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ABSTRACT

Current Noisy Intermediate-Scale Quantum (NISQ) computers are
useful in developing the quantum computing stack, test quantum
algorithms, and establish the feasibility of quantum computing.
However, different statistically significant errors permeate NISQ
computers. To reduce the effect of these errors, recent research
has focused on effective mapping of a quantum algorithm to a
quantum computer in an error-and-constraints-aware manner. We
propose the first work, Qraft, to leverage the reversibility property
of quantum algorithms to considerably reduce the error beyond the
reduction achieved by effective circuit mapping.
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1 INTRODUCTION

Current Noisy Intermediate-Scale Quantum (NISQ) computers have
demonstrated early potential and have shown forward progress
in practical realization of quantum computing. However, one of
the major bottlenecks toward the wide adoption of NISQ com-
puters is the high error rate [31, 42]. When a quantum program
is executed on current NISQ devices, the program may complete
successfully, but the fidelity of individual operations is low and
hence, the final output may not be correct. While quantum com-
puting promises orders of magnitude performance improvement
for a class of algorithms, such improvements are not useful if the
programmer cannot deduce the correct program output, or verify
the expected/true program output. The goal of this paper is to help
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quantum programmers automatically deduce the correct program

output while running on error-prone NISQ machines. Toward that
end, next we discuss the limitations of the existing approaches and
the key ideas and contributions of our proposed solution, Qraft.

Limitations of the State of the Art. NISQ machines suffer from
multiple types of errors that can make the final algorithm output er-
roneous, including qubit coherence errors, quantum gate operation
errors, and state preparation and measurement errors. However,
error rate on different qubits on a given machine may differ signifi-
cantly depending on the quantum operation type. Therefore, the
impact of error experienced by a quantum program can be reduced
by intelligently mapping a program’s logical operations to the least
erroneous physical components on a given machine (e.g., avoid
mapping the program on physical qubits that exhibit higher error
rate for a certain type of quantum gate or operation).

Existing approaches reduce the impact of errors experienced
by a quantum program by carefully mapping a program’s logical
operations to the lowest-error qubits of a quantum computer [13,
29, 33, 43–46, 50, 53]. This approach is known as “optimal circuit

mapping”, where the logical operations of a quantum program
are intelligently mapped on to a set of physical qubits consider-
ing multiple factors including choosing physical qubits with the
lowest historic error rate [29, 33, 43, 45, 50, 53], choosing physical
qubits with minimal error variance [41], using machine learning
models to select qubits based on operation-specific error rates [38],
minimizing cross-talk noise [33, 35, 44, 48, 51], the physical con-
nection between qubits, and the sequence of operations. However,
the current approaches have two major limitations:

I. Lack of knowledge about a program’s true output: Current
approaches aim to minimize the error occurrence probability and
learn certain characteristics of the program under study (e.g., num-
ber of operations, type of operations, etc.) [4, 16, 38, 51, 53].However,
these approaches do not (and cannot) know the “correct/true program

output” of the program irrespective of how many times or on which

qubits the program is executed. Hence, the observed output can only

be used as the best guess of the correct output.

All prior studies assume that they know the correct program
output apriori and report the difference between the observed out-
put and the apriori-known correct program output as the “error in
estimation of the program output” [29, 36, 46, 47, 52]. Unfortunately,
this approach is not useful for programmers who may not always
know the correct program output. Such approaches mostly focus

on identifying a single dominant output state with non-zero correct

probability and have very limited effectiveness for programs having

multiple output states with non-zero correct probabilities.
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II. Everyone has access to the “best” qubits and knowswhich

qubits are the best: Existing approaches over-optimistically as-
sume that each end user has access to all the qubits, especially
the most reliable ones, and their historical error rates to run their
programs [29, 33, 35, 38, 41, 44, 46, 50]. However, this assumption
that will be seriously challenged in future quantum computing
systems shared among multiple users concurrently [13]. Moreover,
historical error information may become business-sensitive, similar
to classical computing systems.

Key Ideas and Contributions. Qraft is a novel method to ac-
curately estimate the true program output. Qraft demonstrates
for the first time that reversing the circuit can reveal what the pro-
gram actually does. The key insight behind Qraft is to reverse

the quantum circuit and execute the full forward + reverse circuit to
deduce the correct program output for all the quantum states of
the original (forward) circuit.

Quantum operations, unlike classical operations, are reversible.
The original input can be restored by applying an inverse operation.
Qraft leverages this property and extends it to the entire quantum
circuit. Qraft appends the reverse circuit at the end of the original
forward circuit and executes the forward + reverse circuit. Reversing
a circuit enables Qraft to “partially” know the inherent correct output

of the full circuit – all output states must get reduced to original input

states – a piece of “ground truth” information that Qraft gets access

to and exploits. This is a departure from all prior works since they do

not have the full or partial knowledge of such ground truth related to

the program’s true output. To develop a better understanding, Sec. 3
describes multiple useful insights obtained from characterizing the
reverse execution of quantum circuits.

While this approach is encouraging, we discovered that a straight
forward rule-based application of this approach does not yield
the expected results due to complex interaction of errors with
the underlying original circuit. Qraft designs a learning-based
prediction model that generates the true output probability when
fed the output from the runs of a circuit.

Unlike prior works, Qraft accurately estimates the magnitude
of probabilities for programs with multiple non-zero probability
output states. Our evaluation demonstrates that, compared to the ex-
isting approaches based on optimizing the circuit mappings, Qraft
reduces the median state error by up to 7%, dominant state error
by up to 30%, and total program error by up to 20% across differ-
ent algorithms. The state-of-the-art approach has only 20% of the
circuit states with 0% error, while Qraft ensures that over 70% of
the states have 0% error, when tested with 200 randomly generated
circuits. Further, Qraft does not suffer from error bias factors such
as true state probability and state hamming weight - a key source
of weakness in existing approaches.

Qraft demonstrates that it is possible to deduce the correct
program output successfully, even in the absence of an optimal
(or a near-optimal) circuit map (relaxing a prerequisite of existing
approaches which assume unrestricted access to the “best” qubits
and know which qubits are the best based on the historical error
information). Our evaluation confirms that Qraft scales to greater
number of qubits, and its effectiveness it not sensitive to the choice
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Figure 1: (a) Qubit connectivity layout of the 15-qubit Melbourne
quantum computer. (b) Layout of five-qubit quantum computers.
(c) Bloch Sphere illustration of qubit state transformation.

of NISQ platform or specific circuit characteristics such as circuit
depth and number of operations.

Next, we briefly cover the overview of quantum computing and
motivation (Sec. 2), then, discuss the design and implementation of
Qraft(Sec. 3), and finally, analyze the evaluation results (Sec. 4).

2 BACKGROUND AND MOTIVATION

2.1 Quantum Computing Overview

Quantum Bit. In contrast to a classical bit, a quantum bit (refereed
as qubit) can be in a superposition of states 0 and 1 until measure-
ment. Upon measurement, it collapses to either a 0 or a 1. A qubit’s
state, |𝜓 ⟩, can be represented as |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and
𝛽 are the complex-valued amplitudes indicating the probability of
measuring |𝜓 ⟩ in the respective basis states |0⟩ and |1⟩.

Engineering Qubits. A qubit can be physically realized by care-
fully engineering the technology. Our experimental study is based
on IBM’s superconducting-qubit technology – one of the more
promising quantum computing technologies. The superconducting-
qubit technology consists of a capacitor and a Josephson Junction
which form a non-linear LC oscillator. If the circuit parameters are
tuned correctly, this oscillator can behave as a quantum particle,
i.e., a qubit. The quantum processing unit (QPU) is placed in a di-
lution refrigeration to maintain a low temperature of 15mK. Two
energy levels of a qubit are used as the |0⟩ state (ground state) and
the |1⟩ state (excited state). This method of creating a qubit, while
promising, has its challenges. One issue is that the qubit can lose
its state coherence in a matter of a few milliseconds. Therefore, as
the quantum circuit progresses, the qubit’s state can lose coherence
and the final output can be erroneous.

