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We investigate the modes of deformation of an initially spherical bubble immersed in
a homogeneous and isotropic turbulent background flow. We perform direct numerical
simulations of the two-phase incompressible Navier–Stokes equations, considering a
low-density bubble in the high-density turbulent flow at various Weber numbers (the
ratio of turbulent and surface tension forces) using the air–water density ratio. We
discuss a theoretical framework for the bubble deformation in a turbulent flow using a
spherical harmonic decomposition. We propose, for each mode of bubble deformation,
a forcing term given by the statistics of velocity and pressure fluctuations, evaluated
on a sphere of the same radius. This approach formally relates the bubble deformation
and the background turbulent velocity fluctuations, in the limit of small deformations.
The growth of the total surface deformation and of each individual mode is computed
from the direct numerical simulations using an appropriate Voronoi decomposition of the
bubble surface. We show that two successive temporal regimes occur: the first regime
corresponds to deformations driven only by inertial forces, with the interface deformation
growing linearly in time, in agreement with the model predictions, whereas the second
regime results from a balance between inertial forces and surface tension. The transition
time between the two regimes is given by the period of the first Rayleigh mode of bubble
oscillation. We discuss how our approach can be used to relate the bubble lifetime to the
turbulence statistics and eventually show that at high Weber numbers, bubble lifetime can
be deduced from the statistics of turbulent fluctuations at the bubble scale.
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1. Introduction

The interaction of turbulent flow with a free surface occurs in numerous physical systems
such as ocean waves forced by the turbulent wind (Phillips 1957; Perrard et al. 2019), river
surface patterns driven by underwater turbulence (Peregrine 1976; Brocchini & Peregrine
2001) and drops and bubbles in turbulent flow (Balachandar & Eaton 2010; Elghobashi
2019; Mathai, Lohse & Sun 2020).
Deformation and break-up of bubbles and droplets in a turbulent flow control exchanges

of heat, mass and momentum in numerous natural and engineering processes, for example,
in bubble-mediated gas exchange at the ocean–atmosphere surface (Deike & Melville
2018; Reichl & Deike 2020), chemical reactors (Risso 2018), the fall of rain drops
(Villermaux & Bossa 2009), the evaporation of sea spray in a turbulent boundary layer
(Veron 2015), dynamics of water droplets in clouds (Balachandar & Eaton 2010) and
industrial liquid atomization and fragmentation (Eggers & Villermaux 2008).
The dynamics of a single bubble evolving freely in low-viscosity liquid at rest has been

extensively studied, with analytical and experimental results describing bubble oscillations
(Miller & Scriven 1968; Prosperetti 1980), rise velocity (Moore 1965; Maxworthy et al.
1996) and path instability (Magnaudet & Eames 2000; Ern et al. 2012). The rise dynamics
is altered once bubbles are close enough to each other and can interact through their wakes
(Harper 1970; Yuan & Prosperetti 1994), a process that leads to collective effects and
bubble-induced turbulence dynamics (Lance & Bataille 1991; Risso 2018).
The deformation dynamics and potential break-up of a bubble depend primarily on

the ability of the surrounding fluid to deform the bubble against surface tension forces.
This defines the Weber number, comparing inertial forces generated by the turbulent
carrier flow and the capillary cohesive forces. Considering the velocity fluctuation at
the bubble diameter scale d0, formalized by the longitudinal velocity increment δu(d0) =
uL(r, t) − uL(r + d0, t), where uL is the velocity component along the direction of d0, the
turbulent Weber number is defined asWe = ρ�〈δu(d0)2〉d0/γ (Hinze 1955; Risso & Fabre
1998), with ρ� the density of water, γ the air–water surface tension and 〈〉 the average
over the flow configurations. In a homogeneous and isotropic turbulent flow, the velocity
fluctuations at the bubble scale δu(d0)2 can be related to the mean dissipation rate of
energy ε using Kolmogorov (1941) theory, yielding 〈δu(d0)2〉 = C(εd0)2/3 for d0 in the
inertial range. Experimental studies have observedC ∈ [2, 2.2] depending on the Reynolds
number (Pope 2000; Cowen & Variano 2008). We chose C = 2 for consistency with Risso
& Fabre (1998), and the Weber number eventually reads as

