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Abstract—The past decade has seen a rise in the use of liquid
cooling due to its energy efficiency. While many previous works
have helped make progress toward improving data center cooling,
a vast majority of them perform studies on a small system over
a short span. The computer systems and HPC community lacks
a long-term study highlighting the challenges and solutions in
operating a liquid-cooled large-scale data center. We conduct
the first detailed characterization of a petascale supercomputer,
Mira, over a span of six years. The study is enabled by systematic
monitoring of the environmental metrics, and discusses new
research avenues, including coolant monitor failures.

1. Introduction

A high-performing computing data center incurs a consid-
erable energy cost to power up the cooling infrastructure.
A significant amount of the operational and maintenance
effort is also geared toward keeping the cooling systems
running smoothly [6} [13} |62]. The last few years have seen
an increase in the use of liquid cooling as the method of
choice for cooling supercomputing data centers, especially
with the increased requirement for energy-efficient cooling
for upcoming exascale computing systems [56]]. The high
effectiveness of liquid cooling stems from the fact that the
liquid water, with a higher density than air molecules, flows
adjacent to the hardware, absorbing heat more efficiently
than air cooling [6l [13, 162]]. This enables liquid cooling
to be more energy-efficient, especially when combined with
the characteristics of surrounding environmental and climate
factors to deliver free data center cooling [6} [13| 162].

Previous research in the area of data center cooling has
focused on characterizing the energy efficiency and cooling
effectiveness of air-cooled systems [S0], proposing different
infrastructural and alternative-technology mitigation strategies
to make cooling more functional and effectual [10, 31],
studying the impact of air quality on the failure rate and
reliability of hardware components in an air-cooled (free
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cooled or otherwise) data center [15) |31, |43 49]. However,
environmental and other factors affecting the efficiency of a
liquid-cooled system and their impact on the overall system
performance can be significantly different.

To this end, we present the first study that monitors and
characterizes the operations of a liquid-cooled production,
petascale supercomputer over a span of six years, observing
trends in power consumption, utilization, component tem-
peratures, humidity, and failures. We study the 10 PFlops
leadership-class IBM Blue Gene/Q Mira supercomputer, lo-
cated at the Argonne Leadership Computing Facility (ALCF)
in Chicago, Illinois, which is cooled using two 1,500-ton
water chiller towers with the ability to perform outdoors-
temperature-leveraged free cooling when the weather of
Chicago permits. We identify several new trends and chal-
lenges that need further research effort in academic experi-
mental lab setting to design effective solutions. For example,

1) Even highly utilized production data centers can observe
transient fluctuation in utilization due to various scheduling
and resource allocation policies. This, in turn, can cause
power consumption fluctuations. Opportunistically utilizing
the transient resources that become available on capability
machines for on-demand and elastic HPC jobs will be the
key to avoiding power utilization swings.

2) When new systems are added to an existing data center, it
can pose new challenges due to the sharing of the cooling
loop. Research prototypes should model and simulate ef-
fects from other systems in the data center to demonstrate
its potential effectiveness in production environment. They
should demonstrate the ability to adapt to changes in the
chillers/cooling loop and avoid accidental system outages.

3) At ALCF, data center operators put considerable effort
toward achieving homogeneous and adaptive coolant flow
rate across the data center — which significantly improves
the operational efficiency. Further efforts are needed to
monitor and manage the coolant flow rate effectively in
real time to identify challenges posed by factors outside
the compute cluster. More experimental research effort is



needed toward quantifying the effects of extended humidity
variability on component reliability and application perfor-
mance via in-house controlled testing in academic labs.

4) We present a detailed analysis of coolant monitor fail-
ures (CMF) - failures that affect multiple racks and Kkill
hundreds of jobs within a short duration. CMF have not
been well characterized in the past in academic literature
and hence, mitigation strategies are not mature despite
the severe side-effects — it can induce a chain of non-
CMF failures too. We provide detailed pointers about what
aspects of CMF need better understanding and provide a
learning-based solution for predicting CMFs.

II. Background

In this section, we provide a brief overview of the Mira
system’s computing and cooling infrastructures.

Mira Overview. Mira is a 10 PFlops Blue Gene/Q (BGQ)
production system that was stationed at the Argonne Leader-
ship Computing Facility (ALCF). Mira was operational from
01/01/2014 to 31/12/2019, primarily supporting Impact on
Theory and Experiment (INCITE) projects, the Advanced Sci-
entific Computing Research (ASCR) Leadership Computing
Challenge (ALCC) projects, and other discretionary projects.

Mira consists of 48 racks, each with two midplanes, each
midplane containing 16 node boards. Each node board has 32
compute cards, totaling to 1,024 nodes per rack and 49, 152
nodes in the entire system. Each BGQ computation card has a
1,600 MHz PowerPC A2 processor with 18 cores each, where
each of the cores can run four hardware threads at 1.6 GHz,
and 16 GB of DDR3 memory. However, only 16 cores are
available for computation, and the others either remain inactive
or are used for communication libraries. Overall, Mira is
equipped with 786,432 active cores, 768 TB of memory, with
a peak performance of 10 Pflops. Mira is connected throughout
by IBM 5D torus interconnect with two GB/s chip-to-chip
linkage, which reduces communication latency by minimizing
the average number of hops between nodes. Mira has access
to a 24 PB file system with a 240 GB/s bandwidth [73].

