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a b s t r a c t

In this paper, we consider an estimation problem of invariant nonlinear systems subject to dynamic
additive disturbances. We identify two sets of sufficient conditions that preserve the invariant
properties of the systems under the disturbances. We apply the conditions to a unicycle model under
linear dynamic disturbances and design two different Invariant Extended Kalman filters (IEKFs). Both
IEKFs estimate the state of the unicycle and the disturbances based on position measurements. We also
propose a correction to the IEKF covariances to better represent uncertainties in the invariant frame.
The benefit of including the covariance correction and the performances of the two IEKF designs are
demonstrated through Monte-Carlo simulations.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Estimation and filtering of nonlinear systems is an impor-
ant problem in research and in industry. There are several
ilters capable of dealing with nonlinear systems, such as the
xtended Kalman filter (EKF) (Gelb, 1974), unscented Kalman

filter (UKF) (Julier & Uhlmann, 2004) and particle filters (Aru-
lampalam, Maskell, Gordon, & Clapp, 2002). When applied to
robotic applications, these filters provide simple, ‘off-the-shelf’
solutions. However, they do not take advantage of properties
present in robotic dynamics, such as symmetries. There has been
much interest lately in designing observers that can leverage
symmetries of certain nonlinear dynamics to improve estima-
tion performance. These are known more generally as symmetry
preserving observers.

The theory behind symmetry preserving observers is given
in Bonnabel, Martin, and Rouchon (2008). When the EKF equa-
tions are used to compute the gain matrix of a symmetry preserv-
ing observer, it is referred to as an invariant EKF (IEKF) (Bonnable,
Martin, & Salaün, 2009). More recently, the IEKF has gained
attention as a tool well suited for applications in localization
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of mobile robots and sensor fusion for navigation of unmanned
aerial vehicles. In Bonnable et al. (2009) the authors apply the
IEKF to the problem of estimating the attitude and velocity of
an aircraft using GPS velocity and measurements from on board
gyroscopes and accelerometers. Martin and Salaun (2008) designs
a symmetry preserving observer for fusing measurements from
several sensors in different coordinate frames for attitude heading
systems for aircraft. Barczyk, Bonnabel, Deschaud, and Goulette
(2015) develops an IEKF for use with a low cost Kinect depth
camera to perform Scan-Matching aided localization of a mobile
ground robot. They compare the performance of the IEKF to the
Multiplicative EKF (MEKF) and show that the IEKF has better
performance. In De Silva, Mann, and Gosine (2014) the authors
apply the IEKF to the problem of relative localization for multiple
mobile robots. Wu, Zhang, Su, Huang, and Dissanayake (2017)
uses the IEKF in a visual inertial navigation system. In Zhang,
Wu, Song, Huang, and Dissanayake (2017) the authors show that
an IEKF based SLAM (simultaneous localization and mapping)
algorithm has better consistency and convergence properties over
other EKF based SLAM techniques. Trumpf, Mahony, and Hamel
(2018) provides checkable sufficient conditions on kinematic sys-
tems with symmetries to determine whether considered systems
can be lifted to invariant systems on symmetry groups. More
recently, Barrau and Bonnabel (2017) proposes a matrix Lie group
framework for the IEKF and show that it possesses local stability
properties.

In this paper, we consider invariant systems subject to additive
dynamic disturbances and extend IEKF designs to simultaneously
estimate the state and disturbances. The first contribution of
this paper is the identification of two scenarios under which the
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xtended state and disturbance system remains invariant. In the
irst scenario, we ensure the invariant dynamics by transforming
he output matrix of the disturbance model while keeping the
isturbance dynamics unchanged. In the second scenario, we
rove that the extended system remains invariant if certain ‘com-
utation’ conditions of the output matrix and the disturbance
ynamics are satisfied.
The second contribution of this paper is the application of the

xtended IEKF designs to a unicycle model subject to disturbances
odeled as the output of a linear time-invariant system. A uni-
ycle robotic model is widely used to model the kinematics of a
ifferential drive mobile vehicle, underwater vehicle motion (Pet-
ich, Woolsey, & Stilwell, 2009), and the simplified kinematics
f a fixed wing aerial vehicle in planar flight (Beard & McLain,
012). Furthermore, some applications include estimating the
tates of these types of vehicles for the purpose of localiza-
ion (Betke & Gurvits, 1997), trajectory tracking (Kolmanovsky &
arris McClamroch, 1995), or flow field reconstruction (Bai, 2018;
alanthandalam-Madapusi, Girard, & Bernstein, 2008). The linear
isturbance models can represent uniform flow and sinusoidal
ave disturbances with known frequencies.
We design two extended IEKFs for the unicycle to estimate

oth its heading and disturbance based on position information.
he two designs are based on the two identified scenarios where
he extended dynamics are invariant. We show that the first
esign is applicable to general linear dynamic disturbances while
he second design is restricted to a class of systems satisfying
rotational invariance’ conditions on the dynamics and the out-
ut matrices. Our simulation examples demonstrate that when
pplicable, the second design yields better transient performance
han the first design. We also establish connections of the second
esign with the matrix IEKF formulation in Barrau and Bonnabel
2017). Indeed, for the unicycle example, the ‘rotational invari-
nce’ conditions are the same conditions that ensure the ‘group
ffine condition’ in Barrau and Bonnabel (2017).
As the third contribution of the paper, we improve the IEKF

erformance by better characterizing the statistics of the sensor
oise in the invariant frame. In particular, we improve the result
n Barrau and Bonnabel (2017) and derive a first order approxi-
ation for the covariance of the transformed noise. Using Monte
arlo simulations, we show that the introduction of the first order
pproximation improves the performance of the IEKF, particularly
or non-isotropic sensor noise.

