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1. Introduction

Animals experience diverse interspecific interactions, including those

with “natural enemies” such as predators and parasites negatively impacting sur-

vival and reproduction (Morin, 2009; Pollock, Hoover, Uy, &Hauber, 2021).
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Encounters with predators and parasites both reduce fitness, but fitness costs

differ based on the type of threat and when these threats are encountered

(Raffel, Martin, & Rohr, 2008). Thus, it would be adaptive for animals to

discriminate between natural enemies and choose the behavioral response

that minimizes fitness losses. The ability to discriminate among threats is

well-studied in predator-prey contexts, with prey species across taxa capable

of discriminating between different types of predators (e.g., Burhans, 2001;

Chivers & Mirza, 2001; Dorosheva & Reznikova, 2011; Ferrari,

Messier, & Chivers, 2008; Fuchs, Veselý, & Nácarová, 2019; McLean,

Lundie-Jenkins, & Jarman, 1996). Indeed, animals select among their own

repertoire of antipredator strategies based on predator type (e.g., flying vs.

aerial; Seyfarth, Cheney, & Marler, 1980; Blumstein, 1999; Rainey,

Zuberbuhler, & Slater, 2004) or threat level (e.g., size or distance relative

to prey; Helfman, 1989; Courter & Ritchison, 2010; Rauber & Manser,

2017), which in turn improves survival (reviewed in Griffin, 2004).

In addition to the recognition of predators that directly threaten their

own survival, animals distinguish among threats specifically related to repro-

ductive success, such as predators targeting vulnerable offspring, including

eggs and dependent young. Recognizing threats to reproduction is partic-

ularly critical for birds, as nest depredation is the leading cause of reproduc-

tive failure for this lineage (Chiavacci, Benson, &Ward, 2018;Martin, 1992;

Martin, 1995). Many avian species respond aggressively to nest predators to

improve reproductive success odds (reviewed in Lima, 2009), recognizing

that nest predators pose a high risk to nest survival but little or no risk to

the adults’ survival (e.g., Oteyza, Mouton, & Martin, 2021). In turn, up

to 17% of bird species must also defend nests against brood parasites, which

lay their eggs in the nests of “host” species that must care for the brood par-

asitic young (Antonson, Rubenstein, Hauber, & Botero, 2020; Davies,

2010). Behavioral responses to both types of nest threats often include

aggressive mobbing behaviors to prevent nest depredation or brood parasit-

ism from occurring (referred to as “front-loaded” defenses in the context of

brood parasitism; Feeney, Troscianko, Langmore, & Spottiswoode, 2015;

Feeney, Welbergen, & Langmore, 2012; Kilner & Langmore, 2011;

Welbergen & Davies, 2009). However, notable differences in aggression

levels toward these threats also demonstrate that avian host species discrim-

inate between nest predators and brood parasites, such that parents adjust

their behaviors to match the distinct threats specifically (Burhans, 2001;

Enos, Hylund Bruno, & Hauber, 2020; Gill & Sealy, 1996; Sealy,

Neudorf, Hobson, & Gill, 1998).
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To explore the discrimination of unique threats posed by nest predators

and brood parasites, researchers typically frame their experiments around

four hypotheses about host enemy recognition. A frequently tested hypoth-

esis about host enemy recognition poses that discrimination between nest

predators and brood parasites is specific to the nest stage. Unlike nest pred-

ators, which threaten reproductive success when either eggs (referred to as

“laying” and “incubation” stages) or nestlings (referred to as the “nestling”

stage) are present, brood parasites mostly pose a reproductive threat if they

successfully parasitize a nest while the host is actively laying or incubating

eggs (Fiorini, Tuero, & Reboreda, 2009; Geltsch, Bán, Hauber, &

Moskát, 2016;Wang, Zhong, He, Zhang, & Liang, 2020). Hence, hosts that

discriminate between brood parasites and nest predators should primarily

respond to brood parasites with aggression during laying and incubation

stages (e.g., Fasanella & Fernández, 2009; Gill & Sealy, 1996; Neudorf &

Sealy, 1992). In contrast, nest predators should elicit aggressive responses

from hosts at all nest stages because the outcome of nest predation is often

the total loss of the reproductive attempt (e.g., Fasanella & Fernández, 2009;

Gill & Sealy, 1996; Ruiz, Fasanella, & Fernández, 2018). Moreover, aggres-

sion intensity toward nest predators often increases as nests progress from

incubation to nestling stages, because of the high investment in advanced

broods near fledging (Campobello & Sealy, 2010; Montgomerie &

Weatherhead, 1988; Regelmann & Curio, 1983).

