Lange [37], Razaviyayn et al. [51], Scutari et al. [55], Scutari et al. [56], and Sun et al. [61]. Here, we just
consider two examples.

The simplest case is possibly the one in Auslender et al. [2], where a feasible SQP-like approach is developed
that rests on the assumption (among others) that the g; have Lipschitz continuous gradients (with constant
Lyg,) and the descent lemma is used for defining suitable majorants as

8ud; ) = i(x) + Vgi(x)Td + I, (12)

By taking a > Ly, (12) provides an UCA for g;. A second example of a case in which we can very easily build
majorants is when the function has a DC structure. Specifically, suppose that g; = g/ — g7, with both ¢/ and g7
convex. In this case we can build an upper convex approximation by setting

8ild;x) =g/ (x +d) — (87 (x) + Vg7 (v)"d).

3.2. Main Properties of (Py)
In this section, we state the main properties of subproblem (P,). Starting from feasibility, we remark, as
already mentioned, that the term x(x) plays a key role in guaranteeing that our subproblems (P,) have a
nonempty feasible set X'(x). Because x(x) is always nonnegative, being the sum of two nonnegative quantities,
it restores feasibility by enlarging (with respect to the SQP choice §(d;x) <0) the range of admissible
values (Figure 1). .

In fact, the feasible set of problem (Py), for every x € K, is nonempty: choosing d at which the minimum in
the expression of x(x) is attained, we have

Q(EZ, x) < rr}jin{mlax{gi(d; X), Hldllew < p, d € K- x}e = max{gi (t;l, x)+}e,

1

and, in turn,
g(&;x) =(1- /\)g(fi;x) + /\g(fi;x)

<|1-2) mljax{g,-(o; x),}+ /\nbin{ml.jax{g,-(d;xh} [|d]lo < p,d e K- xHe = x(x)e.

In Lemma 1, we establish some preliminary properties concerning the feasible set of problem (Py).

Lemma 1. The following results hold:
i. for every X € K, and for every a >0 and d € aB], N (K —X), the constraint qualification

[~Nagz, (d)] N Ni—z(d) = {0} (13)
holds and, in turn, Nugr nk-2)(d) = Nagr, (d) + Nx_z(d);
ii. for every a >0, the set-valued mapping aBZ N (K — e) is continuous on K relative to K;
iii. letting C={(d,x) € B, x K : d + x € K}, the set-valued mapping Nggr n(k—e)(®) is outer semicontinuous on C

relative to C.

Proof. (i) Let 0 # 17 € [~Nup (d)] N Ng_z(d). Because of the convexity of the sets aB”, and K — &, we have —n' (v —
d) <0 Vo e aB and n'(y—d) <0 Yy € (K—3%). Choosing y = 0 € (K — %), one gets the following contradiction:

0 < a max{-n'v|veBL} < -n'd <0,
%

Figure 1. (Color online) From R" to R” + xB/.: The enlargement in the feasible region of (P,).
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thus proving relation (13). As a consequence, the other claim in (i) follows from Rockafellar and Wets [54,
theorem 6.42].

ii. The property holds because of the continuity (relative to K) of the set-valued mapping K — e at every
x € K and the fact that aB], N (K- x) # 0 for every x € K.

iii. Suppose by contradiction that (4", ")—>(d X), " € Nggrak-x)(d"), n" — 1 with 7 & Nggr k- x)(d) Hence,
z € BB, N (K - %) exists such that 77(z —d) <0. By the inner semlcontmulty relative to K (see [54] for the
definition of inner semicontinuity) of SBZ N (K — e) at X, z" exists such that z¥ — z and z" € B, N (K —x"). In
turn, eventually we get (1")7(z" —d") > 0 in contradiction to the inclusion 1" € N nk—x)(d”). O

The function x(x) is obviously continuous and, under a very weak additional requirement, also locally
Lipschitz continuous. This result has been shown in Burke [11] whenever § is the linear approximation in (10)
and readily generalizes to the case of the surrogate 3 we consider here.

Proposition 2. Under Assumption A, «(e) is continuous on K relative to K. If, in addition, 3(e; e) is locally Lipschitz
continuous on Og X Oy, then k(o) is also locally Lipschitz continuous on K.

Proof. The continuity of «(e) follows readily from the continuity (relative to K) of the set-valued mapping pBJ, N
(K — ) at every x € K: this in turn follows from (ii) in Lemma 1 with a = p.

The Lipschitz continuity under the additional condition derives from Rockafellar [53, theorem 3.1]. Suffice it to
observe that the constraint qualification (13) with @ = p holds for every x € Kand d € pB”, N K — x, and the problem
in the definition of « is solvable for every x in a neighborhood of K. O

The local Lipschitz continuity of 3(e;e) is part of Assumption C to be introduced shortly.
The following technical lemma is very useful for the subsequent developments.

Lemma 2. Under Assumption A, the following results hold for any % € K:

i. if max{g;(%),} > 0 and x(X) < max;{g:(%),}, then, for all p € (0,B), there exists d € int(BBL) N relint(K — %) such
that 3(d; %) < x(%)e;

ii. if max;{gi(%),} > 0 and k(%) = max;{gi(X),}, then X is an ES point for (P);

iii. if max;{gi(%),} = 0, then either X is a F] point for (P) or, for all p € (0, B), there exists d € int (BB, ) Nrelint(K — %)
such that §(d;x) < 0.

Proof. (i) Choosing de argmin {max;{gi(d; %), } | lld|lc < p, d € K- %}, we can infer g(cAl, %) < ming{max;{g:(d; X), } |
]l < p,d € K — &}e, while §(d; %) < x(%)e < max;{g;(%), Je and thus,

g(&;fc) = Ag(&l; x) +(1- A)g(éz; x) < x(®)e,

with d € pBZ N (K — &). The claim follows by continuity because p < .

ii. Equality x(%) = max;{gi(%), } holds if and only if 4 = 0 solves the minimization problem in the definition
of x and, in turn, My(%) # {0} by (13) with a = p, A7, and A9.

iii. With max;{g:(X),} being equal to zero, we have () = 0 and g(%) < 0. If My(%) # {0}, then, by definition,
% is a FJ point for (P) and the result holds.

Thus, let us suppose My(%) = {0}. For those j € {1,...,m} such that g;(%) < 0, we have g;(0; %) = g;(%) < 0; as for
indices k € {1, ..., m} with g(%) = 0, by (6), there exists d € Tx(%) such that

3(td:2) - 2(0;%)

T

0> Ver(®)d = V13(0;2)7d = lim

Thus, there exists a sequence {d"} of feasible directions for K at X such that d" € Tg(X) and 4" — d. Choosing 7"
sufficiently small, we get & + 7'd" € K for every v and the claim follows by continuity, observing that 3;(td; ) < 0
for every i and for any t sufficiently small. O

The quantity
00) 2 max{g (1)} (1) = 4 {max{gi0),} = min{max{ )} . < p, d < K — x}) (14)

plays a key role in the previous lemma and in all the subsequent developments. As shown in the following
proposition, 6 turns out to be a stationarity measure for the violation-of-the-constraints problem (4).
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Proposition 3. Under Assumption A,
i. the nonnegative function 6(e) is continuous on K relative to K;
ii. 6(X) =0 if and only if X is a stationary point for problem (4);
iii. we have, for every x € K,

0(x) < IVg()llc [l (15)

Proof. (i) By the definition (8) of «, k(%) < max;{gi(X), } because d = 0 is feasible for the minimization problem in (8)
and A7 holds. The continuity follows from Proposition 2.

ii. It is also clear that at any feasible point X for (P), 8(X) = 0; of course, every feasible point for (P) is
stationary for problem (4). Consider now an infeasible point X for (P) and suppose that 6(%) = 0. By (ii) in
Lemma 2, X turns out to be an ES point for (P). Hence, we are left to show that if X is an ES point for (P), then
0(%) = 0. For X to be ES, it is necessary and sufficient (see condition (5)) to have My(%) # {0} which in turn, by
the Motzkin’s alternative theorem (Craven [20, 2.5.2]), holds if and only if

Ad € Ty(®) : Vgi(®)'d <0, Vie L (z)2 {i L gi(®) = mjax{g]-(;z)+}}. (16)

Suppose by contradiction that 6(%) > 0. Then, noting that d € K — X implies d € Tx(%), Lemma 2(i) states that
d € Tx(x) exists such that §;(d;X) < x(%) for all i € I,(*). However, using A5, A7, and A9, we can write, for
every i € L,(X),

mlax{g,'(fc)Jr} > k(&) > §i(d; %) > 3:(0;%) + V12:(0; %) (d — 0) > gi(&) + Vgi(®)"d.

Because i € [,(%), this implies Vg;(%)'d < 0, contradicting (16).
(iii) Furthermore,

0= 06) = max{g (), } - k(") < max{g (), } - max{de) =)}

< max{g(x'),} - max{(s () + V() d(x"), )

(;)miaX{(gi(xv) = 8i(x") = Vgi(x")1d(x")), } < IVg(x") A"l < VGGl lAG)I,

where (a) holds because g(d(x");x") < k(x")e, (b) is because of A5, A7, and A9, and (c) follows observing that
max{0, a1} — max{0, @} < max{0, a1 — ax} for any a1, ap € R. O

Leveraging Lemma 2 and resorting to standard results in parametric optimization, we can establish a key
continuity property for the solution mapping d(e) of subproblem (Py).

Proposition 4. Under Assumption A, let the eMFCQ hold at % € K for problem (P). Then,
i. the MFCQ holds at every point of X (%) for subproblem (Ps);
ii. a neighborhood V of % exists such that, for every point x € KNV, the mapping d(e) is continuous relative to K.

Proof. If the eMFCQ holds at & for problem (P), case (ii) in Lemma 2 cannot occur. On the other hand, as for both
cases (i) and (iii) in Lemma 2, Slater’s constraint qualification holds for X(%) and, since X(&) is convex, this
proves (i). Because of A6 and (ii) in Lemma 1, the set-valued mapping X (o) =[BBLN(K—9o)]N{deR" : 3(d;e) <
«(®)e} is outer semicontinuous at & relative to K by Bank et al. [3, theorem 3.1.1], having taken into account that x(e)
is continuous by Proposition 2. Moreover, X(s), by virtue of the Slater’s constraint qualification, A5, A6, and (ii) in
Lemma 1, is also inner semicontinuous (Bank et al. [3, theorem 3.1.6]) at & relative to K. Hence, thanks to Al, the
continuity (relative to K) of d(e), leveraging Bank et al. [3, theorems 3.1.1 and 4.3.3], follows from Rockafellar and
Wets [54, corollary 5.20]. O

To prove some refinements of the convergence results in the next section, we need d(e) to be not only
continuous but also Holder continuous on compact sets: for this reason, we introduce Assumption B.

