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Abstract—Noisy Intermediate-Scale Quantum (NISQ)
computers are being increasingly used for executing early-stage
quantum programs to establish the practical realizability
of existing quantum algorithms. These quantum programs
have uses cases in the realm of high-performance computing
ranging from molecular chemistry and physics simulations to
addressing NP-complete optimization problems. However, NISQ
devices are prone to multiple types of errors, which affect
the fidelity and reproducibility of the program execution. As
the technology is still primitive, our understanding of these
quantum machines and their error characteristics is limited.
To bridge that understanding gap, this is the first work to
provide a systematic and rich experimental evaluation of IBM
Quantum Experience (QX) quantum computers of different
scales and topologies. Our experimental evaluation uncovers
multiple important and interesting aspects of benchmarking
and evaluating quantum program on NISQ machines. We have
open-sourced our experimental framework and dataset to help
accelerate the evaluation of quantum computing systems.

Index Terms—Quantum Computing, Performance Evaluation,
Computer Errors, Error Analysis, Error Probability

I. Introduction
Quantum computing is maturing at a fast pace, moving

from theoretical ideas to practical implementations. Microsoft
recently announced their topological quantum bit technology,
Google a quantum advantage using their 53-qubit Sycamore
quantum machine and IBM became the first company to
take quantum computing to the cloud by providing the first
publicly-available superconducting-qubits quantum machines.

Unfortunately, current Noisy Intermediate-Scale Quantum
(NISQ) machines suffer from high error rates and do not have
enough number of qubits to deploy Error Correction Codes
(ECC) [36, 48]. But, NISQ machines employ a circuit-based
approach toward developing and executing quantum programs,
including practical high-performance computing (HPC) prob-
lems [6, 24, 36, 48], as compared to the quantum annealing
approach which is limited to a subset of problems [22, 42, 43].
However, because of the relatively high error rate of NISQ
machines, the output generated by these programs is erroneous
and challenging to reproduce.

*A part of this work was performed during an unprecedented time –
around the peak of the COVID-19 pandemic. We were able to conduct
this scientific study only because first-line responders and essential workers
worked tirelessly to keep our community safe and functioning – we are
eternally grateful to them. This paper is dedicated to the memories of all the
first-line responders and essential workers who sacrificed their lives trying to
keep ours safe.

To overcome this challenge and to effectively use NISQ
machines, it is critical to have a deep understanding of the
properties of different operations and real-world programs on
current state-of-art quantum machines. Previous works in the
area of NISQ computing have mostly focused on four major
research aspects: (1) quantum simulation and experimental
frameworks [9, 20, 31, 60], (2) optimal qubit mapping of
a quantum program to a quantum machine given its error
probability [3, 18, 32, 33, 40, 50, 51, 53–55, 59, 63], and
(3) execution of multiple codes in parallel [14, 41, 62], and
(4) debugging quantum programs and estimating correct
outputs [34, 39, 46]. However, no previous work has taken a
data-driven approach to provide a detailed characterization
of error and execution time characteristics of quantum
programs on real quantum machines.

To the best of our knowledge, this is the first systematic
and rich experimental evaluation effort that measures and
analyzes the error and execution time characteristics of
seven IBM Quantum Experience (QX) quantum machines
of different scales and topologies. Our evaluated quantum
benchmarks solve problems from different scientific and
optimization domains, and our experimental study covers
multiple months of characterization data for seven IBM
QX cloud quantum machines. Our study is open-sourced at
https://doi.org/10.5281/zenodo.3957894.

Below, we summarize a subset of our findings, their
implications and how our open-source code and dataset can
be used by the high-performance quantum computing to
advance the quantum computing field further.

• Our benchmarking effort, which spans many months and
covers a wider variety of quantum computing platforms,
confirms the swift progress in quantum computing technology.
As expected, the error rates for different quantum operations
and coherence have improved, but readout errors continue to
be a bottleneck, this is primarily because readout operations
are susceptible to the signal amplification noise.

• Our experimental results reveal that although quantum
computing technology has been improving significantly, the
optimal quantum machine for different types of quantum
operations is not necessarily the latest one. Moreover, different
quantum programs have their lowest output error on different
quantum machines based on the composition of their gate and
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Fig. 1. Bloch sphere of the state | i of a qubit before applying
a Pauli-X gate (left) and after applying a Pauli-X gate (right).

readout operations. Also, this choice may potentially change
over time across machines (requiring additional careful
description of experimental methodology compared to the
classical computing domain). Our open-source benchmarking
data will enable end-users to choose a better platform for
their programs based on our insights about what kind of
operations are more suited for which platform.

• Currently, the state-of-the-art research proposals for error-
aware circuit mappings [3, 32, 51, 53] only take the average
or most recently reported error rate for different qubits into
considerations. In practice, we find that error variance and
frequently changing error characteristics also play a major
role in determining the degree of error in the final program
output. We define “operation quality” as a new metric to
capture this behavior and find that some qubits/operations are
more unstable than others..

• Our results show that the quantum machine that has the
lowest execution times, does not necessarily have the lowest
output errors for a given quantum program. Additionally,
selecting higher compiler optimization levels does not
necessarily improve the output error or the execution time of
the programs. Surprisingly, reducing the circuit depth and the
number of gates of a circuit increases the variability of the
output error. Thus, quantum programmers need to choose the
compiler optimizations carefully and report the optimizations
in the results.

• We discover that the output states of a quantum program
with lower hamming weights tend to experience higher output
errors due to the accumulation of errors from states with
higher hamming weight. A useful implication for quantum
programmers is to map the important states of the program
output carefully to the states with higher hamming weights.

II. Quantum Computing Background
This section briefly describes the basics of quantum com-

puting and the technology behind quantum machines at IBM.