The 48 racks of Mira are divided into 3 rows, each con-
taining 16 compute racks. In addition to this, each row has
two racks of I/O forwarding nodes (IONs), located at the
end of each row (for a total of six racks of IONs). This
whole infrastructure encompasses 1632 square feet of area and
is located in the Theory and Computational Sciences (TCS)
Building at Argonne National Laboratory, Chicago, IL. Along
with Mira, ALCF also hosts other computing systems such as
Theta, a 12 PFlops large-scale production system, and Cooley,
a small-scale data analysis and visualization cluster.

Power system. Mira has built-in support for six MW of
power draw, but has an average load of four MW. Each rack
of Mira is associated with a Bulk Power Module (BPM). It
converts AC to DC power and distributes it among the two
midplanes of a rack. The BGQ system gets the power from
13.2 kV substations, which supply power to the BPMs via
Eaton Digitrip Optim 1050 distribution channels. Each BPM
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Fig. 1. Design of Mira’s liquid cooling system including the
internal and external coolant water loops.

has four 480V three-phase, 60A line cords which are located
on the left side of each rack. These cords separate the power
distribution BPMs for each of the racks and reduce electrical
distribution by about 75% [6] [66].

Coolant system. A significant amount of power consumed
by Mira is utilized for the cooling of the system. The BGQ
compute racks of Mira undergo liquid cooling. However, other
associated infrastructures, including the IONs, are air-cooled.
Two 1,500 ton water chiller towers were built at the Argonne
Chilled Water Plant (CWP) to support Mira’s cooling, as
shown in Fig. [T} The CWP is located in a building adjacent to
Mira. A closed liquid cooling process loop extends from CWP
to under the floor of the data center where Mira is housed.
Chilled water from CWP runs through the loop, forming an
external water loop. Each rack maintains a separate internal
water loop that runs across the walls of the rack to cool the
system. Under the floor of each rack, the internal and external
water loop forms a junction known as a heat exchanger (HX).
The chilled water from the external loop cools up the hot water
in the internal loop. The heat generated in the internal loop
due to system usage is dissipated to the external loop. The
external loop again cools down the water using the chillers.

CWP has a waterside economizer design to induce free
cooling capabilities when the weather is favorable. The chiller
towers installed in CWP are over-sized to make room for the
water generated through free cooling. 17,820 kW-hr energy
can be saved per day if 100% of CWP capacity can be
produced by the free cooling modules. This potentially saves
2,174,040 kW-hr of energy by not operating the chillers during
the colder months (December - March) when the surrounding
temperature allows for free cooling (6} [14} [77].

Coolant monitor. BGQ systems have several associated
modules to periodically sample environmental sensor data
and store them in IBM DB2 environmental database [40].
In this paper, we particularly focus on the Coolant Monitor
module, present in each of the racks of Mira. It is a module
of sensors present beside the coolant outlet and coolant inlet
lines of the internal water loop of each rack. The coolant
monitor collects rack-level data at a granularity of 300 sec. The
monitor also stores the calibration data used to calibrate the
sensors. It collects the following sensor data: (1) data center
temperature, (2) data center humidity, (3) coolant flow rate,
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Fig. 2. The power consumption and system utilization of Mira
have increased over the years. The red lines show a linear fit.

(4) coolant temperature (inlet and outlet), and (5) power. The
temperature and humidity values denote data center conditions
near the rack (not node level). The flow rates measure the
rate at which water flows through the outlet and inlet lines,
and the coolant temperature measures the respective coolant
temperatures of the outlet and inlet ports. Power data denotes
the aggregate power drawn from all four power enclosures
in a rack. The enclosures supply power to the computation
nodes and the fans in the power module. The coolant monitor
sensors were regularly tested and validated to ensure accurate
measurements. Only one sensor (on one rack) was replaced
during the six years as it malfunctioned.

The coolant monitor sets alarm thresholds for measured
sensor values. If a sensor reading crosses the relevant set
threshold, a Coolant Monitor Failure (CMF) event is recorded
in the RAS dataset of Mira. The RAS logs record events which
affect the reliability, availability, and serviceability (RAS) of
Mira. The severity of a failure event can be warn (designating
low-risk situations) or fatal (identifying a severe error event
that leads to a rack-level failure). Apart from coolant monitor
failures, the RAS log also captures failures due to BPMs,
ethernet adapter cards, BGQ computation cards, and link
modules, among others.

III. Identifying and Investigating Temporal
System-Level Trends

In this section, we identify and investigate the temporal
characteristics of cooling-related parameters, the factors that
affect them, and the lessons learned from them.

A. Year-over-Year Trends

Fig. Pa) and (b) show the increase in the power consump-
tion of Mira and the increase in its utilization, respectively.
The system-level power consumption of Mira has increased
from ~2.5 MW at the beginning of 2014 to ~2.9 MW near
the end of 2019 with many fluctuations in between which
depend on the system utilization, system failures and crashes,
and power outages and blackouts. However, the general trend
has been toward increase in power consumption as is shown
by the linear fit (red line).

Correspondingly, the system-level utilization of Mira has
also increased from ~=~80% to ~93%. At any instant, system
utilization is defined as the percentage of nodes on which jobs
are running, out of the total number of nodes present (49,152
in case of Mira). Utilization has varied considerably over the
years. Under normal operating conditions, Mira maintains a
high utilization. However, drop in utilization occurs frequently
at both longer and smaller time period for various reasons and
has implications for ensuring high operational efficiency.