Assumption B. For any compact set S C K, two positive constants 6 and « exist such that
ld(y) —d@)ll < Olly - zlI*, Vy,z€S.

Because it is not immediately obvious when this condition is satisfied, below we give a set of simple sufficient
conditions on f and § for Assumption B to hold.
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Assumption C. The following results hold:
C1. the partial gradient Vif(e;e) is locally Lipschitz continuous on O, X Oy;
C2. each gj(e;e) is locally Lipschitz continuous on Oy X Os.
The following proposition, which builds on the results in Yen [66], shows the desired result.

Proposition 5. Under Assumptions A and C, let S C K be compact. Suppose further that the eMFCQ holds at every X € S.
Then, there exists O > 0 such that, for every y,z € S,

ld(y) - d)ll < Olly — =P (17)

Proof. Preliminarily, observe that by Proposition 2, «(e) is locally Lipschitz continuous. Furthermore, by
Proposition 4(i), we have that the MFCQ holds at every point in X'(%) and, in particular at d(%). In turn, the MFCQ
at d(x) € X(), for every % € S, implies, by Rockafellar [53, theorem 3.2], that the set-valued mapping X has the
Aubin property relative to S at X for d(X) for every & € S (see Rockafellar and Wets [54] for the definition of the Aubin
property). Therefore, in view of Yen [66, theorem 2.1], for every X € S, there exist 0’ > 0, 0” > 0 and a neighborhood
V of & such that, for every y, z€ VNS

ld(y) - d@)l < O'lly = 2l + 6”lly - =
By the previous relation and the compactness of set S, (17) holds. ©

Remark 1. Assumptions A and C may look tediously detailed, but this is necessary to correctly identify the minimal
conditions that make our method work. We emphasize that these conditions are trivially satisfied when one uses as
f and g the classical quadratic/linear approximations (10) of standard SQP methods. Assumption C reinforces some
of the requirements in Assumption A; we refer the reader to Facchinei et al. [32] for some examples of surrogate gs
satisfying Assumption A and Assumption C beyond the obvious case of linear approximations.

We conclude this section discussing the KKT conditions for problem (P,). Observe preliminarily that the
constraint ||d||, < corresponds to 2n bounds of the type —f <d; <. However, in what follows, we are
interested only in the multipliers corresponding to the constraints 3(d;x) < x(x)e, and therefore we find it
expedient to write the KKT conditions as

0 € Vif (d(x); %) + VaZ(d(x); )& + Ngsz a0 (d(x),

with the KKT multipliers & satisfying the conditions & > 0 and &7(3(d(x); x) — x(x)e) = 0. We now establish the
local boundedness of these KKT multipliers.

Proposition 6. Under Assumption A, let X belong to K and suppose that de BB N (K — ) exists such that g(&z; X) < xk(X)e.
Then, a neighborhood V of X exists such that, for every point x € KNV, the unique solution d(x) of (Py) is a KKT point for
problem (Py) and the set-valued mapping of the KKT multipliers is locally bounded at X relative to K.

Proof. The condition g(fi; X) < x(%)e with de BBL N (K — %) is nothing else but the Slater’s CQ for problem (Ps),
which obviously implies that the MFCQ holds at the unique solution of problem (Pz). The derivation of the result
is then rather classical and follows easily from Facchinei and Pang [31, proposition 5.4.3] taking into account
Lemma 1(ii), Propositions 2 and 4, and the outer semicontinuity of Ngg: n-.)(®) (see Lemma 1(iii)). O

4. Convergence of DSMs
We are now ready to introduce the proposed scheme, as given in Algorithm 1.

Algorithm 1. DSM Algorithm for (P)
Data: y¥ € (0,1] such that (3) holds, x° € K, v«—0
repeat
(S.1) if xV is generalized stationary for (P) then
‘ stop and return x"

end
(S.2) compute x(x") and the solution d(x") of problem (Py);
(S.3) set XVl =2V +9Yd(x"), ve—v + 1;

end
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The algorithm is always well defined if Assumption A, which guarantees existence and uniqueness of d(x"),
holds. The main (and essentially only) computational burden is given by the computation of x(x") and the
solution of the strongly convex subproblem (P,+). This difficulty can range from that necessary to solve an LP
and a strongly convex quadratic problem, whenever quadratic/linear approximations are used, to that of
solving two convex optimization problems. Theorem 1 establishes the main convergence properties of
Algorithm 1. In a nutshell, the theorem shows that, unless x" is a generalized stationary point, d(x") is a
descent direction for W(x";¢) if ¢ is sufficiently small. Elaborating on this simple fact we can then show,
without ever computing W or actually determining a value for ¢, that the sequence generated eventually lands
on a generalized stationary point. The results in Theorem 1 do not exclude the possibility that Algorithm 1
generates an unbounded sequence. In Section 6, we discuss the meaning of this possible outcome and, more
importantly, give several conditions under which we can guarantee that the sequence generated by Algorithm 1
(and also by the two algorithms we introduce in the next section) is bounded.

Theorem 1. Consider the sequence {x"} generated by Algorithm 1 with f and § such that Assumption A holds. Then, the
whole sequence {x"} is contained in K. Furthermore, either the sequence {x"} is unbounded or the following assertions hold:
i. at least one limit point X of {x"} is generalized stationary for problem (P); in particular, if the eMFCQ holds at %,
then % is a KKT point for problem (P);
ii. if, in addition, the eMFCQ holds at every limit point of {x"}, under Assumption B, every limit point of {x"} is a
KKT solution for problem (P).

Proof. Because the starting point x° belongs to the convex set K, the stepsize ” <1 and, by the last constraint
in (Py), " +d(x") € K for all v, it is easily seen that all points x” generated by the algorithm belong to K. We now
assume, without loss of generality, that the sequence {x"} is bounded. Preliminarily, observe that, at each step, the
solution d(x") of subproblem (P,+) is also a KKT point for (P,+). In fact, suppose that at a certain iteration v, d(x”) does
not satisfy the KKT conditions for (P,+). The subproblem is always feasible by construction; let us analyze the three
exhaustive cases considered in Lemma 2. In case (i), Slater’s condition holds for (P,») and d(x”) is a KKT point. In
case (ii), x” is an ES point of (P): hence, we would have stopped at step (S.1). In case (iii), either Slater’s condition
holds for (P,») and d(x”) is a KKT point, or x” is a FJ point for (P), in which case we would have stopped at step (S.1).

Thus, d(x¥) is a KKT point for (Py) and multipliers {£"} exist such that & € Nrn(g(d(x"); x") — x(x")e) and
0 € Vif(d(x");x") + Vig(d(x"); x)&" + Niggr k- (d(x")). (18)
Thanks to A1 and A4, we have

Vif(d(x");x) T d(x") = [Vif(d(x);27) = Vaf (0;x7) + Vaf (0;x")|Td(x") = clld(x)I + Vf(x")Td(x"). (19)

Moreover, in view of A5, for every i=1,...,m,
—V1Zi(d(x); x")Td(x") < 3:(0;x7) — Zi(d(x"); 1Y), (20)

and, by A7, because & is nonnegative, in turn,
—&EVagid(x");x")Td(x") < EF[5i(0;x7) = Zild(x"); )] = E[gi(x") = k(x)], (21)

where the equality follows observing that & belongs to Ng_((d(x"); x") — 1(x")e).
Therefore, by (18), (19), and (21), we have, for some C" € Ngg: nk—x)(d(x")),

clld(eIP + VF (') (@) < Vif(d(e); x")Td(x") = =€ TVA(A(x"); x) Td(x") = CTd(x") < &g (x") = w(x")e]
< EVT[mlax{gi(xv)Jr} - K(xv)]e,
where the second inequality holds because of 0 € B, N (K — x"). Therefore, recalling definition (14),
VF() d(x") < —clld(x")IP + 0(x*) e (22)
We also notice that, because d(x") is feasible for problem (P.»), by A5, A7, and A9,
(") = i(d(x"); x¥) = §i(0;x7) + V§i(0; ") d(x") = gi(x") + Vgi(x¥)Td(x"). (23)
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Let us now consider the nonsmooth (ghost) penalty function already described in the introduction
1
W(x; &) 2f(x) + —max{gi(x). }, (24)

with a positive penalty parameter ¢. This function plays a key role in the subsequent convergence analysis,
although it does not appear anywhere in the algorithm itself.

In the following analysis, we will freely invoke some properties of function (e), = max{0,e}, namely
max{0, a1} < max{0, a,} for any a3, ay € R such that a7 < ap, max{0,aa} = a max{0,a} for any @ € R and non-
negative scalar 4, and max{0, a; + a2} < max{0, a1} + max{0, @z} and max{0, a1} — max{0, @;} < max{0,a; — a}
for any ay, a, € R. We have

W(x"*;e) - W(x'; )

=f(x" +y'd(x")) - f(x") +l

max{g;(x’ +y"d(x")), } - max{gi(x"), }

<7/VVf(xV)Td(x”)+( ) Lide)P + maX{(gl(x”)+VVng(xV)Td(XV)) }

(VV)ZmaXf{Lng}

- max{g),} + 1T

IId(x”)IIZl

®
< YR + - max{(1 - ")), 4y ()} - max{gi(x').

