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Abstract— We consider a nonlinear estimation problem
where a unicycle vehicle moves with unknown disturbances
generated from linear time-invariant systems. The vehicle
measures its position to estimate its state and disturbance
information simultaneously. We show that this system is
invariant under the action of a Lie group and design an
Invariant Extended Kalman Filter (IEKF). We propose a
first-order approximation of the noise covariance in the
invariant frame. Through Monte-Carlo simulations, we
demonstrate that the first-order approximation improves
the performance of the IEKF and that the IEKF yields
superior transient performance over the standard EKF.

I. INTRODUCTION

Estimation and filtering of nonlinear systems is an
important problem in research and in industry. There
are several filters capable of dealing with nonlinear
systems, such as the extended Kalman filter (EKF) [1],
unscented Kalman filter (UKF) [2] and particle filters
[3]. When applied to robotic applications, these filters
provide simple, ‘off-the-shelf’ solutions. However, they
do not take advantage of properties present in robotic
dynamics, such as symmetries. There has been much
interest lately in designing observers that can leverage
symmetries of certain nonlinear dynamics to improve es-
timation performance. These are known more generally
as symmetry preserving observers.

The theory behind symmetry preserving observers
is given in [4]. When the EKF equations are used
to compute the gain matrix of a symmetry preserving
observer, it is referred to as an invariant EKF (IEKF) [5].
More recently, the IEKF has gained attention as a tool
well suited for applications in localization of mobile
robots [6][7] and sensor fusion for navigation of un-
manned aerial vehicles (UAVs) [5][8]. Reference [9]
uses the IEKF in a visual inertial navigation system.
In [10] the authors show that an IEKF based SLAM
(simultaneous localization and mapping) algorithm has
better consistency and convergence properties over other
EKF based SLAM techniques. More recently, the au-
thors in [11] propose a matrix Lie group framework for
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the IEKF and show that it possesses guaranteed local
stability properties.

In this paper, we consider an estimation problem
for a planar vehicle modeled as a unicycle moving in
a dynamic flow field. We model the flow impact on
the vehicle as disturbances to its motion and assume
that the disturbances are the output of a linear time-
invariant system. This assumption holds, e.g., for small
unmanned aerial vehicles moving in unknown uniform
wind fields and for underwater vehicles moving subject
to sinusoidal wave disturbances. The vehicle employs its
location measurements to estimate its state (position and
heading) and disturbance information.

While a standard EKF is applicable to our estimation
problem, we construct an IEKF by identifying an in-
variance property of the system. The invariance property
allows us to transform the conventional estimation error
into an invariant coordinate and derive the IEKF under
this coordinate. Since the transformation also changes
noise characteristics, we propose to carefully charac-
terize the covariance of the transformed noise so that
the IEKF can operate at its full potential. In particular,
we improve the result in [11] and derive a first order
approximation for the covariance of the transformed
noise to better represent its statistics. Using Monte Carlo
simulations, we show that the introduction of the first
order approximation indeed improves the performance
of the IEKF, particularly for non-isotropic sensor noise,
and that the designed IEKF yields superior transient
performance over the EKF.

The contribution of this paper is three-fold. First,
we prove that unicycle kinematics subject to linear
disturbances are invariant with respect to a Lie group
action. Second, we design an IEKF that leverages this
invariance property. Third, we propose a transformation
of the filter covariance matrices that more accurately
represents uncertainties for the IEKF. Simulation results
demonstrate the advantages of the proposed IEKF.

The rest of the paper is organized as follows. In
Section II we formulate the problem. In Section III we
prove that the system is invariant and present the steps
for designing the IEKF. In particular, in Section III-B we
derive the rotated noise terms and summarize the IEKF
algorithm. In Section IV we provide simulation results
and analysis. Section V contains conclusions and future
work.
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II. PROBLEM FORMULATION

Consider a unicycle robot subject to velocity distur-
bances (dx, dy). The kinematic model of the robot is
given by

ẋ = v cos θ + dx

ẏ = v sin θ + dy (1)

θ̇ = ω,

where (x, y) is the position of the robot, θ is the heading,
v is the linear velocity and ω is the turning rate. We
assume that (dx, dy) are outputs from a linear system
given by

ḋ = Ad (2)[
dx
dy

]
=

[
C
D

]
d, (3)

where d ∈ Rm×1, A ∈ Rm×m and C,D ∈ R1×m.
The matrices A, C, and D are assumed known and
constant. For example, dx and dy can represent constant
and sinusoidal disturbances with known frequencies.