Brief Background on Quantum Computing. The funda-
mental unit of quantum computing is a quantum bit or qubit.
A qubit has two basis states denoted as |0i and |1i. In contrast
to a classical bit, which only takes the value of either 0 or 1, a
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Fig. 2. Architecture of IBM QX quantum computers. Each
circle represents a qubit with the corresponding Id. The arrow
directions indicate the relationship from control qubits to target
qubits for 2-qubit gate operations.

TABLE I. IBM QX machines.

Online date Machines (Number of Qubits)
Nov 06, 2018 Melbourne (14), Yorktown (5)
Jul 03, 2019 Ourense (5), Vigo (5)
Sep 13, 2019 London (5), Burlington (5), Essex (5)

qubit can also be in a superposition of the two states. A qubit
state is represented as | i = a |0i + b |1i, where a and b are
complex numbers and kak2 + kbk2 = 1. When a qubit is read
out, it collapses into one of the two basis states: state |0i with
probability kak2 and |1i with probability kbk2.

A qubit’s state can be considered as a point on a unit sphere
called a Bloch sphere. In Fig. 1, each sphere represents a qubit
state. While classical computing bits can only be switched
between the north pole and the south pole, quantum gates can
be used to apply rotation transformations to change the state
of a qubit to anywhere on the sphere. The Pauli-X gate and
Hadamard gate are examples of 1-qubit gates. As shown in
Fig. 1, a Pauli-X gate rotates the qubit around the x-axis by
⇡ radians, similar to a classical NOT gate. A Hadamard gate
puts each of the basis states into an equal superposition of |0i
and |1i. Multi-qubit gates facilitate entanglement: two or more
qubits are coupled such that the state of each qubit cannot be
described independently of the state of others. The Controlled-
X (CX) gate is an example of a 2-qubit gate. It has a control
qubit and a target qubit. A Pauli-X gate is applied to the target
qubit when the control qubit is in the |1i state.

Unfortunately, a qubit can retain its state only for a limited
amount of time. The period for a qubit’s natural decay from
excited state |1i to ground state |0i is called T1 coherence
time (amplitude damping). The period for a qubit’s state
change due to environment interaction is called T2 coherence
time (phase damping). Longer coherence time is essential to
the device’s performance because a more significant number
of operations can be accomplished before the output becomes
erroneous beyond a tolerance limit [15]. Qubits are error-prone
because of high volatility and susceptibility to environmental
perturbations. The readout error is the probability of incorrect
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Fig. 3. Design of IBM’s superconducting qubit technology
(from Patel et al. [44]).

measurement of a qubit state (referred to as 1-qubit readout
operation). The gate error is the probability of introducing an
error during a gate operation, for example, rotating a state of
a qubit by a slightly erroneous angle.

Quantum Computing at IBM QX. Multiple quantum ma-
chines have been made available to the public through the IBM
QX Cloud. Table I lists all the IBM QX machines used in this
study and their online launch dates. Melbourne has 14 qubits,
while other machines have 5 qubits. The QX architecture
supports the 2-qubit CX gate and a set of three 1-qubit gates:
U1, U2, and U3. The U3 gate is a universal 1-qubit gate and
can be represented as U3(✓,�,�) = R

z

(�)R
y

(✓)R
z

(�). Any
1-qubit operation can be conducted by specifying the input
parameters �, ✓, �. The U1 and U2 gates are special cases
of the U3 gate. The QX architecture is considered a universal
quantum computing architecture because all gates, including
gates spanning more than two qubits (such as a Toffoli gate),
are broken down into U1, U2, U3 and CX gates to perform
hardware operations.

The architectures of the studied machines are shown in
Fig. 2. Melbourne and Yorktown, which were made available
in 2018, have a different layout than the other machines. To
map any complex quantum gate operation to the machine, we
need to decompose it into the elementary CX and U3 gates.
Its unique architecture restricts the mapping of a 2-qubit gate
to a machine. For example, on Vigo, we cannot directly map
the gate to qubits 2 and 3 because they do not share a direct
connection. On Melbourne, we cannot directly map the control
qubit to 0 and target qubit to 1 because it violates the control
direction for this pair of qubits.

On IBM’s quantum machines, the qubits are implemented
using Josephson Junctions created by separated superconduct-
ing electrodes and capacitors as shown in Fig. 3. One-qubit
gate operations are performed by applying external controls
in the form of microwave pulses. Errors in applying these
pulses cause 1-qubit gate errors. Entanglement between two
qubits is performed using coupling resonators. These coupling
resonators can be error-prone, causing 2-qubit gate errors.
Lastly, qubit state measurement (or readout operation) is
performed using readout resonators as shown in Fig. 3. The
readout resonators are also error-prone and can cause 1-qubit
readout errors when qubit states are measured.
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Fig. 4. Execution of an example quantum program (Quantum
Phase Estimation (QPE)) mapped to a quantum circuit.

III. Experimentation Methodology
This section describes our experimental methodology.

Obtaining Properties of Qubits and Quantum Operations.
We obtain the properties of all qubits and operations across
all available IBM quantum machines by querying the IBM
QX cloud using IBM’s Qiskit framework [2]. These properties
include T1 and T2 coherence times, and gate and readout error
probabilities and execution times. The properties frequently
change as machines are calibrated at least once daily to
minimize operation error probabilities. So, we collected data
daily for over two months.

Methodology of Executing a Quantum Program in IBM
QX. A quantum program is expressed as a sequence of gate
operations operating on multiple qubits. The mapping of a
quantum program on a quantum machine is called a quantum
circuit: a set of quantum operations and the corresponding
qubits on which the operation is performed. As shown in
Fig. 4, running a quantum program requires several tasks to
be performed on both classical and quantum machines.

