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1. Introduction

We consider the classical linear quadratic regulator (LQR) de-
sign problem for continuous-time LTI systems in the presence
of external input signals. Physical processes in practice are of-
ten influenced by extraneous time-varying inputs and cannot
be manipulated using a controller, referred to as “exogenous
inputs” [1-3]. They can represent coupling variables for one part
of a dynamic model with other parts, or can simply be external
disturbances. Classically, various disturbance rejection schemes
such as active disturbance rejection control [4-6], disturbance
observer based control [7,8], or a combination of disturbance es-
timation and cancellation based control [9] have been developed
to handle such scenarios, and guarantee desired control perfor-
mances despite the disturbance. In [10], a generalized H, frame-
work is discussed with full information about the disturbance
with the Gaussian noise assumption. Linear quadratic Gaussian
(LQG) is also a classical variant. The specific problem of LQR with
exogenous inputs has been studied in papers such as [11,12],
where the control input is designed with a component that can-
cels out the effect of the disturbance. However, these methods
do not guarantee minimization of the total state and control
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cost when accommodating the external inputs in the control.
We, on the contrary, provided an explicit proof of the optimality
when designing an extended LQR control. The designs in [13,14]
present exogenous input rejection approaches for output regula-
tion via LQR by imposing a certain structure on the state matrix.
Moreover, our control follows an optimal feedback structure with
the form of linear feedback of state, exogenous input and its
derivative for any generic dynamic systems. A relevant result on
this topic is [3], but that design is for a discrete-time system. Its
extension to continuous time is quite non-trivial and brings out
newer insights and solution approaches, as will be shown in the
forthcoming sections.

Thereafter, this article will formulate a model-free variant
which will be able to learn an approximate steady-state feed-
back solutions. Reinforcement learning (RL), originally proposed
in [15], is used for this purpose. In recent years, several papers
such as [16-21] have used RL for LQR control using a variety of so-
lution techniques such as adaptive dynamic programming (ADP),
robust ADP, actor-critic methods, Q-learning, model reduction
based RL, zeroth-order optimization based policy gradients etc.
However, these RL techniques do not consider the system to be
coupled with any exogenous inputs. An overview of recent results
can be found in [22]. There are more variants of data-driven con-
trol research such as data-dependent linear matrix inequalities
in [23], finite horizon LQ and tracking control without models
using extremum seeking [24-26], learning safety certificates from
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data [27], various distributed control designs [28-30], stabilizing
control designs via policy iterations [31], to name a few. [32]
discusses connections between direct and indirect control ap-
proaches. As mentioned for ADP/RL [ 16-18], other research works
such as extremum-seeking based learning control [24-26], or
other variants focus on computing the linear quadratic policies
without exogenous inputs. Relevant results on robust learning
control designs such as [33-35], on the other hand, consider
systems with disturbances, however, only the standard LQR state
feedback gains are learned, and therefore do not guarantee net
cost minimization in such settings. We, in this article, alleviate
such limitations by using an extended LQR framework in the data-
driven setting. We use the results derived in the model-based
setting, and then formulate a trajectory relationship consisting
of state, controls and exogenous input measurements, thereby
aiding in solving the problem in a model-free way.

The first contribution of the paper is to present an extended
LQR design where the control input comprises of the optimal
state feedback and an additional optimal term that minimizes the
impact of exogenous inputs for a continuous-time LTI (CTLTI) sys-
tem with guaranteed quadratic net-cost minimization. The prob-
lem is formulated in terms of a set of matrix differential equations
for computing the feedback gains using the fundamental re-
sults from dynamic programming (DP). Results are tested with
different exogenous inputs for a third-order CTLTI system. The
second contribution is to extend the design using a model-free
and measurement-driven approach. We develop an ADP-based
algorithm that can learn steady-state gains for both optimal state
feedback and disturbance attenuation components of the con-
trol signal, and thereby providing guaranteed net state and con-
trol cost minimization. The algorithm is model-free in the sense
that the state and disturbance input matrices are not needed
to run the algorithm; the control input matrix, however, must
be known. Numerical examples show the effectiveness of the
RL-based extended LQR design.

The rest of the paper is organized as follows. In Section 2,
the model-based LQR design in presence of exogenous input is
formulated, followed by matrix differential equations with finite-
horizon and steady-state approximated solutions. The RL-based
algorithm is developed in Section 3. Numerical simulations val-
idating the two designs are presented in Section 4. Section 5
concludes the paper with future research directions.