Although the queue of the high-utilized Mira supercomputer
always has a large number of jobs waiting to be scheduled,
a transient drop in the utilization can occur (1) when racks
are reserved for projects which end up not using them fully,
(2) when rack-level or system-level failures occur, (3) when
the system has to wait to finish all the smaller jobs to
accommodate the occasional large job which runs at full or
near-full capacity. Unfortunately, these drops in utilization can
also cause undesired power utilization fluctuations.

Opportunity: There is a need to develop more robust
methods to “fill in” the idle nodes waiting for a large-
job to start. State-of-the-art back-filling job scheduling
strategies [39, 45] may not be able to fill all such holes
— leading to resource wastage. Although challenging,
an opportunity for making traditional HPC jobs more
elastic to fill such holes exists [22]], and more efforts are
needed to utilize these transient resources on a capability
machines for on-demand HPC jobs or serverless compu-
tation [47,169]. Similarly, smooth rebooting of large-scale
system, often under-investigated, remains a challenging
avenue [44].

Next, Fig.[3[a), (b), and (c) show the changes in coolant flow
rate, inlet coolant temperature, and outlet coolant temperature
from 2014 to 2019, respectively. Mira’s coolant flow rate was
maintained at around 1250 GPM (=26 GPM per-rack) until
July 2016 at which point it was to increased to about 1300
GPM. The reason for this increase was the addition of Theta
supercomputer which shared its internal water loop with Mira.
Mira’s water loop was installed with the necessary valves and
stubs to allow additions in a manner which would not affect
its exiting water loop until Theta’s piping installation was
complete and the final connection needed to be made. Mira and
Theta’s individual coolant flows were controlled using a flow
regulating valve. Therefore, to prevent accidental shutdowns of
Mira, the impellers on the coolant loop were upgraded when
Theta was added to the loop and the flow rate of coolant to
Mira was increased.

Similar to the coolant flow rate, the inlet coolant temperature
and the outlet coolant temperatures have remained consistent
throughout the years at ~64 F and ~79 F, respectively, with
only a few exceptions. For example, both the inlet and the
outlet coolant temperatures rise in June 2016 and remain high
until early 2017. Again, the reason for this increase is the
addition of Theta to Mira’s water loop which generated higher
heat load as Theta was in early testing until the end of 2016.
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Fig. 3. While the coolant flow rate was increased when Theta
cluster was added in 2016, barring a few times during the
six years, the inlet and outlet temperatures have remained
generally consistent. Coolant flow rate, inlet coolant tempera-
ture, and outlet coolant temperature have an overall standard
deviation of 41 GPM, 0.61 F, and 0.71 F respectively.

Summary: When new systems are added to an existing
data center, it can pose new challenges due to potential
sharing of the chillers/cooling loop. Sufficient attention
must be given to regulating the coolant flow rate to
prevent accidental system outages and the thermal profile
of the data center needs to be re-done.

B. Monthly and Daily Trends

While the year-over-year analysis revealed some interesting
results, some parameters show patterns on a finer scale. There-
fore, next we present results pertaining to how the parameters
vary on monthly and daily basis.

Starting with the per-month granularity, Fig. [4(a) shows that
while the power consumption remains low in the months of
January through June, it increases significantly in the later
half of the year, achieving its peak in December. The reason
for this trend is primarily due to the the monthly variation of
utilization as shown in Fig. fi[b). As described in Sec. [, Mira
primarily supports projects related to the ALCC and INCITE
programs. In order to avoid severe resource contention, ALCC
projects have their project allocation year from July 1 to June
30 of next year and the INCITE projects have their allocation
year from January 1 to December 31. An allocation year is
the period during which the units (core hours) allocated to a
project at the beginning of the allocation year must be used up
by the end of it. Because users tend to run a majority of their
jobs near the end of their allocation year deadline to consume
all of the allocated core hours, setting the allocation years in

the above manner allows the two programs to run their jobs
with less contention. However, the INCITE projects tend to
be of higher priority and have higher resource requirements,
therefore, the system utilization increases during the second
half of the year when INCITE projects are run.

Opportunity: Designing the allocation years in this
manner has been an effective strategy to avoid resource
contention, but it does not always help in terms of the
variability of utilization as the resource usage behavior
of the projects belonging to the two programs is very dif-
ferent. This can cause the variability in utilization, which
has an impact on the variability of the system’s power
consumption. New innovative mechanisms are needed to
avoid variability in system power consumption caused
because of resource allocation policies in HPC data
centers (e.g., incentive-based trading of compute core
hours among users [58]] and potentially different project
types to smoothen the load and provide fairness [26} 57]]).

Since higher utilization demands more cooling efforts to
regulate the CPU temperatures, the coolant flow rate increases
slightly from June to the end of the year (Fig. ffc)). Due to
the water side economizer design of the Chilled Water Plant
(CWP) to save power, the chillers remain partially or fully non-
operational during the colder months of Chicago (December -
March). At this time, the environmental temperature aids with
the cooling. Since, environmental cooling is not as effective
as cooling by the chillers, the inlet coolant temperature is
slightly higher in the colder months than relatively hot months
(when the chillers remain operational) as shown in Fig. @{d).
The outlet coolant temperature shows trends which can be
directly explained from the system utilization characteristics
(Fig. @(e)). It rises in July and near the end of the year due
to the high utilization during those periods. It is minimum
in April and May due to relatively low utilization and full
operation of the chillers during those months.