The robot is equipped with a positioning device, such
as a GPS or a suite of range and bearing sensors,
measuring its position (x, y). The position measurement
can be in a global frame or with respect to a known
landmark. In the latter case, without loss of generality,
we assume that the landmark is at the origin. Then (x, y)
represents the relative position between the robot and the
landmark. The measurement equation of the system is

Y =

[
x
y

]
. (4)

The system (1)–(4) models the kinematics of a dif-
ferential drive mobile vehicle, underwater vehicle mo-
tion [12], and the simplified kinematics of a fixed wing
aerial vehicle in planar flight [13]. Furthermore, some
applications include estimating the states of these types
of vehicles for the purpose of localization [14], trajectory
tracking [15], or flow field reconstruction [16], [17].

The state in (1)–(4) can be estimated with a standard
EKF. However, the EKF does not take into account
symmetry properties present in the dynamics. Our ob-
jective is to design a novel nonlinear filter that leverages
symmetries inherent in (1) to estimate the vehicle state
(x, y, θ) and the disturbances (d) using the measure-
ments in (4).

III. IEKF DESIGN

We augment (1) with the disturbance dynamics (2)–
(3) and obtain

ẋ = v cos θ + Cd

ẏ = v sin θ +Dd

θ̇ = ω (5)

ḋ = Ad.

Motivated by [4], we first show that the system in
(5) is invariant with respect to a particular Lie group
action. We then derive an IEKF that takes advantage
of this invariance property to achieve better estimation
performance than the standard EKF.

We now establish the invariance property of (5)
with respect to the group of translations and rotations
in two dimensions, special Euclidean or SE(2). Let
G ∈ SE(2). Any element of G can be represented
by (xg, yg, θg). Let X = [x, y, θ, d>]> and define a
transformation as

ϕg(X) =


x cos θg − y sin θg + xg
x sin θg + y cos θg + yg

θ + θg
d

 . (6)

Let U = (v, ω, C,D,A) and define a transformation of
U as

ψg(U) =


v
ω

C cos θg −D sin θg
C sin θg +D cos θg

A

 . (7)

Proposition 1. The system in (5) is invariant with
respect to G, under the transformations in (6) and (7).
�

Proof. To show that (5) is invariant with respect to G,
we use the invariance condition [18, Definition 2]

f(ϕg(X), ψg(U)) =
v cos(θ + θg) + [C cos θg −D sin θg]d
v sin(θ + θg) + [C sin θg +D cos θg]d

ω
Ad

 ,
which equals

∂

∂X
ϕg(X) · f(X,U) =

cos θg − sin θg 0 0
sin θg cos θg 0 0

0 0 1 0
0 0 0 Im



v cos θ + Cd
v sin θ +Dd

ω
Ad



=


v cos(θ + θg) + [C cos θg −D sin θg]d
v sin(θ + θg) + [C sin θg +D cos θg]d

ω
Ad

 ,
where Im is the identity matrix of dimension m. Thus
(5) is invariant under the transformations in (6) and (7).

Similarly, according to [18, Definition 3], the mea-
surement equation (4) is G-equivariant with the trans-
formation %g defined as

%g(x, y) =

(
x cos θg − y sin θg + xg
x sin θg + y cos θg + yg

)
. (8)

�
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A. Deriving the Error Dynamics of the IEKF

Following the methods outlined in [4], ϕg(X) can
be split into ϕag(X) and ϕbg(X) such that ϕag(X) is
invertible with respect to g. Setting ϕag(X) = 0 gives
the normalization equation

xgyg
θg

 = γ

xy
θ

 =

−x cos θ − y sin θ
x sin θ − y cos θ

−θ

 . (9)

The invariants are

I(X̂,U) =
(
ϕb
γ(X̂)