First, the program is coded using IBM’s Qiskit language.
Then, to run the program on a quantum machine, we tune
several parameters to optimize the output error and execution
times: (1) The number of “shots” is the number of times
the program is run on the quantum machine. Because the
output of a quantum program is probabilistic, it needs to be
run several times (e.g., 1024 times) to get the probabilities
of each output state. We perform experiments with 4 shot
levels (1024, 2048, 4096, and 8192) shots for all programs.
(2) The optimization level determines the types of compiler
optimizations that are applied when a program is mapped to
a quantum computing hardware. Note that a single quantum
program can map to multiple “circuits” in different ways on
the same machine. Optimizations such as the selection of
less error-prone qubits, selection of operations to reduce the
“depth” (maximum number of serially performed operations)
of a circuit, and reducing the number of total operations can be
performed based on the selected level. We run all programs
for each of the 4 possible compiler optimization levels (0,
1, 2, and 3). At optimization level 0, the circuit is mapped
to the machine without any optimizations. At level 1, light
optimization of collapsing adjacent gates into fewer gates
is performed. At level 2, optimizations are performed based
on gate commutation relationships and error-aware mapping.
Lastly, at level 3, along with all the previous optimizations,



TABLE II. Quantum programs used for analysis.

Program
ID

Program description

BV Bernstein-Vazirani algorithm [5]
DJ Deutch-Josza algorithm [11]
QFT Quantum Fourier transform [16]
QPE Quantum phase estimator [10]
QAOA Quantum Alternating Operator Ansatz [17]
GROVER Grover’s algorithm [19]
3SAT 3-clauses satisfiability solver [25]
CHEM Simulation using Variational Quantum Eigensolver [38]
SIMON Simon’s algorithm [29]

re-synthesis of two-qubit blocks of gates in the circuit is
performed to further reduce the number of operations.

Next, the circuit is run on a quantum machine, as shown
in Fig. 4. Each horizontal line represents a qubit, and each
box represents a quantum operation. Left to the right indicates
the time order of the operations performed. In the Quantum
Phase Estimation (QPE) program circuit shown here, H is the
Hadamard gate, R

x

and R
z

are Bloch sphere rotations about
the respective axes, and M is the readout operation at the
end. Once the output is read out, it is returned to the classical
machine where it can be analyzed. Qiskit returns program
information such as circuit map, the number of gates, depth,
and output state probabilities.

We ran all programs daily multiple times on all available
IBM machines over two months. However, due to the long
queues on each machine to perform a job, we avoided running
on machines with job queues longer than 25 pending jobs to
be able to collect the results frequently.

Selection of Quantum Programs. Table II summarizes
the programs used for our analysis. We choose our analysis
programs based on their application in the field of quan-
tum computing as well as future scope for adaptations of
these programs to solve classical high-performance computing
problems. For instance, Simon, Deutsch-Josza, and Quan-
tum Phase Estimation programs have an important role in
inspiring the Quantum Fourier Transform program. Many
HPC applications, such as those in the Exascale Comput-
ing Project (ECP) and HPC Challenge (HPCC )benchmark
suites [35, 49], rely on fast Fourier Transform implementa-
tions. A quantum implementation can significantly speed up
these programs. Moreover, Bernstein-Vazirani and Deutsch-
Josza programs are important programs used to show the
merits of using a quantum machine for specific problems
as they can bring exponential improvement over existing
classical methods. Quantum programs such as Variational
Quantum Eigensolver-based molecular chemistry simulation
are projected to solve problems that are not solvable by even
the largest of supercomputers due to the fact that a quantum
machine inherently exhibits the properties of quantum particles
such as molecules. Grover and QAOA are used to speed up
large-scale optimization problems.

Definition of Output Error. As mentioned earlier, the output
of a real quantum machine execution can be highly erroneous.
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Fig. 5. Error probabilities of gate operations have improved
from Melbourne to Essex (their online dates are shown at the
bottom), 1-qubit readouts now the worst source of error.
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Fig. 6. T1 and T2 coherence times have improved considerably
(more than doubled) from Melbourne to Essex.

For instance, if the real output of a 2-qubit program is |00i =
0.5, |01i = 0.25, |10i = 0.25, and |11i = 0.0. Then, the
observed output can be |00i = 0.4, |01i = 0.2, |10i = 0.3,
and |11i = 0.1. In this case, we define the output error of a
state as the difference between the real and observed output
of a state and the overall output error as the sum of these
differences (divided by two to ensure the total error is less
than 100%). In the example, the output error of each state is
e(|00i) = 0.1 or 10%, e(|01i) = 0.05 or 5%, e(|10i) = 0.05
or 5%, and e(|11i) = 0.1 or 10%, and the overall output error
is (0.1 + 0.05 + 0.05 + 0.1)/2 = 0.15 or 15%.

IV. Benchmarking and Characterization of
Cloud Quantum Computers

In this section, we report our lessons learned and their im-
plications based on our extensive experimental benchmarking
of the state-of-art IBM quantum computing cloud platforms.

A. Fundamental Quantum Gate and Readout Operations:
Errors and Speed

First, we study how the error probabilities of different
quantum operations vary across different IBM QX machines
and then, the speed of these quantum operations.

Fig. 5 shows the average error probabilities of 1-qubit gates,
1-qubit readouts, and 2-qubit gates on 7 IBM QX machines
sorted according to their launch dates from Melbourne to
Essex. For consistency, we have ensured that the error mea-
surement and experimentation duration for all the machines
are the same (over sixty days). However, the launch dates of
individual machines are different.