Notations: The following notations will be used all throughout
the paper. RH,, is the set of all proper, real and rational stable
transfer matrices; ® denotes Kronecker product; 1, denotes a
column vector of size n with all ones; A(A) denotes null-space
of the matrix A; A; denotes the time-varying matrix A indexed by
the time variable t; vec(.) is the standard vectorization operation.

2. Model-based extended continuous-time LQR

We consider a continuous-time linear time-invariant system
as

X = Ax + Bu + Dw, x(0) = X, (1)

where x € R" is the state, u € R™ is the control input, and w € RP
is the exogenous input which we assumed to be measurable.
Motivated from [3], we would like the optimal feedback control
to contain terms involving optimal state feedback, and additional
optimal feedback depending upon exogenous inputs and their
derivative information, and thereby, formulate a linear quadratic
objective involving costs associated with states, controls and the
exogenous inputs as:

J = x"(T)Qx(T)

T
+/ (x"(T)Qx(t) + u"(v)Ru(t) + w(t) Syw(r)) dr (2)
0
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where Q > 0, R > 0,5; > 0, Qf > 0 are design matrices,
and T > O is the final time instant until which the control in
evaluated. We include w(t) in the cost to keep the formulation
much general, i.e., when we consider coupled dynamic systems
with multiple components, the exogenous inputs for a certain
component can depend on state variables of the same component
or other components in a complex manner. For example, in the
power grid dynamics, the terminal bus voltages of synchronous
generators act as an exogenous input for the corresponding syn-
chronous generator dynamics [36]. However, the bus voltages
themselves are dependent on the other grid dynamic states in
a complex manner. Please note that minimization of this cost
function will produce the optimal control u(t); however, instead
of making u(t) only a function of the state x(t), we add an
additional optimal feedback term that is governed by w(t) and
its derivative for the continuous-time system, which is a distinct
contribution of this article, and later on, we will show that this
framework will also help us to formulate reinforcement learning
based solutions. The control law considers w(t) information in a
feed-forward manner, however the gain computation framework
with net cost minimization guarantee is a novel solution provided
in this paper. We first discuss the finite-horizon solution, and
then provide an approximate steady-state formulation which will
be used for the reinforcement learning (RL) algorithm presented
in the next section. The following theorem presents a set of
matrix differential equations (MDEs) that need to be solved to
compute the optimal control.

Theorem 1. The optimal control for the CTLTI system (1) with linear
feedback controls depending on x(t) and w(t) and its first order
derivatives considering the objective (2) is given by:

u(t) = —Kyex(t) — Kpev(t), v(t) = [w(t)", 117, (3)
1

Ki = R'B'P;, Ky = 5R’]BTP2[, (4)
where P, and P,; are computed as

— P,=Q+PA+A"P, — P.BR"'B"P;, (5)

— Py = APy + PyM; — PBR™'B" Py + 2P,Dy, (6)
0 dw

D1 =[D Opyl, My = | PP at || 7

1=1[D Opx1l, M; |:01Xp 0:| (7)

Proof. We leverage dynamic programming (DP) to prove this
theorem. The major motivation to use dynamic programming
here is to later extend the methodology for the model inde-
pendent RL designs where we use adaptive dynamic program-
ming, thereby, keeping both the model-based and model-free
formulations in a similar underlying framework. Denote v(t) =
[w(t), 117, D; = [D 0,411, and write the plant model as

X = Ax + Bu + Djv. (8)
Defining S = |:50] 8} we can write w'S;w = v'Sv. Subse-

quently, for 0 <t < T we define the value function

T
Vi(x,v) = muln/ (x(z)" Qx(7) + u(r)" Ru(z) (9)

+ v(7)'Sv(T)) dr + X(T)" Qex(T).