The next granularity of behavior we analyze is the daily
variation of system parameters during a week, as shown in
Fig. 5] First, we observe that the system power is minimum
on Mondays (Fig. Eka)). This is because utilization is also
low on Mondays (Fig. [5[b)) due to maintenance activities.
They typically last for 6 to 10 hours starting from 9 AM.
Though the maintenance does not need to be scheduled every
week, but given the high utilization of the machine at all
other times, even a small unavailability on Mondays shows
up in the temporal trends. During this time, the system does
not run any jobs from the users. Instead, burner jobs which
perform no useful computation, are run across the system
for health monitoring. This is also done to prevent hardware
damage due to excessive cooling when a rack is idle. We
found that the cold inlet coolant temperature can damage
inactive CPUs and increase the failure rate of nodes when
they become busy again, causing them to crash. Therefore,
as a workaround, burner jobs were run on the racks to
burn cycles. The damage was caused in many cases due to
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Fig. 4. The median power consumption and system utilization of Mira are higher during the second half of a year as compared
to the first half due to the way that the allocation units are allocated to the projects. Other metrics including the coolant flow
rate, inlet coolant temperature, and outlet coolant temperature show less than 1.5% change from January across months.
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Fig. 5. The power consumption of Mira increases by ~6% on days other than Mondays even though the utilization only
increases by ~1.5% on days other than Mondays. The outlet coolant temperature also shows a 2% increase on non-Monday
days, while coolant flow rate and inlet coolant temperature observe no difference. Mira has scheduled maintenance on Mondays

which causes a drop in utilization.

optimal interconnect misalignment of the nodes on reboot,
but in general, it was difficult to reproduce, but required a
heavy investment of efforts to mitigate the post-effects. Note
that the system still consumes considerable amount of power
during maintenance tasks. Interestingly, while the utilization
increases by ~1.5% on days other than Mondays, system
power consumption increases by ~6%. As expected, the outlet
coolant temperature increases ~2% on non-Mondays due to
the increased utilization (Fig. Eke)). However, the near-constant
flow rate is maintained on Mira on all days with inlet coolant
temperatures also being highly consistent regardless of the day
of week (Fig. Bfc)-(d)).

Summary: In production systems, keeping compute
nodes “warm” is a critical goal, even during mainte-
nance. Further, a slight change in utilization can result
in undesirable swing in the power consumption.

IV. Identifying and Investigating Spatial Trends

Next, we describe how the cooling related metrics vary
across the 48 racks of Mira averaged over the full duration.
A. Rack-Level Power Usage & Utilization

First, we study the variation of average power consumption
and utilization across the racks of Mira, respectively (Fig. [6(a)
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Fig. 6. The power consumption and utilization are highest in
row 0 of racks. However, the power consumption is the highest
on rack (0, D), while utilization is the highest on rack (0, A).

and (b)). During the whole production period, power varies
significantly among the racks (up to 15 %) as seen in Fig. Eka).
Row 0 of racks always has the highest utilization (Fig.[6[b)) as
longer jobs are allocated racks from row O (jobs submitted to
the prod-long queue of Mira). The queue allocation of Mira
causes row 0 of racks to have a higher power consumption
than the other two racks.
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Fig. 7. The coolant flow rate varies considerably with a
difference of up to 11% among the racks. On the other hand,
the inlet and outlet coolant temperatures remain consistent
across the racks with maximum difference of 1%-3%.

While the racks with higher utilization generally have higher
power consumption, this correlation is not always direct and
one-to-one. For example, rack (0, D) has the highest power
consumption, while rack (0, A) has the highest utilization.
Another example is rack (2, D), which has a power consump-
tion of 7% more than the minimum, while the same rack has
the lowest utilization among all. In fact, the correlation coeffi-
cient [52] between average power consumption and utilization
of each rack is only 0.45 (on a scale of -1 to 1, a correlation
of 1 indicates perfect positive correlation, 0 indicates no
correlation, -1 indicates perfect negative correlation).

The reason for this mismatch is that the CPU load of a rack
depends on the characteristics of the jobs running on it. A rack
gets hotter when it is running CPU intensive jobs. However,
such application-level information is not monitored due to
potential operational interference with production jobs and
hence, is not shown in this paper. Therefore, the correlation
between power consumption and rack utilization is lower
than expected. Nonetheless, the significant variation in power
consumption implies that some racks are running jobs which
utilize the allocated cores much more efficiently than others
causing an imbalance in the power consumption of racks.
Since long running jobs (submitted to prod-long queue and
allocated in row 0) usually do not underutilize the allocated
nodes, both utilization and power consumption are highest in
row (. Other hotspots of utilization can be attributed to certain
users submitting high number of compute jobs to certain
specific regions, such as nodes in columns 2, 6, A, and B.
Users who do this on a prolonged basis were contacted and
asked to refrain from overburdening specific racks. Note that

apart from utilization, power consumption is also affected by
the ability of the cooling system to cool a rack, which again
can be determined by the flow rate and coolant temperatures.

B. Rack-Level Coolant Monitor Telemetry

Next, we discuss other cooling-related metrics and how they
affect the power consumption of the racks. First, we look at
the average coolant flow rate across the racks in Fig. [/(a).
The coolant flow rate varies considerably across the racks
with up to 11% difference between the minimum and the
maximum. Underfloor cables from the chillers in CWP to
the racks can undergo partial blockage in the pipes and the
filters due to the complex cable layout, space constraints,
and various maintenance tasks. This results in variability
in coolant flow rate as measured by the coolant monitors
attached with each rack. This variability can have an impact
on the power consumption of the racks [57, 160]. To be on the
safe side, data center raises the coolant flow rate.