We observe that the error probability of 1-qubit gates is
significantly lower than the other two types of errors across all
quantum machines, and it has improved over the generations.
Essex’s 1-qubit gates error probability is 0.001 or 0.1%,
while on Melbourne, it is 0.7% (Essex is the latest quantum
machine in IBM QX family, introduced in Sep’19). Note that
meaningful quantum programs are expected to run on multiple
qubits and perform long sequences of gates. Thus, even a 0.1%
error probability for a single quantum operation can result in
more than 50% error in program output [48, 55].

Fig. 5 shows that the error probability of 2-qubit gates has
also improved considerably over generations, but it continues
to be much higher than the error probability of 1-qubit gates (⇡
12⇥ on average). A higher error probability for 2-qubit gates is
expected since 2-qubit gates involve two qubits and have more
microwave pulses, although the magnitude of difference high.
Also, we note that 1-qubit readouts error probability is the
highest on average among the three types of quantum operation
errors (⇡ 1.5⇥ that of 2-qubit gates). It also has the least
improvement as the technology matures.

One of the major reasons for readout errors being much
higher than qubit gate errors is the change in the thermal
environment and additional error-prone steps. Readout oper-
ations require probing the state of the qubit at the quantum
chip level (15mK temperature) using microwave pulses, then,
applying several layers of amplification of the output signal
(at increasingly higher temperatures). This amplifies the noise
in the signal, increasing the probability of misclassification
of the output state. In contrast, quantum gates are applied and
completed at the quantum chip level and remain in a relatively
stable environment.

Next, we investigate the improvements in the coherence
times. Recall that the T1 and T2 coherence times represent the
amplitude and phase damping of a qubit’s state to the ground
state of |0i. The longer these are, the more stable a qubit’s
state remains for a longer time. From Fig. 6, we observe
that the T1 and T2 coherence times have improved from
Melbourne to Essex (over 2⇥ improvement). Essex can run
much longer quantum programs than can Melbourne without
the qubit states decohering. We performed additional statistical
tests using Spearman correlation (SC), which measures the
correlation between two random variables (1 indicates a strong
positive correlation, 0 indicates no correlation, and -1 indicates
a strong negative correlation). The tests confirmed that the
improvement in T1 coherence time is positively correlated
with the improvement in 1-qubit (SC = 0.45) and 2-qubit gates
(SC = 0.5), but negatively correlated with 1-qubit readouts (SC
= -0.3). Improvement in coherence time is in conjunction with
the improvement in 1-qubit and 2-qubit gate operation errors,
but not readout errors.

Observation 1. Over a span of one year, IBM’s quantum
machines have significantly improved in terms of gate error
probabilities, and T1 and T2 coherence times. Readouts are
now the biggest error source and have the largest impact on
output reproducibility, thus requiring more focused research
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Fig. 7. The time to perform 1-qubit and 2-qubit gates has not
decreased consistently in newer machines.

and development investments.

Next, we look at the latency of performing 1-qubit and 2-
qubit gates in Fig. 7. Gate operation latency refers to the time
it takes to apply a Microwave tone to change the state of a
qubit. Note that a readout operation has a fixed latency across
all qubits and machines; therefore, we do not study it here. On
the other hand, gate operation latencies are calibrated twice
daily to minimize gate operation error probabilities based on
qubit conditions. Our experimental results indicate that 2-qubit
gates take over 3⇥ the amount of time as 1-qubit gates across
all the machines. For instance, on Melbourne, 1-qubit gates
take 200ns on average, while 2-qubit operations take 900ns
on average. This is of particular significance considering that
Melbourne has a T1 coherence time of 50µs. This means
that in the current state, a program can run a maximum of
⇡55 error-free 2-qubit gates serially on Melbourne before the
qubit state decoheres and produces highly erroneous output.
Realistically, it can run much fewer operations because of
errors introduced from applying the microwave pulses required
for operations.

Further, when we compare Melbourne to Yorktown, we ob-
serve that the gate latencies have reduced. But, in general, they
have not decreased on newer machines. There are two ways of
improving the ability to perform more operations on quantum
machines: (1) increase qubit coherence times, and (2) decrease
quantum gate operation latencies. While coherence times have
improved as we noted earlier, quantum gates operation times
have not decreased. One reason for this is that gate latencies
are calibrated for each qubit based on the daily conditions
of the qubit, while coherence times are a direct result of the
properties of the qubit. Since these properties depend on the
manufacturing fidelity of the qubit, improvement in coherence
times demonstrate more stable manufacturing technology, but
not more stable environmental conditions.

Observation 2. To be able to run longer programs with
a higher number of operations, IBM QX has focused on
improving coherence times as the first-order goal, instead
of reducing the quantum gate operation latency. Our results
reveal that, surprisingly, 2-qubit gates take 3⇥ longer than
1-qubit gates, but produce 12⇥ more erroneous results. As an
implication, quantum compilers should focus on minimizing
the number of 2-qubit gates if and when possible.
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Fig. 8. Quantum machines which achieve the lowest operations
errors change on temporal basis. In fact, different quantum
machines are the best for different operations.

Our experimental results revealed that different machines
have different error probabilities and gate operation latencies
on average. Next, we explore if these characteristics vary
over time. We discovered that gate operation latencies remain
relatively stable over time, but the error characteristics vary
noticeably over time – unlike the classical computing domain.

Fig. 8 shows the quantum machine which achieves the best
error probability on different days during one month for dif-
ferent types of operations (1-qubit gates, 1-qubit readouts, and
2-qubit gates). We observe that the machine which achieves
the lowest of the three different types of operation error rates
changes over time. Different quantum machines are the best
for different operations. Note that in more that 85% of the
samples the difference in error rates of the least erroneous
machine and the second least erroneous machine is more
than 5%. For instance, Yorktown most often has the lowest
readout error probability, but this is not true on all days. Error
probabilities of operations vary considerably temporally due to
changes in the operational environment and qubit conditions,
which cause variable errors in the program outputs too.