Assembling Multiple Qubits. Multiple qubits are assembled to
realize a quantum computer. Fig. 1(a) and (b) show the topology of
all the IBM QX quantum machines used in this study. The topolo-
gies demonstrate how different qubits are connected together. The
layout and connectivity of the qubits is designed to minimize the
cross-talk (undesired noisy cross-qubit interference that can intro-
duce errors) among the qubits.
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Figure 2: (a) Example of an optimal circuit map. (b) Sub-optimal
circuit map that requires an extra SWAP operation.

Manipulating Qubits. Quantum operations are performed by ma-
nipulating the states of the qubits. Different types of quantum
operations can be performed on a single qubit. To demonstrate
a one-qubit quantum operation, we represent a qubit’s superpo-
sition on a Bloch Sphere. A Bloch Sphere is a unit sphere where
the positive z-axis represents the |0⟩ state and the negative z-axis
represents the |1⟩ state. The other two axes represent the qubit
phase and superpositions. As shown in Fig. 1(c), initially the qubit
is in the |0⟩ state (vector pointing up). Then, an X gate is applied
which rotates the qubit about the x-axis by 90◦ and puts it in the
|1⟩ state. Similarly, arbitrary rotations (about the x, y, or z axes) can
be applied to create qubit superpositions. However, when the qubit
is measured, its state vector collapses to the z-axis (|0⟩ or |1⟩).

Further, multiple qubits can be entangled together by performing
a two-qubit quantum operation: one qubit acts as the control qubit
and the other qubit acts as the target qubit. The superposition of
the target qubit is manipulated based on the superposition of the
control qubit. For example, a CX gate applies the X gate (rotation of
90◦ about the x-axis on the Bloch Sphere) to the target qubit if the
control qubit is in state |1⟩; if it is in state |0⟩, no change is made
to the target qubit. The connectivity between the qubits determine
which qubits can have two-qubit gates applied directly.

One-qubit quantum gates are performed by applying Microwave
pulses at the resonant frequency of the qubit. Similarly, two-qubit
gates require applying Microwave pulses to the coupling bus con-
necting the two qubits. These operations are subject to a variety
of errors. First, the Microwave pulses used to apply quantum gates
are also prone to being applied in an erroneous manner. Second,
measuring a qubit’s final state can also be error-prone: the qubit’s
energy can be misclassified.

Finally, many different types of gate operations are theoretically
possible, but a particular setup typically supports a small set of
universal basis gate operations that can be used to express any
other gate operation. In the case of IBM’s technology, these are the
U1, U2, U3, and CX gates. U1, U2, and U3 are one-qubit gates. The
U1 gate consists of one frame-of-reference change. The U2 gate
consists of one 90◦ rotation pulse with pre- and post- frame changes.
Lastly, the U3 gate consists of three frame changes and two 90◦
rotation pulses. All one-qubit gates can be applied using the U3
gate, however, the U1 and U2 operations are used for compatible
gates as they have a lower error rate because of fewer rotation
pulses. The CX gate is a two-qubit gate where one qubit acts as the
control qubit and the X gate is applied to the second qubit.

St
at

e
Pr

ob
ab

ili
ty

State
00

E00

State Errors = E00, E01, E10, and E11 | Program Error = (E00 + E01 + E10 + E11)/2
01

E01

10

E10

11

E11

Observed Probability True Probability

Figure 3: Illustration of the state error and the program error.

Expressing Quantum Algorithms. A quantum algorithm is ex-
pressed as a sequence of quantum gate operations on a set of qubits.
Fig. 2(a) shows a simple example of a three-qubit algorithm mapped
on to the Vigo computer. We note that a quantum algorithm can
be mapped to a physical quantum machine in multiple ways. We
refer to each such mapping as a “circuit map”. Note that all circuit
maps for a given quantum algorithm are expected to produce the
same outcome, but may differ in terms of the physical qubits used,
and the number, order and type of quantum gate operations. For
example, Fig. 2(b) shows the same algorithm as shown in Fig. 2(a),
but mapped on to the Vigo computer in a sub-optimal manner. Be-
cause, the third logical qubit is mapped to physical qubit Q4 and
there is no direct connection between Q1 and Q4 (as shown in
Fig. 1(b)), an additional SWAP gate (which is made up of three CX
gates as shown) has to be used. Thus, because this mapping has
more operations, it suffers from more errors.

Upon execution of a quantum algorithm, it produces the “ob-
served probability” for each output state. For example, a two-
qubit program has four output states and the observed probability
can be 𝑝 ( |00⟩) = 0., 𝑝 ( |10⟩) = 0.2, 𝑝 ( |01⟩) = 0.3, and 𝑝 ( |11⟩) = 0.4.
Due to the probabilistic nature of quantum computing, each pro-
gram is executed multiple times before estimating the “observed
probability” for each output state. However, because of the afore-
mentioned coherence, gate, and readout errors, the observed proba-
bility may not be the same as the “true probability” of states (not
known for general quantum algorithms).

Metrics to Quantify the Impact of Errors on Quantum Pro-

gram Execution. The hardware errors manifest as errors in the
program (algorithm) output. For example, consider a two-qubit
algorithm with true probabilities 𝑝𝑡 ( |00⟩) = 0.1, 𝑝𝑡 ( |10⟩) = 0.2,
𝑝𝑡 ( |01⟩) = 0.3, and 𝑝𝑡 ( |11⟩) = 0.4. When the algorithm is run us-
ing a circuit map, the observed probabilities are 𝑝𝑜 ( |00⟩) = 0.15,
𝑝𝑜 ( |10⟩) = 0.15, 𝑝𝑜 ( |01⟩) = 0.5, and 𝑝𝑜 ( |11⟩) = 0.2. We define the
state error as the absolute difference between the observed proba-
bility and the true probability. In this example, the state errors are
𝑒 ( |00⟩) = |0.1 − 0.15| = 0.05 or 5%, 𝑒 ( |10⟩) = 5%, 𝑝𝑜 ( |01⟩) = 20%,
and 𝑝𝑜 ( |11⟩) = 20%. As illustrated in Fig. 3, the program error

(also known as the total variation distance [7]) is the sum of the
state errors of all output states of an algorithm divided by two. In
this case, the program error is 50%. Note that this metric is chosen
to represent the overall error due to its ease of interpretibility and
simplicity. In our experimentation with other metrics, such as the
Hellinger fidelity [22], we found that the relative improvement
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Table 1: Quantum algorithms studied in this paper.

Quantum Algorithm Abbreviation

Bernstein-Vazirani Algorithm [10] BV
Deutsch-Jozsa Algorithm [11] DJ

Grover’s Algorithm [18] GRV
Quantum Fourier Transform [49] QFT
Quantum Phase Estimation [14] QPE

Simon’s Algorithm [27] SMN

ofQraft over the state-of-art mirrors the same trend as what is
captured by program error (Sec. 4).

We also define the dominant state error as the state error of the
states with maximum true probability. This metric is useful because
for many quantum algorithms, the aim is to identify the maximum
true probability state. In this example, state |11⟩ has maximum
probability and has an error of 20%. Therefore, the dominant state
error is 20%. Note that for some algorithms, multiple states can have
equal maximum true probability. In that case, the median error of
all dominant states is quoted. A circuit map that results in least
error from the true probability is said to be the optimal circuit

map. However, the optimal circuit map is still prone to errors. Thus,
even if the true probability is estimated by the observed probability
of the optimal circuit map, that estimate can still be erroneous.