Host species’ aggression intensity toward brood parasites has also been

hypothesized to specifically depend on the ability to distinguish brood par-

asitic eggs from their own (e.g., Davies & Brooke, 1989; Manna, Moskat, &

Hauber, 2017; Rothstein, 1986). Several host species physically eject

parasitic eggs once recognized (Antonov, Stokke, Moksnes, & Røskaft,

2009; Rothstein, 1975; Soler, 2014). These “rejecters” also benefit from

front-loaded defenses to prevent brood parasitism from occurring (i.e.,

aggression toward the brood parasite female to avoid host-egg removal in

connection with the brood parasitic egg-laying; Croston & Hauber,

2015). However, non-rejecters, referred to as “accepters,” consistently

experience higher costs from being parasitized as they do not eject eggs

and subsequently allocate resources toward the unrelated obligate brood

parasitic young (Hauber, 2003; Kilner, Madden, & Hauber, 2004;

Lichtenstein & Sealy, 1998). The difference in fitness outcomes suggests that

accepters should exhibit more front-loaded aggression toward brood para-

sites than rejecters (Neudorf & Sealy, 1992; Rothstein, 1975; Sealy et al.,

1998). In turn, both accepters and rejecters are expected to exhibit similar

65Avian brood parasites discriminate parasitic vs. predatory threats



levels of front-loaded aggression toward nest predators because of the shared

and high fitness cost of nest depredation (e.g., Enos et al., 2020).

Though it concerns host aggression rather than discrimination, a third

hypothesis poses that host aggression intensity should depend on the com-

petitive strategy utilized by brood parasitic nestlings after hatching. For

example, some species of brood parasitic nestlings, including common

cuckoos (Cuculus canorus) and striped cuckoos (Tapera naevia), evict or

directly kill all nestmates, typically resulting in total loss of fitness for the host

(Davies, 2010; Kilner & Davies, 1999; Mark & Rubenstein, 2013). In con-

trast, brood parasitic species that do not evict host nestmates, including the

brown-headed cowbird (Molothrus ater) and the Great Spotted Cuckoo

(Clamator glandarius), often lead to only partial host-fitness loss as brood par-

asitic nestlings compete for resources from parents, therefore reducing the

survival of some, but typically not all, host nestlings (Hauber, 2003; Soler

et al. 2014). As such, hosts may respond differently depending on the species

and reproductive strategy of brood parasites, specifically whether they are

nest-sharers or nestmate-evictors.

The final hypothesis is that geographic isolation between hosts and brood

parasites influences enemy recognition and discrimination among hosts. In

areas of geographic overlap or sympatry, hosts should exhibit higher aggres-

sion toward brood parasites during the laying and/or incubation stage com-

pared to the nestling stage (as discussed above under the stage-specific enemy

recognition hypotheses). In contrast, “naive” or allopatric host populations

that have been geographically isolated from brood parasites may not recog-

nize brood parasites as unique threats to reproduction (Briskie et al., 1992;

Kuehn, Peer, Mccleery, & Rothstein, 2016). In this case, hosts would

respond to brood parasites and nest predators with the same level of aggres-

sion and also increase aggression intensity toward both threats during the

nestling stage (e.g., Lawson, Leuschner, Gill, Enos, & Hauber, 2020).

Alternatively, host populations that are geographically isolated from brood

parasites may not recognize brood parasites as a reproductive threat, and may

instead perceive them as non-threatening heterospecific intruders.

Support for these four hypotheses about enemy recognition by hosts

largely come from visual, model-presentation experiments (sometimes

coupled with acoustic playbacks), where researchers place taxidermic

models or effigies of predators, brood parasites, and/or non-threatening

control species at nests and then record the host’s aggressive responses to

model treatments (reviewed in Soler et al., 2017). However, most experi-

ments are not designed to compare host responses across all three model

treatments, or across all nesting stages, within a single study (but see
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Gill & Sealy, 1996). Additionally, most studies only test one or a few host

species and only one brood parasite at a time (but see for multi-host species

studies: Robertson & Norman, 1976; Moksnes et al., 1991; Sealy et al.,

1998). Undoubtedly, host type (accepter vs. rejecter), nest stage (laying,

incubation and nestling), threat type (nestmate-evictor vs. nest-sharer, nest

predator vs. adult predator) and host exposure to brood parasites (sympatry

vs. allopatry) are not mutually exclusive factors influencing host enemy rec-

ognition and discrimination. It is thus critical to evaluate all factors at once to

better address existing hypotheses about enemy recognition by avian hosts.

We conducted a systematic literature review of studies adopting model

presentation experiments to evaluate support for the four hypotheses about

host descrimation between predators and brood parasites. We then used a

formal, phylogenetically-controlled meta-analysis (Koricheva, Gurevitch,

&Mengersen, 2013) to quantitatively test the following predictions for each

hypothesis:

1. Host-specific Discrimination: differential aggression in responses of hosts

toward brood parasites vs. predators will be greater in species that do

not eject parasite eggs (accepters) than in those that do (rejecters).

2. Stage-specific Discrimination: hosts will be more aggressive toward brood

parasite models during the laying and incubation stages compared to

the nestling stage, whereas responses to predators would either stay

the same or increase with the progression of these nest stages.

3. Threat-specific Discrimination: the type of the brood parasite (nestmate

evictor vs. nest-sharer) and predator it is compared to (nest predator

vs. adult predator) influences host aggression, with nestmate-evictor par-

asites and adult predators receiving more aggression from hosts.

4. Exposure-based Discrimination: hosts will be more aggressive toward brood

parasites with geographic overlap in populations (sympatry) compared to

geographically isolated populations (allopatry).

With our new results, we discuss existing support for each hypothesis about

threat discrimination in avian hosts of obligate brood parasitism, and address

current gaps or biases in the literature to date that should be remedied in

future studies.