Observation 3. Although quantum computing technology has
been improving significantly; the optimal quantum machine
for different types of quantum operations is not necessarily
the latest one. In fact, the quantum machine that yields
the least error probability for a given operation changes
over time. Quantum application developers and resource
managers should exploit time-varying heterogeneity among
quantum machines to generate the least erroneous and most
stable results, instead of relying on assumptions based on the
chronological order of the machines.

The fact that the best machine for different types of op-
erations varies temporally indicates that error probabilities
for different quantum qubits might be variable over time. To
investigate this in detail, we look at the variability in error
probabilities for different qubits on different machines.

Fig. 9 shows the mean error probability and the correspond-
ing standard deviation (range indicators) for different qubits of
multiple machines. First, we observe that some qubits might
have lower error probability, but show higher variability –
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Fig. 9. Quantum operations have varying error probabilities
on all machines from Melbourne (oldest) to Essex (newest).

not a desirable characteristic for stability. For example, on
Melbourne, qubit 4 has a lower average error probability than
qubit 1 but a much higher variance. Qubit 2 and 12 have very
similar error probabilities, but significantly different variances
- making qubit 12 more desirable than qubit 2 as it is likely to
provide less variable and more reproducible results. Second,
this observed behavior is not limited to only older machines.
However, it is also present on newer machines (e.g., on Essex,
qubit 2, and 0 have similar mean error probability, but a large
difference in the error variability).

Thus, when benchmarking the “quality” of a quantum
operation, we should account for both factors: its fidelity (the
average error probability) and its stability (considering the
variance of error probability is critical since a highly variable
operation error probability makes it difficult to make circuit
mapping decisions for reproducibility). Therefore, we define
a new metric: “quality of an operation”. The quality of
an operation (1-qubit gate, 1-qubit readout, and 2-qubit gate)
= 1 � (µ + �), where µ is the mean error probability of the
operation (0 if the error probability is 0% and 1 if the error
probability is 100%) and � is the standard deviation of the
operation error probability. The minimum value of µ+� is 0.
Therefore, the maximum quality of an operation is 1 (0 mean
error probability and 0 variances). Note that previous works
have proposed the metric of “quantum volume” to evaluate
the performance of a quantum computer using randomly-
generated circuits which takes into account the number of
qubits on the computer, the error rate of the worst qubit
operation, and the qubit connectivity [13]. However, the metric
is used for the evaluation of a quantum computer as a whole,
and therefore does not take into account difference among
errors of different qubits, nor does it take into account the
error variance of a qubit.

Fig. 10, 11, and 12 show the quality of individual 1-qubit
gates, 1-qubit readouts, and 2-qubit gates, respectively. First,
we observe that the quality of 1-qubit gates is very high (very
close to 1) in general and has improved from Melbourne to
Essex. As expected, the quality of 1-qubit readouts is lower
in general and has not improved much from Melbourne to
Essex. The quality of 2-qubit gates is lower than 1-qubit gates
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Fig. 12. Quality of all 2-qubit gates on all IBM QX quantum machines (sorted by the quality). The numbers inside the bars
indicate the IDs of the 2-qubit gates (the arrow indicates the direction from control to target qubit – bidirectional arrow indicates
that the gate can be applied in both directions). The quality of 2-qubit gates is lower than 1-qubit gates in general and has
improved from Melbourne to Essex.

and higher than 1-qubit readouts in general and has improved
from Melbourne to Essex. Second, the quality of qubits within
the same machine varies significantly (e.g., from 0.80 to 0.95)
even on newer machines (e.g., Burlington).

Observation 4. When assessing the quality of a qubit op-
eration, both its mean error probability (its fidelity) and the
variance of its error probability (its stability) should be taken
into account. The quality of 1-qubit gates is high and has
improved considerably with newer quantum machines. The
quality of 1-qubit readouts is much worse and has improved
the least in newer machines. Interestingly, the quality of qubits
within the same machine varies significantly, suggesting a need
for careful qubit mapping for quantum programs. Currently,
the state-of-the-art research proposals for error-aware circuit
mappings [3, 32, 51, 53] only take the average error rate or
the most recently reported error rate for different qubits into
considerations, not their variance.

B. Errors in Quantum Program Execution

In the previous section, we studied the characteristics of
quantum operations on different quantum machines. Next,

we investigate how these characteristics affect the overall
execution of different real-world quantum programs, in terms
of the overall observed error in the program output and
execution time of the program.

First, we calculate the overall observed error in the program
output for different quantum programs on different quantum
machines. From Fig. 13, we observe that there is no single
quantum machine that is the best platform across all quantum
programs: the newest is not always the best.

For example, on average, Yorktown is the best machine for
CHEM, while Vigo is the best machine for BV, DJ, QFT,
QPE, SIMON, and 3SAT, Burlington machine is the best for
QAOA, and Ourense machine is the best for GROVER. This is
because each program performs different types and numbers of
quantum operations, and each machine has a different output
error for different types of operations. The CHEM program
has the lowest output error on the Yorktown machine because
it has gates between all combinations of pairs of qubits.
From Fig. 2, Yorktown has the most number of direct 2-qubit
connections, minimizing the need to swap qubits for 2-qubit
operations, thus reducing the output error. On the other hand,
the GROVER program has the highest number of 2-qubit gates



BV DJ QFT QPE QAOA GROVER 3SAT CHEM SIMON

Quantum Program

0.0

0.5

1.0

N
or

m
al

iz
ed

O
u
t.