2.2 Motivation for Qraft

In this section, first, we describe the state-of-the-art circuit mapping
techniques and their limitations.

Optimal circuit mapping and its use toward estimating

the correct program output. Considering that different qubits
have different error rates, a significant amount of research effort
has been geared toward the problem of determining the optimal
circuit map to run an algorithm [3, 8, 13, 33, 35, 38, 44–48, 51], given
the coherence times and error rates of different qubits.This state-
of-the-art research in optimal circuit mapping has been integrated
into the Qiskit compiler (IBM’s quantum computing language) [2].
These optimizations include selection of densely-connected qubits
to minimize swapping and two-qubit operations, gate synthesis and
gate cancellation using commutativity properties to reduce physical
operations, and error-and-fidelity-aware qubit mapping to select
qubits with the lowest error rates [29, 33, 34, 50]. Once a best-effort
optimal circuit is generated, multiple runs are performed to get the
observed probability of all output states (because the quantum out-
put is probabilistic). This observed probability serves as an estimate
for the true state probabilities. The true program output may not be
known for an arbitrary quantum algorithm, therefore, the observed
program output of an optimized circuit map is the best estimate.

Next, we quantify the error in the observed probability of the
output states of a quantum algorithm using optimized circuit maps
generated using all of the above mentioned optimizations available
with the Qiskit compiler. Then, we discuss why optimized circuit
maps alone are not sufficient to accurately estimate the true state
probabilities of quantum algorithms.

Methodology.We run six quantum algorithms shown in Table. 1
on the quantum computers shown in Fig. 1. Each algorithm is run
with multiple optimal circuit maps across three days. Note that
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Figure 5: (a) More probable states are likely to experience higher
state errors. (b) The Pearson Correlation shows that the true state
probability is highly correlated with the state error.

an optimal circuit map for a given algorithm on a given computer
varies at different times as the coherence times and operation errors
vary temporally (these errors are noted when the computers are
calibrated daily and this information is used when generating an
optimal circuit map by the Qiskit compiler). Each run consists of
1024 trials (i.e., the circuit is executed 1024 times and each trial
gives one output state) and the observed state probability is the
fraction of trials for which the state is the output.

Fig. 4(a) shows the median state error across all states and mul-
tiple runs of six quantum algorithms. The median state error can
be as high as 8% (e.g., Grover’s algorithm and Simon’s algorithm),
while the 75𝑡ℎ percentile error can be higher than 15% (e.g., Si-
mon’s algorithm). While many quantum algorithms require esti-
mation of the true probability of all states (e.g., QFT, QPE, and
SIA), some quantum algorithms specifically require identification
of states with maximum true probability (e.g., BV, DJ, and GRV).
For example, Grover’s algorithm (GRV) is designed to search for
input states which produce a particular output given a black-box
function. Therefore, the algorithm amplifies the probability of only
those states which result in the particular output. Fig. 5(b) shows
that the dominant states of all algorithms have a much higher error
rate compared to the median. For example, the two dominant states
of Grover’s algorithm have a median state error of almost 20%.

Takeaway. The error in estimating the true probability of
output states can be as high as 8% median error and 15% 75𝑡ℎ
percentile error for optimized circuit maps. The state error
of the dominant state can be higher than 20% in many cases.
That is, the optimal circuit map is effective at reducing the
impact of errors on the program output, but it cannot deduce
the true output of a program.
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Figure 6: (a) States with a lower hamming weight have higher state
errors for the DJ algorithm. (b) The correlation of the hamming
weight and the error varies for different algorithms.

Next, we dig deeper to understand the magnitude of error esti-
mation by quantifying its correlation with different state-specific
properties. Based on the insight that the dominant states have much
higher error than the median of all states, we plot the state error
as a function of the true state probabilities in Fig. 5(a). The figure
shows that generally, the state error increases as the true state
probability increases. The median state error for states with true
probability between 0 and 0.2 is 2%, while the median state error for
states with true probability between 0.8 and 1 is 18%. Fig. 5(b) shows
the Pearson Correlation, which quantifies the linear relationship
between the true state probability and the state error. Pearson Cor-
relation calculates the strength of the linear relationship between
two random variables: a value of 1 indicates a strong positive fit,
0 indicates no linear relationship, and -1 indicates a strong nega-
tive fit. The figure shows that the Pearson Correlation is over 0.85
across all algorithms, indicating that the state error increases as
the true state probability increases. This is because a state having a
higher true output probability translates to more trails ending up
in that state. However, quantum operation and hardware errors can
shift some or many of those trails to other states. A state that has a
close-to-zero probability has fewer expected trails and is affected
by this phenomenon at a lower rate.

Another state property that might affect its error is the state
hamming weight (number of qubits in the |1⟩ state, which are more
likely to relax). Fig. 6(a) shows that for DJ algorithm, states with
lower hammingweight are likely to observe a higher state error (6%)
than states with higher hamming weight (≈0%). Fig. 6(b) shows that
this is true for BV and SMN algorithms as well, as they have a strong
negative correlation between the state’s hamming weight and its
error. This is because states with higher hamming weights have more

number of qubits in the excited state. Thus, they are likely to relax

into states with lower hamming weights, which end up accumulating

these errors. Again, we observe that an optimal circuit map cannot
mitigate this issue.

Takeaway. Optimal circuit maps cannot mitigate error bias
caused by factors that are inherent to the program such as
true state probability and state hamming weight. These prop-
erties of a program and a state can neither be avoided nor
altered; they need to be considered in order to reduce the
error in true output probabilities of states.

Summary. Overall, the current approaches have the following
limitations and avenues for improvements. Optimal circuit map-
ping aims to minimize the error occurrence probability. However, it
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Figure 7: QFT’s forward circuit is appended with the reversed
version of it to construct the forward + reverse circuit.

does not know the true program output of the program irrespective
of how many times or where the program is executed. Hence, the
observed output can only be used as the best guess of the expected
correct program output. This is further substantiated by our obser-
vation that optimal circuit maps cannot mitigate error bias caused
by factors that are inherent to the program. Finally, this approach
inherently assumes that the program has access to all qubits and
can evaluate which best qubits can be employed for circuit map-
ping. This paper’s goal is to deduce the true program output of any
arbitrary quantum program by running them on NISQ machines,
while addressing the above limitations and assumptions.

3 QRAFT: DESIGN AND IMPLEMENTATION

How does Qraft reverse a circuit and use it for deducing

the correct program output? Qraft takes a quantum circuit and
removes the measurement operations at the end and reverses all the
operations one-by-one. Then, it adds the measurement operation at
the end. A visual presentation of a reversed circuit corresponding to
the QFT algorithm is provided in Fig. 7. The top shows the original
circuit (referred to as the forward circuit or FC), while the bottom
shows the operations in the forward circuit reversed (referred to
as the reverse circuit). The entire circuit combined is referred to as
the forward + reverse circuit or FRC. At the completion of the
forward + reverse circuit, the qubit states are measured.

However, simply running a FRC and measuring the output state
probability does not directly enable us to estimate the error of the
FC (Sec. 3.1). Instead, as detailed later, both types of circuits are run
multiple times with 1024 trials and their output state probabilities
are recorded. Note that it is possible to accurately estimate the error
in the observed state probabilities of the FRC since the final output
is known. Qraft leverages this insight to learn about the state
errors of individual output states of the forward circuit. Qraft
accomplishes this by using the observed state probabilities of these
circuits as input to a true state probability prediction model. This
prediction model is trained using a large variety of random circuits
with different types of static and dynamic features and tuned using
Bayesian Optimization. The trained model can be used to predict
the true state probabilities of any quantum algorithm (Sec. 3.2).