+

N2
vr Loy + M)nd( P

v)2 )
) (Lw + max’iLVg"})||d<xV)u2

<PV 1m0, - )+

4 4 2 Xl
<PV - 2 o) + ) L+ ™ t Vg'})nd( IIE, 25)

where (a) follows applying the descent lemma to f and g; for every i =1,...,m, with Ly and Ly, being the
Lipschitz moduli of Vf and Vg; on the bounded set containing all iterates; (b) holds for any positive " < 1
since, in view of (23), Vg;(x*)Td(x") < x(x") — gi(x"). Furthermore, we observe that

VAGA) = ¢ 00) <~ +000°) €Te = 0) <~ + (el ~¢ 06, 29

where the first inequality is entailed by (22).
By (26), for any fixed x” and for any 1 € (0, 1], there exists " > 0 such that

VAT - ) < —neld@IP Ve € 0,€) 27)

We now distinguish two cases.
(I) Suppose that (27) does not hold uniformly for every x*, thatis n € (0, 1], and a subsequence {x"} , exists, where
N c{0,1,2,...} such that we can construct a corresponding subsequence {¢'},- € R, with ¢” | 0 on N and

VATd) ~ - 0c") > nelldx)P (28)

for every v € N. For (28) to hold, relying on (26), the multipliers” subsequence {£'},, must be unbounded.
Combining (26) and (28), we get

0 % (1= P < (€'l = 1) 00,
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and, thus, 6(x") > 0 for every v € N. By the previous relation and (28), we also have

1 VA6 + nelld@)lP

2
&v O(x) 29)
As €' | 0 on N, the right-hand side of (29) goes to infinity: by the boundedness of the numerator,
0(x")—0. 30
&) (30)

Let X be a cluster point of the subsequence {x"} .. By (30), only cases (ii) and (iii) in Lemma 2 can occur at & € K.
The existence of a d as stipulated in Lemma 2 (iii) would entail, by Proposition 6, the boundedness of the KKT
multipliers & for v € N large enough, thus giving a contradiction. Therefore, by Lemma 2 (ii), we conclude
that & is either an ES or FJ point for (P).

(I) As opposed to (I), consider the case in which relation (27) holds uniformly for every x': that is, for any
n € (0,1], there exists € > 0 such that

VAGTd() - 1 00c) < —nellde P Ve € (0,8, V. (31)
Combining relations (25) and (31), we get

N2
W(x;8) = W(x'; ) < =y nelld(x) | + @ (Lw +—max’{ Vg'})nd( I

= ='|ne = b +w)]nd( e, (32)

for any & € (0, &]. Because lim, ¥ =0, there exists a positive constant w such that, by (32), for v > ¥ suffi-
ciently large,

W(x &) = W(x'; €) < —wpld(x)]. (33)

With W being bounded from below, by (33), the sequence {W(x"; &)} converges and
hmZy lld(x)|I* < +co.

Therefore, because Y;2,7" = +oo, we have

lim inf [[d(x")]| = 0. (34)

Recalling relation (15), taking the limit on a subsequence A such that ||d(x")||p>0, we have ||Vg(xv)||m||d(x")||p>0
and O(x")—0. Finally, let again % be a cluster point of subsequence {x"},.. Because Q(x")x;O implies

k(%) = max;{gi(%),}, cases (ii) or (iii) in Lemma 2 may occur: specifically, ¥ is either an ES, or a FJ, or a KKT
point for (P). In particular, if the eMFCQ holds at %, case (ii) in Lemma 2 is ruled out and max;{gi(%),} cannot
be strictly positive; then, k() = max;{gi(X),} = 0. Furthermore, taking the limit in (18), we obtain, by A3, A4,
A6-A9, KKT multipliers” boundedness, and the outer semicontinuity property (see Lemma 1 (iii)) of the
normal cone mapping Ngg: nk—s)(®),

—Vf(%) - Vg(3)é € Ny n(k-2)(0) = {0} + Nk-2(0) = Nk(%),

with & € Ngn(3(%) — ©(%)e) = Nrn(g(%)) and where the first equality follows from Lemma 1 (i). In turn, X is a
KKT point for problem (P). This concludes the proof of case (i).

Consider now point (ii). If the eMFCQ holds at every limit point of {x"}, then case (I) cannot occur because this
would contradict the last sentence before (II); hence, we are in case (II). Observe that if, instead of the weaker (34),

lim {ld(x")[| = 0 (35)

holds, we can reason similarly to what done above after (34) for any convergent subsequence of {x"} and
conclude that (ii) holds. Therefore, it is enough to show that Assumption B entails (35).
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Consider now the compact set containing all iterates x*. Although liminf, . ||d(x")|| = 0, suppose by contra-
diction that limsup,_,, ||d(x")|| > 0. Then, there exists 0 > 0 such that [|d(x")|| > 0 and ||d(x")|| < 6/2 for infinitely
many vs. Therefore, there is an infinite subset of indices N such that, for each v € N/, and some i, > v, the following
relations hold:

(")l < 6/2, |ld(x™)I| > & (36)
and, if i, >v+1,
6/2 < (Xl <6,v <j<i,. (37)

Hence, for all v € N/, we can write

| | @
o/2 <lld(x™ )l = el < Nld(x*) = d(x")ll < Ollx™ — 27|

<6

“Zy ()]

“(c) i a
< oo (Z y ) 8)

where (a) is because of Assumption B with a and 6 positive scalars, (b) comes from the triangle inequality and
the updating rule of the algorithm, and in (c), we used (37). By (38), we have

liminf 66% (Z y ) (39)

V—00
t=v

We prove next that (39) is in contradiction with the convergence of {W(x"; &)} for any & € (0, €], where € is
defined around (31). To this end, we first show that ||d(x")|| = 6/4, for sufficiently large v € N. Reasoning as
in (38), we have

ld(x )l = lld @)l < Olle™t =1 < 0(y") A,

for any given v. For v € N large enough so that 6(y")*(6/4)" < 6/4, suppose by contradiction that ||d(x")|| < 6/4;
this would give [[d(x"*1)|| < 6/2 and, thus, condition (37) (or (36)) would be violated. Then, it must be ||d(x")|| >
6/4. From this, and using (33), we have, for sufficiently large v € N,

21‘

W(x"; &) < W(x"; &) — a)Z)/Hd( )| < W(x"; &) - Z)/ (40)

t=v

Because {W(x &)} converges, as established immediately after (33), renumbering if necessary, relation (40)
implies >} )/ — 0, in contradiction with (39). This shows that (35) holds and concludes the proof of the
theorem. D

The convergence properties in Theorem 1 (i) are very much in the spirit of analogous results for constrained
optimization where no regularity conditions are made (Burke [11], Burke [12], Burke and Han [13], Facchinei [30]).
A key difference between our approach and those in Burke [11], Burke [12], Burke and Han [13], and Facchinei [30]
is that we do not use any penalty parameter in the algorithm. Indeed, we use the penalty function and
penalty parameter only in the proof of Theorem 1, as a tool of theoretical analysis, and thus we do not need to
calculate any careful penalty parameter update, allowing for convergence for the conceptually simple pro-
cedure defined previously. We believe that this ghost approach is a novelty in the literature and represents an
interesting use of penalty functions. Although our approach has some similarities to a classical Lyapunov
function approach, it is different from it. Indeed, whereas, in case (II) considered in the proof, the penalty can
be viewed as a Lyapunov function for the algorithm, the analysis of case (I) is rather different and more
involved. Indeed the proof hinges on the behavior of the penalty function, of 0, and of the penalty parameter
and on how these quantities are connected.

Remark 2. All the developments in the proof of Theorem 1 up to Equation (32) are valid independent of the
updating rule for the stepsize y¥ € (0, 1]. In the light of this observation, in the next section we invoke some of the
relations in the proof of Theorem 1 even when stepsizes not satisfying (3) are used.
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Remark 3. Algorithm 1 can easily be made into a feasible method, that is, a method that only generates feasible
iterates, if we take ;s to be UCAs, see (11). As discussed in Section 3.1, in this case, if x” is feasible, then x"*! is also
feasible, so that, if x” € X, Algorithm 1 generates only feasible iterates. This shows that Algorithm 1 contains as
special cases some recent feasible methods that were shown to be rather effective (Facchinei [32], Scutari et al. [55],
Scutari et al. [56]). y

If, furthermore, we require f to be an UCA for f, that is,

f(d;x) > f(x+d), Vd € K~x, (41)

we turn our scheme into a majorization-minimization (MM)-like method (Auslender et al. [2], Beck et al. [4],
Bolte and Pauwels [9], Hong et al. [36], Hunter and Lange [37], Mairal [43], Razaviyayn et al. [51], Sun et al. [61]).
In classical MM approaches the stepsize " is taken to be always one, whereas Algorithm 1 with UCAs for f
and g;s gives a diminishing stepsize version of the method. In Section 5.3, we show that not only can we also
guarantee convergence by setting the stepsize equal to one, but we can actually obtain, in this case, an iteration
complexity result.

5. Iteration Complexity Analysis

We introduce some new rules for choosing the stepsize )" at each iteration as an alternative to the diminishing
one analyzed in the previous section. For these rules, we are able to perform a detailed iteration complexity
analysis. Our analysis is in line with recent works on this topic (see Cartis et al. [18] for an up-to-date review).
The purpose of the iteration complexity analysis is to give a bound on the number of iterations needed by an
algorithm to reach a desired level of accuracy. This bound is expressed in terms of parameters of the algorithm
and some problem constants, for example, Lipschitz moduli of the functions involved on a prescribed region or
maximum or minimum values of the functions in the same region. This section is organized as follows.
Theorem 2 gives our more general complexity result for Algorithm 2; Section 5.1 explores in detail the
meaning of the stopping criteria used in Algorithm 2 and gives the definition of 6-stationary point. The
following three short sections examine some particular scenarios in which improved complexity bounds (or, in
one case, global convergence rate) can be obtained. Finally, Section 5.5 describes a variant of Algorithm 2 that
can be implemented and analyzed without any knowledge of any problem-related constants.

To perform our analysis in this section we make the following assumptions.

Assumption D. The following conditions hold:

D1. the set K is bounded;

D2. the partial gradient V;3(e;e) is locally Lipschitz continuous on Oy X O,.

Assumption D1 serves to guarantee boundedness of the iterations and is made for simplicity of presen-
tation. In Section 6, we shall discuss some alternative assumptions that make the iterates belong to a compact
set defined by means of possibly known quantities, as required to perform a complexity analysis. As the
discussion pertains to the algorithms presented in both the previous and current sections, we found that a
detailed analysis of this condition is best deferred to not complicate the formal presentation of the results, as
the insight involved is essentially modular, separate from the main ideas of analysis here and in Section 4.

Assumption D2, instead, depends essentially on the choice of § and therefore is not an assumption on the
problem itself, but a condition on our algorithmic choices. Clearly, because g has a locally Lipschitz gradient,
D2 is always satisfied if we take as g the linearization of g.

From now on, we use some problem dependent constants: we collect their definitions in Table 1 for the
reader’s convenience.

We observe that if the eMFCQ holds everywhere in K, all generalized stationary solutions are KKT points
for problem (P) and, as in classical SQP methods, the norm of the direction d(x") is a natural stationarity
measure (Theorem 3). However, if the eMFCQ is not valid at every point in K, we cannot rely solely on ||d(x")|
to monitor progress toward stationarity, because the problem may admit KKT points but also F] and ES
solutions. For this reason, we use in combination ||d(x")|| and 6(x") as measures of stationarity. We observe
that, actually, [|d(x")|| and O(x") are linked to each other in view of the following relation, which is because
of (15):

O(x") < Vgl lld (x| < Lild(x")ll, (42)
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Table 1. Problem-dependent constants.