E
rr

or Burlington Essex London Melbourne Ourense Vigo Yorktown

BV DJ QFT QPE QAOA GROVER 3SAT CHEM SIMON

Quantum Program

0.0

0.5

1.0

N
or

m
al

iz
ed

E
xe

c.
T

im
e

Burlington Essex London Melbourne Ourense Vigo Yorktown

Fig. 13. The quantum machine which performs the best on average varies from program to program. But, the ranking of
quantum machines in terms of execution time remains consistent for all programs.

and, therefore, performs the best on Ourense. Recall from
Fig. 8, Ourense most often has the lowest 2-qubit gate errors.

This is particularly notable since it shows that end-users
should not trivially assume that the latest quantum machine is
likely to produce a minimal error for their quantum program.
This is against intuition since quantum computing platforms
are expected to improve over generations and produce lesser
errors in the program output. While this expectation is valid
over the longer-term as we move further along in the NISQ
era, our results indicate that the choice among contemporary
quantum machines that are operational at the same time is not
straight forward.

Along with minimizing errors in the program output for
quantum programs, quantum computing users are also inter-
ested in running their programs fast. To explore this trade-off,
next, we investigate the execution time characteristics.

In Fig. 13, we observe that unlike overall program output
error characteristics, a single quantum machine (Melbourne)
is optimal for all quantum programs in terms of execution
times. Interestingly, while the fastest, Melbourne has one of the
highest output errors for all programs. The finding implies that
the programmers or resource managers cannot use “execution
time performance” as the proxy for the best machine choice.
However, a quantum program that is inherently not sensitive to
error in the program output or has only one dominant output
can exploit this trade-off to have a preferred mapping machine
based on execution time alone (Melbourne).

Second, we observe that although the variation among
machines in terms of program output error is significant
across different programs (Fig. 13), the same is not valid
for execution time – the ranking of quantum machines in
terms of execution times remains the same across all programs
(Fig. 13). This implies that minimizing program output error
should be the primary objective for a given program since
the ranking of machines in terms of error rate varies across
programs, but not for execution time.

Observation 5. Different programs have their lowest output
error on different quantum machines based on the composition
of their gate and readout operations. Moreover, the execution

0 1 2 3 4 5 6 7

Fig. 14. The best quantum machine in terms of lowest output
errors varies temporally for different quantum programs.

times of programs also vary significantly depending on the
machine, and the machine which has the lowest execution
times does not necessarily have the lowest output errors. The
quantum machine to run the program should not be selected
based on execution time as the output reproducibility might
be compromised.

Now that we have answered the question “which quantum
machine is the best for different quantum programs on aver-
age?”, we ask whether the selection of the best quantum ma-
chine for a given program is temporally varying. To evaluate
this, we conducted experiments with a subset of the quantum
programs on four quantum machines for seven days during
which the machines were available. These programs include
the BV, GROVER, QFT, QPE, and SIMON programs.

Surprisingly, our results (Fig. 14) reveal that the best
quantum machine for each quantum circuit is not constant - it
varies over different days for different programs. For instance,
while the Bernstein-Vazirani (BV) program always achieves
the lowest output error when run on Yorktown in this case,
Grover’s program can have the lowest output error on either
Melbourne or Yorktown or Ourense, depending on the day.
This result implies the machine which performs the best on
average is not necessarily always the best one.

Observation 6. While different programs have different
machines that perform the best on average, the best machine
varies temporally on as frequently as daily basis. Quantum
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Fig. 15. (a) Increasing the number of shots does not decrease
the output error of the programs. (b) On the other hand,
increasing the number of shots does have a significant negative
effect on the execution time across all programs.

application schedulers should leverage temporal variability
among quantum machines to select the most optimal machine
for different programs. Unlike classical computing, the
selection process needs to be repeated frequently over time to
reduce the output error optimally. As a good benchmarking
practice, future studies should specify research results
claiming performance improvements by running experiments
on multiple machines and over multiple spans of days to
account for temporal and spatial variability.

C. Impact of User-configurable Options on the Quantum
Program Output Error

While it is crucial to understand how quantum machines
affect program output errors and execution times, it is also
essential to understand how user-configurable parameters
available with Qiskit affect these characteristics on IBM
QX platforms. In particular, we study the impact of the
two most popular options: “number of shots” and “compiler
optimization level”.

Number of shots. First, we study how the number of shots
affects the output errors and execution times of different
programs in Fig. 15. The bars show the mean output error
across all runs across different computers while the range
indicators show the standard deviation of the error. Recall
that the number of shots is the number of times the program
circuit is run to get the probability of output states. One can
reasonably hypothesize that increasing the number of shots
would reduce the error as more samples tend to provide better
estimates of real probabilities. We vary the number of shots
from 1024 to the maximum limit of 8192.

Surprisingly, increasing the number of shots does not reduce
the output error as much as one might anticipate. Across
all programs, when the number of shots is increased by 8⇥
from 1024 to 8192, there is a limited improvement in the

observed output error. For QAOA and GROVER, the output
error decreases slightly (less than 2%) as the number of
shots is increased to 8192. However, there is no noticeable
improvement for other programs. The reason for this is that
the output error is not a result of a lack of enough sampling
but a result of the errors inherent to a quantum machine.
Merely collecting more samples by running more shots cannot
eliminate these operation errors. Increasing the number of
shots does not reduce the variability in output error among
multiple runs even when multiple runs are conducted with the
same number of shots. We note that the variability in output
error is particularly high for QFT, GROVER, and CHEM
because of the high variability in their output errors across
different machines, as shown in Fig. 13.

However, as expected, increasing the number of shots in-
creases the execution time of the programs proportionally to
the number of shots, as shown in Fig. 15(b).