Is reversibility feasible for all quantum circuits, and at

what cost? Yes. All quantum operations can be mathematically
represented as complex square unitary matrices (𝑈 ). By definition,
the conjugate transpose (𝑈 †) of a unitary matrix is also its inverse:
𝑈 †𝑈 = 𝐼 . Therefore, when conjugate transposes of quantum opera-
tions are applied in the reverse order, the initial state is obtained.
For example, if three quantum operations are applied to a qubit
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Figure 8: Examples of varying correlation between the state errors
of the forward circuit and the forward + reverse circuit.
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Figure 9: The correlation between the state errors of the forward
and forward + reverse circuits varies among algorithms.
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Figure 10: A high correlation exists between the dominant state
errors of the forward and the forward + reverse circuits.

initialized to the |0⟩ state, then applying their corresponding com-
plex conjugates in reverse order gives: |𝜓 ⟩ = 𝑈

†
3𝑈

†
2𝑈

†
1𝑈1𝑈2𝑈3 |0⟩ =

𝑈
†
3𝑈

†
2 (𝑈

†
1𝑈1)𝑈2𝑈3 |0⟩ = 𝑈

†
3𝑈

†
2𝑈2𝑈3 |0⟩ = 𝑈

†
3𝑈3 |0⟩ = |0⟩. This no-

tation can be extended to multi-qubit circuits. Any quantum circuit
can be represented as a sequence of unitary operations. Applying
the conjugate transpose of those operations in reverse order gives
back the initial state. For an 𝑛-qubit circuit with𝑚 operations, its re-
versibility can be represented as |𝜓 ⟩ = 𝑈

†
𝑚𝑈

†
𝑚−1 . . .𝑈

†
2𝑈

†
1𝑈1𝑈2 . . .

𝑈𝑚−1𝑈𝑚
��0×𝑛〉 =

��0×𝑛〉. This implies that when such a circuit is
executed, it should yield the initial ground state

��0×𝑛〉 with a prob-
ability of one.

Fortunately, the cost of reversibility is rather small and affordable.
Reversing any arbitrary quantum circuit is automated and practical
as demonstrated by Qraft’s experiments on the IBM QX platform.
The runtime of an FRC is negligibly higher than the runtime of an
FC. One potential side-effect is the undesired interaction with the
coherence time constraints for long quantum circuits (discussed in
Sec. 4) since reversing a long circuit runs the risk of exceeding the
coherence limit. However, our results indicate that it does not affect
the prediction quality of Qraft even for very long circuits on the
IBM QX (Qraft is not undesirably sensitive to circuit depth).

3.1 Lessons from Characterizing Reverse

Circuits

Next, we present our insights and findings from characterizing the
executions of FRCs, and how they can guide us toward deducing the
true probability estimation of a quantum algorithm. In particular,
we test three basic hypotheses in the context of output state proba-
bility estimation: Is the state error of forward + reverse circuit (FRC)

correlated with the forward circuit (FC)? Is the dominant state error

correlated? Is the program error (sum of all state errors) correlated?

It is natural to hypothesize that state error of output states in
the FC should be half that of the states in the FRC, given that the
FC has exactly half of the same gate operations as the FRC. If this is
true, the state errors of the FC can be corrected directly to get the
true state probabilities. Our study reveals that this is not necessarily
true for all algorithms.

However, we note that such an analysis needs to be performed
carefully. We cannot simply run FC and FRC back-to-back and
attempt to derive correlations in the errors between two circuits.
Due to variance among runs, each circuit type needs to be run
multiple times and the runs need to be sorted by the errormagnitude
before testing correlations. If this methodology is not followed, one
might pre-maturely conclude that reverse circuit does not reveal
additional characteristics.

Fig. 8 shows three examples of when the state error of a state in
FRC is plotted against the state error of the same state in the FC. We
observe that the behavior varies for different algorithms, and can
be quite weak in many cases. The strength of the fit is quantified
in Fig. 9, which shows the Pearson Correlation between the state
errors of the FC and the FRC.

This finding demonstrates that the state error of the FRC cannot
be used to directly correct the state error of the FC in a straight-
forward manner. The reason for this is that different states get
affected differently depending on the algorithm. Different FCs have
different true probability distributions. This means the same state
(e.g., |01011⟩) of two different algorithms might experience different
errors. However, for any given FC, the FRC always has the same
distribution:

��0×𝑛〉 state has probability one (i.e., all qubits should
be |0⟩) and all other states have probability zero. Thus, it is not nec-
essary that state errors of individual states of an FC and FRC must
correlate because the FC has a different probability distribution
than the FRC, and, as we saw in Sec. 1, state errors are biased by
true probability of states. However, we hypothesize that the errors
of the dominant states of the FC and the FRC must correlate (even
if the dominant states are different for the FC and the FRC). Fig. 10
shows that this is indeed true as the dominant state error is strongly
correlated between the FC and the FRC across all algorithms. This
insight is useful because we know the dominant state and its error
for the FRC.

Next, we ask: what about the program error of the entire circuit?
A natural hypothesis is that the program error of the FRC could
be approx. twice the program error of the FC simply because it
has twice the number of the same operations. Fig. 11 shows that
this hypothesis is not true either, however a significant correlation
exists across algorithms (Fig. 12).

Our results show that different algorithms can have different slopes

in terms of the relationship between the program errors of the FC and
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Figure 11: Examples of high Pearson (linear) Correlation between
the program error of the forward circuit and the program error of
the forward + reverse circuit.
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Figure 12: There is high linear correlation between the program
errors of the forward and the forward + reverse circuits.

Table 2: Features used for training Qraft’s prediction model.

Features from Circuit and State (Static Features)

(1) Computer used for Execution, (2) Circuit Width, (3) Circuit
Depth, Number of (4) U1, (5) U2, (6) U3, & (7) CX Gates in the
Circuit, and (8) State Hamming Weight
Features from Forward Circuit Runs

(9) 25𝑡ℎ Percentile, (10) 50𝑡ℎ Percentile, and (11) 75𝑡ℎ Percentile
Observed State Probability
Features from Forward + Reverse Circuit Runs

(12) 25𝑡ℎ Percentile, (13) 50𝑡ℎ Percentile, and (14) 75𝑡ℎ Percentile
State Error, and (15) 25𝑡ℎ Percentile, (16) 50𝑡ℎ Percentile, and
(17) 75𝑡ℎ Percentile Program Error

the FRC. The length (depth) of a circuit contributes to these different

slopes. If a FC is very long, its FRCwould be even longer and observe
a strong loss of coherence across qubits. Thus the program error
of the FRC would be higher than twice the program error of the
FC. Similarly, for shorter circuits, the qubits might not experience
a significant loss of coherence. Hence, the error of the FRC would
be low. Different circuit characteristics can contribute to different
program-error relationships. The program error of the FRC can be
a strong indicator of the FC’s program error.

Takeaway. The FRC can be used to generate strong indica-
tors for the dominant state error and the program error of
the corresponding FC, but not necessarily the state errors of
individual states, which have a complex algorithm-dependent
behavior.

These insights motivate the need for a machine-learning-based
solution which can absorb these insights, and output an accurate
estimate of the true state probabilities of algorithms.
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Figure 13: Qraft’s predictive model generation and inference.

3.2 Qraft’s Prediction Model: Build and Use

Qraft builds a predictive model that takes observed state prob-
abilities of the forward circuit and the forward + reverse circuit
from multiple runs and outputs the estimated true output state
probabilities of the original (forward) circuit. Next, we describe
how Qraft’s prediction model is built.