Constant Definition

BeR, User-set constant in the definition of (P,)
ne(0,1] User-set constant

Ae(0,1) User-set constant in the definition of x, see (8)
ceR, Modulus of strong convexity of f(e; x), see Assumption Al
B maXyek ”Vf(x)”ﬁ + ncﬁz

Jid minyex f(x)

oM maxxex max;{gi(x), }

L maxX(d,x)epBr, xK ||V1§(d} x)“oo

Lyr Lipschitz modulus of Vf on K

Lyy, Lipschitz modulus of Vg; on K

Ly; Lipschitz modulus of Vif(e;e) on B X K
Ly Lipschitz modulus of V;3(e;e) on B, x K

where L= max g {IVi(d; v)ll, | (d, x) € BBL, X K}. However, there is no reverse implication, and thus the two
functions ||d(x")|| and 6(x") must be suitably combined to provide reliable stopping criteria. The effect of
monitoring both [|d(x")|| and O(x") on the outcome of the algorithm is analyzed in detail in Section 5.1.

To derive complexity results, we consider first Algorithm 2 with a piecewise constant choice of stepsizes. By
this, we mean that Algorithm 2 starts with a certain 7/‘1 and keeps it fixed until a certain test is met; when this
happens, the stepsize is reduced to a new prescribed value and then kept fixed until possibly the test is met
again, and so on. We underline that the only difference between this scheme and Algorithm 1 is in the rules for
choosing " at each iteration and, of course, in the presence of suitable stopping criteria: specifically, the steps
(S5.1) and (5.7) correspond to the previous Algorithm 1, whereas everything between, from (5.2) to (S.6), is
aimed at deciding whether to decrease the stepsize y¥ and whether we should terminate (note that Algorithm 1,
which is aimed at an asymptotic analysis, does not contain any practical stopping criterion).

Algorithm 2. Modified Algorithm for (P)
Data: 6 >0, 1€ (0,1], xX’€ K, T' € (0
repeat

2maxi{Lyg;} 1 _ Tl

’max{LVf,qc}]’ Yy o= 2max;{Lvg, }” 4 0

(S.1) compute x(x"), the solution d(x") of problem (P,) and 6(x");
(8.2) | if ||d(x")|| £ 6 then
stop and return x5 = x”
end )
(8.3) | if yf(xV)Td(xV) +nclldx)|P > 0 and T! > Vﬂxv)w(ffgmnd(xv)”2 then
(S.4) if O(x") <6 then
‘ stop and return x; = x”
else - o
(5.5) ‘ set 7 = sty where TV = o e
end
else
(S.6) set TV =T""! and ¥ = "
end
(S.7) | set ¥ =¥ +9pVd(x"), ve—v +1;
end

We first note that the value of T~! guarantees that y~! < 1. Also, the variable T" is introduced just for
notational purposes to make the statement of the algorithm and the proof of Theorem 2 easier to follow. The
tests we must perform to decide whether to reduce the stepsize are very simple and involve quantities that are
readily available once the direction finding subproblem (P,-) has been solved. The following theorem provides
the announced complexity result in this general case. For simplicity of presentation, we assume 6 < 1. This is
by no means necessary but avoids the necessity of complicating the statement by considering uninterest-
ing cases.

Theorem 2. Let {x"} be the sequence generated by Algorithm 2 under Assumptions A, C1, and D and suppose that 6 < 1.
Then, in at most O(67*) iterations, Algorithm 2 stops either at step (S.2) or at step (S.4); more precisely, the maximum
number of iterations is given by the maximum between the expressions (50) and (52).
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Proof. Suppose that Algorithm 2 performs N iterations without stopping (we consider the iteration completed
when we reach step (S.7)). We first count how many times )" can be updated in step (S.5) of the algorithm: let

Z2{0<v; <N|T"andy" are updated in S.5} U {0}

be the set of iterations’ indices v (in increasing order) at which the need to modify ¥ and T" emerges, union
iteration 0. Therefore, for example, if we update T and y in (S5.5) at iterations 3, 4, and 8, we have
Z ={vo=0,v1 =3,v, =4,v; = 8}; we always have by definition vy =0 and that the set Z does not include
repeated indices. We show that 7 has finite cardinality. If v; # 0 belongs to Z, we have

1 0(x")

Vi =~ , (43)
2V ()T d(xn) + nelld ()|
and the procedure did not stop at step (S5.4): thus, 8(x") > 6 and (43) entails
0
T > o2, (44)

with B = max,{|[Vf(x)||f + ncp?|x € K} > VF(x")Td(x") + nc||d(x*)||*. By the updating rule in (S.5), we also have
T" < T71/2/; thus, in view of (44), 5/2B < T" < T~'/2!, so that

, T-'2B
i<log, ——.

Therefore, if we do not stop, that is, if 8(x”) > ¢ for all iterations up to N — 1, the cardinality of Z, that is, the
times )" is reduced, is at most [log, T~'2B/&].

Letus set] = |Z| — 1; with this convention, the largest element in 7 is v;. Counting from v; € Z'\ {last element in 7},
let now N; be the number of iterations in which )" remains unchanged: T" =T" and y" =y" for every
v € {vj,...,vi + N;}. In other words, N; is the number of iterations after v; in which step (S.5) is not reached; in the
example where Z = {vy = 0,v = 3,v, = 4,v;3 = 8}, we have Ny = 2, N; =0, N, = 3. Therefore, v; + N; is simply the
last iteration after v; before y and T are updated. The last index N; is defined, with the same rationale, as the number
of iterations performed after v;, before we reach the iteration where we stop. Considering the previous example and
supposing that we stop at iteration 11, we have N3 = 2.

We observe that, by virtue of the condition in step (5.3) and the updating rule in step (S.5) or (5.6), T" is non
increasing. Hence, again by the updating rule in (S.5) or (S.6), because y~' = T~'nc/2 max{Lvy,}, also y" is

nonincreasing. Moreover, by the definitions of T™' and y~!, on the one hand, nc—y"/2Lys > nc -y~ /2Lys >
nc — nc/2, whereas, on the other hand, —)"'/2 max;{Lyg, }/T" = —nc/4. Because of the previous relations, we have for

eVery %
y( . maxdLgly | e
T]C—?(va-i-Tg Zz, (45)
and, in turn, by (25),
W) - W T) < | vy e - 254 1 aeye| (46)

where we took €” =T". We now distinguish two cases. If the condition in step (S.3) is satisfied and y is
updated in (S.5),

0(x")

Vi) () -

= =Vf(x")Td(x") = 2nelld(x")|I> < —nelld(x")I, (47)
where the inequality follows from the first condition in (5.3). If, on the contrary, y need not be reduced,

T , - " G(XV)
VA" d(x) + neld(x)IF <0 or T = VF )T + ndde) R’

and, again, relation (47) is easily seen to hold. Therefore, in view of (46) and (47), we get for every v,

C
W T) = WeS T) < = 2 eI, (48)



Facchinei et al.: Ghost Penalties in Nonconvex Constrained Optimization
Mathematics of Operations Research, 2021, vol. 46, no. 2, pp. 595-627, © 2021 INFORMS 613

Note that N = 3;e7(N; + 1), because the algorithm did not stop until iteration N, [|d(x")|| > 6 for all iterates up to
N — 1. Therefore, recalling definition (24) with ¢” = T", and observing that for every v € {v;,...,v; + N;}, v; € Z,
y" is not reduced and T" = T", we get

vi+N; i\ — v,+N,<+1. i
°N = 252(1\1 +1) < Z S AGIR < Z WETY ywi i)
i=0 v=v; 4
i 1
< e [ F°) =) + gmadgi(xf), }
Vi T i

1 N (11 "
~ o max{gi () )+ Zl(T— - T) max{g;(x Ml, (49)

where the second inequality is because of (48), whereas, observing that y*' < 9", the last inequality is valid as a
result of a telescopic series argument because v; + N; +1 = v;y;. It is understood that if I =0, the last sum-
mation in (49) has no terms. Letting ¢/ £ max,{max;{g:(x), }|x € K} and f" = min,{f(x) | x € K}, we distinguish
two cases: (i) step (S.5) has never been reached, that is, T has never been diminished; (ii) case (i) did not occur.
In case (i), observing that I =0, by (49), the algorithm stops after at most

mlax{ng,.}

8 . 1
W fO)~f tora max{gt( )}}g} (50)

iterations. In case (ii), by (49), we can write instead

(@)

5 1
6N<7/T%(f( )_ TogM TOgM Tv,gM

|5 T max{iug H 69 "+ ) 6D

where (a), because T" < T", follows again from the summation of a telescopic series, and (b) is because of the
updating rule for ¥ in (S.5) at iteration v;. In turn, taking into account that because we updated T at least once,
we have

ol o) o
2Vf(x)Td(x) + nelld(x)|> ~ 2B
and, in turn,
5N < 1B max{LVgi}( F) - fm + 28 gM)
(nc)7o 5

thus, meaning that the procedure halts in at most

{168 i ‘}[f(xo) _fm+212§§4

(ne)? 8

(52)

iterations. If 6 <1, this gives an overall complexity of O(6™*). o

5.1. On the Meaning of the Stopping Criteria at (S.2) and (S.4)

The following theorem elucidates the meaning of the stopping criteria in steps (5.2) and (S.4). This result and
the ensuing discussion show that (5.2) and (S.4) guarantee that the algorithm stops in a finite number of
iterations once a 6—stationary point has been reached. To simplify the proof, we assume that 6 < min{1, 8}; this
is very sensible because, on the one hand, we are mainly interested in what happens when 6 is small and, on
the other hand, f is chosen by the user and is intended to be large, § being simply a safeguard on the maximum
length of the direction d(x").

Preliminarily, we recall that the KKT conditions at a point x” € K for problem (P) can be rewritten as

Vi) + Vg(x")e™) ¥ = <

P |x" — =0, max|g;(x”
1P T+ e R Tl

=0, miax{g,-(x") =0, (53)
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where Px denotes the projection on the closed convex set K and & > 0 are suitable multipliers. We also recall
that 0 is a stationarity measure for the violation-of-the-constraint problem (4): 6(x") = 0 if and only if x" is
stationary for (4), see Proposition 3 (ii).