Though the flow rate varies from rack to rack, the chillers
maintain a highly consistent coolant temperature and hence
the inlet coolant temperature remains almost the same across
the racks (Fig. b)). Moreover, while the outlet coolant
temperature does not vary as much as the power consumption,
it does vary more than the inlet coolant temperature with
a difference of up to 3% between the minimum and the
maximum (Fig. [7[c)).

Opportunity: Data center operators often conservatively
increase the coolant flow rate. Further efforts are required
to monitor and manage the coolant flow rate effectively
in real-time to identify the challenges posed by factors
outside the compute cluster.

V. Ambient Data Center Temperature and Hu-
midity Analysis

Next, we explore the trends in data center temperature
and humidity, which, while not directly related to the liquid-
cooling system, are important for studying temperature and
humidity hotspots. First, we look at the ambient data center
temperature and humidity trends from 2014 to 2019 in Fig. [§]
(a) and (b), respectively. The figure shows a relatively high
variability with temperature varying from 76 F to 90 F and
relative humidity varying from 28 RH to 37 RH. The variation
in humidity is highly seasonal with increased levels of humid-
ity during the summer months (as shown by the red area in the
plot). The reason for this is that ambient data center humidity
of the TCS building where Mira is located is affected by the
outdoor humidity of Chicago, which is lower in winter months
due to the dryer air. However, the data center temperature
is regulated with air cooling and therefore, experiences less
variability except in the event of power outages, air-cooling
system failure, and extreme weather incidents.

Keeping these temporal trends in mind, next, we study the
variability of data center temperature and data center humidity
from rack to rack in Fig. [0] Both metrics, but especially
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humidity, vary considerably from rack to rack. In fact, data
center humidity can have a difference of up to 36% across
different racks while data center temperature can have a
difference of up to 11%.

The root cause of this spatial variation is the underfloor
airflow characteristics underneath the racks. We found that the
air flow is significantly lower near the ends of each row as op-
posed to the center due to the presence of obstructive surfaces.
This causes the humidity to be lower and the temperature to
be higher near the last three or four racks on either sides of all
three rows. However, localized humidity hotspots, such as rack
(1, 8), which is in the center of row 1, also exist. This is due
to the presence of airflow blocking objects such as plumbing
pipes, air cooling vents, and torus cables, underneath those
racks. Thus, the lack of rack of air flow regulation cannot
cause the racks to be affected by outdoor weather patterns but
also by inadvertently created hotspots.

An important implication of this variability is that different
racks can potentially observe different levels of failure rates

due to this difference in humidity levels in their surrounding
environment. High humidity, vibration and temperature have
been shown to increase the error failure rate of data center
hardware [l [15) 17, 146l 149, 168], although in Mira’s case,
such a correlation was not found.

Summary: Despite best efforts and significant staff time
investment, uneven humidity and temperature distribu-
tion can continue to pose a challenge for production
systems due to multiple external factors which can not
be always controlled [5} 46].

Opportunity: More research effort is needed toward (1)
quantifying the effect of extended humidity variability,
vibration, and temperature on component reliability and
application performance via in-house controlled testing
in academic labs, and (2) low-cost mitigation strategies
for such effects and its cost analysis. Data center staff
time and effort invested toward resolving transient hu-
midity and temperature variability could be saved if its
costs outweigh the savings.

VI. Coolant Monitor Failures and Its Impact

In the previous sections, we characterized the time-
dependent and rack-dependent characteristics of different met-
rics. A lot of these characteristics are impacted by the failures
related to the cooling system — an important type of failure
but often under-investigated in computer systems academic
literature [3) [11]. Next, we study the characteristics of failures
related to the cooling infrastructure and how they influence
other system characteristics. Before we begin our analysis we
first describe our methodology.

Methodology: The type of coolant monitor failures (CMF)
that we analyze are “fatal” failures which cause at least
one of the racks to shut down. Note that other types of
fatal failures are possible; for example, uncorrectable memory
errors causing a job to crash. Here on, a “failure” refers to a
CMF unless otherwise stated.

The Blue Gene/Q architecture performs two main control
actions for a rack in the event of a coolant monitor fatal
failure: (1) close the solenoid valve to cut off coolant flow,
and (2) shut off the power supply. This failure is triggered
when the dewpoint temperature, which is a composite metric
consisting of data center temperature and data center humid-
ity, falls below or becomes almost equal to the data center
temperature, resulting in increased possibility of condensation
on the electronic hardware. This can damage the electronic
components and in extreme cases, cause data center outages.

When a coolant monitor failure (CMF) takes place on a
rack, it is followed by a cascade of other failures on the rack
that is the epicenter as well as some or all of the 47 other racks
on Mira (referred to as “RAS storms”). The actual number of
failure messages logged by the coolant monitors during such
storms can be upwards of 10,000 failures. However, because
the rack shuts down after the first failure, we do not consider
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Fig. 11. The number of CMFs experienced by a rack varies
from five failure events (rack (2, 7)) to 14 failure events (rack
(1, 8)). No other rack has more than nine failures.

the other failures as new failures. It can take up to six hours
for a rack to come back up, therefore, we ignore all other
CMFs on the same rack within a six hour window from the
first failure. We do this for individual racks and not for the
whole system in order to capture information about how many
racks crash once a CMF occurs. For example, if 1000 CMFs
take place on eight racks within six hours of each other, we
consider these as eight failures and not one failure in order to
capture that fact that eight racks were affected as opposed to
just one rack or all 48 racks.