How is the Qraft model trained? We build a training dataset
by generating ≈1400 random forward circuits of varying widths,
depths, and operations across six different IBM quantum computers.
Each circuit is run ten times in the forward mode and ten times in
the forward + reverse mode to obtain the observed state probabili-
ties and other related features (described next). We experimented
with varying number of runs, but found that the prediction quality
is not sensitive to the number of runs beyond ten (recall each al-
ready consists of 1024 trials). Each circuit has multiple states and
because a large fraction of the states tend to have zero probabil-
ity, they can end up being not recorded in any of the trials of the
forward and the forward + reverse circuits. Note that including
them in the training can inadvertently boost the accuracy of the
prediction model even if it always predicts a true state probability
of zero. Therefore, Qraft eliminates such states from the training
as they can be directly assumed to have zero true probability. After
the filtering process, we end up with ≈10,000 states for training
(also referred as samples).We do not use real quantum algorithms

for training to avoid biasing the results.

What features does the Qraft model use? The features used
by Qraft are listed in Table 2 under three categories. The first
set of eight features are available directly after circuit compilation
without running the circuit. These include the computer for which
the circuit is compiled, with width of the circuit (number of qubits),
the depth of the circuit (number of sequentially run operations),
the number of different types of basis gates, and the state hamming
weight. Recall that features such as the number of different types of
basis gates, the circuit depth, and the state hamming weight affect
the overall error of the circuit and error of the output probabilities.
Thus, they are important features to help predict output states
correctly and diminish the errors (as we show in our evaluation
(Sec. 4)). In fact, we found that these circuit features are enough to
generate a high-quality prediction model. Expanding the feature
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Figure 14: (a) The correlation between the technique’s state error
and the true state probability, and (b) the correlation between the
technique’s state error and the Baseline state error is the lowest for
Qraft’s Ensemble of Decision Trees (EDT) implementation.

set further by including the structure of the circuit runs the risk of
overfitting the model to the random circuits used for training.

The second set of three features are produced from running the
forward circuit. Running any circuit just once is not sufficient be-
cause of the stochastic nature of the errors. Therefore, each circuit
is run ten times (recall that each run has 1024 trials) and the 25𝑡ℎ
percentile, 50𝑡ℎ percentile, and 75𝑡ℎ percentile observed state proba-
bilities are used as the input. Note that the state errors in the forward
circuit are not known and cannot be fed as features. However, during
the training process, the state errors of the randomly-generated for-
ward circuits are required to be known to optimize the model. Thus,
the ground truth of the random circuits needs to be obtained using
a quantum simulator so that their error can be calculated. Note
that later in our evaluation (Sec. 4), we show that high-quality a
predictor model can be constructed for larger machines and circuits
even if the model is only trained using easy-to-simulate, smaller
circuits that are less than half the size (in terms of the number of
qubits) of the larger circuits. Qraft can achieve this by ensuring
that different smaller circuits (compared to the size of the machine)
cover all the different qubits of the computer such that all of their
error characteristics can be learned when training.

Lastly, six features are obtained from running the forward +
reverse circuit ten times. Because the errors are known for the
FRC, the (25𝑡ℎ , 50𝑡ℎ , and 75𝑡ℎ percentile) state error of the state in
question and the (25𝑡ℎ , 50𝑡ℎ , and 75𝑡ℎ percentile) program error of
the circuit are all used as features.

Which model to select and why? The next step is to determine
the type of machine learning model to use for prediction. To deter-
mine which ML model performs the best, we compare the biases
of five ML models: ensemble of decision trees (EDT), 𝑘 nearest
neighbors (𝑘𝑁𝑁 ), simple feed-forward neural network (input is
fed into the first layer and each subsequent layer has a connection
from only the previous layer), cascade-forward neural network (the
input is directly fed into also the layers), and pattern-detection neu-
ral network (similar to feed-forward network but the output layer
gives probability of membership to different classes). The hyperpa-
rameters of all models (e.g., number of trees and boosting/bagging
method for EDT, number of nearest neighbors for 𝑘𝑁𝑁 , and num-
ber of hidden layers and training function for the neural networks)
are optimized using Bayesian optimization.

Selecting amodel tomitigate the true state probability bias: Fig. 14(a)
shows the Pearson Correlation between the true state probability

and the state error of the prediction of different models. The Baseline
is the state error of the optimal circuit maps. Because the Baseline
is inherently biased against high-probability states (as we saw in
Fig. 5), it is important for the selected ML model to reduce this
bias. Therefore, the model which has the least correlation between
true state probability and state error is the most suitable. EDT has
the lowest correlation out of all techniques (0.28) which indicates
that it is the least biased against high-probability states. Moreover,
Fig. 14(b) shows the Pearson Correlation between the state error of
the prediction and the Baseline state error (i.e., state error observed
for optimal circuit maps). A large correlation indicates that a large
Baseline state error may result in a large state error even after pre-
diction. We want to avoid this. The EDT model achieves the lowest
correlation out of all ML techniques, which shows that it is the best
at correcting the state error irrespective of the Baseline state error.

For the above reasons, Qraft chooses the EDT model. Qraft’s
EDTmodel determines the true probability of states by constructing
multiple decision tree learners and voting among them to estimate
the true probability of a state given the input features in Table 2.
The dataset is randomly split 85%:15% for training:testing. The
model is trained using 5-fold cross validation for robustness against
sampling bias. Bayesian Optimization with expected-improvement
acquisition function is used for tuning the model hyperparame-
ters (number of tree learners, learning rate, ensemble aggregation
method (e.g., bag, AdaBoost, etc.), maximum number of tree splits,
and split criterion (e.g., GDI, Towing, etc.)). Note that training has
a one-time overhead for each quantum computer and the gener-
ated model can be used for all future runs of different algorithms,
although periodic training is recommended (the training overhead
is less than one hour).

Using Qraft for Prediction. Once the model is developed, it
can be used to predict the true state probabilities of any algorithm.
The algorithm can be compiled for any quantum computer and its
circuit map can be generated. The circuit should be run ten times in
forward mode and ten times in forward + reverse mode. Running
20 runs in total on real quantum computers takes ≈two minutes as
each trial of a run finishes within a few milliseconds. The runs can
be processed to generate all the input features listed in Table 2. The
features can be fed into the model to get an estimate of the true
output probabilities of different states of the algorithm. The output
probabilities can also be used to find the dominant states.

4 EVALUATION AND ANALYSIS

In this section, we evaluate the effectiveness of Qraft and attempt
to better understand why and how Qraft works.

Does Qraft help us deduce the correct program output com-

pared to existing optimal circuit map approach? We answer
this question by evaluating Qraft for (1) the quantum algorithms
listed in Table 1 and (2) over 200 randomly generated quantum
circuits whose true outputs are known apriori.

Fig. 15 shows the median state error, the dominant state error,
and the program error for all tested quantum algorithms, same
metrics as discussed in Sec. 1. We make several observations. First,
Qraft is better than Baseline (state error of optimized circuit maps)
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Figure 15: In general, compared to Baseline, Qraft achieves a lower (a) median
state error, (b) dominant state error, and (c) program error.
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Figure 16: Qraft reduces the error bias based on (a)
true state probability, and (b) hamming weight.
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Figure 17: Qraft achieves an error of 0% for ≈70% of the samples,
while Baseline has 0% error for only 20% of the samples.
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Figure 18: Training with the features generated using the forward
+ reverse runs (Qraft) results in lower error than training using
the features of just the forward runs or no runs.

in reducing the median state error to 0% across all algorithms except
SMN, for which the median state error is reduced from 6% to 1%.
Moreover, Qraft considerably reduces the dominant state error
across different algorithms. For example, the dominant state error
of GRV is reduced from 20% to 2% and that of QFT is reduced from
37% to 5%. Qraft also reduces the program error (sum of error of
all states divided by two) across all algorithms. For example, the
program error of SMN is reduced from 18% to 8%.