(
X̂
)
, ψγ(X̂) (U)

)
=(

d̂, v, ω, C cos θ̂ +D sin θ̂,−C sin θ̂ +D cos θ̂, A
)
,

(10)

where X̂ is the estimate of X . The invariant output error
is given by

E = %g(x̂, ŷ)− %g(x, y)

=

(
x̂ cos θg − ŷ sin θg − x cos θg + y sin θg
x̂ sin θg + ŷ cos θg − x sin θg − y cos θg

)
= T (θ̂)

[
x̂− x
ŷ − y

]
, (11)

where

T (θ̂) =

[
cos θ̂ sin θ̂

− sin θ̂ cos θ̂

]
. (12)

The invariant frame is given by

W (θ̂) =

T (θ̂)> 0 0
0 1 0
0 0 Im

 . (13)

Thus, the observer equation has the following form

˙̂
X = f(X̂) +W (θ̂) · L · T (θ̂)

(
Y − Ŷ

)
, (14)

where L is a gain matrix to be designed. For notation
convenience, we let

L =


L11 L12

L21 L22

L31 L32

Ld1 Ld2

 , (15)

where Lij are scalars for i = 1, 2, 3, j = 1, 2, and
Ld1, Ld2 ∈ Rm×1. The invariant state error is given by

σ(X̂,X) = ϕγ(X̂)(X)− ϕγ(X̂)(X̂)

=


x cos θ̂ + y sin θ̂ − x̂ cos θ̂ − ŷ sin θ̂

−x sin θ̂ + y cos θ̂ + x̂ sin θ̂ − ŷ cos θ̂

θ − θ̂
d− d̂



= W (θ̂)>


x− x̂
y − ŷ
θ − θ̂
d− d̂

 . (16)

To find the invariant error dynamics, we differentiate
(16) with respect to time and obtain

σ̇ = W (θ̂)>



v cos θ + Cd− v cos θ̂ − Cd̂
v sin θ +Dd− v sin θ̂ −Dd̂

0

Ad−Ad̂



−W (θ̂)L

[
cos θ̂ sin θ̂

− sin θ̂ cos θ̂

] [
x− x̂
y − ŷ

]+


˙̂
θσy

− ˙̂
θσx
0
0

 ,
(17)

which yields

σ̇x = v (cosσθ − 1) + ωσy +
(
C cos θ̂ +D sin θ̂

)
σd

+ L11σx + L12σy + L31σxσy + L32σ
2
y

σ̇y = v sinσθ − ωσx +
(
−C sin θ̂ +D cos θ̂

)
σd

+ L21σx + L22σy − L31σ
2
x − L32σxσy (18)

σ̇θ = L31σx + L32σy

σ̇d = Aσd + Ld1σx + Ld2σy.

Note that the invariant error dynamics (18) depend only
on σ and the invariants I(X̂,U) in (10).

Linearizing (18) around σ = 0 yields the state matrix
needed for implementing the IEKF at time step k:

Ak =


0 ωk 0 C cos θ̂k +D sin θ̂k
−ωk 0 vk −C sin θ̂k +D cos θ̂k

0 0 0 0
0 0 0 A

 .
(19)

B. The IEKF Algorithm

To derive the IEKF algorithm, we note that the invari-
ant state error (16) rotates the conventional estimation
error to another frame. Thus, the initial state covari-
ance, process, and measurement noise matrices, P , Q
and R, respectively, can no longer accurately represent
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the uncertainty in the transformed system. We propose
that these matrices be transformed to ensure the IEKF
operates at its full potential for different cases of sensor
noise and initial error. We next discuss how to rotate the
covariance to the invariant error frame.

For the system in (5), the invariant state error and
invariant output error are defined as:

σ = W (θ̂)>(X − X̂), E = T (θ̂)(Ŷ − Y ), (20)

respectively, where W (θ̂)> and T (θ̂) are given in (13)
and (12), respectively. We now propose a transformation
rule for the measurement noise matrix R. We use the
notation N (µ,Σ) to denote the Gaussian distribution
with mean µ and covariance Σ.