Opportunity: Academic researchers have devised strate-
gies to mitigate traditional software and hardware related
failures (e.g., memory errors, voltage fault) that impact
a few jobs at once and often have limited cascading
effecting 18, 24]]. In contrast, CMF kills jobs running
on at least one rack and multiple racks in most cases.
Unfortunately, there is limited understanding of CMF
characteristics and mitigation strategies despite its much
more severe effects (e.g., killing hundred of jobs in a
small span of time).

A. Frequency and Locations of Coolant Monitor Failures

We begin by looking at all coolant monitor failures which
took place from 2014 to 2019 in Fig.[T0] Mira has experienced
361 total coolant monitor failures during its six years across
all the racks. These failure events are not isolated rack-level
incidents and in most cases, affect the entire system because
the racks are inter-connected and mediate links connecting to
each other. For example, if rack (0, A) shuts down due to a
failure then rack (0, 9) also fails because it does not have its
own clock card and it gets its clock signal through rack (0,
A). These links do not have to be based on physical proximity
either. For example, if rack (1, 4) fails, then the entire system
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(a) Coolant Flow Rate
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Time before Failure (hours)
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(b) Inlet Temperature (¢) Outlet Temperature

Fig. 12. The coolant monitor telemetry shows signs before
a failure is about to occur. The inlet and the outlet coolant
temperatures drop by 5% and 7%, respectively, up to three
hours before a CMF.

fails because all racks get their clock signals through rack (1,
4) in Mira’s Blue Gene/Q design.

One can expect that the rate of failure should be higher near
the beginning of Mira’s operation period when operators are
still learning about the optimal way of managing the system
due to the fact that Mira was the first liquid cooling system
setup at ALCF’s TCS facility. One would also expect the failure
rate to be higher near the end of Mira’s operation period due
to general wear and tear. Surprisingly, Fig. [I0 shows that this
is not necessarily the case. Failures happen inconsistently over
the six years with 40% of all failures taking place back-to-back
in 2016 when Theta was brought on but no failures happening
for over a two year period after that until the end of 2018.

Summary: CMF failures do not exhibit traditional
bathtub-like behavior. Hence, traditional proactive strate-
gies such as burn-in during early phase may not be
sufficiently effective. Academic research effort is needed
for early identification and prediction of such failures.

Next, we look at how the 361 CMFs are distributed across
the individual racks of Mira in Fig. [T1] Surprisingly, the failure
distribution among racks is not necessarily correlated with the
utilization (which would cause more hardware wear and tear:
Fig.[8)) or coolant outlet temperature (which means the racks
are hotter for prolonged period of time (Fig.[7)) or data center
humidity (which has been shown to cause failures: Fig.[9). For
example, rack (1, 8), which has the highest number of CMFs,
falls in the bottom half of all racks in terms of all three of
these metrics: it has low utilization, low outlet temperature,
and low humidity. More formally, the correlation coefficient
between the number of CMFs and rack utilization is -0.21,
outlet coolant temperature is -0.06, and data center humidity
is 0.06. Thus, none of these markers can be used to predict
when and where the CMFs are going to occur, which makes
it especially difficult to tackle them.

Summary: Rack-level distribution of CMF failures ex-
hibit limited correlation with rack-level distribution of
utilization, temperature, or humidity.

B. The Lead up to a Coolant Monitor Failure

While the macro-level temporal and spatial trends of coolant
monitor failures indicate a lack of patterns which can help
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Fig. 13. The change pattern in the coolant monitor metrics
can help predict an impeding CMF with high accuracy up to
six hours before its occurrence using a neural network.

predict when CMFs will occur, given their severity, it is
important to be able to predict them even if it is just three to
six hours before a failure occurs in order to provide enough
time to be able to take corrective and backup measures, and
preempt restorative actions. Therefore, we look at the coolant
monitor telemetry data up to six hours before a coolant monitor
failure occurs and the results are shown in Fig. [I2] Fig. [[2[a)
shows that the coolant flow rate continues to remain relatively
stable until just a half hour before a CMF. In fact, in many
cases, its rapid and significant decline becomes the cause of
the failure. Therefore, it cannot be used as a good prediction
feature. On the other hand, when looking at Fig. [I2(b) and
Fig. [[2[c), the results are encouraging. Earlier, in Fig [3] and
Fig [l we saw how stable the metrics tracked by the coolant
monitor are temporally and across racks. This is especially true
for inlet coolant temperature. However, Fig. |12| shows that the
inlet coolant temperature drop by as much as 7%, over four
hours before a CMF is about to take place, and then rises
by up to 8%, half an hour before a CMF. The outlet coolant
temperature also decreases by 5% three hours before a CMF.
These two metrics are good indicators of an imminent failure.

Toward that end, we build a simple and effective CMF
predictor. This is an example to demonstrate how coolant
telemetry can be used toward low-overhead operationally use-
ful tasks. We build a neural network based binary classification
model which predicts whether a CMF will occur within
the next six hours of time. It uses the change in value of
coolant monitor metrics (coolant flow rate, outlet temperature,
inlet temperature, system power, data center temperature and
humidity) over the past six hours as input features.