2. Methods

We searched the published literature through Google Scholar and

Web of Science using the following boolean search string: “brood parasite”

predator AND aggres* bird OR egg OR model OR nestling OR brood

OR playback. We only included studies that met the following five criteria:
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(i) studies had to experimentally test for host responses with model, play-

back, and/or live stimulus presentation near a host nest or on a host

territory;

(ii) experiments had to compare host responses to both an obligate brood

parasite and predator model within one nest stage or across multiple

nest stages;

(iii) host aggression toward models had to be numerically or categorically

quantified (e.g., alarm call rate, number of strikes or swoops, closest

approach, aggression score) and compared between the types of

models and nesting stages tested. Studies that only examined responses

that were not directly related to aggression and nest defense, such as

time spent foraging, were excluded;

(iv) researchers needed to provide host aggression data for one or more

known stages: laying and incubating (considered “egg” stage in our

review), or nestling, and data had to be provided separately for each

stage tested; and, critically,

(v) studies were required to use a control model/playback in order to gen-

erate effect sizes.

For the publications focusing onmultiple host species, we assessed each species

tested in the study as a separate sample. For studies that presented two types of

predators (adult vs. nest), we also separated the response to each type as its own

sample. We labeled hosts as accepters or rejecters based on the authors’ own

categorization, or on other publications if not categorized by authors (e.g.,

Moksnes et al., 1991; Robertson &Norman, 1976); these accepter vs. rejecter

labels were based on the hosts’ responses to naturally laid brood parasitic eggs.

This allowed us to compare studies with hosts of cowbirds and cuckoos,

despite differences in egg rejection abilities between the hosts of these different

lineages of brood parasites (e.g., Luro & Hauber, 2020). For example,

most common cuckoo hosts are rejecters of non-mimetic (model) eggs

(Stoddard & Stevens, 2010), but this may be so simply because the coevolu-

tionary arms-race has progressed far in many of this brood parasite’s host spe-

cies (Stoddard & Hauber, 2017). However, these hosts often still accept the

now closely mimetic cuckoo eggs at high rates when laid naturally or inserted

experimentally (e.g., Hauber et al., 2015), thus we still classified those hosts

behaviorally as accepters. Last, we also labeled hosts as sympatric or allopatric

with the brood parasite(s) to separate studies in sympatry from allopatric sam-

ples. Studies that used hosts labeled as “unsuitable” (very rarely parasitized

when in sympatry with brood parasite or brood parasite cannot survive in

the nest) for parasitism were excluded.
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We then formalized our meta-analysis by extracting the effect sizes for

each aggression metric from published studies (Koricheva et al., 2013).

To do so, we first extracted the mean, sample size, and standard deviation

from the text of each study for all aggression responses to controls, brood

parasites, and predators. For those studies where these data were not pro-

vided in-text, we used the R package metaDigitise (Pick, Nakagawa, &

Noble, 2019) to digitize these values from the figures within the published

papers. We calculated Hedges’ G effect sizes from the mean, sample size, and

standard deviation of the specific treatment group (brood parasite or pred-

ator) and the mean, sample size, and standard deviation of the control group

(Hedges, 1981). As it was possible for the aggression effect sizes to be positive

or negative depending on context of the aggression (e.g., a higher number of

strikes and a smaller latency would both signify strong aggression), we trans-

formed effect sizes by taking their absolute value, so that we could focus our

analyses on the magnitude of the effect size.

2.1 Statistical analysis
We conducted a linear mixed model with nest stage, threat type (brood par-

asite vs. predator), and host type (accepter vs. rejecter) as fixed effects, and

avian family as a random effect (for phylogenetic correction) to analyze

whether these affected the aggression effect sizes (Hedges G) between threat

models and their respective controls. This was only done with data from pre-

sentations in sympatry, as there were a number of comparisons that could not

be made with allopatric data because of lack of data. To analyze whether the

type of brood parasite (nestmate evictor vs. non-evictor) or predator (adult

predator vs. nest predator) affected the aggression effect sizes, we conducted

another linear mixed model with nest stage, specific threat type (nestmate

evictor brood parasite, non-evictor brood parasite, adult predator, nest pred-

ator), and host type (accepter vs. rejecter) as fixed effects, and taxonomic

family as a random effect. For our geographic overlap with brood parasites

comparison (sympatry vs. allopatry) we used a subset of the data with just the

brood parasite model presentations to compare responses. Hosts were deter-

mined to be in sympatry if the host population overlapped with the brood

parasite species presented in each study. Our search to generate the

meta-analysis dataset did not return any studies on rejecter hosts in allopatry

so we could not include host type as a fixed effect. This second model had

geographic overlap (sympatry or allopatry) as a fixed effect, and avian family

as a random effect.
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We were also interested in whether the sampling method or type of

aggression measured had an influence on how aggressive hosts were toward

threat presentations. For the sampling method, we categorized the studies

based on the number of birds tested per stimulus sample, the number of

stimuli each subject was tested with, and the number of nest stages subjects

were tested across. This resulted in four sampling method categories: one

bird/one stimulus/one stage, one bird/multiple stimuli/one stage, one bird/

multiple stimuli/multiple stages, multiple birds/multiple stimuli/one stage.