Proposition 2. Let ε = Ŷ −Y ∼ N (0, R). Let θ̂ be the
estimate of θ such that θ̂ − θ ∼ N (0, qθ). Then

cov(T (θ̂)ε) ≈ T (θ)RT (θ)> + qθ
∂T

∂θ
R
∂T

∂θ

>
(21)

for a sufficiently small qθ. �

Proposition 2 is proved by expanding T (θ̂)ε up to its
first order term and then computing the covariance. The
proof of Proposition 2 is omitted due to space.

Similarly, let the initial state error at time t = 0 and
the process noise be defined by η0 = X̂0 − X0 ∼
N (0, P0) and ν ∼ N (0, Q), respectively. Then the
corresponding transformations for P0 and Q are given
by

cov(W (θ̂)>η0) ≈W (θ0)>P0W (θ0) + qθ
∂W

∂θ

>
P0
∂W

∂θ
(22)

cov(W (θ̂)>ν) ≈W (θ)>QW (θ) + qθ
∂W

∂θ

>
Q
∂W

∂θ
.

(23)

In implementation, we replace θ with its estimate θ̂,
assuming that they are close. We set qθ = P θk because it
corresponds to the θ component of the state covariance
matrix, P , for each time step k.

Note that [11] uses only the first term in (21) in their
examples (Section IV-B-3), which corresponds to the
zeroth-order approximation of the covariance. Through
simulations in Section IV, we demonstrate the significant
improvement due to the second term when the measure-
ment noise is non-isotropic.

Having found the rotated covariances, we present the
IEKF algorithm in Algorithm 1. Algorithm 1 follows
the standard steps of an EKF except lines 2, 7, and
9 where the covariance matrices are modified, line 5
where the linearized Ak (19) is computed based on the
invariant error dynamics (18), and line 11 where the
update equation is modified with transformations of the
innovation.

Algorithm 1 The IEKF

1: Initialize X0, P0 in the original coordinates.
2: P = W (θ0)>P0W (θ0) + P θ0

∂W
∂θ

>
P0

∂W
∂θ

3: for k = 1 to n do
4: X̂−k = f(X̂+

k−1,U)
5: Compute Ak from (19)
6: Compute Hk from (4)
7: Qrot = W (θ̂)>QW (θ̂) + P θk−1

∂W
∂θ̂

>
Q∂W

∂θ̂
8: P−k = AkP

+
k−1A

>
k +Qrot

9: Rrot = T (θ̂)RT (θ̂)> + P θk
∂T
∂θ̂
R∂T>

∂θ̂

10: Lk = P−k H
>
k

(
HkP

−
k H

>
k +Rrot

)−1
11: X̂+

k = X̂−k +W (θ̂)LkT (θ̂)(Y − h(X̂−k ,U))
12: P+

k = (I − LkHk)P−k
13: end for

IV. SIMULATIONS

In this section we compare the performance between
the EKF and the IEKF. We conduct Monte Carlo
simulations of 100 trials. Each simulation represents a
robot maneuvering for 6 minutes, with measurements
collected at a rate of 10 Hz. We have found that the
designed IEKF is most effective when the disturbances
are given by a system of the following form:

A =

[
Ā 0
0 Ā

]
(24)

C =
[
C̄ 0

]
(25)

D =
[
0 C̄

]
. (26)

Note that (24)–(26) decouples the disturbances dx and
dy and assumes that dx and dy share the same generating
model. In the simulations, we choose

Ā =

[
0 1
−1 0

]
(27)

C̄ =
[
1 2

]
. (28)

The robot subject to the disturbance in (24)–(28) expe-
riences sustained oscillations at a frequency of 1 rad/s.
The following parameters are used in all the simulations:

v = 13 m/s
ω = 4 deg/s
µ0 = 0n×1

P0 = diag(102, 102, (π/2)2, 22, 22, 22, 22)

X0 ∼ N (µ0, P0)

X̂0 = µ0.

The noise corrupting the measurements satisfies a zero
mean, Gaussian distribution with covariance

R =

[
32 8
8 32

]
. (29)
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The covariance of the process noise ν in the model is

Q =

10−6 · · · 0
...