Theorem 3. Let Assumptions A, C1, and D hold, and consider 6 < min{1, 8}. If Algorithm 2
i. stops at step (S.2), x" is either infeasible almost stationary for the violation-of-the-constraints problem, that is,

max{gi(x"), } > %(S, 0<6(x")<LYo, (54)
or it is a scaled-KKT point, that is,

L
mlax{gi(xV)Jr} < 1 0

vV _ 1 Vv Vv év _ Vv - -
Py (x Tren e+ VI e ) ¥ < (2 + Ly + ng) 5
. & 1+A
mlaxgi(x ) T+ < E Lo, (55)

for some & >0, or either an ES or a FJ point;
ii. stops at step (S.4), x* is either an ES or a F| point, or it is infeasible almost stationary for the violation-of-the-
constraints problem, that is,

miax{gi(xV)Jr} >0, 0<0(x")<06. (56)

Before proving the theorem, some comments are in order. Theorem 3 shows that Algorithm 2 stops with a
KKT, FJ, or ES solution, or a point that, at least, satisfies (54) or (55) or (56). This outcome is in line with many
recent results in the literature. Relations (55), (54), and (56) are similar to classical conditions such as (i) and (ii)
in Cartis et al. [17, theorem 2.9], (3.27) and (3.26), respectively, in Cartis et al. [19, theorem 3.8], or (10) and (9),
respectively, in Cartis et al. [18, theorem 4.5]. Specifically, we obtain the scaled-type conditions (55): we refer
the interested reader to Cartis et al. [17, section 2.1], but also Birgin [8], Cartis et al. [16], and Cartis et al. [19]
for rather exhaustive discussions on this point. On the other hand, the degenerate cases (54) and (56) indicate,
although in slightly different ways, that a stationarity condition for the violation-of-the-constraint problem is
approximately satisfied at an infeasible point. To get more insight into the meaning of the stopping criteria, we
discuss, in the same spirit as the analysis in Birgin et al. [8], what happens when 6 goes to zero with fixed
initial data. Thus, suppose we have a sequence {x;} each point of which satisfies at least one of (54), (55), or (56)
for a sequence of values 6k | 0: in fact, we recall that, in view of Theorem 2, for every k the algorithm stops,
providing x, either at step (S.2) or at step (S.4) in a finite number of iterations N = N¥ (which is obviously
nondecreasing with respect to k). Accordingly, let I = I* be the corresponding number of times T" and ¥ have
been reduced, apart from iteration 0. Moreover, because {x;} is contained in K, it is bounded and therefore we
can assume, without loss of generality, that it converges to a point x € K.

Suppose first that x; satisfies the scaled-KKT condition (55) for every k € K €{0,1,2,...} for some K. Passing
to the limit in (55), if the corresponding sequence & is bounded, X is a KKT point of problem (P). If, instead, &
is unbounded, X must be a FJ point, because it is feasible by the first inequality in (55) and the eMFCQ cannot
hold there; otherwise, the sequence &, would be bounded by Proposition 4 (i) and Proposition 6.

Suppose now that one of the two degenerate cases (54) or (56) occurs at each x; with k € K. We show that,
for both cases, X is a point where the eMFCQ does not hold and therefore it is either a FJ or an ES point. Let the
algorithm stop at step (S.2) providing x; that satisfies (54) for all k € IC, and assume by contradiction that the
eMFCQ holds at x. It follows that d(x;) — d(X) = 0 and 0(x;) — O(X) = 0, because of the condition d(x;) < &* for
every k € IC and to the continuity relative to K of function d(e) (on a neighborhood of X, see Proposition 4) and
O(e) (see Proposition 3), respectively. Besides, relying on Lemma 2 (iii), d € pB!, N (K — X) exists such that
3(d;x) < 0. Thus, by the continuity relative to K of the set-valued mapping K — e at X (see Lemma 1 (ii)), there
exists dy € pBZ N (K — xi) such that, for every k € K sufficiently large, 3(di; x¢) < 0. In turn, ming{max{g:(d; xx), } |
ldlle < p, d € K—x} =0, x(xx) = (1 — ) max;{gi(xx),}, and O(xx) = A max;{gi(x¢),} < L6 in contradiction with
max;{gi(xx),} > L/AS*. Therefore, the eMFCQ does not hold at X.

Suppose now that the algorithm stops at step (S.4) for all k € K and assume by contradiction that the eMFCQ
holds at x. We have, without loss of generality, Nk > Nk for every k € IC and 0(xx) — 6(x) = 0, because of the
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condition 6(x;) < 6 for every k € K and to the continuity relative to K of functlon O(e). Furthermore, it holds
IF > IF1 +1 for every k € K and, in turn, TN' | 0 on K, because TN = T" < Z for every k € K. If the eMFCQ
holds at x, for any k € K sufficiently large, d(x;) is a KKT point for (P,,) by Proposition 1 and, in turn, by (26),
we get

Vf (i) () = 9(xk)+n0||d(xk)||2 (MIléNklloo— )G(Xk) (57)

TN TN

Because of the local boundedness of the set of KKT multipliers and because TN* | 0 on K, eventually the rlght-
hand side of (57) is nonpositive, in contradiction to the condition Vf(x;) d(xy) +17€||d(xk)||2 >0 and TV >
0(xx)/Vf (xi)Td(xx) + nelld(xy)|[* for every k € KC in (S.3). Therefore, the eMFCQ does not hold at ¥. All this
discussion motivates us to define a point at which Algorithm 2 stops a 0—(generalized) stationary point.

Definition 3. A point generated by the algorithm is a 6—(generalized) stationary point if it is either a scaled-KKT
point satisfying (55) or an infeasible approximate stationary point for the violation-of-the-constraints-problem
satisfying (54) or (56).

It may also be interesting to remark that if the eMFCQ holds at every point in K, (54) and (56) cannot occur if
0 is small enough (see the previous discussion), and &£ that, we shall see in the proof below, are the multipliers
of the direction finding subproblems (P,+), are bounded by Propositions 4 (i) and 6. In turn, this means that the
algorithm stops at (5.2) with a point x approximately satisfying the KKT conditions for (P) with & being
nothing else but approximate KKT multipliers (see Cartis et al. [17, section 2.1] for further details).

Proof of Theorem 3. (i) Suppose first that the algorithm stops because ||d(x")|| < 6. Regardless of the validity of the
constraint qualification, d(xV), which certainly satisfies the Fritz-John conditions, may satisfy or not the KKT
conditions for the subproblem (P,r). We now distinguish two cases, remarking that the following results hold
whatever the choice of ).

L. If d(xV) does not satisfy the KKT conditions for subproblem (P.-), in view of Proposition 4, x" does not
satisfy the eMFCQ and, thus, is either an ES or a FJ point.

II. If, on the contrary, d(x") satisfies the KKT conditions for subproblem (P,), letting &" € Ngn(§(d(x"); x")—
x(x")e), we get the following relation, which is equivalent to (18) that still holds with Ngg: = {0} be-
cause ||d(x)|| < ¢o:

X+ d(x") = Py (xv +(ar) - ) xvl)fllvéﬁ(d(xv);xv)év). (58)

Let us bound now the terms in relations (53). As for the gradient of the Lagrangian-related condition for
problem (P), we have the following bound:

o - LSO o - VIR s o)
V@) + Vg(xV)éV)
T+
Vif(d(x"); x") + V1g(d(x"); xV)cSV) i
] N
Vif[d(x);x") = Vaf (0;x")
1+

, Vi3 x)e — Vig0xe

1+

(© )
< (24 Lyj + Log) IlG),

2da) + Py (xv

e (xv +d(x) -

®)
<G + [ = d(x") +

where (a) follows from (58), (b) holds because of A4 and A9 and because the projection mapping is non-
expansive, and (c) is because of C1 and D2. As for the complementarity conditions, consider 7 € {1,...,m} such
that |g:(x")&Y| = max; |gi(x")&}| with &i(d(x");x") = k(x"); otherwise, & =0. If gi(x") >0, gi(x") < max;{gi(x"),},
whereas if g;(x") <0,

lgi ()] = =gi(x") = Gi(d(x"); x") + G(d(x"); 1) < Vagi(d(x"); x") d(x"),
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where the inequality is because of (20) and —g;(d(x"); x") = —«x(x") < 0. Overall,
maxlg () €11 < (max{g ().} + L e

In turn, if max;{gi(x"),} <%0, then

1+A

&’ L1t4
A

() —— Lo.
810 T

max
1

If, on the contrary, max;{g;(x"),} < (L/A)d, nonetheless, by (42), we have O(x") < L6.

ii. To exit at step (5.4), either x is an ES or a FJ point, or 6(x") must be strictly positive. In fact, under the
eMFCQ, by (22), if 0(x*) = 0, then Vf(x")Td(x") < —ncl|d(x")|[* and the first condition in step (S.3) does not hold.
In turn, for O(x") to be strictly positive, we must have max;{g;(x")} >0. O

5.2. Complexity of O(6~%) with Constant Stepsize if a Feasible Starting Point Is Known

If a feasible starting point is available, then by choosing a sufficiently small initial T~! or, correspondingly, a
sufficiently small initial stepsize y~!, the iteration complexity of Algorithm 2 can be reduced to O(57°).
Actually, it turns out that in this case, as well as in the cases analyzed in the next two sections, the stepsize is
never reduced, so that the updating step of Algorithm 2 actually becomes a fixed stepsize iteration

=+ pd(x). (59)

A reduction of the iteration complexity when a feasible point is available seems rather sensible because if we
start with a feasible point, we have already solved the feasibility problem that is a part of the constrained
optimization. Nevertheless, it was, in principle, not clear that our algorithm could take advantage of this fact,
because the search for feasibility and that for optimality are combined in a single step, unlike typical methods
designed for strong complexity results for constrained nonconvex problems that use two distinct phases.

Corollary 1. Assume the same setting of Theorem 2, fix a prescribed tolerance 6 and set, according to this value,

T_l — mln{g 2maxi{LVgl.}

B ,m}. If the starting point x° is feasible, then, in at most

Lni)z m?x{ngi}max{B, I;j:;{xLiv{fL'Vzic}}}(f(xo) —fm 614

iterations, Algorithm 2 stops either at step (5.2) or at step (S.4). Furthermore, the stepsize is never updated and is
constant throughout the algorithm.

