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Abstract: We consider a quadcopter operating in a turbulent windy environment. The
turbulent environment may be imposed on a quadcopter by structures, landscapes, terrains
and most importantly by the unique physical phenomena in the lower atmosphere. Turbulence
can negatively impact quadcopter’s performance and operations. Modeling turbulence as a
stochastic random input, we investigate control designs that can reduce the turbulence effects
on the quadcopter’s motion. In particular, we design a minimum cost variance (MCV) controller
aiming to minimize the cost in terms of its weighted sum of mean and variance. We linearize the
quadcopter dynamics and examine the MCV controller derived from a set of coupled algebraic
Riccati equations (CARE) with full-state feedback. Our preliminary simulation results show
reduction in variance and in mean trajectory tracking error compared to a traditional linear
quadratic regulator (LQR).
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1. INTRODUCTION

Small Unmanned Aircraft System (sUAS) has become
ubiquitous in diverse applications and are aggressively
being integrated into the national airspace system (NAS).
Multi-rotor platforms such as quadcopters have demon-
strated significant potentials in small package delivery,
surveillance operations and in many other applications.
Many of the tasks involve operations in the low-altitude
airspace. In the urban setting low-altitude operations im-
pose challenges to operational and navigational tasks with
its unique physical phenomena. Being under-actuated, a
quadcopter is vulnerable to strong mean wind velocity as
well as unsteady wind gusts. Gill and D’Andrea (2017)
show that with a relative wind velocity more than 4 −
7ms−1, the hover model of a quadcopter deteriorates.

To compensate for the wind effects, several disturbance re-
jection algorithms have been studied. Some of them require
wind information, onboard wind estimation or prediction
while others solve optimal policy without any wind infor-
mation. Tran et al. (2015) illustrate the performance of the
traditional PID and LQR controllers for disturbance re-
jection where an offline computed look-up table is used to
estimate wind components in the simulation. Wang et al.
(2016) propose a hierarchical nonlinear control scheme for
a quadcopter to track a 3D trajectory subject to wind gust
disturbances from a von Karman model. In Zhang et al.
(2016), a three-dimensional fuzzy PID control method for
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stabilizing attitude control and precise trajectory tracking
control is implemented with wind gusts generated from
a Dryden model in the simulation. Yang et al. (2017)
investigate attitude control via a dual closed-loop control
framework where gust wind is considered dynamic distur-
bances and estimated by an extended state observer. Ding
and Wang (2018) propose a linear active disturbance rejec-
tion control (LADRC) for stability control of a quadcopter
under wind gusts with a linear extended state observer
(LESO) as a compensator. A geometric adaptive controller
is proposed in Bisheban and Lee (2018) and a numerical
example is illustrated. An adaptive mass estimator and an
adaptive neural disturbance estimator are derived in Sierra
and Santos (2019) that complement the action of a set
of PID controllers stabilizing a sUAS under wind and
variable payload. A second order sliding mode controller
based on the super twisting algorithm (STA) with an
observer is employed in Hamadi et al. (2019) to reject
wind perturbation. A real-time simulation study in wind is
provided in Davoudi et al. (2020). Tran et al. (2021) intro-
duce Particle Swarm Optimisation (PSO) based Adaptive
Strictly Negative Imaginary (SNI) controller for unknown
wind disturbance rejection.

Almost every controller in the literature developed for
wind disturbance rejection is focused on reducing the mean
of the tracking error. In this paper, our objective is to
incorporate stochastic properties of wind into a controller
and reduce the variance of tracking error, which, to the
best of the authors’ knowledge, has not been considered in
previous research. In particular, we introduce a Minimum
Cost Variance controller (Sain (1965)) which is a special
case of risk sensitive control (Sain et al. (1995)) in the
quadcopter control paradigm. Preliminary investigations
on MCV and its connection to cost cumulant control, risk
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sensitive control and traditional Linear Quadratic Gaus-
sian (LQG) controller are discussed in (Sain (1965)). Al-
though LQG controllers have been applied to quadcopter
trajectory tracking (Fessi and Bouallegue (2016); Fessi
and Bouallègue (2019)) which incorporate noise into the
formulation, it does not optimize cost in terms of variance,
hence cannot reduce the variance of the tracking error
efficiently. The objective of variance reduction is to address
robustness and mitigate fluctuation in the trajectory due
to wind disturbances.