In Sec. 1, we saw that the state error of optimal circuit mapping
was correlatedwith true state probability and state hammingweight.
Fig. 16 shows that Qraft reduces the Pearson Correlation of state
error with true state probability and state hamming weight across
algorithms. For example, the linear correlations of BV and DJ are
reduced to 0 for both state properties. Thus, Qraft also reduces
error biases that are dependent on state properties.

While generally effective, Qraft has further scope for improve-
ment. For example, in case of QPE, the dominant state error is
50% with Qraft, which even though is a significant improvement
over the optimized circuit map (78% error), is still high. This is
because QPE is a deep circuit which suffers from qubits losing state
coherence. Therefore, the dominant state loses most its observed
probability to other states. It is difficult for Qraft to completely
eliminate errors for such high-error algorithms, as the predictor

also relies on observed state probabilities of the forward circuit,
which are way off from the true state probabilities for QPE.

Fig. 17 shows the CDF of state errors of over 200 randomquantum
circuits used for testing. Note that different circuits have different
number of qubits, depth and number of operations. We observe
that over 70% of the samples (each state produces one state error
sample) have 0% error with Qraft (median error is 0%), while only
20% of the samples have 0% error with Baseline (median error is
2%). The 75𝑡ℎ percentile error with Qraft is 1%, while that with
Baseline is 4%.

Overall, Qraft reduces the median error in estimating the
true probability of states by as much as 7%, dominant state
error by as much as 30%, and program error by as much as
20% across the wide range of evaluated quantum algorithm.
Qraft also achieves an error rate of 0% for over 70% of circuit
states for random circuits.

Does reversing the quantum circuit help toward better esti-

mating the output state probability? A natural inquiry is about
what happens if Qraft is trained without the forward + reverse
circuit, i.e., can we reduce the state error by only running the for-
ward circuit and feeding other static circuit information (e.g., circuit
depth, number of operations etc.). Toward this end, Fig. 18 shows
the CDF of state error when the true state probabilities are pre-
dicted using Qraft (all features listed in Table 2, including errors
during the forward and reverse circuit runs), model trained with
only the forward circuit runs and static characteristics (only the
top two rows of features listed in Table 2), and model trained with
just the static characteristics (only the top row of features listed
in Table 2). As expected, training using only the static characteris-
tics performs the worst. Adding the features of the FC runs only
performs slightly better. In fact, on the tail end, the two methods
perform worse than Baseline. The 75𝑡ℎ percentile state error with
Qraft is 1%, with Baseline it is 4%, with model trained using FC
runs + static characteristics it is 5%, and with model trained using
only static characteristics it is 11%. Reversibility helps make better
estimate of the output probability because the true probabilities of
the output states of the FRC are known and the FRC captures the
effects of performing the sequence of operations in the FC.

What makes Qraft work effectively? To better explain why
Qraft works, we investigate the relative importance of different
features used by Qraft (predictors listed in Table 2)

Importance score of a predictor in an ensemble of decision trees
is calculated by averaging its importance score over all tree learners
in the ensemble. In a given tree learner, the predictor importance
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Figure 19: The top features include the program error of the for-
ward + reverse circuit (FRC), along with other features.

score is calculated by summing up the misclassification risk due to
all its splits and dividing the sum by the number of branch nodes
(nodes that are not leaves).

Fig. 18 shows the features sorted according their importance
score. As expected, the three features related to observed state
probability of the FC circuit are the most important because the
true state probabilities are likely to be in the vicinity of the observed
probabilities (although the magnitude and direction of difference
between the observed probability and the true probability cannot
be known from just the FC circuit). The static circuit characteristics
related to number of operations such as number of U3 and CX gates
and circuit depth are also important because more operations cause
more state error.

Next, we observe that one of the features related to the program
error of the FRC ((25𝑡ℎ percentile FRC program error) is among the
most critical features. The program error of an FRC is an important
characteristic because it correlates with the program error of the
FC, as we also saw in Sec. 3. On the other hand, features related
to the individual state errors of the FRC are in the bottom three
because, as discussed in Sec. 3, the state errors do not correlate
strongly. These rankings validate our expectation.

Reversibility and characteristics related to the forward + re-
verse circuit execution enable Qraft to reduce the state
errors significantly because the forward + reverse circuit in-
directly captures the effects of performing the sequence of
quantum operations present in the forward circuit and has
known true state probabilities.

Is Qraft’s effectiveness dependent on the underlying choice of

circuit map? We study Qraft’s ability to reduce the error in the
estimation of the true probability of the output state and the choice
of circuit map. Executing the optimal circuit map might require
having access to all the qubits. But we may not have this access
or may not want to incur the compilation overhead of multiple
layers of optimizations. We execute “non-optimized” circuit maps
for randomly generated circuits. These circuit maps are directly
mapped from the logical to the physical qubits without any opti-
mizations (no gate cancellation or synthesis, no error-aware qubit
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Figure 20:Qraft achieves a low state error for even non-optimized
circuit maps (CMs) as compared to Baseline.
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Figure 21: The state error of Qraft is not significantly correlated
with any of the forward circuit (FC) or state characteristics. Qraft
is effective for all types of circuits and states.

mapping, no circuit depth reduction, etc.). Fig. 20 shows that Qraft
performs well even when applied to non-optimized circuit maps
(CMs). Qraft achieves an error of 0% for over 70% of the samples,
while Baseline of non-optimized CMs has an error of 0% for only
15% of the samples. Qraft applied to non-optimized CMs performs
on par with Qraft applied to optimized CMs.

Qraft provides better estimation of the true output proba-
bility of the output states, even when using non-optimized
circuit maps. When the availability of reliable qubits is con-
strained due to high demand, users can leverage Qraft to
estimate the correct output probability of the output states
without needing to compile the optimal circuit map.

Is Qraft’s effectiveness sensitive to the circuit characteris-

tics? Fig. 21 shows the Pearson correlation of Qraft’s state error
with different forward circuit characteristics covered by the random
circuits including width, depth, number of different types of gates,
and state hamming weight. This analysis is important to identify
if Qraft is biased against any characteristics. As an example, if
the state error of Qraft’s prediction was higher for circuits with
a large number of operations, then the corresponding correlation
would be high. However, the figure shows that Qraft’s perfor-
mance is not significantly correlated with any of the circuit or state
characteristics (absolute correlation is lower than 0.15 across all
characteristics).

Qraft is effective at reducing the state error across differ-
ent circuit and state characteristics including width, depth,
number of gates, and state hamming weight.
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Figure 22: The median state error with Qraft is 0% on (a) all
5-qubit computers and (b) the 15-qubit Melbourne computer.

Does Qraft work effectively across different quantum ma-

chines? To test this, Fig. 22(a) shows that the median state error of
Qraft is 0% across all 5-qubit computers. While the five comput-
ers have the same qubit layout, they have different error rates as
shown in the figure due to different qubit and operations fidelity.
Burlington has the highest Baseline median state error of 3% and
75𝑡ℎ percentile error of 6%. Qraft reduces the median state er-
ror on Burlington to 0% (hence, bars are not visible) and the 75𝑡ℎ
percentile error of 1%.

Does Qraft scale to a larger number of qubits? To test this, we
evaluated Qraft on the 15-qubit Melbourne quantum machine.
Fig. 22(b) shows the CDF of the state error of Qraft and Baseline
for the 15-qubit Melbourne computer. The figure shows that only
40% of the samples have a state error of 0% using the Baseline
method. On the other hand, using Qraft results in over 80% of
the samples having a state error of 0%. More importantly, Qraft
continues to perform well even when trained with smaller circuits
only. For example, when Qraft is trained with circuits of size ≤ 6
qubits and tested on circuits with 12-15 qubits on Melbourne, 80%
of the samples have 0% error, compared to Baseline, which achieves
0% error for only 55% of the samples (results not plotted for brevity).
Similar results are obtained with other error thresholds (e.g., Qraft
is trained with circuit size ≤ 5 qubits and tested on circuits with
10-15 qubits). This result is important because quantum circuits
can only be practically simulated ideally on classical machines
(which is needed to know their ground truth for training) if they
are small in size. Thus, being able to train using the ground truth
of smaller random circuits and achieve high-quality predictions for
larger quantum circuits is a significant result. Note that training
circuits, even though smaller in size, should collectively span all the
physical qubits on the machine to cover the error characteristics
and properties of all the qubits.