Observation 7. Running more than 1024 shots only increases
the execution time across different programs, while not
reducing the output error or error variability. This finding
implies that instead of increasing the number of “shots”
during one run, programmers should instead try to do
multiple runs over time on different machines to exploit
the temporal and spatial variations in error characteristics.
This practice can potentially lead to better program output
estimates and confidence intervals.

Compiler Optimization. The compiler optimization level
determines the types of optimizations that are applied when
the quantum program is mapped to a quantum circuit on
real quantum hardware. The main objective behind applying
these optimizations is to reduce the number of gate oper-
ations (which would reduce operations-specific errors) and
the depth of the circuit. The circuit depth corresponds to
the most number of serially run operations in the circuit. In
essence, a shorter depth decreases the likelihood of qubits from
losing their coherent states before the circuit is completed. As
described in Sec. III, there are four optimization levels: 0,
1, 2, and 3, each performing progressively more number of
operations and circuit optimizations.

Fig. 16 shows the impact of different optimization levels
on the output errors and execution times of different quantum
programs. As expected, the optimization levels have different
impacts on different programs in terms of output errors.
For programs such as QPE, QAOA, GROVER, and CHEM,
increasing the optimization level results in a significant de-
crease in the output errors. For example, the output error is
reduced by 12% when optimization level 3 is used for CHEM
as opposed to using optimization level 0. However, for the
remaining programs, there is little to no impact of applying
higher optimization levels on the output errors.

Interestingly, we observe that higher optimization levels also
tend to introduce more variability to the output errors. For
example, QPE has a standard deviation of 10% in the output
error with optimization level 0 but has a standard deviation
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Fig. 16. (a) Increasing the optimization level reduces the
output errors slightly for some programs, but it does not reduce
the variability in output errors. (b) Increasing the optimization
level neither improves the mean execution time, nor does it
reduce the variability in execution time. In fact, increasing the
optimization level reduces the (c) number of gates and (d)
circuit depth for most programs, but the amount of reduction
varies as per the program.

of 18% in the output error when the optimization level is
3, even though the mean output error at optimization level
is lower by 17%. This is because the optimizations applied
to quantum circuits have a certain level of stochasticity as
they depend on the characteristics of the operations. Therefore,
applying more optimization leads to more randomness in the
results and higher variability in the output errors, which in turn
makes the output less reproducible. Thus, higher optimization
levels need to be considered carefully due to potential higher
variability, especially given that they do not improve the output
error across all programs.

Next, when studying the impact of the optimization levels
on the execution time, we observe that the execution times do
not significantly get affected for any of the programs. This is
surprising given the fact that higher optimization levels should
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Fig. 17. Circuit depth and number of gates are positively
correlated with output error, but not execution time. On the
contrary, both are negatively correlated with variability in
execution time and output error.

reduce the number of operations and circuit depth, which in
turn is expected to reduce the execution times of the circuits.
However, since this is not the case, we dig deeper into how the
selection of different optimization levels affects the number of
gates and circuit depth.

Fig. 16(c) shows the number of gates and Fig. 16(d)
shows the circuit depth for different optimization levels for
all the programs. The first observation is that increasing the
optimization level does not necessarily reduce the number of
gates. In fact, for programs such as BV, DJ, QFT, QAOA, and
SIMON, the number of gates can be up to 20% higher on
average with optimization level 3 than with optimization level
1. This points to the fact that reducing the number of gates is
not the primary objective of compiler optimization. In fact, it
has another more important objective for which it is willing
to compromise in terms of the number of gates. This primary
objective is to reduce the circuit depth, as discussed next.

Fig. 16(d) shows that circuit depth is significantly reduced
by increasing the optimization level. For programs such as
CHEM, the reduction in circuit depth is over 70% with
optimization level 3 as compared to optimization level 0.
Notice that all programs which have some improvement in
output errors in Fig. 16(a), such as QPE, QAOA, GROVER,
3SAT, and CHEM, also have a vast improvement in their
circuit depths at higher optimization levels. This supports that
the strategy of optimizing the circuit depth as the primary
objective at the cost of increasing the number of gates is
useful for some programs. However, it is not helpful for other
programs, as their output errors do not improve. Even for
programs with reduced output errors, there is no improvement
in execution times.

To study this further, in Fig. 17, we calculated the Spearman
correlation between the number of gates & circuit depth
and output error & its variability across all programs. The
correlation is strong between the number of gates/circuit depth
and the mean output error. Reducing them both can help
reduce the mean output error. However, current optimization
applied by the Qiskit compiler reduces the circuit depth at
the risk of increasing the number of gates as we saw earlier.
Therefore, overall, the reduction in mean output error is not
realized. Surprisingly, both the number of gates and circuit
depth is strongly negatively correlated with the coefficient of
variation or CoV (standard deviation divided by the mean) of
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Fig. 18. States with higher hamming weight tend to have lower
output errors and lower variability in output errors.

output errors. This demonstrates that reducing the circuit depth
and the number of gates of a circuit increases the variability
of the output error, introducing undesired uncertainty to the
program output.

Observation 8. Selecting higher optimization levels does not
necessarily improve the output error or the execution time
of the programs. This is because the primary metric that
the compiler optimizes is circuit depth, even if it is at the
cost of increasing the number of gate operations. Our results
indicate that reducing the circuit depth and the number of
gates of a circuit increases the variability of the output error.
Thus, incautiously selecting the highest optimization level can
also have undesired side-effects, such as an increase in the
variability of output errors and even execution time in some
cases. Hence, choosing an effective optimization level may
require careful tuning, as it depends heavily on the program
and the quantum computer. The chosen setting should be
specified when reporting results.