The main contribution of this paper includes 1) we in-
troduce risk sensitive control into the quadcopter control
paradigm. We implement both infinite and finite horizon
MCV controller to track desired trajectory during hover
and forward flight; 2) we adopt Large-Eddy Simulations
to obtain high-fidelity Atmospheric Boundary Layer wind
solutions and extract stochastic information to incorporate
into the stochastic model and the optimal controller. We
simulate hover and straight line trajectories with the LES
wind data to examine the effectiveness of the controller.
In each case, we compare the MCV controller with an
LQR controller and find that the MCV controller produces
reduced turbulent effects and tracking error. The purpose
of comparing the MCV with an LQR is to demonstrate the
effect of optimizing the higher order information specifi-
cally in the presence of disturbance. If the variance is not
optimized, MCV will be simplified into an LQR.

The rest of the paper is structured as follows. Section
2 discusses the mathematical models of the wind and
the quadcopter dynamics used for controller designs. In
Section 3 we present our controller design. We discuss the
simulation results in Section 4. Future work is summarized
in Section 5.

2. MATHEMATICAL MODEL

2.1 Modeling Atmospheric Wind Effects

For control designs, we model a wind velocity in the
inertial frame, vw ∈ IR3, as the summation of a mean
component (v̄w) and a stochastic component (ṽw)

vw = v̄w + ṽw. (1)

Formulation of the turbulence flow as a combination
of mean velocity component and an intensity or vari-
ance component is present in the engineering applica-
tion (Khodayi-mehr and Zavlanos (2018)). Stochastic for-
mulations of ṽw like Von Karman (1948) and its vari-
ants are majorly dependent on canonical spectral energy
function for incorporating disturbances or gusts in the
wind field. To simplify the formulation, we model ṽw as
a zero-mean Gaussian distribution noise. For quadcopter
operations with limited range and duration, the wind is
assumed to be spatially-temporally homogeneous, which
means that v̄w and the statistics of ṽw are independent of
time and location.

We note that in reality, Atmospheric Boundary Layers are
characterised by more complex highly coherent turbulent
structures. Hence, using stochastic models might lead
to significant differences between realistic and predicted
wind field conditions. Therefore, we adopt Large-Eddy
Simulations (LES) in our simulations to generate high-
fidelity solutions that accurately capture the unsteady

dynamics at various scales for a realistic wind field. We
use this LES data to validate our controllers that assume
a Gaussian distribution on the turbulence ṽw. Details of
the LES data can be found in Section 4.1.

2.2 Quadcopter Dynamic Model under Wind Disturbance

We consider a quadcopter aerial vehicle as a single rigid-
body with four identical rotors. Let p ∈ IR3 be its inertial
position, q = [qw, qx, qy, qz]

T ∈ IR4 the unit quaternion
representing its orientation in the inertial frame, and v ∈
IR3 the inertial velocity. Considering the quadrotor under
wind disturbance, the system dynamics for the quadcopter
is given by

ṗ = v + vw (2)

q̇ =
1

2
q ⊗

[
0
ω

]
(3)

v̇ = g +
1

m
q � fc −

1

m
fD (4)

ω̇ = J−1 · τ − J−1[ω × (J ·ω)] (5)

where � and ⊗ are the quaternion rotation and multipli-
cation, respectively, vw ∈ IR3 is the wind velocity in the
inertial frame as given in (1), g = [0; 0;−g]T represents
the gravitational acceleration, fD ∈ IR3 is the drag force
on the quadcopter in the inertial frame, m is the mass
and J is the moment of inertia of the quadcopter. Here,
ω ∈ IR3 is the angular rate represented in the body frame
and fc ∈ IR3 is the collective thrust in the body frame
given by fc = [0 , 0 , fc]

T . Let uh = [ωT , fc], which is
considered the system input for high-level control design.
Once uh is designed, a low-level controller for rotor speed
control can be used to track uh.