We then ran a linear mixed model with sampling method as a fixed effect

and avian family as a random effect. For type of aggression, we categorized

behaviors measured as physical aggression (e.g., strikes, swoops, approach),

vocal aggression (e.g., alarm calls), or combined/other response type (e.g.,

aggression scores, latency to respond). We ran a linear mixed model with

aggression type as a fixed effect and avian family as a random effect. To deter-

mine if host type and threat type influences whether hosts favor vocal vs. phys-

ical behaviors in their defense, we ran a linear mixed model only with samples

that included strictly physical or vocal aggressive behaviors, and included

aggression type, threat type, and host type as fixed effects and avian family

as a random effect.

3. Results

Our initial boolean search yielded 1270 results, but after applying the

rigorous criteria required for the meta-analytic techniques, the literature

review resulted in 29 publications (see Table 1 for the full list). In total,

25 host species, 7 brood parasite species, and 17 predator species were rep-

resented across the collected studies for our review. The focal brood parasitic

species for most samples were from brown-headed cowbirds, followed by

common cuckoos, the two best-studied obligate brood parasites (reviewed

in Davies, 2010), with most studies also occurring in the temperate zones of

the Northern Hemisphere (69% of samples). The most common nest pred-

ator species used were blue jays (Cyanocitta cristata; 5%), common grackles

(Quiscalus quiscula; 25%), and Eurasian sparrowhawks (Accipiter nisus,

primarily an adult predator; 6%). Nevertheless, studies in our sample were

conducted on hosts and with parasites and/or predators native to six conti-

nents - North America, South America, Europe, Asia, Africa, and Australia.

We also found some biases toward three host species in our data set: yellow

warblers (Setophaga petechia, 17% of samples), Eurasian reed warblers

(Acrocephalus scirpaceus, 14% of samples), and red-winged blackbirds
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(Agelaius phoeniceus, 17% of samples). This was often the result of the same

researcher(s) conducting a series of studies on a specific host-parasite

interaction.

Most studies used taxidermic models as the stimulus to evoke behaviors

from hosts (92%), and the remaining studies used live stimuli (4%) or vocal

playbacks (4%) exclusively (see Fig. 1 for examples of setups). Due to the

sizable differences in studies with these three modalities, we were unable

to statistically examine the effects of stimulus sensory modality (acoustic

playback vs. visual model) on host aggression toward treatments.

3.1 Host-specific and stage-specific recognition/discrimination
We found host type had a significant effect on effect size (host type term:

F1,391¼4.49, P¼0.035), in that accepters were more aggressive toward

threat models than rejecters (Fig. 2). Nest stage (stage term: F1,391¼1.96,

P¼0.162) and threat type (threat type term: F1,391¼0.58, P¼0.443) as sin-

gle terms were not significant. However, there was a significant interaction

between nest stage and threat type (stage x threat type term: F1,391¼11.26,

P<0.001), and between host type and threat type (host type x threat

type term: F1,391¼4.69, P¼0.030). There was not a significant interaction

between stage and host type (stage x host type term: F1,391¼0.09,

P¼0.761), or between all three variables (host type x stage x threat type

term: F1,391¼0.60, P¼0.438). Based on post hoc pairwise comparisons,

accepters were similarly aggressive to brood parasite and predator models

during egg stage (t¼0.76, P¼0.443) but became significantly more aggres-

sive toward predators compared to brood parasites during nestling stage

(t¼3.38, P<0.001), and aggressive responses overall were stronger than

during egg stage (t¼3.22, P¼0.001). Accepters were specifically more

aggressive than rejecters toward parasites during egg stage (t¼2.12,

P¼0.035). Conversely, rejecters were more aggressive toward predators

compared to brood parasites across egg (t¼2.05, P¼0.040) and nestling

stages (t¼3.47, P<0.001). Unlike accepters, rejecters did not significantly

increase aggression toward predators over the nesting cycle (t¼"1.42,

P¼0.155). All other post hoc comparisons across nest stage or threat type

were non-significant (see Supplementary Table 1 in the online version at

https://doi.org/10.1016/bs.asb.2021.03.002).

3.2 Threat-specific recognition/discrimination
When we defined threat types more specifically (nestmate evictor vs.

nest-sharer brood parasite, or adult predator vs. nest predator), we found that
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Fig. 1 Photos of sample setups in model/playback brood parasite presentation studies.
(A) A red-winged blackbird attacking a female brown-headed cowbird dummy (photo
credit: K. Yasukawa), (B) a great reed attacking a female common cuckoo dummy
(O. Mikulica), (C) a superb fairy wren attacking a stuffed shining-bronze cuckoo
dummy (W. Feeney), (D) a great reed warbler approaching a 3D printed, painted plastic
common cuckoo model, (E) a sedge warbler alarm calling at a stuffed common cuckoo
dummy, (F) from left to right, a song thrush (control), morepork owl (predator), and
long-tailed cuckoo (brood parasite) to be presented at whitehead nests (N. Leuschner
andB.Gill), (G) female brown-headed cowbirdpresentedand its chatter calledplayedback
near an active red-winged blackbird nest (J. Lindsey), (H) a red-winged blackbird alarm
calling at a speaker playing female brown-headed cowbird chatter (S. Lawson).



nest stage as a single term was significant (stage term: F1,391¼14.87,

P<0.001), in that hosts (types: accepters and rejecters) were more aggressive

to threat presentations during nestling stage compared to egg stage (Fig. 3).