Compared with our preliminary work (Coleman, Bai, & Taylor,
020) that considered only the IEKF design in Section 4, this paper
rovides new and significant contributions, including the gener-
lized invariant conditions and illustrative examples in Section 2,
nother IEKF design in Section 5, and a numerical comparison
etween EKF and the two IEKF designs. The second IEKF design is
hown to perform better than the design in Coleman et al. (2020).
The rest of the paper is organized as follows. In Section 2 we

evelop the theory for invariant systems to remain invariant in
he presence of dynamic disturbances. In Section 3 we pose an
stimation problem of interest. In Sections 4 and 5, we propose
wo different IEKF designs for the problem of interest. We derive
orrection terms for the covariances of the general IEKF in Sec-
ion 6. Simulation results are discussed in Section 7. Conclusions
nd future work are presented in Section 8.

. Invariant systems with disturbances

Consider the following nonlinear system

˙ = f (x, u) (1)
= h(x, u)
2

here x ∈ Rn is the state, u ∈ Rq is the control, and y ∈ Rp

s the measured output. Let G be an n dimensional Lie group.
iven g ∈ G, define local transformations on the state and input
s ϕg (x) and ψg (u), respectively. By definition, the system (1) is
nvariant with respect to G if f (ϕg (x), ψg (u)) = ∂

∂xϕg (x)f (x, u) for
all g , x and u. The output is said to be equivariant with respect to
G if there exists a transformation of the output, ϱg (y), such that
h(ϕg (x), ψg (u)) = ϱg (h(x, u)) (Bonnabel et al., 2008).

Assumption 1. The system (1) is invariant with respect to the
transformations ϕg (x) and ψg (u).

Consider (1) cascaded with nonlinear dynamic disturbances d

ẋ = f (x, u)+ Cd

ḋ = J(d) (2)
y = h(x, u)

where d ∈ Rm, C ∈ Rn×m and J(·) is a smooth nonlinear
function. Note that we choose to write the disturbances affecting
the states as Cd instead of an arbitrary nonlinear function g(d).
The nonlinear disturbance model (ḋ = J(d), z = Cd) is general
since a nonlinear dynamical system with nonlinear outputs of
full row-rank can be converted to a system with linear outputs
through a nonlinear coordinate transformation, e.g., based on its
normal forms (Khalil, 2002, Section 13.2) (Schwartz, Isidori, &
Tarn, 1999).

Define two transformations βg (C) : G × Rn×m
↦→ Rn×m and

ξg (d) : G × Rm
↦→ Rm. We next derive sufficient conditions

on βg (C) and ξg (d) such that the cascaded system (2) remains
invariant under the group actions (ϕg (x), ψg (u), βg (C), ξg (d)).
We do this by proposing two different approaches outlined in
Propositions 3 and 4. Proposition 3 takes ξg (·) to be the identity
perator and examines invariance conditions on βg (·). Propo-
ition 4 takes βg (·) to be the identity operator and examines
nvariance conditions on ξg (·). Our results rely on the following
ssumption.

ssumption 2. ϕg (x) and ξg (d) are linear in x and d, respectively.

Assumption 2 allows us to define

(g) =
∂

∂x
ϕg (x) ∈ Rn×n, κ(g) =

∂

∂d
ξg (d) ∈ Rm×m. (3)

Proposition 3. Suppose that Assumptions 1 and 2 hold. Then (2)
is invariant with respect to G if βg (C) and ξg (d) are selected as
βg (C) = α(g)C and ξg (d) = d, respectively.

Proof. It follows from the definition of invariance that (2) is
nvariant if the following two equations hold:

(ϕg (x), ψg (u))+ βg (C)ξg (d)

=
∂

∂x
ϕg (x) (f (x, u)+ Cd) (4)

J(ξg (d)) =
∂

∂d
ξg (d)J(d). (5)

Let ξg (d) = d. Then (5) is trivially satisfied. Since f (x, u) is
invariant with respect to G, (4) reduces to

βg (C)d =
∂

∂x
ϕg (x)Cd = α(g)Cd. (6)

Since βg (C) can only be a function of g , it follows from (6) that
∂
∂xϕg (x) cannot be a function of x, which means that ϕg (x) is
linear in x. Therefore, invariance with respect to G is preserved by
leaving the disturbances (d) unchanged and transforming C with
a transformation defined by β (C) = α(g)C . □
g
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From the proof, we see that invariance can be preserved in
the augmented system (2) by performing a transformation on
the system parameter C , instead of on the disturbances d. In
Proposition 4, we preserve the invariance property by performing
a transformation directly on d instead of on C .

Proposition 4. Suppose that Assumptions 1 and 2 hold. Then (2)
is invariant with respect to G if βg (C) and ξg (d) satisfy βg (C) = C,
Cκ(g) = α(g)C and J(κ(g)d) = κ(g)J(d).