We assume that the drag force fD in the inertial frame is
of the following form

fD = RDvB ||vB || = RDRT v||RT v|| = ||v||RDRT v (6)

where R ∈ SO(3) is the orientation matrix represented
by q, vB = RT v is the relative air velocity in the body
frame and D is the drag coefficient matrix expressed as
D = diag[dx, dy, dz]. This drag model is adapted from a
standard 1D drag model fD = dv2 for some constant d.

3. MINIMUM COST VARIANCE CONTROLLER

3.1 Review of minimum cost variance control

A MCV controller uses a quadratic cost function and opti-
mizes the variance as well as the mean error. The optimal
solution is obtained by solving coupled algebraic Riccati
equation (CARE) for full-state feedback. The sufficient
conditions for the existence and uniqueness of solutions
for finite horizon and infinite horizon were established in
Sain et al. (1995) and Won et al. (2003), respectively.
Consider a generic linear stochastic dynamic system with
state x ∈ IRn and input u ∈ IRm given by

dx = (Ax+Bu)dt+Gdw. (7)

The system matrices A ∈ IRn×n, B ∈ IRn×m and G ∈
IRn×s are known, where n, m and s are the number of
state, input and noise, respectively. The stochastic noise
dw represents a stationary Wiener process and satisfies

E[(w(t1)− w(t2))(w(t1)− w(t2))T ] = W |t1 − t2| (8)
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where E[·] denotes the expectation function and W ∈
IRs×s is a positive definite matrix. A traditional quadratic
cost function has a form

J∞(x, u, tf ) =

∫ tf

0

(xTQx+ uTRu)dτ (9)

The objective of the MCV controller is to find optimal
policy such that it minimizes the weighted sum of mean
and variance of the cost function given by (9). Hence the
objective function is as follows:

j∞(x, u) = lim
tf→∞

E[J∞(x, u, tf )]

tf
+γ lim

tf→∞

V ar[J∞(x, u, tf )]

tf
(10)

where V ar[·] denotes the variance and γ is a positive
parameter that regulates the variance in the objective
minimization. The higher the value of γ, the smaller the
variance component in the optimal solution. Equation 9
and 10 are for the infinite horizon formulation.

For a finite horizon optimal control problem, we consider
the following stochastic differential equation,

dx(t) = (A(t)x(t) +B(t)u(t))dt+G(t)dw(t) (11)

where A(t) and B(t) are the linearized state matrices
about the nominal trajectory at time t, dw(t) represents a
stationary Wiener process same as (8) and G(t) ∈ IRn×s .
The cost and the objective equations are modified as

J(x, u, tf ) =

∫ tf

0

(xT (t)Q(t)x(t) + uT (t)R(t)u(t))dτ +Qf

(12)
where Qf is the terminal cost and

j(x, u) = E[J(x, u, tf )] + γV ar[J(x, u, tf )]. (13)

We utilize the following two lemmas to solve for the infinite
and finite horizon optimal controllers, respectively.

Lemma 1. (Won et al. (2003)) The optimal control gain
for the infinite horizon optimal control problem (7)–(10)
has the form

K = −R−1BT (M + γH) (14)

where γ > 0 and M and H satisfy the following CARE:

ATM +MA+Q−MBR−1BTM + γ2HBR−1BTH = 0
(15)

ATH +HA−MBR−1BTH −HBR−1BTM
− 2γHBR−1BTH + 4MGWGTM = 0. (16)

Lemma 2. (Sain (1965)) The optimal control gain for the
finite horizon control problem (11)–(13) has the form

K(t) = −R−1(t)BT (t)(M(t) + γH(t)) (17)

where γ > 0 and M(t) and H(t) satisfy

Ṁ(t) +AT (t)M(t) +M(t)A(t)

+Q(t)−M(t)B(t)R(t)−1B(t)TM(t)

+ γ2H(t)B(t)R−1(t)B(t)TH(t) = 0 (18)

Ḣ(t)+A(t)TH(t)+H(t)A(t)+4M(t)G(t)W (t)GT (t)M(t)

−M(t)B(t)R−1(t)B(t)TH(t)

−H(t)B(t)R−1(t)B(t)TM(t)

− 2γH(t)B(t)R−1(t)BT (t)H(t) = 0 (19)

with boundary condition M(tf ) = Qf and H(tf ) = 0.