Overall, our results confirm that Qraft is scalable to larger
quantum computers too. This is expected since Qraft does not
employ any technique whose complexity worsens with the number
of qubits – it simply adds the reverse components to the circuit
for execution. This does not increase the execution time of circuits
because quantum circuits have execution time in the order of mil-
liseconds. Most of this time is taken in initializing and measuring
the qubits – this time is the same for FCs and FRCs because both
have the same number of qubits.

Overall, Qraft is effective across different quantum ma-
chines tested on the IBM QX cloud and scales effectively for

quantum machines with larger number of qubits (15 qubits
on the Melbourne quantum machine).

5 RELATEDWORK

In this section, we discuss related NISQ computing works and
provide concluding remarks for Qraft. Current NISQ computing
works can be broadly classified as following:

• Quantum Simulation. Some works have dedicated effort
for developing parallel and noise-aware quantum simulators
for a small number of qubits [9, 19, 23, 24, 28, 32].

• Debugging Algorithms. Prior works have focused on de-
veloping methods of debugging quantum algorithms, which
is a difficult problem because, unlike classical bits, qubit
states cannot be measured mid-execution [21, 30].

• Control PulseOptimization. Several works have proposed
optimizations for the microwave pulses applied at the lowest
level to control qubits. These optimizations reduce circuit
runtimes, which decreases the state errors [5, 6, 15, 17, 40].

• Quantum Stack Development. Considerable effort has
been geared toward designing abstraction layers, compi-
lation frameworks, and computation stacks for emerging
quantum computing technologies [1, 2, 12, 20, 25, 34, 37].

• Algorithm Mapping and Error Reduction. Recent re-
search has focused on best-effort mapping of quantum algo-
rithms to real quantum hardware. These include works that
execute layout-constraints-aware circuit mapping [4, 29, 52],
characterize and minimize the number of quantum opera-
tions [16, 26, 39, 43, 50, 53], and perform error-and-cross-
talk-adaptive logical-to-physical qubit mapping [3, 8, 13, 33,
35, 38, 44–48, 51]. For example, PyZX [26] is a python-based
framework for circuit optimization that also verifies if the
optimized circuit is mathematically equivalent to the orig-
inal circuit using ZX calculus. Another work by Tannu et
al. [46] uses an ensemble of multiple circuit maps with un-
correlated errors to try to reduce the overall output error. A
recent work, Veritas [41], goes beyond qubit mapping. Veri-
tas demonstrates the value of minimizing the error variance
in qubit selection and applying post-execution statistical
error corrections to estimate the correct output. But, Veri-
tas lacks any “ground truth” information about the correct
output and relies solely on the observed program output to
estimate the correct output.

Note that Qraft can also be applied to programs that intersperse
measurement with computation (e.g., hybrid quantum-classical
variational algorithms and repeat-until-success (RUS) circuits) by
reversing each phase and handling it separately.

6 CONCLUSION AND FUTUREWORK

In this paper, we introduced Qraft a method that utilizes the re-
versibility of quantum algorithms to estimate the correct program
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output. We show that Qraft’s improvements are not biased against
specific algorithm, state, or computer characteristics. We hope that
this work opens up opportunities for multiple follow-on works in-
cluding leveraging reversibility for debugging, benchmarking and
program analysis, exploiting reversibility for better circuit mapping,
and theoretical modeling of reversibility property.

Acknowledgement. We are thankful to our shepherd, Dan R.
K. Ports, and the anonymous reviewers to providing thoughtful
feedback despite the pandemic challenges. We are thankful for the
support from Northeastern University, NSF Award 1910601, and
the Massachusetts Green High Performance Computing Center
(MGHPCC) facility. We acknowledge the use of the IBM Q for this
work. The views expressed are those of the authors and do not
reflect the official policy or position of IBM or the IBM Q team.

REFERENCES

[1] Talha Ahmed. 2018. Q#: A Quantum Programming Language by Microsoft. Ph.D.
Dissertation. Imperial College London.

[2] G Aleksandrowicz, T Alexander, P Barkoutsos, L Bello, Y Ben-Haim, D Bucher,
et al. [n.d.]. Qiskit: An Open-source Framework for Quantum Computing.(2019).

[3] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. 2019. QURE: Qubit
Re-allocation in Noisy Intermediate-Scale Quantum Computers. In Proceedings

of the 56th Annual Design Automation Conference 2019. ACM, 141.
[4] Debjyoti Bhattacharjee, Abdullah Ash Saki, Mahabubul Alam, Anupam Chat-

topadhyay, and Swaroop Ghosh. 2019. MUQUT: Multi-Constraint Quantum
Circuit Mapping on NISQ Computers. In 38th IEEE/ACM International Conference

on Computer-Aided Design, ICCAD 2019. Institute of Electrical and Electronics
Engineers Inc., 8942132.

[5] Anastasiia Butko, George Michelogiannakis, Samuel Williams, Costin Iancu,
David Donofrio, John Shalf, Jonathan Carter, and Irfan Siddiqi. 2019. Understand-
ing Quantum Control Processor Capabilities and Limitations through Circuit
Characterization. arXiv preprint arXiv:1909.11719 (2019).

[6] Lauren Capelluto and Thomas Alexander. 2020. OpenPulse: Software for Exper-
imental Physicists in Quantum Computing. Bulletin of the American Physical

Society (2020).
[7] Sourav Chatterjee and Elizabeth Meckes. 2007. Multivariate Normal Approxima-

tion using Exchangeable Pairs. arXiv preprint math/0701464 (2007).
[8] Lukasz Cincio, Kenneth Rudinger, Mohan Sarovar, and Patrick J Coles. 2020.

Machine Learning of Noise-Resilient Quantum Circuits. arXiv preprint

arXiv:2007.01210 (2020).
[9] J Ignacio Cirac and Peter Zoller. 2012. Goals and Opportunities in Quantum

Simulation. Nature Physics 8, 4 (2012), 264.
[10] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. 1998. Quantum Algorithms

Revisited. Proceedings of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences 454, 1969 (Jan 1998), 339–354. https://doi.org/
10.1098/rspa.1998.0164

[11] David Collins, KW Kim, and WC Holton. 1998. Deutsch-Jozsa Algorithm as a
Test of Quantum Computation. Physical Review A 58, 3 (1998), R1633.

[12] Rigetti Computing. 2019. Pyquil documentation. URL

http://pyquil.readthedocs.io/en/latest (2019).
[13] Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi. 2019. A

Case for Multi-Programming Quantum Computers. In Proceedings of the 52nd

Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 291–303.
[14] Miroslav Dobšíček, Göran Johansson, Vitaly Shumeiko, and Göran Wendin. 2007.

Arbitrary Accuracy Iterative Quantum Phase Estimation Algorithm using a Single
Ancillary Qubit: A Two-Qubit Benchmark. Physical Review A 76, 3 (2007), 030306.

[15] Eugen Dumitrescu, Raphael Pooser, and John Garmon. 2020. Benchmarking
Noise Extrapolation with OpenPulse. Bulletin of the American Physical Society

(2020).
[16] Pranav Gokhale, Yongshan Ding, Thomas Propson, Christopher Winkler, Nelson

Leung, Yunong Shi, David I Schuster, Henry Hoffmann, and Frederic T Chong.
2019. Partial Compilation of Variational Algorithms for Noisy Intermediate-Scale
Quantum Machines. In Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture. ACM, 266–278.
[17] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T

Chong. 2020. Optimized Quantum Compilation for Near-Term Algorithms with
OpenPulse. arXiv preprint arXiv:2004.11205 (2020).