Proof. Let βg (C) = C . From Assumption 1 it follows that ϕg (x) =
(g)x and ξg (d) = κ(g)d. Then (4) reduces to Cκ(g)d = α(g)Cd

which implies that Cκ(g) = α(g)C must be satisfied. The second
quation (5) becomes J(κ(g)d) = κ(g)J(d). □

Propositions 3 and 4 provide two approaches to defining trans-
ormations that preserve invariance of a nonlinear system when
tate dynamic disturbances are included. Both approaches as-
ume that the original group action is linear with respect to the
tates. Motivated by internal model control and disturbance re-
ection literature (see e.g., Isidori & Byrnes, 1990; Isidori, Marconi,
Serrani, 2012), we next focus on disturbances resulting from
linear dynamic model, i.e., J(d) = Ad, A ∈ Rm×m. In this

ase, the conditions in Proposition 4 become Cκ(g) = α(g)C and
κ(g) = κ(g)A, the second signifying that the Lie bracket of the
ector fields Ad and ξg (d) must be zero.
Note that Proposition 4 does not provide specific transfor-

ations of κ(g) and α(g) to ensure invariance. In Proposition 5,
e consider a special case where the disturbances affecting the

ndividual elements of x share the same linear generating model
A, C). We provide explicit expressions of κ(g) and α(g) that
nsure the invariance conditions in Proposition 4. We assume that
he first s elements of x are affected by the disturbance, 0 < s ≤ n.
enote by Im the m-dimensional identity matrix and by ⊗ the
ronecker product.

roposition 5. Suppose that Assumptions 1 and 2 hold. Suppose
hat J(d) = Ad = (Is ⊗ A)d and C =

(
Is ⊗ C⊤, 0m×(n−s)

)⊤,
< s ≤ n, where A ∈ Rr×r , C ∈ R1×r and r · s = m. Assume

hat α(g) satisfies

(g) =
(
α1(g) α2(g)
0 α3(g)

)
, (7)

here α1(g) ∈ Rs×s, α2(g) ∈ Rs×(n−s) and α3(g) ∈ R(n−s)×(n−s).
hen (2) is invariant with respect to G by choosing βg (C) = C and
g (d) = κ(g)d, where

(g) = α1(g)⊗ Ir . (8)

roof. Using Kronecker product properties and the forms of C
nd α(g), we have

(g)C =

(
α1(g)(Is ⊗ C)

0

)
=

(
α1(g)⊗ C

0

)
, (9)

hich can be further rewritten as
α1(g)⊗ C

0

)
=

(
(Is ⊗ C)(α1(g)⊗ Ir )

0

)
= Cκ(g). (10)

imilarly, we verify that (Is ⊗ A)κ(g) = (Is ⊗ A)(α1(g) ⊗ Ir ) =

1(g) ⊗ A = κ(g)(Is ⊗ A). Thus, the invariant conditions in
roposition 4 are satisfied with the choice of κ(g) in (8). □

In Proposition 5, the disturbance affecting each element of x is
enerated from the same dynamic system specified by (A, C) with
ossibly different initial conditions. When s = n, Proposition 5
olds for any α(g). When s < n, α(g) needs to satisfy (7) to
nsure invariance. The condition (7) means that after the trans-
ormation ϕg (x), the last n− s elements of x remain unaffected by
he disturbances.
3

.1. Illustrative examples

Assumption 2 holds in a number of applications, including
he unicycle example in Section 3, chemical reactor dynam-
cs (Bonnabel et al., 2008), and attitude dynamics (Phogat &
hang, 2020). We next briefly discuss how our theoretical results
an be applied to the chemical reactor dynamics and the attitude
ynamics and then focus on demonstrating invariant EKF designs
or the unicycle example.

The chemical reactor dynamics in Bonnabel et al. (2008) are
iven by
d
dt

X in
= 0

d
dt

X = D(t)(X in
− X)− kexp

(
−

EA
RT

)
X (11)

d
dt

T = D(t)(T in(t)− T )+ cexp
(
−

EA
RT

)
X + v(t)

here X and T are the reactor composition and temperature
espectively and X in is the inlet composition. EA, R, k and c are
nown positive constant parameters. D(t), T in(t) and v(t) are
nown functions of time and D(t) ≥ 0. The dynamics in (11) are
nvariant with respect to

g (x) =

⎛⎝gX in

gX
T

⎞⎠ ψg (u) =

⎛⎜⎝ c/g
D(t)
T in(t)
v(T )

⎞⎟⎠ (12)

here g ∈ R+. This transformation represents a positive scaling
f the reactor and inlet compositions. Note that ϕ(·) is linear in
he state X in, X, T . Thus, Assumptions 1 and 2 are satisfied.

When the disturbance Cd is added to (11), Proposition 3 pro-
ides the transformation βg (C) = α(g)C where

(g) =

[g 0 0
0 g 0
0 0 1

]
. (13)

his transformation scales the rows of C corresponding to the
ransformed states. A second approach is to take βg (C) = C and
g (d) = κ(g)d where κ(g) = (α(g) ⊗ Im

3
) with α(g) defined in

(13). This transformation satisfies Proposition 4 if (i) C(α(g) ⊗
Im
3
) = α(g)C and (ii) J

(
(α(g)⊗ Im

3
)d
)
= (α(g)⊗ Im

3
)J(d) are both

satisfied. If J(d) = Ad and (A, C) satisfies A = I3⊗A and C = I3⊗C,
roposition 5 provides the transformation ξg (d) = (α(g) ⊗ Im

3
)d

ith α(g) in (13) that satisfies (i) and (ii), ensuring invariance of
he disturbed system.