Proof. We use the same notation and terminology introduced in the proof of Theorem 2. We first observe that
Algorithm 2 never updates y" and T". Indeed, suppose that the test in (S.3) is met for the first time at iteration v. The
claim follows noting that if the condition in (S.3) is verified, then

5 N G(XV) G(JCV)
52 T =T"> VF () Td(x") + nelld(x")?|| "B

so that O(x") < 6 and the algorithm stops. Hence, step (S.5) is never reached and the stepsize is never updated.
Looking back at the corresponding case (i) in Theorem 2, in view of (50) and recalling that 6 < 1, the procedure
is shown to stop after the claimed number of iterations, at worst. O

Note the somewhat unusual feature that algorithmic choices, that is, T!, are linked to the desired accuracy.

5.3. Complexity of O(672) with Constant Stepsize if a Feasible Starting Point Is Known and Upper
Approximations Are Used

Suppose again that a feasible starting point is available and, in addition, assume that UCAs for the g;s are

used, (see Section 3.1 and (11) in particular). Then, not only can we get O(672) complexity, but, differently from

the previous section, there is no dependence of T~! on 6. Also, in this case, it turns out that the stepsize

need not be updated, and the algorithm reduces to the fixed stepsize scheme (59). Furthermore, if we are in an
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MM setting, that is, if we choose an UCA also for f (see Remark 3 and (41)), we can take the fixed stepsize to be
one, provided some minimal assumptions on f are satisfied.

Corollary 2. Assume the same setting of Theorem 2. If the starting point x° is feasible and the §;s are upper convex ap-
proximations for the g;s, then, in at most

b ) -5

iterations, Algorithm 2 stops either at step (S.2) or at step (S.4). Furthermore, the stepsize is never updated, is constant
throughout the algorithm progress, and can be set equal to one provided that nc > Lyy.

Proof. The algorithm only produces feasible iterates (see the discussion after (11)). Therefore, we have 9(x") = 0 for
all v. As a consequence, step (S.5) is never reached, and the stepsize is never updated: in fact, if the test in (5.3) is met,
then the algorithm immediately stops at (S.4) because 0(x") = 0. Then, reasoning again as in case (i) in Theorem 2,
because of (50), we see that the algorithm stops after at most the claimed number of iterations. Suppose further that
nc > Lyg, then it is easy to see from the instructions in Data that we can choose y™' =1. O

We remark that it is easy to show that the condition 7c > Ly implies that f is an UCA and therefore the
requirement in the corollary imposes that we use not any arbitrary UCA, but only UCAs that additionally
satisfy 7nc > Lys. At the same time, in standard MM algorithms, it is usually possible to show convergence
with a unitary stepsize without requiring nc > Lyy, or similar assumptions. However, we must observe that the
constants 17 and ¢ are algorithmic choices and therefore the condition 7nc > Ly can always be enforced. For
example, if analogously to what done in (12), we set

Fdi0) = fx) + V) + S P, (60)

it is enough to choose ¢ so that 7jc > Lyy. Additionally, and more importantly, the condition nc > Lyf is needed
here to establish for the first time, as far as we are aware of, the iteration complexity for an MM method. Our
iteration complexity complements the convergence rate obtained in Bolte and Pauwels [9]. In that paper,
assuming a Kurdyka-Lojasiewicz property plus other technical conditions, the authors show that, under
suitable constraint qualifications, that we do not require, the whole sequence produced by an MM method
converges to a KKT point x® and give expressions for the convergence rate of |[x* — x*||.

5.4. Rate of O(562) Global Convergence When eMFCQ Holds

If the eMFCQ holds at every point in K, then we can prove that Algorithm 2 has a global convergence rate of
O(672). Once again, under suitable assumptions, one can show that in Algorithm 2 the stepsize is never
updated, so that the algorithm reduces to the fixed stepsize iteration (59).

Corollary 3. Assume the same setting of Theorem 2 and, in addition, suppose that the eMFCQ holds at every point in K. If we
choose T~ and, correspondingly, y~ sufficiently small (as will be specified in the proof, see also the later comments), being M
an upper bound on the norm of multipliers for the subproblems (Py), in at most

8mM 0 - 0 1
i ) -7 it s, )| 2 1)

iterations, Algorithm 2 stops at step (S.2). Furthermore, the stepsize is never updated and is constant throughout
the algorithm.

Because we never reach (5.4), the only stopping criterion actually used is the one based on ||d(x")|| in (S.2), in
accordance with what happens in classical SQP-type methods when constraint qualifications are assumed to
hold everywhere.

Proof of Corollary 3. We first recall that, because of the eMFCQ), by Propositions 4 (i) and 6, taking into account the
compactness of K, the norm of multipliers £ of the subproblems (P.+) is bounded from above by some constant M.
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By (26), which, in view of the eMFCQ, is still valid because it is derived from the optimality conditions for
subproblem (P,+), we have

1 1 1
VY da") - 0+ el < (el = 7)) < (mad = o) <0 (62)
if T <1/mM, and, in turn, for all v it never happens that Vf(x")Td(x") + nclld(x")|* > 0 and T' >
O(x")/(VF(x")Td(x") + nclld(x")|[*) in (S.3), and therefore, (S.4) and (S.5) are never reached. Looking back at the
proof of Theorem 2, we then see that only case (i) therein can occur and, setting, for example, T~! = 1/mM
in (50), the algorithm stops at worst after the claimed number of iterations. O

The fixed stepsize iteration (59) is valid provided that y < nc/(2mMmax;{Lv,}). Finally, we remark that the

bound given by (61) is different from those seen thus far, in that it depends on the usually unknown quantity M.
The bound given by (61) should therefore be regarded as a global convergence rate (see the Introduction).

5.5. Problem Constants Are Not Used

The implementation of Algorithm 2 requires the use of some of the problem constants in Table 1. Hence, the
question arises whether we can modify the algorithm to avoid the use of potentially difficult to compute
constants while retaining complexity results similar to those in Theorem 2. The answer is positive, at the price
of a small amount of additional function evaluations. Moreover, differently from all previous developments, we
must make a numerical, although simple, use of the penalty function W. Observe that in Algorithm 2, the
problem constants are used to set some initial values in Data and, more critically, in (5.5). Referring to the
proof of Theorem 2, the updating of y” in (5.5) guarantees condition (48), that is, the sufficient decrease of
the (ghost) penalty function. However, at a more basic level, this sufficient decrease condition can always
be reached if the step " is sufficiently small. Therefore, one could choose at each iteration the stepsize "
to guarantee that the sufficient decrease condition (48) is satisfied. This can be accomplished without
any knowledge of the problem constants; we only need to know the user-set quantities ¢ and 1 as shown
in Algorithm 3.

Algorithm 3. Algorithm for (P) Without Constants
Data: >0, 1€ (0,1, xX’€ K, T'>0, y 1 =1, ve—0
repeat
(S.1) compute x(x"), the solution d(x") of problem (P,) and 6(x");
(S.2) | if ||d(x")|]| <6 then
L stop and return x; = x”

nd
. T 2 -1 0(x")
(S3) | IE WL d) eald( > 0 and T > sty then
stop and return x; = x"
Ise o)
_1 x¥
5.5 set T = 2 Syt enddGe P
nd
Ise
(S.6) set TV = Tv1
Lnd

(S.7) while W(x" +yd(x"), T") - W(x"; T") > —)/V%Hd(xv)lI2 do
L set pYe—3y"

nd

(S.8) | set ¥ =" +pVd(x"), ve—v +1;

end

In Data, we no longer need to set the initial T and y to some small values that depend on problem constants.
Indeed, whatever the initial values, it is the algorithm itself that sets them to the appropriate quantities. In
Algorithm 2, updating the stepsize at (5.5) makes (48) satisfied at all subsequent iterations, until the if section
at (S.3) is possibly re-entered. In Algorithm 3 instead, we do not have such a guarantee, and thus we perform
the line-search in (S.7) at each iteration. The following theorem shows that Algorithm 3 needs an amount of
iterations which is similar (likely smaller, see the comments after the proof) to that required by Algorithm 2.
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However, although for Algorithm 3 this quantity is also equal to the number of function and constraints
evaluations, we now may need some extra objective and constraint function evaluations, as detailed next.

Theorem 4. Let {x"} be the sequence generated by Algorithm 3 under Assumptions A, C1, and D and suppose that 6 < 1.
Then, in at most O(5~*) iterations, Algorithm 3 stops either at step (S.2) or at step (S.4); more precisely, the maximum number
of iterations is given by the maximum between the expressions (69) and (71). Moreover, the algorithm needs a number of
objective and constraint function evaluations that is equal to the number of iterations plus at most O(log,(671)) further
evaluations, with the precise expression of this additional number of evaluations given by (66).

Proof. The proof is a variant of that of Theorem 2, to which we refer for notation and terminology. Suppose that
Algorithm 3 performs N iterations without stopping. We first count how many times TV can be updated in step
(5.5): let

Z2{0<v; <N|T" is updated in (S.5)} U {0}

be the set of iterations’ indices v (in increasing order) at which we need to modify T", union iteration 0.
Repeating verbatim the first part in the proof of Theorem 2, one can show that Z has finite cardinality and, if
v; € T then

) T-'2B
i <log,——

Define now I and N; as in the proof of Theorem 2. Clearly T" = T" for every v € {v;, ..., v; + N;}. Following the
same line of reasoning as in the proof of Theorem 2, one can readily show that

0(x")

V() (") = =5~ < —nlld ()P, (63)

for every v, which, in turn, by (25), implies

lld ()1, (64)

W(xv+1; Tv) —WETY) < _7/1/ [nc _ V? (va + max;{vLng})

where we took ¢” = T". We now note that for every v € {v;,...,v; + N;}, v; € Z, we have y" > G(6), with

. |1 3nc )
G(6) £ min{=, 2F . 65
©) mm{z 4 va6+ZBmaxi{ngi}} (65)

Indeed, this is trivial for vy = 0, because we assumed y~! =1 and G(6) < 1/2. Suppose by contradiction that
0#vieZ and y" < G(0). By the definition (65) of G(0), if we set y" <2G(6), we get, recalling (64) and
TV > /2B, W(x"*1; T) = W(x¥; T") < =" (nc/4)||d(x")|?, that is, the test at (S.7) is surely not satisfied if
y" < 2G(0). This, in turn, contradicts ¥ < G(9), because it shows that in the loop (S.7) we should have stopped
at the previous iterate of the cycle. Therefore, taking into account that )" is obtained at (S.7) after a certain
number (possibly zero) of halvings of the current value of the stepsize, at each iteration )" > G(0) for every 6.
We conclude that )", globally, needs to be halved no more than log,(y~'/G(6)) times: hence, after at most