Next, consider any very small time interval [t, t +h] where h > 0
is a small number. Over this interval, we can write

ot 4 h) = |:w(t) + w(tl—i- h) — w(t):| _

[O?,Xp w(t + h]) - w(r)] |:w§t)i| — Lo(o), (10)

Lt
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We assume that the initial values during this interval are x(t) =
X1, v(t) = vq, and the control input applied during the interval is
a constant, i.e., u = uy during [t, t + h], and we let the states x(t),
and exogenous input w(t) evolve over the small time-interval.
Cost incurred during [t, t + h] is then given and approximated
as

t+h
C1 :/ (x(1)"Qx(t) + u(t) Ru(t) + v(t)"Sv(r)) dr

= h(x}Qx; + ulRu; + v]Sv). (11)

The value function V; is quadratic based on the nature of the cost
function, i.e., Vi(x1, v1) = X} Pex1 + v] P1ev1 +X] Pv1. Note that we
need to consider the cross-terms between x; and v in the value
function due to the nature of the cost function. The value of the
state at time t + h is given by

Xy = X1 + h(Axy 4 Buq + Dvy). (12)

On the other hand, the value of the exogenous input at time
instant t 4 h is given as

vy — v Li—1 v
vy = vy LNk Ny = 270 (L1 — Ipr1)vy — Myo,,
h h
(Ly — Ipi1) 0 w(t+h)—w(t)
M =—"——=| P h , 13
1 p Ors 6 (13)

which gives v, = v; +hM;v;. Therefore, the minimum cost-to-go
from t + h can be written as

G=Vin=C+C+C =
(x1 + h(Ax1 + Buy + D1v1)) Peyn(X1 + h(Ax; + Buy + Dyv1))
+ V3 Pigethyv2 + (X1 + h(AX1 + Buy + D1v1)) Pyeinyva- (14)

Neglecting higher-order terms we expand the terms in C,. Using
Pyn = Py + hP; the first term in C, can be expanded as

Cy = X Px1 + h[(Ax; + Bw + Dqvy) Pexi+
X[ Py(Ax; + Bw + Dyvy) + x| Pexy . (15)
Similarly we have
2 = (vi + Myvih) (P + hPye)(v1 + Myvih)

= v Py vy + AT MTPyvy + v Py Myvy + 0T Pyvs], (16)
C3 = x[Pyrvy + h[(Axy + Buy + Dyvy) Pyvi+

XTPy:Myv; + XTPyvg]. (17)

Therefore, the total cost is given by the sum of the stage cost
incurred during the interval [t, ¢t 4+ h], and the cost-to-go from
t+has

C=C+0C. (18)

To find the stable optimal control u;, the net-cost will be mini-
mized with respect to u;. Differentiating C with respect to u; we
get

2u'R+ v]PyB + 2x!P.B =0, (19)
1
Uy = —R'B"P x; — =R 'B"Py 0. (20)
——— 2
2t

Eq. (20) shows that the optimal control is composed of not only
the state feedback term, but also an additional feedback arising
from the exogenous input. It will later turn out that P,; depends
on the derivative of the exogenous inputs. Following the principle
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of optimality, the Hamilton-Jacobi (HJ]) equation guides us to
write

Vi = muin(cl + Vign), (21)
1
XTPexy + v] Pyrvy + X[ Pyvy = ngin(c1 + Vign). (22)
1

Equating the above equation we compactly write

12
h [Z 51] =0, (23)
i=1

where explicit expressions of the terms in &, i = 1,..., 12 are
listed in Appendix. As the terms are scalar we have x?P[Dlvl +
vIDTPx; = 2x1P.Dyv;. After a few algebraic computations we
can write

12

Z&‘ = X.{QXXX] + U{quvl +X-{vavl = 0’ (24)
i=1

where,

Qu=Q +PA+A"P, — P.BR'B'P, + Py, (25)
Quo =S + MIPy; 4 Py My + Py + D1 Py, (26)
Qe = APy + Py My — PBR'B" Py + 2P,Dy + Py (27)

As the sum of these three quadratic terms is zero, we get the
following three matrix differential equations that need to be
solved over the finite time-horizon [0, T]:

—P,=Q+PA+A"P, — P,BR'B'P,, (28)
— Plt =5+M1TP1r+P1rM1 +D€P2f, (29)
— Py = ATPy + PyM; — P.BR™'B"Py + 2P,D;. (30)

These three matrix differential equations form the core of this de-
sign problem, supplementing the conventional differential Riccati
equations (DRE) in LQR theory. The matrix M; depends on the
rate of change of the disturbance variable w as shown in (13). In
the continuous-time setting, we consider the time-step h to go to
zero in the limit. Subsequently, we recompute the matrix M; as
h — 0, and denote it as M; where,