We next consider the undisturbed attitude dynamics with a
nit quaternion q = (q0, q⊤v )

⊤ representation, which is given by

˙ =

(
−

1
2q

⊤
v

1
2 (q0I + q̂v)

)
ω, Jω̇ + ω̂Jω = τ , (14)

here ŵv = w × v and ω, J , and τ are the angular velocity,
oment of inertia and control torque in the body frame. The
ynamics in (14) is invariant with respect to

g (q, ω) =
((

q0, (Rgqv)⊤
)⊤

Rgω

)
ψg (u) =

(
Rg JR⊤g
Rgτ

)
(15)

or any Rg ∈ SO(3). Thus, ϕ(·) is linear in the state q and ω, thereby
atisfying Assumptions 1 and 2.
When the disturbance Cd is added to the right hand side

of the ω dynamics in (14), applying Proposition 3 results in
the transformation βg (C) = α(g)C , where α(g) = Rg , which
corresponds to a rotation of the columns of C . Another choice
of transformations on the disturbances can be ξ (d) = κ(g)d,
g
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here κ(g) = (Rg ⊗ Im
3
). By Proposition 4, invariance of the

isturbed system is preserved with the transformation ξg (d) if
i) C(Rg ⊗ Im

3
) = RgC and (ii) J((Rg ⊗ Im

3
)d) = (Rg ⊗ Im

3
)J(d).

These two conditions are an additional requirement not needed
for Proposition 3. The example in Section 5 demonstrates a similar
equirement in SO(2). When J(d) = Ad, Proposition 5 ensures (i)
and (ii) if the pair (A, C) satisfies A = I3 ⊗ A and C = I3 ⊗ C.

In the rest of this paper, we will demonstrate and compare
invariant EKF designs based on Propositions 3 and 4 for the
unicycle example in Section 3. We will also introduce better char-
acterizations on noise covariance matrices that lead to improved
estimation performance.

3. Unicycle model under linear disturbances

Consider a unicycle robot subject to velocity disturbances. The
kinematic model of the robot is given by

ẋ = v cos θ + Cxd

ẏ = v sin θ + Cyd (16)
θ̇ = ω,

where (x, y) is the position of the robot, θ is the heading, v is
the linear velocity and ω is the turning rate. We assume that
(Cxd, Cyd) are outputs from a linear system given by

ḋ = Ad (17)

where d ∈ Rm×1, A ∈ Rm×m and Cx, Cy ∈ R1×m. The matrices
A, Cx, and Cy are assumed known and constant. For example,
Cxd and Cyd can represent constant disturbances and sinusoidal
disturbances with known frequencies.

The robot is equipped with a positioning device, such as a GPS
or a suite of range and bearing sensors, measuring its position
(x, y). The position measurement can be in a global frame or with
respect to a known landmark. In the latter case, without loss of
generality, we assume that the landmark is at the origin. Then
(x, y) represents the relative position between the robot and the
landmark. The measurement equation of the system is

Y = [x y]⊤. (18)

In Bonnabel et al. (2008), it was shown that the undisturbed
form of (16) is invariant with respect to actions of the special
Euclidean group SE(2), the group of translations and rotations in
2 dimensions. With the additive disturbances, our objective is to
design an IEKF to estimate both the states and the disturbances.
In the following two sections, we design two invariant IEKFs that
correspond with Propositions 3 and 4 introduced in Section 2.

4. IEKF design 1

Let G be the group SE(2). Any element g of G can be repre-
ented by (xg , yg , θg ). Let X = [x, y, θ]⊤ and define two transfor-
ations as

g (X) =

(x cos θg − y sin θg + xg
x sin θg + y cos θg + yg

θ + θg

)
(19)

ξg (d) = d, (20)

where (xg , yg , θg ) represent the parameters that define the group
action on the state space and (x, y, θ ) represent the components
of the original non-transformed state. Notice that the distur-
bances d remain unchanged by the transformation. We now use
the result of Proposition 3 to find the transformations on C and
x

4

y. Since the disturbances do not affect θ , we concatenate Cx and
y with a row of zeros and define βg (·) as

g

([Cx
Cy
0

])
=

∂

∂X
ϕg (X)

[Cx
Cy
0

]

=

[cos θg − sin θg 0
sin θg cos θg 0
0 0 1

][Cx
Cy
0

]

=

[Cx cos θg − Cy sin θg
Cx sin θg + Cy cos θg

0

]
. (21)

et U = (v, ω, A) and define a transformation of U as ψg (U) = U .

orollary 6. The dynamics in (16) and (17) is invariant with respect
o SE(2).

roof. As shown in Bonnabel et al. (2008), the undisturbed
ystem (16) without (dx, dy) is invariant with respect to SE(2).
ith the transformations defined in (20) and (21), it follows from
roposition 3 that the augmented system in (16)–(17) is invariant
ith respect to SE(2). □

Following the methods outlined in Bonnabel et al. (2008),
ϕg (X) can be split into ϕa

g (X) and ϕ
b
g (X) such that ϕa

g (X) is invert-
ible with respect to g . Setting ϕa

g (X) = 0 gives the normalization
equation(xg
yg
θg

)
= γ

(x
y
θ

)
=

(
−x cos θ − y sin θ
x sin θ − y cos θ

−θ

)
(22)

where γ is called the moving frame, which is a mapping from the
state space to the group G. For more details on the moving frame
refer to Olver (1999). The invariants are