To prepare the training dataset for our model, we collect
coolant monitor metrics from six hours before the occurrence
of all the CMFs in their respective racks. These data are
labeled as class one (positive class, a CMF will occur). Next,
we collect an equal number of data points for the change in
the coolant monitor metrics when no CMF occurred within the
next six hours. We evenly collect data throughout the whole
period of Mira’s production time. These are labelled as class
zero (negative class, a CMF will not occur). The combination
of both the classes of data form our training dataset. We train
the neural-network-based prediction model for 50 epochs by
dividing this data in a ratio of 3 : 1 : 1 for training, testing

and validation, respectively. The neural network consists of
three layers between the input and output layers having twelve,
twelve, and six neurons in each layer, respectively. Bayesian
Optimization, a technique frequently used for hyper-parameter
tuning, is used to optimize the architecture of this neural
network (number of neurons per layer). Rectified linear unit
(ReLU) is used as the activation function for all the layers,
except the output layer which uses a sigmoid activation (a
commonly used activation function for binary classification
which restricts the output between zero and one).

We measure the performance of our prediction model from
30 minutes before an impeding CMF all the way up to six
hours before a CMF. We measure accuracy (ratio of correct
predictions to total number of predictions), precision (ratio of
correct positive class predictions to the sum of correct positive
class predictions and incorrect positive class predictions),
recall (ratio of correct positive class predictions to the sum
of correct positive class predictions and incorrect negative
class predictions) and F1 score (harmonic mean of precision
and recall) for evaluating the prediction performance. All the
prediction performance results are obtained using 5-fold cross
validation for robustness against sample selection.

Fig. [T3] shows how the predictor performs for all four met-
rics up to six hours before a CMF. All metrics of performance
provide nearly similar values at a given time before a CMFE.
The prediction model can predict a CMF with 87% accuracy
six hours before the event. In fact, it can predict an impeding
CMF with as high as 97% accuracy when an impeding CMF
is within 30 minutes. Note that the testing set also contains
equal number of samples from both positive and negative
classes, and the prediction model can predict both classes
with high accuracy. Evidently, as the CMF approaches, the
prediction performance improves because the coolant monitor
metrics change more vigorously. This results in stronger trends
which indicate that a CMF might be approaching. Overall,
the predictor performs well up to six hours before a CMF,
providing ample time to deploy precautionary measures.

Our simple model achieves high prediction quality, but it
has certain limitation and areas for improvement. While our
predictor requires each rack to be monitored individually,
operationally it will be even more useful to have a predictor
which even predicts the location of an impeding CMF from
the overall coolant telemetry of the datacenter. Second, any
proactive measure if a CMF is predicted is likely to incur high
overhead since a CMF impacts the whole rack, at minimum.
Therefore, the false positives need to minimized as much as
possible; it is another area where further scope of improvement
is present (our false positive rate is 6%, six hours before a
CMF and 1.2%, 30 minutes before a CMF).

Opportunity: The otherwise stable data such as inlet
coolant temperature and outlet coolant temperature may
observe significant changes up to three to four hours
before a coolant monitor failure. This time can be used
to checkpoint active jobs, alert data center users, and kick
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Fig. 15. The three examples shown here demonstrate that
failures after a CMF do not necessarily happen on the same
rack as the CMF or even in the vicinity of the epicenter
rack (indicated by a blue star). The failures can take place
anywhere on the system.

off backup and restorative actions — more research effort
is needed toward emulating and testing such scenarios
in research lab setting and devising deployable tools.
While it is possible to predict the occurrence of a CMF
at the system-level, further improvements are needed to
improve the location accuracy and reduce false positives
for more effective proactive mitigation actions. As dis-
cussed next, predicting CMF occurrence is important, but
post-CMF world is even more chaotic and requires more
predictive tools.

C. What Follows a Coolant Monitor Failure?

Now that we have analyzed what happens before a coolant
monitor failure occurs, next we look at what happens after a
coolant monitor failure takes place. Namely, we look at the rate
and the type of non-CMF failures that take place. Fig. [T4(a)
shows the rate of failure within three hours after a CMF to
within 48 hours or two days of a CMF. Note that as per our

methodology, we do not take cascaded failures into account.
It takes on average one hour for a rack to come back up after
a non-CMF failure. Therefore, we consider all failures within
an hour of each other as a single failure.

According to Fig. [T4{a), the failure rate within six hours
after a CMF is less than 75% of the failure rate within three
hours of a CMF. In fact, the failure rate drops to 10% of
the failure rate at three hours, 48 hours after a CMF. This
demonstrates that there is heightened risk of non-CMF failures
immediately after a CMF. But what types of non-CMF failures
take place after a CMF failure?

Fig.[T4(b) shows a distribution of the type of failures which
the system is most at risk of after a CMF failure. The most
common type, in fact, 50% of all non-CMF failures after a
CMF failure is a “AC to DC power” failure which denotes the
bulk power module failing to convert power at appropriate
level. Other significant types of failures include BQC and
BQL which are failures caused by Blue Gene/Q Compute
and Link modules, respectively. The compute module mainly
includes the cores of each node while the link module includes
links between higher network topologies, load balancers, and
primary and backup devices. While some of these failures
can be masked by redundancy, failures in links connecting
commodity switches can result in the highest downtime after a
failure. Link failures primarily occur due to increased network
traffic. The card failure refers to a failure in the clock card
which is used to synchronize the nodes. Software failures can
range from buggy updates to certain network decisions causing
software systems to malfunction. Lastly, process failures,
which are rare (< 2%), are mainly caused by various software
daemons running in the background.