- 4 1
log, (V 1 max{z, 3nc (vaé + 2B mlax{ngi})} 5) (66)
halvings, one achieves the sought decrease condition

V- v v v c vV c v
W T) = WS T) < = o jldGe)|P < ~G(o) - )P, (67)

for every v. Recalling definition (24), and similarly to (49),

1 I vi+N; I W vi’. TV — W v,»+N,'+1,. Tvi
8N =>18N;i+1) < > D7 )P < & ) (,]xC )
i=0 i=0 v=v; i=0 G(é) y

1 1
< O FO0) = N + ﬁmﬁx{gi(xvoh}

i=1

1 ) S | N
— o max{gi ) b 3 (ﬁ - Tv‘-_l) mfx{gf(x ’)+}lf (68)
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where the second inequality is because of (67), whereas the last inequality is valid as a result of a telescopic
series argument because v; + N; + 1 = vi;q. Setting gﬂ‘f 4 max,{max;{gi(x),}|x € K} and f" = min,{f(x)|x € K},
as in the proof of Theorem 2, we distinguish two cases: (i) step (5.5) has never been reached, thus I =0 and,
by (68), the algorithms stops after at most

{% max{Z, 3i1]c (vaé +2B m?x{ng,.}) } ( () -+ %m?x{gi(xo) +}) é} (69)

iterations, in view of the definition of G and 6 < 1. If case (i) did not occur, by (68) we can write

1 1 1 1
62N<G(6)’Zf(f(x0) ~f +ﬁg1f—ﬁgﬁ/‘+ﬁgﬁ/’), (70)

where the inequality follows, recalling that TV < T"-!, from the summation of a telescopic series. In
turn, because

0(x") .
Vf(en)Td(x) + nelld(en)]? ~ 2B

1

_1
~2

by (70), the procedure halts in at most

£5) - 2B
3 64

5 (71)

4 4
{% max{Z, e (vaé +2B mlax{ngi})}

iterations. Because 6 <1, one can take the overall complexity to be of O(6™*). o

It is interesting to compare the worst-case bounds (52) (for Algorithm 2) and (71) (for Algorithm 3). It is clear
that, at least for a small 6 (see the definition of G), the bound (71) is approximatively % of the bound (52). This
better behavior of Algorithm 3 has a simple explanation. The steps used in Algorithm 3 are generally larger
than those used in Algorithm 2, where problem constants are used to define a pessimistic step length. In
Algorithm 3, instead, local information is gathered through the line-search in (S.7) that permits the definition
of a stepsize better adapted to the problem. Algorithm 3 also has the additional merit of not requiring the
knowledge of the problem constants. We pay a price for this better result in that the algorithm is marginally
more complex, requires a numerical use of the penalty function, and calls for additional objective function and
constraint evaluations that may increase the computational effort. However, this increase is negligible when 6
is small, because the additional number of function evaluations is O(log,(67!)), implying that the overall order
of function evaluations is maintained to be O(57%).

Remark 4. Itis easy to see that the results in Sections 5.2-5.4 for Algorithm 2 can be extended to Algorithm 3, but we
do not pursue this for lack of space.

Remark 5. Although the analysis in this section is about SQP-type approaches, a few other complexity bounds are
available in the literature for different methods using first-order information in the context of nonconvex, con-
strained optimization (see the Introduction). A direct comparison of all these results is difficult, because different
assumptions and, in some cases, different concepts of (approximate) generalized stationary points are called for;
furthermore, the various methods differ markedly in the overall structure (penalty versus phase I-phase II versus
SQP schemes) and in the algorithmic computational effort required at each iteration, not to mention that in some
cases results are given for equality constraints only. With this in mind, here we try to briefly highlight the main
features of Birgin et al. [8], Cartis et al. [15], Cartis et al. [16], and Cartis et al. [17]. The analysis provided in Cartis
et al. [15, section 3.2] is for a penalty-based approach and gives the “first worst-case global evaluation bounds for
constrained optimization when both the objective and the constraints are allowed to be nonconvex.” The main
similarity with our analysis is in the use of a nondifferentiable penalty function, which, however, is used according
to a classical double-loop scheme: at each outer iteration a penalty parameter is chosen and then the penalty
function is minimized inexactly using a trust-region-like method for which complexity results are provided. This
should be contrasted with our ghost use of penalties where the penalty function and the penalty parameter are
not used in the algorithm itself. Another difference is in the subproblems to be solved at each iteration. Our method
follows the standard SQP approach and the subproblems should be regarded as (simple) approximations of
the original problem and as such do not involve any penalty parameter. The subproblems in Cartis et al. [15],
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instead, aim at approximating the penalty function and, as such, necessarily include the penalty parameter. On the
one hand, avoiding the use of the penalty parameter in the subproblems is a favorable numerical feature, we
believe; on the other hand approximating directly the penalty function, as done in Cartis et al. [15], nicely avoids the
issue of the feasibility of subproblems, because the minimization of the penalty function is unconstrained. Putting
together a judicious analysis of the parameter-updating scheme and of the inner penalty minimization, Cartis
et al. [15] can then give estimates for the number of iterations necessary to reach an approximate generalized
stationary point. If, during the minimization process, the penalty parameter grows unbounded, a complexity of
O(67°) is obtained. If, on the other hand, an upper bound, which in principle is unknown in advance, for the penalty
parameter exists, a condition that should be interpreted as a constraint qualification, then, using the terminology of
the present paper, a convergence rate of O(62) is obtained. Note that (a) the issue of the boundedness of the iterates is
not dealt with (for our algorithm, see also next section), and (b) the objective function f is assumed to be bounded
from below on R".

The phase I-phase II approach in Cartis et al. [16, sections 4 and 5] is for equality constrained problems and
relies on target-following and (inner) trust-region techniques. Both phases are based on a cubic regularization
method involving the use of second-order derivatives, with subproblems to be solved at each iterations that
are potentially expensive. However, a remarkable complexity bound of O(67%/2), matching the one for the
cubic regularization method in the unconstrained case, is achieved.

The high-level scheme put forward in Birgin et al. [8] for nonconvex problems with (equality and) inequality
constraints falls also within a phase I-phase II (of target-following—type) framework: the unconstrained
nonlinear minimization problems to be solved in each phase are assumed to be dealt with by some mini-
mization algorithm with known complexity guarantees. Once this algorithm is given, the analysis derives
bounds that range between O(67%) and O(57°) according to the choice of an algorithmic parameter, with the
better complexity corresponding to weaker notions of almost generalized stationary points. It has to be
remarked that, as a major departure from all other works, in Birgin et al. [8], an emphasis is given to unscaled
KKT conditions, that is, to an approximate notion of stationarity that does not depend on the magnitude of the
multipliers involved.

Finally, in Cartis et al. [17], a phase I-phase II (of target-following—type) method is presented, which resorts
again to an inner trust-region approach in both phases. Assuming the objective function to be upper and lower
bounded on the feasible set, and the gradient of the objective and the Jacobian of the constraint functions to be
Lipschitz continuous on R” and on a suitable extended neighborhood of the feasible region, respectively, the
algorithm is proven to reach an approximate generalized stationary point in at most O(67?) iterations. These
results are currently the most advanced for a first-order phase I-phase Il method, and, remarkably, the bounds
obtained there match the best result for first-order unconstrained minimization methods.

6. Boundedness of lterates

Boundedness of the sequence generated by an SQP-type method is a difficult issue. With a few earlier ex-
ceptions (Facchinei [30]), this topic probably came to a wider attention only with the important paper
(Solodov [60]) that motivated researchers to look better into this issue (Auslender [1], Auslender et al. [2],
Bolte and Pauwels [9], Liu and Yuan [42]; with the latter reference dealing only with equality constraints). In
our framework, generating an unbounded sequence is a natural possibility that cannot and should not be
excluded in principle, because we do not make any standard assumption such as feasibility, existence of an
optimal solution, or regularity of the constraints; quoting from Bolte and Pauwels [9, p. 11], where a similar
possibility is considered, “The divergence property...is a positive result, a convergence result, which does not
correspond to a failure of the method but rather to the absence of minimizers in a given zone.” To clarify this
point consider

minimize x?
X

st. <0,

which is an infeasible convex problem and has no ES, FJ, or KKT solutions. Nevertheless, we can apply one of
the algorithms studied in this paper to it, and the only sensible outcome is an attempt to minimize infeasibility
with the generation of an unbounded sequence. Indeed, if the sequence generated by the algorithm were
bounded, every limit point should be critical, but because there are no critical points, the sequence must
necessarily be unbounded. Yet, also in the spirit of the works mentioned at the beginning of this section, it is of
course of great interest to see under what conditions we can guarantee the boundedness of the sequence {x"} for
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the algorithms presented in this paper. We analyze this point, identifying some settings where boundedness
can be guaranteed. This discussion, which in no way tries to be exhaustive, is also useful to illustrate some of
the characteristics of our methods. We remark that the properties of Algorithms 2 and 3 have been studied in
the previous section under the assumption that K is bounded. However, it is easy to see from the proofs that
this condition can be substituted by any of the assumptions studied in this section that still guarantee
boundedness of the sequence generated by Algorithms 2 and 3. The only adjustment that needs to be made is
that the Lipschitz constants used in the proofs of Theorems 2 and 4 are no longer the Lipschitz constants on K
but rather the ones on the compact set S, which is shown to contain the sequence {x"} and that any reference to
the boundedness of K should be substituted by a reference to the compactness of S. Of course, in order for this
approach to be sensible as a complexity bound, the set S must be determined a priori and should not depend
on the sequence generated by the algorithm.

1. Valid for Algorithms 1-3: The boundedness of K obviously guarantees the boundedness of {x"} for all the
algorithms we considered. We already used this fact for Algorithms 2 and 3, but the same result holds also for
Algorithm 1: we report this case here for completeness and uniformity of presentation. In fact, for all the three
algorithms, we have that ¥ € (0,1] and therefore the constraint d € K—x" in (P,) and the convexity of K
guarantee that if x” € K then also x” + y"d(x") belongs to K. This case covers most instances of practical interest
because, in basically all real-world problems, variables are naturally limited by lower and upper bounds, and
we can take K to be the rectangle defined by these quantities.

2. Valid for Algorithms 1-3: Another setting in which we can guarantee the boundedness of the iterations is
when we turn our schemes into feasible methods by choosing g;s that are UCAs of the g;s and a feasible
starting point x° (see Section 3.1).