I(X̂,U) =
(
ϕb
γ (X̂)

(
X̂
)
, ψγ (X̂) (U)

)
=(

v, ω, Cx cos θ̂ + Cy sin θ̂ ,−Cx sin θ̂ + Cy cos θ̂ , A
)
, (23)

where X̂ is the estimate of X . The invariant output error is given
by

E = ϱg (x̂, ŷ)− ϱg (x, y)

=

(
x̂ cos θg − ŷ sin θg + xg − x cos θg + y sin θg − xg
x̂ sin θg + ŷ cos θg + yg − x sin θg − y cos θg − yg

)
= T (θ̂ )

[
x̂− x
ŷ− y

]
, (24)

here

(θ̂ ) =
[

cos θ̂ sin θ̂
− sin θ̂ cos θ̂

]
. (25)

he invariant frame is given by

(θ̂ ) =

⎡⎣T (θ̂ )⊤ 0 0
0 1 0
0 0 Im

⎤⎦ . (26)

hus, the observer equation has the following form
˙̂
= f (X̂)+W (θ̂ ) · L · T (θ̂ )

(
Y − Ŷ

)
, (27)

where L is a gain matrix to be designed. For notation convenience,
we let

L =
[
L11 L21 L31 L⊤d1

⊤

]⊤
, (28)
L21 L22 L32 Ld2
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here Lij are scalars for i = 1, 2, 3, j = 1, 2, and Ld1, Ld2 ∈ Rm×1.
he invariant state error is given by

(X̂, X) = ϕγ (X̂)(X)− ϕγ (X̂)(X̂)

= W (θ̂ )⊤

⎡⎢⎢⎣
x− x̂
y− ŷ
θ − θ̂

d− d̂

⎤⎥⎥⎦ . (29)

o find the invariant error dynamics, we differentiate (29) and
obtain

σ̇ = W (θ̂ )⊤

⎡⎢⎢⎣
⎛⎜⎜⎝
v cos θ + Cxd− v cos θ̂ − Cxd̂
v sin θ + Cyd− v sin θ̂ − Cyd̂

0
Ad− Ad̂

⎞⎟⎟⎠

−W (θ̂ )L
[

cos θ̂ sin θ̂
− sin θ̂ cos θ̂

][
x− x̂
y− ŷ

]]
+

⎡⎢⎢⎣
˙̂
θσy

−
˙̂
θσx
0
0

⎤⎥⎥⎦ , (30)

which yields

σ̇x = v (cos σθ − 1)+ ωσy +
(
Cx cos θ̂ + Cy sin θ̂

)
σd

+ L11σx + L12σy + L31σxσy + L32σ 2
y

σ̇y = v sin σθ − ωσx +
(
−Cx sin θ̂ + Cy cos θ̂

)
σd

+ L21σx + L22σy − L31σ 2
x − L32σxσy (31)

σ̇θ = L31σx + L32σy
σ̇d = Aσd + Ld1σx + Ld2σy.

Note that the invariant error dynamics (31) depend only on σ and
the invariants I(X̂,U) in (23).

Linearizing (31) around σ = 0 yields the state matrix needed
for implementing the IEKF at time step k:

Ak =

⎡⎢⎢⎣
0 ωk 0 Cx cos θ̂k + Cy sin θ̂k

−ωk 0 vk −Cx sin θ̂k + Cy cos θ̂k
0 0 0 0
0 0 0 A

⎤⎥⎥⎦ . (32)

The Ak matrix is used in the IEKF algorithm to propagate the state
covariance matrix. Before presenting the IEKF algorithm, we illus-
trate a second IEKF design for (16)–(17) based on Proposition 4
in the next section.

5. IEKF design 2

Compared with the design in Section 4, this design assumes
the same state transformation ϕg (X) in (19) and introduces trans-
formations on the disturbances. We define

βg

([Cx
Cy
0

])
=

[Cx
Cy
0

]
(33)

ξg (d) =
(
T (θg )⊤ ⊗ Im

2

)
d (34)

here T (·) is given in (25). Notice that ξg (d) is linear in d.
pplying Proposition 4, we note that to preserve the invariance
roperty, we need[Cx
Cy
0

](
T (θg )⊤ ⊗ Im

2

)
=

[cos θg − sin θg 0
sin θg cos θg 0
0 0 1

][Cx
Cy
0

]
(35)

and

A
(
T (θg )⊤ ⊗ Im

2

)
=

(
T (θg )⊤ ⊗ Im

2

)
A. (36)
5

Proposition 7. Eqs. (35) and (36) are satisfied if A and [C⊤
x C⊤

y ]
⊤

satisfy

A =

[
M N
−N M

]
and

[
Cx
Cy

]
=

[
D E
−E D

]
, (37)

where M,N ∈ R
m
2 ×

m
2 and D, E ∈ R1×m

2 are arbitrary matrices.

Proof. Let[
Cx
Cy

]
=

[
C1 C2
C3 C4

]
, (38)

where C1, C2, C3, C4 ∈ R1×m
2 . Then (35) becomes[

Cx
Cy

]
= T (θg )

[
C1 C2
C3 C4

][
Im
2
cos θg −Im

2
sin θg

Im
2
sin θg Im

2
cos θg

]
.