We = 2ρ�ε
2/3d5/30
γ

(1.1)

for a bubble of diameter d0 immersed in a homogeneous and isotropic turbulent flow.
Experimental studies of bubble dynamics in turbulence have identified a critical Weber
number Wec of order unity, above which the occurrence of break-up becomes statistically
dominant. The value of Wec reported from laboratory experiments varies among authors
in the range [1,5], corresponding to variation in experimental conditions, which introduces
other flow parameters such as large-scale shear or spatial variations in the dissipation rate
(Martinez-Bazan, Montanes & Lasheras 1999; Andersson & Andersson 2006; Ravelet,
Colin & Risso 2011; Vejražka, Zedníková & Stanovskỳ 2018). Note also that the critical
Weber number is defined statistically, and can be influenced by the temporal and spatial
windows of observation of the bubbles. In this paper we consider Wec = 3, in accordance
with our numerical dataset, obtained from an ensemble of simulations. Two mechanisms
driving the deformation and break-up have been discussed (Martinez-Bazan et al. 1999;
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Bubble deformation by a turbulent background

Andersson & Andersson 2006; Ravelet et al. 2011; Vejražka et al. 2018), either the direct
strong action of an eddy at the scale of the bubble leading to large deformation and
break-up, or a resonance mechanism between deformation caused by weaker eddies and
oscillations of the bubble (Risso & Fabre 1998). Experimental studies have identified an
oscillatory response of bubbles in turbulence associated to the second eigenmode (Risso
& Fabre 1998; Ravelet et al. 2011). Such an oscillatory response of millimetric bubbles,
associated with surface tension forces, is characteristic of the large deformation observed
prior to break-up, and corresponds to a much lower frequency than the acoustic mode of
deformation, characterized by the Minnaert frequency (Minnaert 1933; Deane & Stokes
2002).
In such configurations the gas–liquid interface is surrounded by a stochastic turbulent

flow, characterized by perturbations of various strengths at various scales. In this paper we
discuss a theoretical framework of bubble oscillations to describe the temporal evolution of
the bubble interface deformation while immersed in a turbulent background flow. To do so,
we consider linearized deformations and we neglect any feedback of the interface on the
statistics of the turbulent background flow. Our framework has two main inspirations. On
one hand, it extends the spherical harmonic decomposition of bubble deformation (Miller
& Scriven 1968; Prosperetti 1980) to the presence of external forcing. On the other hand,
it is analogous to a liquid–gas interface interpreted as a collection of harmonic oscillators
which are forced by a turbulent background flow (Risso & Fabre 1998; Lalanne, Masbernat
& Risso 2019). This is similar to the case of wind wave generation by pressure fluctuations
in a turbulent boundary layer, as proposed by Perrard et al. (2019) and built on earlier
work by Phillips (1957). However, as we will see, the solutions describing the growth of
the bubble interface deformation lie in a different dynamical regime, in which a large
separation of time scales between stochastic growth and saturation is not fulfilled, in part
because the turbulent forcing occurs in the dense liquid, imposing a rapid response from
the gas phase, contrary to forcing in the turbulent air of much weaker inertia inducing
deformation at the surface of the dense liquid phase.
We aim to estimate the turbulent excitation in terms of pressure and velocity statistics

evaluated on the bubble surface. The utility of the present theoretical framework hence
lies on the ability to test numerically the relationship between surface deformation and
turbulent background flow statistics.
We discuss an equation linking the growth of the bubble deformation decomposed in

spherical harmonics to the turbulence statistics. Doing so, we identify different regimes.
At short time, for t � t2, tc, where t2 is the capillary time describing the oscillatory
response of the bubble and tc is the eddy turnover time at the scale of the bubble, the
bubble response is independent of surface tension (Weber number) and the total bubble
deformation ζΩ follows a linear scaling ζΩ ∼ t. The amplitudes of the spherical harmonics
coefficients also follow a linear growth in time, while the response is dominated by the
modes 2 of oscillation. At an intermediate time scale t2 < t < tc, bubble deformations
are described by a sublinear regime, where the transition time is a function of surface
tension (Weber number). The model is evaluated by direct numerical simulations of
bubble deformation and break-up in a turbulent flow, resolving the full two-phase air–water
Navier–Stokes equations. We compute the bubble deformation, as well as the evolution of
the various dynamical modes of deformation. We observe very good agreement between
the simulations and the model and observe the different regimes discussed theoretically.
Finally, at long time, the bubble deformation either saturates or the bubble breaks,
both regimes not being described by our linear model but captured in the simulations.
We eventually link the bubble deformation growth to the statistical properties of the
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Figure 1. Bubble deformation in a turbulent flow: sketch and definitions.

velocity increments. Doing so, we provide an estimate of the bubble lifetime statistics,
which is parametrized by the Reynolds number and Weber number.
The paper is organized as follows. In § 2 we present the theory, while in § 3 we

present the simulations and comparison with the theoretical prediction. Conclusions and
discussions are presented in § 4.