Once the feedback gain matrix K (K(t)) is found in
Lemma 1 (Lemma 2), the controller of the form u =
un + K(x − xn) (u(t) = un(t) + K(t)(x(t) − xn(t))) is
implemented in (7), where xn and un are the reference
state and input, respectively.

3.2 Application to sUAS control

Let x = [pT , qT , vT ]T . To create a MCV controller we
linearize the quadrotor dynamics (2)–(4) in Section 2.2
to obtain a linearized system as in (7) and (11). The
linearized A and B matrices are given by

A =


0 0

∂

∂v
ṗ

0
∂

∂q
q̇ 0

0
∂

∂q
v̇
∂

∂v
v̇

 , B =


0 0
∂

∂ω
q̇ 0

0
∂

∂fc
v̇

 (20)

where 0 implies that the partial derivative of the associ-
ated matrix entries are zero. Because a unit quaternion in-
duces a constraint on the respective states so that ||q|| = 1,
we make use of a special quaternion qu = q · ||q||−1 as
described in Foehn and Scaramuzza (2018) and derive the
partial derivatives as

∂f(qu)

∂q
=
∂f(q)

∂qu
· ∂
∂q

(q · ||q||−1) (21)

where
∂

∂q
(q · ||q||−1) = (I4 − ||q||−2qqT )||q||−1. (22)

The partial derivatives of (20) are

∂

∂v
ṗ = I3 (23)

∂

∂q
q̇ =

1

2

 0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (I4 − ||q||−2qqT )||q||−1

(24)

∂

∂q
v̇ = 2fc

[
qy qz qw qx
−qz −qw qz qy
qw −qx −qy qz

]
(I4 − ||q||−2qqT )||q||−1

(25)

∂

∂v
v̇ = −RDRT (||v||I3 +

vvT

||v||
) (26)

∂

∂ω
q̇ =

1

2

−qx −qy −qzqw −qz −qy
qz qw qx
−qy qx qw

 (27)

∂

∂fc
v̇ =

 qwqy + qxqz
qyqz − qwqx

q2w − q2x − q2y + q2z

 . (28)

In this work, the 3D turbulent wind ṽw is considered the
stochastic noise. Therefore, we obtain G ∈ IR10×3 in the
linearized dynamics (7) from (1) and (2) as G = [I3 0]T .
The W matrix in (8) is chosen to be the covariance matrix
of ṽw. Note that the choice of G and W is not unique. We
may also choose W = I3 and set the first three diagonal
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elements in G as the standard deviation of the wind in each
direction. The mean wind v̄w is considered a deterministic
disturbance to the linearized system.

The linearized system is evaluated at the corresponding
reference trajectory and control (xn, un). In particular,
the reference for the quaternion q and the velocity v is
[1, 0, 0, 0]T and −v̄w + ṗn, respectively, where pn is the
reference trajectory for the state p. For pn, we consider
two scenarios; in hover we choose pn as the reference point
and in forward flight tracking we choose pn as the nominal
trajectory. We generate the reference control un by finding
a stable gain K (through LQR or MCV) at the first
linearization point and then setting un = u0 +K(x− xn),
where u0 = [0 0 0 mg]T . Note that the information of v̄w
is used for linearization while the statistics of ṽw is used in
G (or W ). The information of v̄w and statistics of ṽw may
be provided by measurements from available wind towers
or wind estimation algorithms onboard the quadcopter.