. . .
...

0 · · · 10−6

 . (30)

Our metric of performance is the root mean square
error (RMSE), calculated at every time step. Let xi(t)
be the ith element of the state X at time t. Then the
RMSE of the ith state at each time t is given by

RMSEi(t) =

√∑n
j=1 (xi(t)− x̂i(t))2

n
(31)

where n is the number of trials. Since all the states
follow similar trends from scenario to scenario, for the
sake of brevity we will only include RMSE graphs for
x, θ, and d1.

A. Effect of Transformed Noises

We demonstrate the effect of different rotated noise
terms on the performance of the IEKF. In the simulation
the IEKF is run using 3 different approaches to handling
the covariance matrices. The first approach, denoted as
‘0 term’ in Figure 1, does not transform the P , Q, and R
matrices, i.e., in Algorithm 1, P = P0, Qrot = Q, and
Rrot = R. The second approach, referred to as ‘1 term’,
includes only the first term on the right side of (21)–
(23), excluding the first derivative terms. This ‘1 term’
approach corresponds to noise covariance used in [11,
Section IV-B-3]. Lastly, ‘both terms’ refers to the case
when the transformations in (21)–(23) are used. From
Figure 1 we see that using both terms from equations
(21)–(23) results in the best transient performance and
fastest convergence rate for estimating x, θ, and d1. The
rest of the states all have similar trends.

Figure 2 shows the same comparison for the case
when the measurement noise has an isotropic distri-
bution, i.e., zero mean with the off diagonal terms of
the covariance in (29) set to zero. From Figure 2, we
see no contribution due to including the first term of
(21)–(23) and little contribution when the second terms
are included. This is because T (θ̂) (12) used in (21) is
an element of the special orthogonal group SO(2) and
transformations by this group leave matrices of the form
described unchanged. However, the rotated covariance
terms do not degrade the performance in the isotropic
case, either. Since using both rotation terms results in
the best performance, this approach (‘both terms’) will
be used next, when comparing the performance of the
IEKF with that of the EKF.

0 20 40 60 80
0
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10

15

0 10 20 30 40 50
0

0.5

1

1.5

0 20 40 60 80
0

1

2

3

4

5

Fig. 1: Effects of different noise covariance rotation
terms for the IEKF subjected to the non-isotropic noise
whose covariance is given in (29). ‘0 term’ refers to
no transformation of the P , Q, or R matrices. ‘1 term’
refers to using just the first terms on the right side of
(21)–(23). ‘Both terms’ refers to using (21)–(23). Top:
RMSE of x estimate. Middle: RMSE of θ estimate.
Bottom: RMSE of d1 estimate.

0 10 20 30 40 50 60
0
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1

1.5
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Fig. 2: Effects of different noise covariance rotation
terms for the IEKF. The measurement noise is made
isotropic by setting the off diagonal terms of the covari-
ance in (29) to zero.
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B. EKF/IEKF Comparison

We now compare the performance of x, θ, and d1
estimation between the EKF and the IEKF. Figure 3
shows that the IEKF yields significantly better estima-
tion accuracy than the EKF during the transient stage.
Unlike the EKF, which has large transient oscillations
and does not converge until around 150 seconds of
simulation time, the error for the IEKF decreases rapidly
and converges to the lower bound within 40 seconds.

0 50 100 150 200
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20

30

40

0 50 100 150 200
10-3

10-2

10-1

100

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 3: Comparisons of RMSE of estimates versus truth
for the EKF and IEKF. Top: RMSE comparison of
x estimate. Middle: RMSE comparison of θ estimate.
Bottom: RMSE comparison of d1 estimate.

V. CONCLUSION

In this paper we prove that the classic unicycle
kinematics, when augmented with disturbances from a
linear system, are invariant with respect to SE(2). We
take advantage of this invariance property to design
an Invariant-EKF that yields better estimation perfor-
mance than the standard EKF. We propose the first

order approximation of the filtering covariance matrices
and show that this approximation improves the perfor-
mance of the IEKF in the presence of non-isotropic
measurement noise. Future work includes experimental
validation of the designed filter for a small UAV in
windy environments.
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