2. Bubble deformation in a turbulent flow

2.1. Bubble oscillation in a fluid at rest
We consider an incompressible, initially spherical gas bubble of radius R0 = d0/2, density
ρg and viscosity μg, immersed in a liquid at rest of liquid density ρ�, viscosity μl and
surface tension between the gas and the liquid phase γ . The origin of space is set at the
centre of mass of the bubble.
The chosen frame of reference is then non-inertial. Note that we do not study here the

motion of the centre of mass but aim at a description of the bubble deformation. Focusing
on the early stage, we limit our description to a bubble surface that can be parametrized
in spherical coordinates (r, θ, ϕ) by the single-valued distance R = (R0(t) + ζ(θ, ϕ, t))r̂
to the centre (figure 1). We aim for a phenomenological set of equations for the modes of
deformation of the bubble in the presence of a turbulent background flow, inspired by the
forced oscillator model from Risso & Fabre (1998) and Lalanne et al. (2019).
To decompose the bubble surface into a basis adapted to the spherical geometry, we

introduce the spherical harmonic functions H�,m(θ, ϕ),

H�,m(θ, ϕ) =
√

(2� + 1)(� − m)!
(� + m)!

Pm
� (cos θ) eimϕ, (2.1)

with � ∈ N and m ∈ [−�, �], and Pm
� is the associated Legendre polynomial. The real form

Y�,m(θ, ϕ) of the spherical harmonics reads as

Ym
� =

⎧⎪⎨
⎪⎩

√
2(−1)mIm(H−m

� ) if m < 0,
H0

� if m = 0,√
2(−1)mRe(Hm

� ) if m > 0.
(2.2)
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Bubble deformation by a turbulent background

The real spherical harmonics Ym
� verifies ∀� ∈ N, ∀m ∈ [−�, �], ∇2r−�Ym

� = 0 for r > 0.
In this basis, the expression of the bubble surface R(θ, ϕ, t) reads as

R(θ, ϕ, t) = R0(t) +
+∞∑
�=2

�∑
m=−�

a�,m(t)Ym
� (θ, ϕ), (2.3)

where R0(t) is the mean bubble radius. In the following, we neglect the radius variation
associated with gas compressibility and we assume that R0 is independent of time. In the
absence of any background flow, at the linear order in the deformation amplitude ζ/R0 and
small viscous dissipation in the bubble boundary layer, the coefficients a�,m are solutions
of a set of oscillator equations of the form (Prosperetti 1980)

ä�,m + 2β�ȧ�,m + (� − 1)(� + 1)(� + 2)ω2
0a�,m = 0, (2.4)

where · denotes the time derivative, ω0 =
√

γ /(R3
0ρ�) is the typical angular frequency

associated with bubble oscillation and β� is the damping coefficient of mode �.
The expression of β2 is summarized in Lalanne et al. (2019) for low viscosity, and
the general formula can be found in Miller & Scriven (1968). We introduce ω� =
ω0

√
(� − 1)(� + 1)(� + 2) the angular frequency associated to mode � and the associated

characteristic time t� = 1/ω� of mode �. We have, in particular, ω2 = 2
√
3ω0.

2.2. Bubble oscillation in a turbulent background flow
We consider that the bubble is immersed in a liquid animated by turbulent motion, with
a velocity u(r, t) and a pressure field p(r, t). In the general case, modelling the action of
the turbulent background flow on a bubble is particularly complex. A two-way coupling
between the velocity fluctuations near the bubble interface and the interface deformation
may take place. The turbulent flow deforms the bubble under the action of normal and
tangential stresses, and the turbulent flow statistics can be modified in the immediate
vicinity of the bubble interface. In order to construct a phenomenological model for the
modes of deformation of the bubble, we follow the approach of Risso & Fabre (1998)
and Lalanne et al. (2019), which considers a dynamical equation for the second mode of
deformation a2, assumed to be the main mode excited by the flow. The amplitude a2(t)
then represents the oscillation of the bubble between an oblate and a prolate shape.
We introduce two adaptations of the formulation of Risso & Fabre (1998) and