Next, we look at whether these non-CMF failures occur on
the same racks as the original CMF failure which they follow.
Unexpectedly, Fig. [I5] shows three examples of CMFs for
which the non-CMF failures after a CMF do not necessarily
happen on the same rack as the CMF or even in the vicinity
of the epicenter rack. The failures can take place on other
racks the system because as mentioned above, the racks are
inter-linked in a manner which is not necessarily spatially
correlated. This makes it especially difficult to predict where
non-CMF failures following a CMF are going to occur.

Summary: The failure rate of non-coolant monitor
failures goes up after a coolant monitor failure and
these failures can occur on any rack in the system,
demonstrating the severity and across-system impact of
a coolant monitor failure. We observed that certain types
of failures such as “AC to DC power” failure (caused by
failures in BPMs) are more likely to occur than others.
Moreover, it is also difficult to predict the location of
these post-CMF failures as they can happen anywhere
on the system.

Opportunity: More research efforts are needed to un-
derstand how CMF can manifest itself, induce non-CMF
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failures, and propagate in the system — currently, there
is very limited understanding of these critical issues.

D. Discussion

Coolant telemetry: threshold-based monitoring not al-
ways sufficient. Typical data center monitoring infrastructure
monitors temperature, pressure and humidity levels to detect
abnormalities in the system. Usually, there are set threshold
levels of these parameters and the system throws off warnings
when the corresponding threshold levels are crossed [64} [75]].
However, we observed in Sec. B) that not only the level
of cooling metrics, but more importantly the change in their
values are key features for detecting abnormalities and pre-
dicting CMFs. A threshold-based approach is not sufficient
for abnormality detection as certain metrics might continue to
remain high during periods of high utilization, but that does
not signify an impeding failure.

Preventive actions on non-neighboring racks on coolant
monitor failures. When a rack undergoes any kind of failure,
datacenter operators apply preventive measures to that rack
and sometimes to its surrounding ones [9, 25]]. But we have
observed in Sec. @ that after a CMF, a system-wide RAS
storm may occur without following a known pattern. It is not
necessary that just the epicenter rack and its surrounding racks
would get affected. Hence, keeping in mind the severity of
the CMFs, datacenter operators should take preventive and
precautionary measures for all the racks of the system.

Opportunities for computer architects and system re-
searchers. Software-based checkpointing imposes high over-
head and is not practical for production. It leads to resource
wastage by idle nodes in many situations (Sec. [[II(A)).
Hardware support for fast checkpoint/ restoration is critical.
Also, hardware support for a fast reboot is important toward
solving the challenges discussed in this paper (Sec. @IA)).
For improving resource utilization and reducing variability
in utilization (Sec. A-B)), interference- and jitter-free co-
location of parallel jobs on the same node is required (e.g.,
Intel CAT, but not supported by all vendors). Architecture and
systems research on mitigating the impact of occasional vari-
ation in humidity on CPUs will reduce the overall operational
cost of the data centers (Sec. [VI). This work can motivate
researchers to develop CMF-aware job schedulers and resource
management strategies.

VII. Related Work

Previous works have discovered that inefficiencies in the
cooling system can be a cause of many data center prob-
lems from unnecessarily high energy consumption and high
operational and maintenance costs to compromised resiliency
characteristics of the center which lead to a high failure
rate [[7 12, 23| 27430, (37, 138, 41} 42, [76]]. Consequently,
the HPC community has focused research effort toward (1)
cooling system development, (2) power management, and (3)
reliability of associated infrastructures [32] [33} 148}, 153 159} |61}
70H72]].
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For increasing energy-efficiency, efforts have primarily been
directed toward designing energy-efficient hardware, power
capping, dynamic voltage and frequency scaling (DVFES), and
energy-efficient job scheduling on HPC and cloud infrastruc-
tures [20, 21} 32} 54} 163l 165} 167, [70L [72].

Since power utilization is largely affected by the efficiency
of cooling systems, active research continues to be conducted
toward developing several kinds of cooling infrastructures.
Prior works have developed techniques for cooling-aware and
temperature-variation-aware job scheduling and management
of HPC systems [34, 51 (70, [74]. Cooling systems also
frequently rely on free cooling, which makes the systems prone
to severe system outages, a problem which many works have
attempted to tackle [10} 17, (19,131} 143,155, 168]]. However, these
works do not provide in-depth insights about how cooling and
other environmental factors can affect the performance of a
large-scale system over a long period.

Lastly, studies have been performed on how fault rates in
specific components of a system are affected by environmental
factors such as temperature and humidity [, I8 [15} 16} 46}
49, [73]. How the cooling system can effectively work on a
large-scale computing system to reduce power consumption,
operational cost, as well failure rates is still a challenging
question, which can be system dependent [} [2, 4} [13] 35 36].

VIII. Conclusion

In this paper, we performed the first in-depth study charac-
terizing the operations of Mira supercomputer, and presented
several interesting results and insights, especially in the context
of temporal variability and rack-wise variability of cooling
parameters and the failure rate of the cooling infrastructure.
We hope new problems found in operating these production
systems, often less-known and under-investigated in academic
settings, drive research to mitigate the identified challenges.
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