. e
M, = [OPXP limy_, o D=0 — dw]

dt
o J (31)

using which we obtain the final matrix differential equations
stated in Theorem 1. This concludes the derivation of the MDEs
with the final conditions P(T) = Q; and zero matrices of appro-
priate dimensions for the other variables. The MDEs of P and P,
are needed to find the gains K;; = R™'BTP;, and Ky, = %R*IBTPZE,
which are implemented as u(t) = —Ky:x(t) — Kyev(t). O

Theorem 1 provides a finite-horizon solution for LQR using the
model information and information about the exogenous input.
Here, we proposed additional control terms that are dependent
on the novel MDE (6). Solving the MDE, we can compute the
gains for the terms that use w(t) and its first order derivatives.
This new set of coupled MDEs results in an extended LQR version
which provably improves the cost minimization compared to only
a standard LQR feedback gain implementation. Please note that
we start with the optimization objective in a more generalized
setting considering a quadratic cost term associated with the
exogenous inputs, however, the solution of the MDE associated
with Py; do not contribute to the feedback control gains. The MDE
computation associated with P; and P,; requires measurement of
the exogenous input and its derivative at all time t. However,
derivative information of exogenous inputs may be difficult to
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obtain in practice. Considering this fact, we next provide an
approximate steady-state solution of the same LQR problem that
does not depend on the derivative of w, and try to implement the
results of Theorem 1 with limited information of the exogenous
inputs. The exogenous input can still be of any nature. When-
ever, the exogenous inputs are persistently exciting over long
time-horizon, the cost associated with the feedback control is
computed with finite time-integral with the steady-state control
gains implemented. In the simulation section, one such example
is given. It will be shown shortly that this formulation will help
us to learn the gains with unknown state matrices using RL/ADP.
For this we first partition Py, as

Pyt = [Paqr Pancl, (32)

where Pog; € R™P and Py, € R™ . Using (32), we can write the
MDE of P,, as

— Pyye = ATPyyr — P.BR™'BTPyy; + 2P,DD. (33)

Pype, on the other hand, depends on w(t) due to the structure
of M, and therefore, does not converge if the exogenous input
is persistently time-varying. In order to provide an approximate
steady-state solution, we neglect the contribution arising from
Py, and as P,, converges to a constant matrix, an steady state
constant gain K, can be computed. This will be shown shortly.
Please note that P,, is dependent on the exogenous disturbance
matrix D, which is constant, and therefore, we can expect steady-
state solution for the gains associated with the exogenous input
feedback. Subsequently, the steady state solution in the sense of
fixed control gains, is given in the following corollary.

Corollary 1. The steady-state approximate optimal control gains
following the form from Theorem 1 for the system (1) with the
objective (2) is given by,

u(t) = —Kqx(t) — Kw(t), (34)

1

K; =R 'B'P, K, = 5R”BTPZE,, (35)
where P and P,, are obtained by solving

0=0Q +PA+A"P —PBR™'B"P, (36)

0 = A"P,, — PBR™'B"P,, + 2PD. (37)

Proof. The infinite horizon solution of P; is standard in the opti-
mal control literature. We will, therefore, show that the MDE (33)
will converge to the solution obtained from the matrix equation
(37). Subtracting (37) from (33), and denoting Pys = Pyqr — Paq
we can write,

—Pygr = AT(Pagt — P2q) — [K1tB" Pae — K1B" Pagl+

2(P; — P)D, (38)
= ATPye — [K1¢B" (Paar — Poa)+

(Kye — K1)BT Pyg] + 2P:D, (39)
= (A — BKy) Paac — (Ki¢ — K1)B' Py + 2P,D. (40)

Ast — oo, Ky and P; converge to K; and P, respectively, resulting
in the following dynamics

—Pyar = (A — BK;) Py (41)

As A — BK; € RH,, i.e., Hurwitz, Poq will converge to Py,. O

Remark 1. It is interesting to note the difference in imple-
mentation between Theorem 1, and Corollary 1. The solution
given by Theorem 1 is the exact time-varying optimal solu-
tion, whereas, in Corollary 1 we have approximated the solution
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by neglecting the contributions from the derivative of the ex-
ogenous inputs for the purpose of ease in implementation and
also developing RL algorithm in the next section, however, as
the solution in Corollary 1 contains the term K,w(t), the time
varying nature of the exogenous inputs will still influence the
closed-loop trajectories. The solution in Corollary 1 will always be
optimal with respect to standard LQR solution as the solution of
Corollary 1 is the optimal solution of a representative optimal
control problem with constant w(t), and can therefore be gen-
eralized for time-varying w(t).