In the infinite horizon problem (for hovering control), the
solution for M andH in (14) can be obtained by iteratively
solving

(A+BKk)TMk +Mk(A+BKk)

+KT
k RKk +Q = 0 (29)

(A+BKk)THk +Hk(A+BKk)

+ 4MkGWGTMk = 0. (30)

We utilize the algorithm given in Won et al. (2003) to
find the optimal policy. In the finite horizon control (for
trajectory tracking), the solution involves solving (18)–
(19) backward in time and then calculating the time-
varying gain K(t) in (17) forward in time. To compute
the desired torque we utilize a feedback linearizing control
scheme

τ = J · P · (ωdes − ω) + ω × Jω, (31)

where P is a diagonal gain matrix and ωdes is the output of
the risk sensitive controller uh. We assume that the rotors
can track the required torque and thrust. We generate
the two controllers for the nonlinear quadcopter dynamics
in simulations and evaluated the performance in the next
section.

4. SIMULATIONS AND RESULT ANALYSIS

4.1 Large-Eddy Simulation for Wind Field

Governing Equations

For simplicity, dry adiabatic atmospheric conditions are
considered for the idealized simulations. Hence, we only
present the governing equations and methodology cor-
responding to these specific conditions. Cloud Model 1
(CM1) described in Bryan and Fritsch (2002) was em-
ployed for numerical simulation, integrating the governing
equations for u, v, w, π′, θ′, where π′ is the non-dimensional
pressure, θ′ is the potential temperature deviations from
the base state (represented by subscript “0”) which is
in hydrostatic balance and (u, v, w) represent the three-
dimensional (3D) wind velocity field in the inertial frame.
The ideal gas equation p = ρRT is used for the equation
of state.The governing equations are:

∂u

∂t
+ cpθp

∂π′

∂x
= adv(u) + fv + Tu +Nu (32)

∂v

∂t
+ cpθp

∂π′

∂y
= adv(v)− fu+ Tv +Nv (33)

∂w

∂t
+ cpθp

∂π′

∂z
= adv(w) +B + Tw +Nw (34)

∂θ′

∂t
= adv(θ) + Tθ +Nθ + Q̇θ (35)

∂π′

∂t
= adv(π)− R

cv
π

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ Q̇θ (36)

where ‘adv()’ represents the advection operator for a
generic variable α given as adv(α) = −u∂α∂x − v ∂α∂y −
w ∂α
∂z , where T, Q̇θ represent the tendencies from turbu-

lence and external tendencies to internal energy (radiative
cooling/heating). Furthermore, the terms N , f , and B
represent the Newtonian Relaxation parameter, Coriolis
parameter and buoyancy, respectively. The turbulence ten-
dencies in the equations could be expressed as (writing
in the Einstein notations using (i, j = 1, 2, 3) and (x1 =
x, x2 = y, x3 = z;u1 = u, u2 = v, u3 = w)),

Tu(i)
=

1

ρ

[
∂τij
∂xj

]
, Tθ = −1

ρ

[
∂τθi
∂xi

]
. (37)

The subgrid-stress terms are formulated as below:

τij ≡ ρu′iu′j = 2ρKmSij , τ θi ≡ ρu′iθ′ = −Khρ
∂θ

∂xi
(38)

where Sij is the strain tensor, Km is the viscosity, Kh

is the diffusivity, and Km,Kh are determined from the
type of subgrid closure used like TKE (Turbulence Kinetic
Energy) similar to Deardorff (1980) or Smagorinsky from
Smagorinsky (1963).

Numerical Simulation Setup

A simulation was setup for stable boundary layer case
Beare et al. (2006), with computational domain of 400
m cube and isotropic grid resolution of 3.125 m. Geo-
strophic wind was set as 8 ms−1 in the East-West direction
with a Coriolis parameter of 1.39 × 10−4 s−1 (73◦ N).
Surface cooling of 0.25 K h−1 was employed and potential
temperature profile was initialised as a mixed layer up
to 100m with a value of 265K and overlying inversion
strength of 0.01 K m−1. Turbulent kinetic energy (TKE)
closure was employed for Sub-Grid Scale terms and TKE
was initialised as 0.4(1− z/250)3 m2s−2 below a height of
250 m, where z represents the height. Periodic boundary
conditions on the sides, no-slip at the bottom and slip at
the top, were considered. The wind data was collected after
it reached to a quasi-equilibrium state(8-9hr). An example
of wind velocity magnitude is shown in the Fig 1.