[18] Lov K Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of comput-

ing. 212–219.

[19] Gian Giacomo Guerreschi, Justin Hogaboam, Fabio Baruffa, and Nicolas PD
Sawaya. 2020. Intel Quantum Simulator: A Cloud-Ready High-Performance
Simulator of Quantum Circuits. Quantum Science and Technology 5, 3 (2020),
034007.

[20] Andrew Hancock, Austin Garcia, Jacob Shedenhelm, Jordan Cowen, and Calista
Carey. 2019. Cirq: A Python Framework for Creating, Editing, and Invoking
Quantum Circuits. URL https://github.com/quantumlib/Cirq (2019).

[21] Yipeng Huang andMargaret Martonosi. 2019. Statistical Assertions for Validating
Patterns and Finding Bugs in Quantum Programs. In Proceedings of the 46th

International Symposium on Computer Architecture. ACM, 541–553.
[22] Zhi-Xiang Jin and Shao-Ming Fei. 2018. Quantifying Quantum Coherence and

Nonclassical Correlation based on Hellinger Distance. Physical Review A 97, 6
(2018), 062342.

[23] Tyson Jones, Anna Brown, Ian Bush, and Simon C Benjamin. 2019. Quest and
High Performance Simulation of Quantum Computers. Scientific reports 9, 1
(2019), 1–11.

[24] Nader Khammassi, Imran Ashraf, Xiang Fu, Carmen G Almudever, and Koen
Bertels. 2017. QX: A High-Performance Quantum Computer Simulation Platform.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 464–469.

[25] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and
Christian Weedbrook. 2019. Strawberry fields: A software platform for photonic
quantum computing. Quantum 3 (2019), 129.

[26] Aleks Kissinger and John van de Wetering. 2019. PyZX: Large Scale Automated
Diagrammatic Reasoning. arXiv preprint arXiv:1904.04735 (2019).

[27] Pascal Koiran, Vincent Nesme, and Natacha Portier. 2005. A Quantum Lower
Bound for the Query Complexity of Simon’s Problem. In International Colloquium
on Automata, Languages, and Programming. Springer, 1287–1298.

[28] Gushu Li, Yufei Ding, and Yuan Xie. 2019. SANQ: A Simulation Framework
for Architecting Noisy Intermediate-Scale Quantum Computing System. arXiv
preprint arXiv:1904.11590 (2019).

[29] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping Problem
for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating

Systems. ACM, 1001–1014.
[30] Ji Liu, Gregory T Byrd, and Huiyang Zhou. 2020. Quantum Circuits for Dynamic

Runtime Assertions in Quantum Computation. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages and

Operating Systems. 1017–1030.
[31] Margaret Martonosi and Martin Roetteler. 2019. Next Steps in Quantum Com-

puting: Computer Science’s Role. arXiv preprint arXiv:1903.10541 (2019).
[32] David C McKay, Thomas Alexander, Luciano Bello, Michael J Biercuk, Lev Bishop,

Jiayin Chen, Jerry M Chow, Antonio D Córcoles, Daniel Egger, Stefan Filipp, et al.
2018. Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments.
arXiv preprint arXiv:1809.03452 (2018).

[33] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and

Operating Systems. ACM, 1015–1029.
[34] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari,

Nhung Hong Nguyen, and Cinthia Huerta Alderete. 2019. Full-Stack, Real-System
Quantum Computer Studies: Architectural Comparisons and Design Insights.
arXiv preprint arXiv:1905.11349 (2019).

[35] PrakashMurali, David CMcKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020.
Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Comput-
ers. In Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems. 1001–1016.
[36] Daniel C Murphy and Kenneth R Brown. 2019. Controlling Error Orientation

to Improve Quantum Algorithm Success Rates. Physical Review A 99, 3 (2019),
032318.

[37] Scott Pakin and Steven P Reinhardt. 2018. A Survey of Programming Tools for
D-Wave Quantum-Annealing Processors. In International Conference on High

Performance Computing. Springer, 103–122.
[38] Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari. 2020. {UREQA}:

Leveraging Operation-Aware Error Rates for Effective Quantum Circuit Map-
ping on NISQ-Era Quantum Computers. In 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20). 705–711.

[39] Tirthak Patel, Abhay Potharaju, Baolin Li, Rohan Roy, and Devesh Tiwari. 2020.
Experimental evaluation of NISQ quantum computers: error measurement, char-
acterization, and implications. In 2020 SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer
Society, 636–650.

[40] Tirthak Patel and Devesh Tiwari. 2020. DisQ: a novel quantum output state
classificationmethod on IBM quantum computers using openpulse. In Proceedings
of the 39th International Conference on Computer-Aided Design. 1–9.

[41] Tirthak Patel and Devesh Tiwari. 2020. Veritas: Accurately Estimating the Cor-
rect Output on Noisy Intermediate-Scale Quantum Computers. In 2020 SC20:

https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164


Qraft: Reverse YourQuantum Circuit and Know the Correct Program Output ASPLOS ’21, April 19–23, 2021, Virtual, USA

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC). IEEE Computer Society, 188–203.
[42] John Preskill. 2018. Quantum Computing in the NISQ Era and Beyond. Quantum

2 (2018), 79.
[43] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry

Hoffmann, and Frederic T Chong. 2019. Optimized Compilation of Aggregated In-
structions for Realistic Quantum Computers. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and

Operating Systems. ACM, 1031–1044.
[44] Kaitlin N Smith and Mitchell A Thornton. 2019. A Quantum Computational

Compiler and Design Tool for Technology-Specific Targets. In Proceedings of the

46th International Symposium on Computer Architecture. ACM, 579–588.
[45] Bochen Tan and Jason Cong. 2020. Optimality Study of Existing Quantum

Computing Layout Synthesis Tools. arXiv preprint arXiv:2002.09783 (2020).
[46] Swamit S Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings:

Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mis-
takes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture. ACM, 253–265.
[47] Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating Measurement Errors

in Quantum Computers by Exploiting State-Dependent Bias. In Proceedings of

the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM,

279–290.
[48] Swamit S Tannu and Moinuddin K Qureshi. 2019. Not All Aubits are Created

Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems. ACM, 987–999.
[49] Yaakov S Weinstein, MA Pravia, EM Fortunato, Seth Lloyd, and David G Cory.

2001. Implementation of the Quantum Fourier Transform. Physical review letters

86, 9 (2001), 1889.
[50] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping Quantum

Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H
Operations. In Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 142.

[51] Ellis Wilson, Sudhakar Singh, and Frank Mueller. 2020. Just-in-time Quantum
Circuit Transpilation Reduces Noise. arXiv preprint arXiv:2005.12820 (2020).

[52] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. An Efficient Method-
ology for Mapping Quantum Circuits to the IBM QX Architectures. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems (2018).
[53] Alwin Zulehner and Robert Wille. 2019. Compiling SU (4) Quantum Circuits to

IBM QX Architectures. In Proceedings of the 24th Asia and South Pacific Design

Automation Conference. ACM, 185–190.


	Abstract
	1 Introduction
	2  Background and Motivation
	2.1 Quantum Computing Overview
	2.2 Motivation for Qraft

	3 Qraft: Design and Implementation
	3.1 Lessons from Characterizing Reverse Circuits
	3.2 Qraft's Prediction Model: Build and Use

	4 Evaluation and Analysis
	5 Related Work
	6 Conclusion and Future Work
	References