This steady-state solution is used next to formulate the RL
algorithm that can compute the feedback gains K; and K, from
Corollary 1 without knowing the state matrix A and the exoge-
nous input matrix D. However, we will need to know the control
input matrix B for the algorithm developed in the next section.

3. Reinforcement learning control

Learning Problem: With unknown state matrix A, and exoge-
nous input matrix D, learn the gains Ky, and K, corresponding to
the approximate steady-state LQR solutions from Corollary 1 us-
ing the trajectory measurements of states, control, and exogenous
inputs.

As we consider that we do not have any information about the
model matrices A, D, it is theoretically difficult to formulate the
learning algorithm with unmeasured exogenous inputs. However,
this is not entirely a restrictive design choice as exogenous inputs
in control systems may be measured with deployment of high-
fidelity sensors. For example, in power systems, the terminal
generator bus voltages act as exogenous inputs to generator
states [36], and we can measure these bus voltages using pha-
sor measurement units (PMUs) [37]. In another example, for
small unmanned aerial systems, anemometers can be installed on
drones to measure wind velocity as exogenous inputs [38].

The iterative solution of (36) is computed using Kleinman'’s
algorithm [39]. We append another iterative equation based
on (37) to develop model-dependent iterative equations for the
coupled matrix equations (36)—(37).

Theorem 2. Starting with a stabilizing Ky, i.e., A— BK;, is Hurwitz,
the optimal LQR controller is obtained by using the following steps.
fork=0,1,...,

1. Solve for Py from

AL P+ PeAg + Q + KT RKyy = 0, Age = A — BK .. (42)
2. Update Ky as,

Kiges1) = R7'BTPy. (43)
end

The solution of the above iterative solution will lead to the infinite
horizon optimal solution K;. Then solve for K, as:
3. Find P4 by solving

APy, — K1, B" Py 4 2P,D = 0. (44)
4. Update K as,

1
K = 5R“BTPZ,J. (45)

Proof. The iterative update and convergence of P, and Ky directly
follow from the Kleinman’s algorithm [39]. We, therefore, show
that the solution of P,, in (44) (a Sylvester equation) converges to
the solution in (37) as k — o0. The sequence of Py, fork =0, 1, ..
can be constructed by solving (44) as

ATPygx — K1, B"Pygi + 2P;D = 0. (46)
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Next, considering (37) and (46), we show that P,g will converge
to Py, as k — oo. Subtracting (37) from (44), we have,

0 = AT(Pagk — Paa) + (K1 — K1 )BT Pag—
KlTkBT(PZak - PZG)' (47)

Running (42)-(43) in Theorem 2 with k — oo, Py and Ky, will
converge to P and Kj, respectively. Therefore, we can write,

0 = A"( lim (Pzax — P2q)) — K{ B"( lim (P2ax — P2a)) (48)
k—o00 k—o00
0 = (A — BK; )T(klim Paak — Paa). (49)
— 00

As A — BK; is Hurwitz, it follows that (limy_, oo Pagk — P2q) &
N((A — BK})T), and therefore Pyq, converges to Py, as k — oo
following Theorem 2. This will also lead to convergence of K;
directly. This concludes the proof. O

3.1. Formulation of the learning algorithm

The objective is to learn the feedback gains K; and K, as in
Corollary 1 without knowing A and D. An exploration signal u =
Up is used to persistently excite the system (1). This exploration
signal, however, should not make the system state trajectories
unbounded [17]. We recall the state dynamics (1) as

X = Ax + Bug + Dw, (50)
= Acx + B(K1x + ug) + Dw, (51)
where A, = A— BKj. Continuing with the following computations
we can write
%(xTka + X Pygew) = X" Px + X" Pex+ (52)
X Pagrw + X" Pygi.