2a. In this setting, assume that the following classical condition holds:

L1 = {xeK:gx) <0,f(x) < f(x")} is bounded, (72)

that is, the level set of value f(x°) for the objective function intersected with the feasible set is bounded. Then, if
we also assume that f is an UCA of f (see Remark 3), we can show that the sequence {x"} generated by any of
the Algorithms 1-3 is contained in the bounded set £;. Because the sequence {x"} belongs to X, it is enough to
show that, at each iteration, f(x"*!) < f(x*). To this end, observe that, because each x" is feasible, we always
have max;{gi(x"),} = x(x') = 0(x) =0, and d =0 is feasible for (P,). Therefore, applying the minimum
principle to (P,+), we have Vif(d(x");x")T(0 —d(x")) > 0, and, in turn,

Vif@(x"); x")Td(x") < 0. (73)
Because f is (strongly) convex, we get
) = O 2 FOra6; ) + Vif(rd)ix) (0 - )
> fx" +y"d(x")) =y VF(yrd(x"); x*) Td(x"), (74)

where the second inequality follows from (41). By the strong convexity with modulus ¢ of f (see A1), we can
also write

(ViF@ey;a) = Vaf (" d(e); ) ) T(@d) =y d ) = o1 =y Pldee)I?,
which, with simple manipulations, yields
=Y VA AG) ) Td () 2> =y Vi) a0 Td() + oy (1= Il
Plugging this inequality in (74) we get
FO+716) < fO60) +y ViF R ) Td),

which, in view of (73), shows that f(x"*!) < f(x*) as desired for any choice of )".

2b. The requirement that f be an upper approximation of f is actually not needed for Algorithm 3. In fact,
noting that W(x"; ¢) = f(x”) for any feasible x" and for any positive ¢, step (S.7) in Algorithm 3 guarantees
f(x*1) < f(x"). In fact, in the current setting, a suitable stepsize can be found in step (S.7) because of (63) (that
still holds even if K is not bounded, see the conditions in the if-block at step (5.3)), recalling that O(x") = 0 for
any feasible x". It is therefore clear that the whole sequence {x"} is contained in L.
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2¢c. We can avoid the UCA requirement on f also for Algorithm 2, provided we assume that Vf is Lipschitz
continuous on K (with modulus Lys). By the descent lemma we can write

P+ d0) = ) < V) + (Pl e P

In turn, we get from (47) (which, again, is easily seen to hold in the current setting), taking into account that
O(x") = 0 because x" is feasible,

ey =) < =7 e =T Lyl P 75)

for every v. The instructions in Data of Algorithm 2 are easily seen to entail )" € (0, min{1,2nc/Lys}], so
that (75) implies that {x"} is all contained in £;, and therefore that {x"} is bounded if £; is bounded.

2d. If we want to eliminate the UCA property of f also for Algorithm 1, we need again Vf to be Lipschitz
continuous on K and to strengthen condition (72), requiring that

L52{xeK:g(x) <0,f(x) <a} is bounded for every a € R. (76)

Then, invoking (22), as soon as " becomes smaller than 2¢/Lyy, we stay in the set £ for some value of a; by
(76), this implies the boundedness of {x"}.

2e. Finally, it is worth observing that if the feasible set X is bounded, the use of UCAs for the constraints g is
enough to guarantee the boundedness of {x*} because, if we start wih a feasible point, {x"} remains feasible
whatever the algorithm we use (Section 3.1).

3. Valid for Algorithms 1-3: Knowing a feasible point x° to start the algorithm from can be difficult in some
applications. However, fortunately, the results in point 2 can be generalized to avoid the feasibility
requirement.

3a. Suppose that we start the algorithm with a possibly infeasible point x” € K. Assume that

L3 = {x €eK:gx) < mlax{gi(xO)Jr}} is bounded. (77)

If we use §;s that are UCAs for the g;s, we can show by induction that the whole sequence {x"} generated by
Algorithms 1-3 is contained in £;. In fact, the starting point x° of course belongs to £;. Suppose now that
x¥ € L3, meaning that

3:(0;x") = gi(x") < miax{g,-(xo)Jr}.
We also have

AR < k) < max{gi(e),},

where the first inequality is just feasibility for subproblem (P,), and the second one follows by the definition
of x(x"). The last two displayed formulas show that, for any " € [0, 1],

iy’ +77d") < Gy ) < max{gix).

where the first inequality is because of the UCA property (11), whereas the second relation derives from the
convexity of gi(-;x").

3b. When the constraints g;s are convex, it is well known that the boundedness of £3 holds if and only if the
feasible set is bounded. Then, in principle we can set §(d;x) = g(x +d) and only approximate the objective
function. This particular § is a UCA, indeed. This approach seems particularly well suited to the case in which
the g;s are linear because the resulting subproblem then has simple linear constraints. Keeping the original
(convex) constraints in the subproblems is something routinely done in most MM methods.

4. Valid for Algorithms 1-3: Another interesting case arises if we suppose that the eMFCQ holds and

Ly = {x € K : max{gi(x), } < a} is bounded for every a € R,. (78)
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Note that (78) simply states that the function max;{gi(x),} is coercive. We can therefore find positive a; and a»
such that if xV € £3' then x" + y"d(x") € £3* for all y" € (0,1]. Now, following the same line of reasoning as
relations (25), we have

maxfg(x’ + ') } - max{gi(').} < =" (06%) - L-max{Lg Hdoe" )P (79)

for every x” € Lj?, where Ly,, are Lipschitz constants of the gradients of g; on EZZ_; we remark that because £}
is bounded, existence of these constants is a very mild requirement. Denote by 0 > 0 a positive constant such
that 6(x) > 6 for all points in the set A = L£3% \ int £4'; note that this set is compact by (78). Such 0 surely exists
because the eMFCQ implies there are no ES in the set A and therefore the continuous function 6(x) is positive
on A. By (79), we can then write, for any x" € A,

miax{g,-(xv +y'd(x")), } - m?x{gi(xv)+} <—y'0- 7;mzax{ngi}ﬁz . (80)

It is then clear that a threshold value y >0 exists such that, if y" <y, then max;{g:(x" +y'd(x")),} <
max;{gi(x"), }. Now, two cases can occur. If x” belongs to int £y, then, by how we have chosen ay, x"*! belongs
to £42. If instead x" belongs to A, by taking y* < 7, we are again sure that x"*! still belongs to £{*. We can so
conclude that by using stepsizes smaller that j, iterations never leave the set £3* and therefore stay bounded.
5. Valid for Algorithms 2 and 3: The eMFCQ assumption in case 4 can be replaced by the requirement that f
be bounded from below on K if one uses Algorithm 3, a condition to which the Lipschitz continuity of Vf and
Vg; on K has to be added when Algorithm 2 is resorted to. For both cases, the proof of the claim reduces to
showing that, even without requiring K to be bounded, we still have the sufficient descent condition

W5 T) = W T) < = T e P (81)
for every v. In fact, once relation (81) has been proven to be valid, in turn we get

T f) = ) + maxfg (™), } < T ) <) + maxfg (), )
< T'(f0") =) + maxfgixt), } = T LGOI,

where the first relation follows from observing that T" is nonincreasing. The sequence generated by the
algorithms is now easily shown to be bounded. Indeed, the inequality shows that the nonnegative sequence
{T"(f(x") — f) + max;{gi(x"), }} is nonincreasing and therefore convergent. Suppose now by contradiction that
{x*} is unbounded. By (78) this implies that max;{g;(x"),} goes to infinity; because f(x") - f is nonnegative,
this contradicts the convergence of the sequence {T"(f(x") — f) + max;{g:(x"), }}.

Let us now show why, in the current setting, (81) is still satisfied for Algorithms 2 and 3.

5a. Concerning Algorithm 3, (81) is enforced as the algorithm progresses (see step (S.7)). We remark that,
even in the present setting, given an iterate x", in step (S.7) a sufficiently small stepsize y" still exists such
that (81) is verified: this follows by standard reasoning ab absurdo in view of (63), which still holds even if K is
not bounded (see the conditions in the if-block at step (S.3)) and observing that the directional derivative of
max;{gi(x"),} is bounded from above by —0(x"), because of (23).

5b. As for Algorithm 2, with Vf and Vg; assumed to be Lipschitz continuous on K, let Ly and Lyg, be the
corresponding Lipschitz moduli. Again, without requiring K to be bounded as done in Section 5, condition (81)
is clearly satisfied, because (46) and (47) remain valid following the same line of reasoning as relation (25) (here
with K not assumed to be bounded, but under the Lipschitz continuity of Vf and Vg), and as a straightforward
consequence of the conditions in the if-block at step (S.3), respectively.

In both cases 5a and 5b, although {x"} is contained in L£§ for some a, this quantity is possibly unknown
in advance.

We summarize these conditions implying boundedness in Table 2. We also clarify (see the last column that
only applies to Algorithms 2 and 3) on a case-by-case basis if these assumptions make it possible to perform an
iteration complexity (IC) or a global convergence rate (GCR) analysis. In fact, when the bounded set to which
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Table 2. Summary of conditions for boundedness of iterates.

Case K f g %0 Other assumptions Algorithm IC or GCR
1 Bounded — — — — 1,2,3 1C
2a — UCA (41) UCA (11) Feasible L1 bounded, see (72) 1,23 IC
2b — — UCA (11) Feasible L1 bounded, see (72) 3 IC
2c — — UCA (11) Feasible L1 bounded, see (72), Vf Lipschitz 2,3 IC
2d — — UCA (11) Feasible L§ bounded, see (76), Vf Lipschitz 1,2,3 IC
2e — — UCA (11) Feasible X bounded 1,23 IC
3a — — UCA (11) — L3 bounded, see (77) 1,23 IC
3b — — =g — gis convex, X bounded 1,2,3 IC

4 — — — — L{ bounded, see (78), eMFCQ 1,2,3 GCR
5a — — — — L{ bounded, see (78), f low. bounded 3 GCR
5b — — — — L bounded, see (78), f low. bounded, 2,3 GCR

Vf and Vg Lipschitz

the sequence {x"} belongs is defined by means of quantities that are known in advance, for example, if it is £4,
we can still speak of iteration complexity results derived for Algorithms 2 and 3, as done in Theorems 2 and 4;
when the set is known to exist, but is not known beforehand (as for example in cases 5a and 5b), we obtain
instead a global convergence rate for the corresponding algorithms, because the constants involved in the big
O bounds cannot be determined a priori.
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