Host type (host type term: F1,391¼1.40, P¼0.236) and threat type (threat

type term: F1,391¼0.60, P¼0.614) as single terms were not significant in

the specific threat type model. However, similar to the general threat

type model (i.e., brood parasite vs. predator), there was a significant inter-

action between nest stage and threat type (stage x threat type term:

F1,391¼7.55, P<0.001), and between host type and threat type (host type

x threat type term: F1,391¼4.51, P<0.01). There was not a significant inter-

action between stage and host type (stage x host type term: F1,391¼1.44,

P¼0.229), or between all three variables (host type x stage x threat type

term: F1,391¼0.95, P¼0.329).

Based on post hoc pairwise comparisons across nest stages, accepters were

more aggressive toward adult (t¼3.85, P<0.001) and nest predators

(t¼1.98, P¼0.048) during the nestling stage compared to the egg stage.

Accepters were more aggressive toward non-evictor brood parasites when

their nests had eggs compared to nestlings (t¼2.04, P¼0.041). For evictor

brood parasites, accepter aggression did not change across nest stages

(t¼"0.01, P¼0.959). During nestling stage, accepters were more aggres-

sive to adult predators compared to nest predators (t¼3.03, P¼0.013), evic-

tor brood parasites (t¼3.49, P<0.01), and non-evictor brood parasites

Fig. 2 Pooled effect sizes (Hedges G) of aggression by hosts between threat types
and their respective controls across studies. Effect sizes are also separated by host type
and nesting stage. Box plots illustrate median values (bar), interquartile range (box), and
minimum and maximum effect sizes (lines). Significant post hoc differences between
groups are represented with asterisks (*** P<0.001,** P<0.01, * P<0.05).
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(t¼4.09, P<0.001). Accepters were equally aggressive toward all threat

types during egg stage, but during the nestling stage accepters were more

aggressive to adult predators compared to nest predators (t¼3.03,

P¼0.013), evictor brood parasites (t¼3.49, P<0.01), and non-evictors

(t¼4.09, P<0.001). Accepters were also more aggressive to nest predators

than non-evictors when they had nestlings (t¼2.88, P¼0.021).

For rejecters, the data only allowed us to compare nest predators

(t¼"1.44, P¼0.149) and nest-sharer (non-evictor) brood parasites

(t¼0.23, P¼0.817) between nest stages, though there were no significant

differences for either. Post hoc comparisons across threat types found that

during the egg stage, rejecters were significantly more aggressive toward

evictor brood parasites than non-evictors (t¼2.72, P¼0.034). During

the nestling stage, rejecters were more aggressive toward nest predators than

non-evictor brood parasites (t¼3.47, P<0.01). Comparisons between host

types found that accepters were more aggressive than rejecters toward spe-

cifically non-evictor parasites during egg stage (t¼3.19, P¼0.001). All

other post hoc comparisons across nest stage, threat type, and host type were

non-significant (see Supplementary Table 2 in the online version at https://

doi.org/10.1016/bs.asb.2021.03.002).

Fig. 3 Pooled effect sizes (Hedges G) of aggression by hosts between specific threat
types and their respective controls across studies. Effect sizes are also separated by host
type and nesting stage. Box plots illustrate median values (bar), interquartile range
(box), and minimum and maximum effect sizes (lines). Significant post hoc differences
between groups are represented with asterisks (*** P<0.001, ** P<0.01, * P<0.05).
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3.3 Recognition/discrimination by geographic overlap
Our model found a significant difference in host aggression based on sym-

patry (geographic overlap) or allopatry (geographic isolation) between host

and brood parasite populations (geography term: F1,201¼5.40, P¼0.021;

Fig. 4). Specifically, hosts were more aggressive toward brood parasites in

allopatry compared to sympatry with brood parasites.

3.4 Sampling methodology and host aggression metrics
Type of samplingmethod used (single or multiple birds tested, single or mul-

tiple stimuli used or nest stages tested) did not significantly influence effect

sizes (F1,417¼0.77, P¼0.567). However, effect sizes were significantly dif-

ferent based on the type of behavioral aggression measured (aggression term:

F1,417¼12.83, P<0.001; Fig. 5). We found that behaviors that included

both vocal and physical components had higher effect sizes than vocal

(t¼3.95, P<0.001) or physical (t¼5.09, P<0.001) behaviors alone. We

also examined whether host type and threat type influenced whether hosts

use vocal or physical behaviors more frequently in their defense. We did not

find any significant interactions between aggression type and threat type

Fig. 4 Pooled effect sizes (Hedges G) of aggression by accepter hosts between parasite
models and their respective controls across studies. Effect sizes are also separated by
nesting stage. Box plots illustrate median values (bar), interquartile range (box), and
minimum and maximum effect sizes (lines). Significant post hoc differences between
groups are represented with asterisks (* P<0.05).
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(aggression x threat type term: F1,417¼1.88, P¼0.170) or between aggression

type and host type (aggression x host type term: F1,417¼2.35, P¼0.125).