Expanding the first two terms in (52), and using (42) and (43) we
get,
XTPex + X' Pk
= X"[AL Py + PiAclx + 2(Kyx + ug)' BT Pyx
+ 2w D" Px,
= —x"Qux + 2(KuX + o) RK1gks 1y% + 2w DT Pix, (53)
where Qi = Q + K]TkRIQk. Expanding the last two terms in (52),
and using (44) and (45) we get,
X" Pygrw + X" Pygith
= (AX + Bug + Dw)" Pgw + X" Pygi,
= X" (A" Pagi)w + X" Pagreth + 2uf RKpier 1yw
+ w' D' Py,
= X" (=2PD + K1, B" Py )w + x" Pygav+
2ul RKyqie4 1yw + w' DT Pagew, (54)

Therefore, revisiting (52) we can write

d -

E(XTPkX + X" Pygew) = —x" Qux+

2(Kyix + o) RK 1% + X" KT, BT Pagpw + x" Pygav+

2u{ RKyk1yw + w' D" Pygew. (55)
Taking integrals on both sides of (55) we finally get Eq. (56)
which is given in Box I. The RL algorithm can be constructed by

formulating an iterative version of (56), which is given in
Algorithm 1.
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Algorithm 1 RL algorithm for extended LQR

1. Data storage: Store data (x, w and ug) for interval (tq, tp, -+, ), t; —ti.g =T.
There exists a sufficiently large number of sampling intervals for each iteration
step such that the rank condition from Remark 2 satisfies. Then construct the
following matrices,

b= [x@ X1 xex] (57)
Sxw = [x®w\f}”, ,x®w\fj”]T, (58)
o= [ e 04, ,fff’”(x®><)dr]T, (59)
o = [ G @U@ uor] (60)
Ly = [ Hweuwdn, - [Twe uo)dry . (61)
Ly = [ffT”(X ® w)dr, , f[:’”(x ® w)dr]T , (62)
ho = [T w@ide, o T xe w)dr]T : (63)
b = [T wlr, e[ @ wd] (64)

2. Controller update iteration : Starting with a stabilizing K19, Compute K; and K,
iteratively (k =0, 1, - - -) using the following iterative equation

vec(Py)
vec(Paqr) _
[e) @ ©} of 6;]|veclKips)| = —lxvec(Qu). (65)
vec(Kopry) |~
Ok vec(D" Pyg) i
where (“)Iz = Sva 6‘),? = 8xw - wa(lp ® KlTkBT) — Ly, 81? = _ZIXX(IH ® K1TkR) -

leuo(ln ® R)» ("))? = _2Iwug(1n ® R), (’9,? = —lyw-

Terminate the loop when |Py — Pi_1|&|Pyk — Paak-1)l< ¢, where ¢ > 0
is a small threshold.

3. Applying K in the system: Finally, apply u = —K;x — K;w, and remove
Up.

Remark 2 (Convergence and Stability). Algorithm 1 is developed
based on the iterative algorithm presented in Theorem 2. There-
fore, the convergence to optimal and stable feedback gains fol-
lowing Algorithm 1 can be assured based on its equivalence with
Theorem 2, which itself is based on the matrix differential equa-
tions obtained in Theorem 1. The dynamic programming based
approach taken for deriving the matrix differential equations in
Theorem 1 guarantees the stability and optimality of the feedback
gain solution, the infinite horizon component of which eventually
gets manifested as the ADP-based solutions from Algorithm 1.

Remark 3. To accurately compute the learning gain, the under-
lying notion of persistency of excitation associated with system
identification and adaptive control is needed to be satisfied. For
eachk=0,1,2,..., it is assumed that there exists a sufficiently
large integer [, > O signifying large enough sampling intervals,
such that rank(®y) = n(n + 1)/2 + np + mn + mp + p?, which is
required to persistently excite the system, and compute unique
solutions. This can be satisfied, for example, by utilizing data
from at least twice as many sampling intervals as the number
of unknowns. We will need the data samples to be rich in the
dynamic system behavioral information, and therefore, the explo-
ration signal should considerably excite the underlying unknown
dynamics. We have used the sum of sinusoids of varying frequen-
cies selected randomly as an exploration signal. However, the
choice of the exploration signal may not be trivial, and different
dynamical models with varying degree of complexity may need
dedicated exploration signal design. In our experiments, the sum
of sinusoidal excitation show sufficiently good performance.
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t+T
xX(t + T)'Pex(t + T) — x(t)" Pex(t) + x(t + T) Pagew(t + T) — x(t)" Pagrw(t) — / (2(K1kx + uo)" RKy (i 1)x)dT —
t

t+T t+T
/ (X" K{i B Pagiw + X" Pagets + 2ugRKyep1yw + w' D' Pagew)dt = — / X" Qqexdr. (56)
t t

Box 1.