D. Errors Affected by the Characteristics of Individual
Output States of Quantum Programs

Previously, we studied the impact of errors on the final
output of different quantum programs. Recall that the observed
error in the final output of a program is simply an artifact of
individual output states producing incorrect probabilities (as
defined in Sec. III). For example, a simple 2-qubit quantum
program has four output states: |00i, |01i, |10i and |11i. A
n-qubit quantum output can have 2n output states, each with
individual probabilities. Because of errors in qubit operations
and qubit decoherence, these output states themselves may
produce different output probabilities than expected (or cor-
rect) output probabilities. These deviations from the correct
output probabilities of individual states add up and manifest
as the observed error in the final output of a program.

We investigate if certain output states are more prone to
higher error than others. We hypothesize that output states
with higher hamming weight (i.e., the number of 1s in the
output state) have a higher error in output probability. For
example, output state |11i should be more error-prone than
|00i or |10i. The intuition behind this hypothesis is that a
higher number of 1s is likely to make the output state decohere
to the ground state more quickly (e.g.. state |11i can decohere
into state |10i, |01i, or |00i). Notably, this hypothesis has
been held by quantum computing researchers and exploited

by Tannu et al. [54] to actively correct the readout errors of
qubits with output state |1i by applying the NOT gate when
the qubit value is expected to be |1i to reduce the impact of
decoherence. We test the validity of this hypothesis using the
experimental results collected from all the runs performed on
a wide variety of machines and quantum programs.

Our results in Fig. 18 reveal that, contrary to our hypothesis,
the output states with higher hamming weights have lower
overall error (and lower error variability too). This is because
the output states with higher hamming weights tend to deco-
here and simultaneously, “transfer” errors to states with lower
hamming weights. For example, if state |11i has 10% error
(say, the observed probability is 0.1 less than its expected
probability), that error must be transferred to other states who
would be observing increased probabilities from their expected
probability (recall that the probabilities across all output states
add up to one). These outputs states generally tend to be states
with lower hamming weights due to qubit decoherence. Thus,
the output state that has zero hamming weight accumulates
errors from all other states with hamming weights higher than
it (Fig. 18. The accumulation of errors, therefore, tends to
decrease as hamming weight increases, which results in states
with higher hamming weight experiencing a lower output error
than states with lower hamming weight.

Observation 9. Output states with lower hamming weights
tend to experience higher output errors due to the accumu-
lation of errors from states with higher hamming weight.
This finding is in contrast with conventional wisdom held
in the quantum computing architecture community [54] and
shows that efforts targeting mitigation of errors only on higher
hamming weight states could be counterproductive. Instead,
we should prioritize error mitigation for output states in the
reverse order of their hamming weight, after executing the
quantum program. A useful implication for quantum program-
mers is to map the important states of the program output
carefully to the states with higher hamming weights.

V. Scope of Our Findings
All of our experiments are conducted on the IBM cloud

quantum computers. These systems represent a diverse range
of characteristics in terms of number of qubits, topology, and
qubit error and coherence characteristics. All of these systems
use IBM’s superconducting qubit technology. Superconducting
qubit technology is promising due to its scalability and has
garnered wide research interest from industry and academia,
as described in the next section (Sec. VI). However, we
do not claim that our findings are applicable as-is to other
types of quantum computing technologies such as trapped-
ion qubits and photon-based qubits. Secondly, as quantum
computing technologies mature, we expect that larger-scale
HPC applications will be executed on quantum computers with
100s of qubits, and further insights will be derived.

VI. Related Work
In this section, we discuss relevant NISQ computing works.



Impractical Quantum Error Correction (QEC). Previous
works have proposed qubit ECC codes that rely on heavy
computational requirements and high spatial overhead. They
are therefore largely unsuitable for present NISQ computing
devices [4, 7, 23, 30, 52, 56, 58]. As these methods are
not possible to apply on NISQ technology, our analysis and
characterization of errors in current quantum operations can
help researchers develop error mitigation and reproducibility
techniques for existing quantum machines.

Improving the Stability of Qubits. Several feedback-control
techniques have been proposed to realize stable quantum
systems [57, 61]. However, due to weak state-measurement
capabilities, feedback control undergoes state collapse for most
qubit technologies [47]. Superconducting qubit technology
used by IBM is the most promising [26, 28]. However, the
current state-of-the-art IBM quantum machines have not been
able to achieve anywhere close to stable qubits, thus, requiring
qubit-quality-aware improvement in experimental methodolo-
gies as proposed by our work.

Error Rates Minimization. With the introduction of quan-
tum programming language and frameworks such as IBM
Qiskit [2], Microsoft Q# [1], Google Cirq [21], and oth-
ers [12, 27], many recent works have developed strategies to
mitigate the effects of operation errors in quantum circuits via
online and offline optimizations [3, 8, 14, 18, 24, 32, 33, 39–
41, 50, 51, 51, 54, 55, 59, 62, 63]. These include using multiple
circuit maps to minimize output error [51], using machine
learning and adaptive control techniques for estimation of
future qubit state based on past outcomes [37, 44], using post-
execution error correction to find correct program output [46],
using OpenPulse to classify the output states accurately [45].
Future works along these directions would benefit from incor-
porating our in-depth analysis of NISQ qubits, operations, and
errors.

VII. Conclusion
In this paper, we measured, collected, and provided a

data-driven characterization of seven quantum machines
available on IBM’s QX cloud. We discovered the rapid
improvement in T1 and T2 coherence times and gate
error probabilities, but the lack of improvement in readout
errors and gate latencies. We provided a new method to
assess the quality of quantum operations as technology
progresses. We analyzed factors that affect the reproducibility
of HPC quantum programs. Our findings and open-source
dataset can help drive experimental methodology on
future quantum machines. Our study is open-sourced at
https://doi.org/10.5281/zenodo.3957894.
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