4. Discussion
4.1 Host-specific and stage-specific recognition/

discrimination
Overall we found that both host types and nest stage influence the effect sizes

of aggression by parental birds in response to brood parasitic or predatory

intruders at the nest (Fig. 6). Accepters were more aggressive than rejecters

to threats, likely because of the differences in their responses to brood par-

asites. Accepters were equally aggressive to brood parasite and predator pre-

sentations when they had eggs, but compared to brood parasites, accepters

became significantly more aggressive toward predators during the nestling

stage. Conversely, rejecters were consistently more aggressive toward pred-

ators compared to brood parasites across nest stages.

Taken together, our results found patterns consistent with our predic-

tions, in that accepters respond aggressively toward brood parasites predom-

inantly during laying and incubation stages when brood parasitism poses the

highest risk. In contrast, rejecters, which rely on egg discrimination rather

than front-loaded defenses, do not respond as aggressively to brood parasites

Fig. 5 A heat map describing patterns of the mean effect sizes for each threat type
based on the type of aggression measured. Lighter colors (red) show an effect size with
a greater magnitude. The areas with an absence of color on the plot represent gaps in
the collected literature where no studies currently exist.
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during either nest stage. Furthermore, parents are expected to invest more

energy into defending their young from predatory threats with increased

investment in offspring, as well as parental assurance in the survival of the

offspring (Montgomerie & Weatherhead, 1988; Regelmann & Curio,

1983). The patterns we found support this, as host aggression toward pred-

ators either remained high across nest stages, as was the case for rejecters, or

increased with nest age as we observed for accepters.

4.2 Theat-specific recognition/discrimination
4.2.1 Brood parasite type
Brood parasites were classified as evictor parasites, which eject or kill

nestmates, or non-evictor parasites, which share the nest, and may even ben-

efit from host nestlings in it (Hauber, 2003; Kilner et al. 2004; Winnicki

et al., 2021). For accepters, we found, against our prediction, that aggression

levels toward evictor and non-evictor brood parasites were the same, regard-

less of nest stage. Though non-evictor nestlings are considered less costly

to fitness than evictor nestlings (Kilner, 2005), encounters with adult

Fig. 6 A heat map describing patterns of the mean effect sizes for three focal compar-
isons: threat type (brood parasite vs. predator), host type (accepter vs. rejecter), and
nesting stage (egg vs. nestling). Lighter colors (red) show an effect size with a greater
magnitude. The areas with an absence of color on the plot represent gaps in the
collected literature where no studies currently exist.
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non-evictors may be costly, which model presentation experiments simu-

late. For example, non-evicting adult brown-headed cowbirds can cause

total nest failure by depredating non-parasitized nests to regulate the timing

of their parasitism opportunities (referred to as “farming;” Arcese, Smith, &

Hatch, 1996; Clotfelter & Yasukawa, 1999). In this case, hosts may instead

recognize non-evicting brood parasites as nest predators, with continued

high aggression toward brood parasites during the nestling stage. For

accepter species, discriminating between reproductive threats may thus

depend on personal experience with the brood parasite more so than the

brood parasite’s reproductive strategy (nestmate evicting vs. non-evicting).

Yellow warblers, for example, are more aggressive toward brown-headed

cowbirds when they experience the brood parasite as an egg predator

(Campobello & Sealy, 2011a). Additional studies on other accepter hosts

and brood parasite types (e.g., Campobello & Sealy, 2011b) are necessary

to further explore the effect of personal experience on enemy recognition.

Rejecters responded with consistently low levels of aggression toward

non-evictors across nest stages, as predicted. However, rejecters exhibited

more aggression overall toward evictors than non-evictors, despite little risk

of parasitism from either. This result may be an artifact of the small sample

size in our dataset representing rejecter host species with an evictor brood

parasite (n¼4 samples). Additionally, only three rejecter hosts - great tits

(Parus major), reed parrotbills (Paradoxornis heudei), and Eurasian blackcaps

(Sylvia atricapilla) - are represented in these samples, two of which are par-

asitized at lower rates (great tits and reed parrotbills; Li et al., 2016; Liang

et al., 2016). Moreover, great tits and Eurasian blackcaps are considered gen-

erally aggressive across ecological contexts (great tits: Lang & Leimer, 2001;

Samplonius, 2018; Eurasian blackcaps: Darolová, Krištofı́k, Knauer, & Hoi,

2020; Morganti, Assandri, Ignacio, et al., 2017). As such, aggression

responses we observed among rejecters may be related to species-specific

baseline aggression levels, and not related to brood parasite type per se.

4.2.2 Predator type
We classified predators as either nest predators, which are strictly threats to

reproductive success, or adult predators, which hosts recognize as direct

threats to their own survival (e.g., genus Accipiter hawks and “small” owls;

Congdon, Hahn, Campbell, et al., 2020; Sieving, Hetrick, & Avery,

2010). There were no significant differences in aggression toward predator

types (compared to each other and to parasite types) during the egg stage. In

contrast, during the nestling stage hosts were more aggressive toward adult

83Avian brood parasites discriminate parasitic vs. predatory threats



predators compared to other threats (nest predators, evictor brood parasites,

non-evictor brood parasites). Notably, adult predation risk literature sug-

gests that birds often invest in their own survival over reproductive effort

when perceived adult predation risk is high (made apparent by models or

playbacks of adult predators at nests; LaManna & Martin, 2016; Oteyza

et al., 2021; Zanette, White, Allen, & Clinchy, 2011). However, short-

lived species are more likely than long-lived species to defend nests against

adult predators, because of the high premium placed on annual reproductive

output in short-lived species (e.g., Oteyza et al., 2021). All host species

included in this specific analysis are considered short-lived or “fast” life-

history species (n¼9 species, see Table 1). Our results could thus reflect

tradeoffs that occur between survival and reproduction as nests approach

fledging, with parents highly invested in reproductive success willing to

defend nests against adult predators despite potential risks to survival.