Remark 4. The learning algorithm requires w information to
construct I,;. However, the designed controller only depends on
w, as proved in Corollary 1. Therefore, we may learn the gains
K; and K> in a controlled environment where w can be made
available, and then implement them for other applications where
w is not available. For this we use the fact that the approximate
steady-state gain K, is dependent only on the exogenous input
matrix D, and not on the exogenous input itself. The learning
algorithm relieves the requirement of knowledge about D.

The algorithm compensates for the inadequacies of the robust
ADP approaches [33,35] which compute only u = —Kjx in pres-
ence of the exogenous inputs, whereas the proposed extended
method can learn a more optimized approximated feedback gain.
We, next, validate our design by few numerical examples.

4. Numerical examples

Consider the following third-order CTLTI model:

-14 02 -0.1 0.1 0.8 1
A=|-02 -08 -03|,B=|11 03|,D=|1|. (67)
01 -0.1 -0.9 09 0.5 1

We consider two different types of exogenous inputs:
E1. An exponentially decaying input, w(t) = e¢, and

E2. A sinusoidal exogenous input, w(t) = 1+ 0.1sin(t).
4.1. Model-based control

We solve the MDEs given in Theorem 1 for a 15 s time window
with 0.01 s time step. We consider Q = 205, R=1,, S = 1 and
Qf = I3. The states are initialized at the origin. The DRE (5) leads
to a convergent infinite horizon LQR solution. The feedback gain
K is found to be

~0.353
Ky = [ 2795

3.107

—2.009
—0.247 } : (68)

1.829

The iterations for computing P, are shown in Fig. 1 for both
exogenous inputs E1 and E2. It can be seen from Fig. 1 that
the matrix P, (first column of P,) converges to a steady state
solution, whereas the matrix P,;, (second column of P,) shows a
variation that is similar to the exogenous input which validates
its dependency on the derivative of the exogenous inputs. The
matrix P,, converges to [1.781, 1.888, —1.202]" for both E1 and
E2 as this part of P, depends only on the A, B and D. Please
note that in Fig. 1, the integration has been performed backward
in time. The plots are also vindicate our solution structure as
given by Theorem 1, where the matrix P, is dependent on the
evolution of the exogenous input derivatives, and we can see
from the figures for both the exogenous inputs, it follows such
trajectories in its evolution.

The closed-loop state trajectories with the extended LQR con-
trol are plotted in Fig. 2. This figure shows a comparison between
the classical LQR control and the proposed extended LQR control,
from which it is clear that the latter results in better dynamic
performance. The minimization of the net cost associated with

o —P (L)
= 1k BacMin timeN—PzQ,l)
‘2 ol integration P,G.D)
% y f P02
= —P,(22)

200 400 600 800 1000 1200 1400 P,32)

Iteration index

—P, (L)
Backward in um —P,2,1)
integration P2(3» 1

- ———— e —
_———— e

2

—

—P(12)
1—P,22)
P,(32)

T
—_

Elements of P
(=)

200 400 600 800 1000 1200 1400
ITteration index

Fig. 1. Convergence of the elements of P,,. Elements of P,, varies based on the
exogenous input (top panel for E1 and bottom panel for E2), the time integration
of MDEs in Theorem 1 is performed backward in time starting at t = 15 s.

ixl(classical LQR)
- - -xz(classical LQR)
..... x3(classical LQR)
—X, (extended LQR)
- .xz(exlended LQR)
..... x3(exlended LQR)

State trajectories

4 5 6

Time (s)

Fig. 2. Comparison of closed-loop state trajectories with classical LQR (blue) and
proposed extended LQR (red) for the exogenous input E1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Comparison of net quadratic cost (state and control) between classical and
extended LQR designs based on Theorem 1 for the simulation example.

Classical LQR Extended LQR
Exogenous input E1 1.0535 0.7162
Exogenous input E2 37.442 24.73

state deviations and the control efforts can be seen from Table 1
for both the exogenous inputs. Table 1 shows that the proposed
extended LQR guarantees minimization of the net cost function,
producing lower net cost than the classical LQR. Fig. 3 shows the
net savings in the cost following the extended LQR design using
Theorem 1. An interesting point to note is that the cost function
also shows similar variation as the exogenous inputs.

When the exogenous input model is not known, one may
implement the steady state solution given in Corollary 1 to find
K7 and K;. The solution obtained by solving the matrix equations
in Corollary 1 via an iterative approach as in Theorem 2 converges
to steady state feedback gains. The feedback gain K; is same as in
(68), and the gain K, = [0.5869, 0.6953]. The comparative costs
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Fig. 3. Savings in the cost objective following the extended LQR design than the
classical LQR.
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Fig. 4. Exploration (up till 0.7 s) and control implementation for the RL control
design (Top panel is for E1 and the bottom panel is for E2).