Multiplying the matrices together and simplifying the 2 indepen-
dent equations lead to⎡⎢⎢⎣

− sin2 θg − cos θg sin θg
cos θg sin θg − sin2 θg
cos θg sin θg − sin2 θg

sin2 θg cos θg sin θg

⎤⎥⎥⎦
⊤⎡⎢⎣C1

C2
C3
C4

⎤⎥⎦ =

[
0
0

]
. (39)

Thus, [CT
1 , C

⊤

2 , C
⊤

3 , C
⊤

4 ]
⊤ must lie in the non-trivial null spaces

spanned by [0 −1 1 0]⊤ and [1 0 0 1]⊤, which means that C1 = C4
and C2 = −C3, verifying the form of C in (37). A similar analysis
of (36) shows that A must have the specific form in (37). □

Thus, the cascaded system (16)–(17) remains invariant under
the transformations given in (33)–(34) if A and

[
C⊤
x C⊤

y
]⊤ satisfy

(37). Characterizing what linear systems can be transformed to
satisfy (37) is beyond the scope of this paper. However, we note
that an important case where (37) is satisfied is when N and E
are zero matrices, which means that the disturbances along the
x and y directions are decoupled and share the same dynamic
model. The case where N and E are zero can also be proved
using Proposition 5. Note that Proposition 5 is applicable to any
group operations satisfying (7). However, because Proposition 7 is
specific to ϕg (X) in (19) and the rotation operation (34), it allows
N and E to be nonzero, thereby encompassing a wider class of
disturbance systems than Proposition 5.

Barrau and Bonnabel (2017) provides a novel matrix IEKF
design that is applicable to this problem. Such a design requires
that the state be written as an element of a matrix Lie group and
that a certain ‘group affine’ condition be satisfied. It turns out that
the conditions on the A, C matrices given in (37) are the exact
same conditions required for the matrix implementation to be
group affine. Additional details are provided in the Appendix.

For the remainder of the section, we assume that the distur-
bance subsystem is in the form of (37). Applying the same process
as in Section 4, we obtain the observer equation as
˙̂X = f (X̂)+W (θ̂ ) · L · T (θ̂ )

(
Y − Ŷ

)
, (40)

where T (θ̂ ) is the same as (25). The invariant frame is now given
by

W
(
θ̂

)
=

⎡⎣T (θ̂ )⊤ 0 0
0 1 0
0 0 T (θ̂ )⊤ ⊗ Im

2

⎤⎦ . (41)

The invariant error is given in (29) with the invariant frame
now defined by (41), where the error of the disturbances is also
rotated. This results in the following invariant error dynamics

σ̇x = v (cos σθ − 1)+ ωσy + Cxσd

+ L σ + L σ + L σ σ + L σ 2

11 x 12 y 31 x y 32 y
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σ̇y = v sin σθ − ωσx + Cyσd

+ L21σx + L22σy − L31σ 2
x − L32σxσy (42)

σ̇θ = L31σx + L32σy
σ̇d = Aωσd + Ld1σx + Ld2σy

where

Aω = A+

([
0 ω

−ω 0

]
⊗ Im

2

)
. (43)

inearizing (42) around σ = 0 results in the state matrix needed
for implementing this IEKF design:

Ak =

⎡⎢⎣ 0 ωk 0 Cx
−ωk 0 vk Cy
0 0 0 0
0 0 0 Aω

⎤⎥⎦ . (44)

Note that unlike (32), the state matrix given in (44) is not a
function of the estimated state θ̂ .

6. Filter covariance transformation

To fully derive the IEKF algorithm, we note that the invari-
ant state error (29) rotates the conventional estimation error to
another frame. Thus, the initial state covariance, process noise,
and measurement noise matrices, P , Q and R, respectively, can
no longer accurately represent the uncertainty in the transformed
system. We propose that these matrices be transformed to en-
sure the IEKF operates at its full potential for different cases of
sensor noise and initial error. We next discuss how to rotate the
covariance to the invariant error frame.

For the system in (16)–(17), we define

X =
[
X⊤ d⊤

]⊤ (45)

and denote the invariant state error and invariant output error
as:

σ = W (θ̂ )⊤(X − X̂ ), E = T (θ̂ )(Ŷ − Y ), (46)

respectively, where W (θ̂ )⊤ is given in either (26) or (41) and T (θ̂ )
is given in (25). We now derive the transformation rule for the
measurement noise matrix R. We use the notation N (µ,Σ) to
denote the Gaussian distribution with mean µ and covariance Σ .

Proposition 8. Let ϵ = Ŷ − Y ∼ N (0, R). Let θ̂ be the estimate
of θ such that δθ = θ̂ − θ ∼ N (0, qθ ). Suppose that δθ and ϵ are
uncorrelated. Then

cov(T (θ̂ )ϵ) ≈ T (θ )RT (θ )⊤ + qθ
∂T
∂θ

R
∂T
∂θ

⊤

(47)

or a sufficiently small qθ .

roof. Since δθ ∼ N (0, qθ ) with qθ sufficiently small and T (θ̂ )ϵ =
(θ + δθ )ϵ, we use the first order approximation to obtain

(T (θ + δθ )ϵ) ≈ E
((

T (θ )+
∂T
∂θ
δθ

)
ϵ

)
=
∂T
∂θ

E(δθϵ). (48)

hen δθ is uncorrelated with ϵ, E(δθϵ) = 0, implying E(T (θ +

θ )ϵ) ≈ 0.
The covariance of T (θ̂ )ϵ is computed as

cov(T (θ̂ )ϵ) ≈ E

((
T (θ )+

∂T
∂θ
δθ

)
ϵϵ⊤

(
T (θ )+

∂T
∂θ
δθ

)⊤
)