During the nestling stage, hosts responded significantly more aggressively

toward nest predators than non-evictor brood parasites, but not toward evic-

tors. Responses toward non-evictor brood parasites during the nestling stage

support our prediction, but responses toward evictor brood parasites do not.

Why respond with equal aggression levels toward nest predators and any

type of brood parasite, if the latter is only a threat while hosts are laying

and incubating? Curiously, most studies evaluating host responses to evictor

parasites used common cuckoo models, a species that superficially resembles

an adult predator, the Eurasian sparrowhawk Accipiter nisus (Ma, Yang, &

Liang, 2018 and references therein). It is possible that in these cases, hosts

instead perceived brood parasite models as adult predators and responded

aggressively due to high reproductive investment during the nestling stage

(despite potential survival risks, discussed above). Some Cuculidae species

can also be nest predators themselves, and as such they may still pose a risk

to reproductive investment even during the nestling stage (Gill, Zhu, &

Patel, 2018; Zahavi, 1979).

4.3 Recognition/discrimination by geographic overlap
We found that hosts in geographic isolation from brood parasites (i.e., allo-

patric) were significantly more aggressive toward the brood parasite presen-

tations compared to sympatric populations. Our result, however, only

provide limited support for the hypothesis that allopatric host populations

no longer recognize brood parasites as a unique threat (or nest threat at

all; sensu Briskie et al., 1992; Kuehn et al., 2016). Our small sample size
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of allopatric studies for this analysis (n¼6) precluded us from addressing two

important issues. First, we could not consider the effect of nest stage on allo-

patric host aggression levels, which as demonstrated in this review is crucial

to address host discrimination between brood parasites and nest predators.

Indeed, only one study was conducted in allopatry during the nestling stage

(Lawson, Leuschner, et al., 2020). Second, we could not compare allopatric

host aggression between accepter and rejecter hosts, as there were no studies

conducted on rejecter host populations that were allopatric from brood par-

asites. Future experiments evaluating loss of enemy recognition in host spe-

cies should aim to include more host species and conduct exposure

experiments throughout the nesting cycle.

5. Research needs and future directions

To date, most studies have addressed enemy recognition by accepter

hosts in sympatry with their non-evicting brood parasites (Fig. 7).

Compared to hosts of non-evictors, fewer studies address enemy recognition

Fig. 7 A heat map describing bias of samples in our meta-analysis dataset on enemy
recognition (brood parasite vs. predator) based on four focal comparisons: brood par-
asite type (evictor vs. non-evictor), host type (accepter vs. rejecter), nesting stage (egg
vs. nestling), and geographical overlap (sympatry vs. allopatry). Lighter colors (yellow)
show an effect size with a greater magnitude. The areas with an absence of color on the
plot represent gaps in the collected literature where no studies currently exist. Our
meta-analysis did not contain any studies with rejecter hosts tested in allopatry so this
column was omitted.
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by hosts of evictor brood parasites. Enemy recognition by rejecter hosts of

evictor parasites has received the least attention, with studies solely testing

aggressive responses during the egg stage in sympatric populations. Our lit-

erature review also revealed two knowledge gaps in the literature on host

enemy recognition and nest threat discrimination. Currently, too few stud-

ies address whether (1) rejecter hosts of evictor parasites discriminate

between nest threats during the nestling stage, specifically when populations

are sympatric and (2) accepter hosts of non-evictor brood parasites still dis-

criminate between nest threats during the nestling stage when a host pop-

ulation is allopatric from the brood parasite.

Although a relatively rare reproductive strategy, brood parasitism occurs in

diverse orders of birds and involves diverse orders of host species. Our analyses

only included hosts of brood parasites fromPasseriformes (i.e., passerine birds),

whereas brood parasites primarily were cuckoos (Cuculiformes: Cuculidae)

and cowbirds (Icteridae). All passerine hosts in our review have similar

life-history traits: most are open-cup nesting species (but see Liang et al.,

2016 for a cavity-nester) and all have altricial young that require intensive

parental care. However, our literature review does not include parasitic

finches (Viduidae; i.e., Feeney et al., 2015) or brood parasitic species from

other taxonomic groups with different life-history traits, such as honeyguides

(Piciformes: Indicatoridae) and the only brood parasitic waterfowl species

(Anseriformes, black-headed duck, Heteronetta atricapilla; Lyon & Eadie,

2013). Honeyguides, for example, are nestmate-killing parasites and primarily

parasitize cavity-nesting hosts, which generally experience low predation risk

compared to open-cup nesters (Spottiswoode, 2013). Honeyguide hosts,

which are primarily woodpeckers and allies (Piciformes) and bee-eaters and

allies (Coraciiformes), may thus perceive brood parasitism and nest predation

risk differently than their open cup-nesting counters with non-evicting brood

parasites. The black-headed duck is unique in that offspring are precocial and

take care of themselves soon after hatch day (Cabrera, Montalti, & Segura,

2017), relieving host parents of any cost to brood parasitism. Several waterfowl

species recognize both facultative brood parasites and predators as nest threats

(Sorenson, 1997), but it is unknown if hosts treat the black-headed duck as a

nest threat or a non-threatening heterospecific intruder. Testing hosts from

these taxa with diverse life-history traits will greatly advance our understand-

ing of enemy recognition and associated nest defense by avian hosts.