4.2 Tracking with LES Wind

We incorporate LES turbulence wind to test and validate
the controller designs. For the drag coefficient D, we
use Allison et al. (2020)

D = min(1.1, (0.2 + 0.9 exp (−0.6||vw − ṗ|| − 2)))I3 (39)

where I3 is the identity matrix. For simplicity, we consider
m = 1 kg. For trajectory tracking, the initial conditions
are x0 = [0, 0, 0, 1, 0, 0, 0, 0.001, 0, 0]T and u0 =
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Fig. 1. LES wind velocity in x, y and z direction. Wind
in the x direction has the highest mean and variance
and the z direction has the lowest mean and variance.
This data is extracted at the position (1, 1, 8) meters.

[0, 0, 0, 10]T . Note that we start with at least one non-
zero entries of velocity v so that we do not get division by
zero error from drag component of (4) during linearization.
We extracted 10 minutes of LES data around our nominal
trajectory points. The mean wind velocity of the extracted
wind data is v̄w = [2.72, 1.752, − 0.006]T m/s.

We compare our results with a traditional LQR ar-
chitecture using the same dynamics described in Sec-
tion 2.2. We choose the cost such that the distur-
bance free trajectory matches the nominal trajectory.
The quadratic cost for every simulation is fixed at
Q = diag([10, 10, 10, 1, 1, 1, 1, 0.1, 0.1, 0.1]) and R =
diag([1, 5, 5, 0.1]). We set the final cost is set at Qf =
diag([20, 20, 20, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]), for the finite
horizon controller design. To compare the effect of the
tuning parameter γ, we simulate a hovering scenario at
the position (1, 1, 8) meters with multiple γ. We observe
that the maximum value γ = 1.25 significantly reduces the
variances in the trajectory as shown in Fig 2.
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Fig. 2. Change in trajectory variance in x, y, and z direc-
tions with γ. As the γ value increases, the variance
decreases.

We next employ the finite horizon MCV controller for tra-
jectory tracking problems. For the reference trajectories,
we choose a straight line trajectory generated from mini-
mum snap trajectories described in Mellinger and Kumar
(2011). Simulation results for the straight line reference
trajectory are illustrated through Figs 3–4, where we use
γ = 0.75. The trajectories of the LQR and the MCV
controllers along with the nominal trajectory are plotted
in Fig 3, which demonstrate the effectiveness of MCV over
LQR in reducing variance. We also conduct 50 Monte

Carlo simulations, where we incorporate different wind
data and calculate the variance at each reference point.
The trajectory with the MCV controller has smaller and
smoother variance (see Fig 4).
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Fig. 3. Comparison of straight line trajectory tracking
with the LQR and the MCV controllers. Black is
the nominal snap trajectory, blue corresponds to the
MCV trajectory and red corresponds to the LQR
trajectory. The deviation is smaller with the MCV
controller.

Overall we notice: 1) MCV reduces the variances as well
as the RMS error of the trajectory. Although there still
exists mean error, the variability is notably reduced. For
example, in the straight line trajectory, the error variance
in the x direction is lower than 0.08 m with the MCV
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Fig. 4. Comparison of error variance calculated at each
point over 50 Monte Carlo simulations between the
MCV and the LQR controllers for the straight line
trajectory tracking.
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Fig. 5. Comparison of input signals between the MCV and
the LQR controllers for the straight line trajectory
tracking. The MCV controller appears to have a faster
response than the LQR controller.
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where with the LQR the variance rises up to 0.245 m,
which is 3 times more than the MCV. In the y direction,
the MCV reduces the variance as much as 7 times than the
LQR (refer to Fig 4). 2) From the high level control signal
comparison in Fig. 5, we observe that the MCV controller
responds earlier than the LQR controller.

5. CONCLUSION

We design Minimum Cost Variance controllers for quadro-
tor control in a wind field. Our simulation results demon-
strate its effectiveness in reducing the tracking error and
variance in a turbulent wind field. We aim to implement
the controller in higher-fidelity quadrotor simulator plat-
forms, preferably in the ROS-Gazebo environment and
simulate with spatial-temporal wind data. We are also
exploring design methodologies to accommodate the non-
linearity in the dynamics into the controller.
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