−
∂T
∂θ

E(δθϵ)E(δθϵ⊤)
∂T⊤

∂θ

= T (θ )RT (θ )⊤ +
∂T

E
(
δθϵϵ

⊤δθ
) (∂T )⊤
∂θ ∂θ

6

+
∂T
∂θ

E
(
δθϵϵ

⊤
)
T (θ )⊤ + T (θ )E

(
ϵϵ⊤δθ

) (∂T
∂θ

)⊤

= T (θ )RT (θ )⊤ +
∂T
∂θ

E(δ2θ ϵϵ
⊤)
∂T
∂θ

⊤

(49)

where the expectation of the third order term δθϵϵ
⊤ is zero (Tri-

antafyllopoulos, 2002, Theorem 3.1). Because δθ is zero mean
with a variance qθ and δθ is uncorrelated with ϵ, it follows that
E(δ2θ ϵϵ

⊤) = qθR and thus (47) follows from (49). □

Similarly, the process noise matrix Q can be transformed
in the same way. Suppose that the process noise is given by
ν ∼ N (0,Q ). Since ν and δθ are uncorrelated, it follows from
Proposition 8 that

cov(W (θ̂ )⊤ν) ≈ W (θ )⊤QW (θ )+ qθ
∂W
∂θ

⊤

Q
∂W
∂θ

. (50)

To transform the initial state covariance matrix P , we let the
initial state error be η0 = X̂0 − X0 ∼ N (0, P0). Note that δθ is
he same as the initial state error of θ in η0. We assume that the
ther elements in η0 are uncorrelated with δθ . Thus, η0 and δθ are
orrelated only in the θ element. Due to the specific form of W (θ )
or this problem, ∂W

∂θ

⊤E(δθη0) = 0. It then follows from (49) that

cov(W (θ̂ )⊤η0) ≈ W (θ0)⊤P0W (θ0)+
∂W
∂θ

⊤

E(δ2θη0η
⊤

0 )
∂W
∂θ

. (51)

In implementation, we replace θ with its estimate θ̂ , assum-
ing that they are close. Note that Barrau and Bonnabel (2017)
uses only the first term in (47) in their examples (Section IV-B-
3), which corresponds to the zeroth-order approximation of the
covariance. Through simulations in Section 7, we demonstrate
the significant improvement due to the second term when the
measurement noise is non-isotropic.

Having found the rotated covariances, we present the IEKF
algorithm in Algorithm 1. Algorithm 1 follows the standard steps
of an EKF except line 2, 7, and 9 where the covariance matrices
are modified, line 5 where the linearized Ak is computed based on
the invariant error dynamics (see Ak in (32) and (44) for the two
IEKF designs), and line 11 where the update equation is modified
with transformations of the innovation.

Algorithm 1 The IEKF

1: Initialize X̂0, P0 in the original coordinates.
2: P = W (θ0)⊤P0W (θ0)+ ∂W

∂θ

⊤E(δ2θη0η
⊤

0 )
∂W
∂θ

3: for k = 1 to n do
4: X̂−

k = f (X̂+

k−1,U)
5: Compute Ak
6: Compute Hk

7: Qrot = W (θ̂ )⊤QW (θ̂ )+ Pθk−1
∂W
∂θ̂

⊤
Q ∂W

∂θ̂

8: P−

k = AkP+

k−1A
⊤

k + Qrot

9: Rrot = T (θ̂ )RT (θ̂ )⊤ + Pθk
∂T
∂θ̂

R ∂T
⊤

∂θ̂

0: Lk = P−

k H⊤

k

(
HkP−

k H⊤

k + Rrot
)−1

1: X̂+

k = X̂−

k +W (θ̂ )LkT (θ̂ )(Y − h(X̂−

k ,U))
12: P+

k = (I − LkHk)P−

k
3: end for

7. Simulations

In this section, we compare the performances of the proposed
IEKF designs against the EKF in a simulation environment. Each
graph represents a Monte Carlo simulation with 100 trials. The
simulations were run with the robot maintaining a constant lin-
ear velocity and constant turning rate, collecting measurements
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Fig. 1. Effect of rotated noise terms for IEKF1. Top: RMSE of x estimate. Bottom:
MSE of d1 estimate.

t a rate of 10 Hz. The following parameters were used in all
he simulations: v = 13 m/s, ω = 4 deg/s, µ0 = 0n×1, P0 =

iag(102, 102, (π/2)2, 22, 22, 22, 22), X0 ∼ N (µ0, P0), X̂0 = µ0.
he simulated measurement noise was generated from a zero
ean Gaussian distribution with a non-isotropic covariance given

y R =

[
9 8
8 9

]
. The disturbances were generated from a linear

ime-invariant model with

=

⎡⎢⎣ 0 0 1 1
0 0 0 0
−1 −1 0 0
0 0 0 0

⎤⎥⎦ and C =

[
1 0 0 1
0 −1 1 0

]
. (52)

The outputs from the linear system are two signals containing
both sinusoidal oscillations plus a constant offset. Note that (52)
satisfies the specific form given in Proposition 7. Thus, both IEKF
designs can be applied.