We also found a clear bias of host focal species, with the yellow warbler,

red-winged blackbird, and Eurasian reed warbler being the most commonly

tested hosts. These species have specialized nest defense behaviors that are
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not necessarily broadly applicable to other host species, therefore limiting

our ability to generalize our findings across the avian taxa. Yellow warblers,

for example, use referential alarm calls to specifically inform their mates of

brown-headed cowbirds at the nest, which elicits a cowbird-specific defense

of “sitting tightly” on the nest (Gill & Sealy, 1996; Gill & Sealy, 2004;

Lawson, Enos, Mendes, Gill, & Hauber, 2021). Red-winged blackbirds

and Eurasian reed warblers use social information from neighbors to assess

brood parasitism risk and adjust their aggression levels accordingly

(Campobello & Sealy, 2011b; Lawson, Enos, et al., 2020), but it is unknown

how widespread social information use is for nest defense purposes in other

host lineages (but see: Feeney & Langmore, 2013). Future studies should

experiment with other common hosts to determine if our findings are

broadly indicative of host discrimination, or strictly indicative of those with

unique, adaptive behaviors to combat brood parasitism with (such as refer-

ential alarm calling and social information use).

Almost all studies that met our inclusion criteria used taxidermic and/or

artificial models as a visual stimulus in their presentations at nests. Vocal play-

backs are also used as a brood parasite or predator stimulus in the literature

(e.g., Lawson, Enos, et al., 2020; Lawson, Enos, et al., 2021) yet only two

such studies using vocal playbacks as the sole stimulus fit the criteria

described above. In turn, we did not find any significant differences between

physical and vocal aggression depending on host types or type of threat pres-

ented. Still, the sensory modality of the stimulus presented, whether visual,

acoustic, or even olfactory (Soler et al., 2014), could affect the type of behav-

iors and/or magnitude of responses that hosts include in their nest defense

repertoires (Duckworth, 1991; Grieef, 1995). Thus, we suggest future

studies that compare aggressive responses of hosts to brood parasites and

predators expand to using acoustic playbacks and other sensory forms of

stimuli to simulate nest threats to hosts.

Another noteworthy observation is that there is considerable bias in

which brood parasite type is paired with which predator type in the literature

collected. Specifically, the majority of studies in our collection paired

non-evictor brood parasites with nest predators (54%), or evictor brood par-

asites with adult predators (29%). Our findings show that certain pairings are

associated with higher effect sizes between treatments, suggesting that

researchers may draw different conclusions from their study depending

on which pairing they had decided on for experimentation.With the poten-

tial for hosts to respond differently depending on the brood parasite and

the predator models used, future studies should utilize multiple brood
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parasite-predator dyads to diversify the models used to evoke aggression

responses. Additionally, future studies should diversify the aggressive behav-

iors by hosts that are measured. Our results suggest that measures that incor-

porate both physical and vocal responses by hosts are associated with larger

effect sizes and may be better at teasing apart differences in response between

threat models and controls. However, we caution about the use of combined

aggression scores in particular, as these scores can be subject to biases which

may exaggerate differences between groups.

We found that there was also a bias in sampling methodology across stud-

ies in our dataset, where most presented multiple stimuli to the same subject

(individual, nest, or territory), and often across multiple nest stages, leading

to possible habituation or sensitization by focal hosts. However, we found

that sampling method type did not bias effect size data, suggesting that robust

responses to models by host populations can be consistently measured across

contexts without confounds due to the sampling paradigm. Still, it should be

noted that studies included herein effectively randomized models to reduce

bias and avoided pseudoreplication of results both on an individual and tem-

poral basis. We suggest that future presentation experiments with brood par-

asite vs. predator models continue to make these efforts to minimize

pseudoreplication (e.g., Kroodsma, Byers, Goodale, Johnson, & Liu, 2001).

6. Conclusions

1. Enemy recognition by avian host species depends on the magnitude of

the threat to reproductive success, which is shaped by specific traits of the

host (accepter vs. rejecter), the brood parasite (nestmate-evictor vs. nest-

sharer), the predator (adult vs. nest predator), and how predictably hosts

are exposed to brood parasitic threats (sympatry vs. allopatry).

2. Host discrimination between reproductive threats is likely an adaptive

behavior, andmay bewidespread among all avian lineages experiencing dif-

ferent types of nest threats, including brood parasitism, nest predation, or

other (such as highly aggressive conspecific or heterospecific competitors).

3. Future studies addressing the knowledge gaps identified here, or over-

laying additional factors that influence discrimination capabilities (such

as personal vs. social information use or life-history traits) will greatly

improve our understanding of avian enemy recognition and its payoffs

to reproductive success.
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