Table 2

Comparison of net quadratic cost (state and control) between classical and
extended LQR infinite horizon solutions based on Corollary 1 for the simulation
example.

Classical LQR

1.0535
37.425

Extended LQR

0.7203
24.83

Exogenous input E1
Exogenous input E2.

for the steady state solutions are tabulated in Table 2, showing
effectiveness.

4.2. Reinforcement learning control

Finally, we test the RL Algorithm 1 for computing the infi-
nite horizon feedback gains K; and K, corresponding to P and
P,,. The objective is to recover the gains corresponding to the
model based analysis shown in the previous sub-section from
the measurements. The system trajectories are gathered during
the exploration with a time-step of 0.01 s. Here n = 3,m =
2 and p = 1. Therefore, following Remark 2, around 40 time
samples are required to compute the unique optimal solutions.
We perform the exploration for 0.7 s, from which the mea-
surements of x(t), up(t), and w(t) are stored as in Step 1 of

Systems & Control Letters 154 (2021) 104983
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Convergence of
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Fig. 5. Convergence of P and P,, to the infinite horizon optimal solutions (Top
panel is for E1 and the bottom panel is for E2).

Algorithm 1. The exploration has been performed using the sum
of sinusoids with random frequencies, which makes sure that the
system is being persistently excited. The exploration phase for
both types of exogenous inputs is shown in Fig. 4. By gathering
the data matrices, the learning algorithm compensates for the
lack of knowledge about the state matrix A and the disturbance
matrix D.

Thereafter, P and P, and the corresponding control gains are
iteratively computed as shown in Fig. 5. The solutions converge
to the ideal optimal infinite horizon solution within 4 itera-
tions. Please note that these ideal optimal solutions correspond to
Theorem 2 and Corollary 1, and are only used here for compari-
son purpose to substantiate our theoretical results. The optimal
closed-loop performance is shown in Fig. 4, where the initial
learning phase can be identified, and then the learned extended
LQR controller is implemented. All of these experiments substan-
tiate our theoretical developments, and show the substantial per-
formance improvement of the extended controller over classical
designs.

5. Conclusions and future work

This paper developed a novel extended LQR control design for
continuous time LTI systems perturbed with exogenous inputs.
The design guarantees the net state and control cost to be lower
than that from the classical LQR design. Both model-based and
model-free versions are reported. The model based design guar-
antees the net cost minimization using dynamic programming.
The model-free design is based on reinforcement learning that
can compute the steady-state LQR gains using measurements of
states, control inputs, and the exogenous inputs. Convergence and
stability guarantees of the RL algorithm are established. Numeri-
cal simulations are provided to illustrate the effectiveness of the
design in both model-based and model-free settings.

Future work includes investigation of learning algorithms with
limited knowledge of exogenous inputs. Research efforts can also
be directed toward formulating the distributed version of the pro-
posed extended learning-based LQR designs. Application of the
algorithm to navigation of small aerial systems in windy environ-
ments, and designing wide-area damping controls for large-scale
power systems to improve its dynamic performance following
contingencies can provide practical examples for deployment of
such techniques.
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Appendix. Terms &, i =1, ..., 12 in Theorem 1

& = xTQxy, (A1)
& = ujRuy = xP.BR"'B"P:z + x| P.BR"'B" Py v1+

vl Py BR'B"Pix; + v] Py BR™'B' Pyvy, (A2)
& = vlSvy, (A.3)
&4 = vIMIPyvy, (A4)
& = v] Py Myvy, (A5)
& = vlrptlv1, (A.6)
& = X]{ATPZ[IM + U{D-{Pztlh—

X1 P.BR'B"Pyv1 — vl Py BR™'B"Pyvy, (A7)
& = x| Py Myvy, (A.8)
& = X1 P2y, (A.9)
&0 = X, ATPxy + vIDIPx; —

X1 P.BR'B"Pyx; — v PyBR™'B"Pixy, (A.10)
En = x\PAxy + X[ P.Dyvy —

X1P.BR'B"P;x; — xP.BR™'B" P, 01, (A.11)
£ = X\ Pyxy. (A.12)
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