Our metric of performance is the root mean square error
(RMSE) of each filter’s estimate with simulated ‘truth’ data, calcu-
lated at every time step. Let xi(t) be the ith element of X at time
t . The RMSE of xi(t) is given by

RMSEi(t) =

√∑n
j=1

(
xi(t)− x̂i(t)

)2
n

(53)

here n is the number of trials.
Effect of Transformed Noise We demonstrate the effect of differ-
nt rotated noise terms on the performance of the IEKF designs.
n the simulation the filters are run using 3 different approaches
o handling the covariance matrices. The first approach, denoted
s ‘0 term’ in Figs. 1 and 2, does not transform the P , Q , and R
atrices, i.e., in Algorithm 1, P = P0, Qrot = Q , and Rrot = R.
he second approach, referred to as ‘1 term’, includes only the
irst term on the right side of (47), (50) and (51), excluding the
irst derivative terms. The ‘1 term’ approach corresponds to noise
ovariance used in Barrau and Bonnabel (2017, Section IV-B-3).
Lastly, ‘both terms’ refers to using the transformations in (47),
(50) and (51).

From Fig. 1 we see this comparison for IEKF1. Using both
terms from Eqs. (47), (50) and (51) results in the best transient
7

Fig. 2. Effect of rotated noise terms for IEKF2. RMSE of d1 estimate.

Fig. 3. RMSE comparison of EKF, IEKF1 and IEKF2. Top: RMSE of x estimate.
iddle: RMSE of θ estimate. Bottom: RMSE of d1 estimate.

erformance and fastest convergence rate for estimating x and d1.
he rest of the states all have similar trends.
Fig. 2 shows the same comparison for IEKF2. From Fig. 2, we

ee that both changes to the covariances improve the transient
erformance over the nominal case. For IEKF2, the addition of
he first order correction term has a less significant impact than
t does for IEKF1. However, it still improves the performance at
he beginning of the simulation. Only the graph of the state d1
s provided, however, similar trends extend to the other states.
ince our simulation results show that adding the full noise
orrection given in (47), (50) and (51) improves the performance
of both IEKF1 and IEKF2, this implementation is included in the
performance comparisons for the remainder of the section.
EKF/IEKF Comparison We now compare the performances of
the IEKF designs with that of the traditional EKF. Fig. 3 shows
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he comparison of the RMSE for the EKF, IEKF1 and IEKF2 for
he states x, θ and d1. In all graphs, both IEKF1 and IEKF2 show
uperior transient performance over the EKF. IEKF2 has the best
erformance of the two IEKF designs. Therefore, it is clear that if
he disturbance model can be represented in a form that satisfies
roposition 7, the design IEKF2 should be used.
If the disturbance model does not satisfy (37), IEKF2 is not

pplicable and we propose IEKF1 as another option. Through
umerous numerical simulations, which are not included due to
he space limit, we have observed that IEKF1 usually produces a
erformance that is comparable to or better than that of the EKF.
he nature of this improvement is related to the form of A and C ,
hich will be studied in our future work.

. Conclusions and future work

In this paper, we have extended the theory of invariant nonlin-
ar systems by analyzing the requirements for invariant systems
o remain invariant when dynamic additive disturbances are ap-
lied. Two sets of invariant conditions are developed. We show
hree examples where these conditions can be utilized, including
n attitude dynamics, a chemical reactor, and a unicycle robot
odel. We focus specifically on the unicycle model to develop
nd compare two IEKFs designed to estimate both the unicycle
tate and the disturbance. An additional correction for the IEKF
ilter covariance is proposed and its contribution is demonstrated
hrough Monte Carlo simulations. Finally, the performance of
oth proposed IEKF designs is shown to be superior to the perfor-
ance of the EKF. Our future work includes further investigation
f connections of the proposed IEKF designs with matrix IEKF de-
igns for different dynamical systems and extending the unicycle
xample to 3-D disturbance estimation.

ppendix. Matrix implementation

We now show that the condition obtained in Proposition 7 is
equivalent to the group affine condition in Barrau and Bonnabel
(2017) for the matrix IEKF design for (16)–(18). Let G be the
atrix Lie Group of double direct spatial isometries and define

he system state M ∈ G as

=

⎡⎢⎢⎢⎢⎣
cos θ − sin θ x d⊤1
sin θ cos θ y d⊤2
0 0 1 0

0 0 0 Im
2

⎤⎥⎥⎥⎥⎦ , (A.1)

here d1, d2 ∈ R
m
2 ×1 such that d = [d⊤1 d⊤2 ]

⊤. We rewrite the
ugmented dynamics (16)–(17) as Ṁ = F (M), where

F (M) =

⎡⎢⎢⎢⎢⎣
−ω sin θ −ω cos θ v cos θ + Cxd d⊤A⊤1
ω cos θ −ω sin θ v sin θ + Cyd d⊤A⊤2

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦ , (A.2)

in which A1 and A2 are defined as the top and bottom m
2 rows

of A, respectively, i.e., A = [A⊤1 A⊤2 ]
⊤. The measurements given

in (18) are Y = Mq, where q = [0, 0, 1, 0, . . . , 0]⊤. Algebraic
anipulations then show that the group affine condition

(ab) = F (a)b+ aF (b)− aF (I)b, ∀a, b ∈ G (A.3)

esults in the same condition (37) on A and C . Thus, for this prob-
lem, if Proposition 7 is satisfied, a matrix IEKF can be designed
8

accordingly. The resulting matrix IEKF has a linear error dynamics
with the same state matrix as in (44).
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