Lalanne et al. (2019). (i) We consider that the turbulent flow can excite other modes
(�,m) of deformation. The contribution of these higher-order modes (� > 2) could
be non-negligible for high Weber numbers (We � Wec). (ii) We aim to estimate the
turbulent excitation in terms of pressure and velocity statistics evaluated on a sphere of
the same radius, in the bulk of the turbulent flow. We perform a linear expansion in
the amplitude of the modes of deformation, and we neglect the effect of the interface
on the turbulent statistics in its immediate vicinity. The decoupling approach was first
motivated by the high-Weber-number case, in which capillary forces are small compared
with inertial forces. For a lower Weber number (We ≈ Wec), our approach is expected
to still hold at short time compared with the response time 1/ω�. We also consider a
large dissipative time compared with the bubble period of oscillation (ω�/β� � 1), such
that we neglect the viscous dissipation. For all these reasons, the following approach is
rather phenomenological and by no means exact. The validity of our approach is further
discussed by comparison with direct numerical simulations of a single bubble of initial
spherical shape deformed by a homogeneous and isotropic turbulent flow.
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At the linear order of deformation (a�,m/R0 � 1), we assume that the bubble surface can
still be described by a set of oscillatory equations, adding a forcing term that represents
the turbulent background flow

ä�,m + ω2
�a�,m = F�,m, (2.5)

where F�,m is a function of u(R, t), du/dt(R, t) and p(R, t), respectively, the velocity
field, the acceleration field and the pressure field evaluated at the surface of the bubble.
We neglect the shear contribution and, looking at the early-time dynamics, we neglect
viscous dissipation. To specify the function F�,m, we introduce the spherical harmonic
decomposition of ur(R0r̂, t) = u · r̂ and p(R0r̂, t) evaluated on a sphere of radius R0,

ur(R0r̂, t) =
+∞∑
�=2

�∑
m=−�

u�,m(t)Ym
� (θ, ϕ), (2.6)

p(R0r̂, t) = ρ�

+∞∑
�=2

�∑
m=−�

π�,m(t)Ym
� (θ, ϕ), (2.7)

where r̂ is the unit vector along r. We then approximate the fields u(R, t), du/dt(R, t) and
p(R, t) by their value on an undeformed bubble, whose interface position is R0r̂. Doing
so, we neglect the contribution of cross-terms of the type a�,mu�,m and terms of a�,m, u�,m,
π�,m of quadratic and higher order. In this limit, the coefficients of the spherical harmonic
decomposition of u̇r(R0r̂, t) become u̇�,m as R0r̂ is independent of time. We also neglect
the coupling between two different spherical harmonic modes (�,m) and (�′,m′) which
arises at least at the order a�,mu(�′,m′) or a�,ma(�′,m′). For a�,m/R0 � 1, we then assume
that F�,m is a linear function of u�,m, u̇�,m and π�,m, and we postulate the following form:

ä�,m + ω2
�a�,m = u̇�,m + C(�)

R0
π�,m. (2.8)

Here C is a function of �. The kinematic boundary conditions at t = 0 give R(θ, ϕ, 0) = R0

and Ṙ(θ, ϕ, 0) = ur(R0, θ, ϕ, 0), which gives the initial conditions for a�,m,

a�,m(0) = 0; and ȧ�,m(0) = u�,m(0). (2.9a,b)

2.3. Link with surface deformation
We seek for an estimate of the average global surface deformation. We introduce the root
mean squared ζΩ of the bubble interface from an integration over all solid angles,

ζ 2
Ω = 1

4π

∫∫
dΩζ 2. (2.10)

According to the orthogonality of spherical harmonics (1/4π)
∫∫

dΩYm
� Y

m′
�′ = δ�,�′δm,m′ ,

ζΩ can be expressed as

ζ 2
Ω(t) =

+∞∑
�=2

�∑
m=−�

a�,m(t)2. (2.11)

The surface deformation is then related to the solutions of (2.8). The coefficients a�,m
being stochastic variables, we look for their temporal behaviour as well as temporal
behaviour of their ensemble-averaged values 〈a2�,m〉.
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2.4. Controlling time scales
The solutions of (2.8) depend on the various time scales that are inherently associated
to a noise-excited oscillator. For a bubble evolving in a turbulent flow, previous studies
have clearly identified one controlling time scale, the natural bubble oscillation response
occurring at a capillary time scale (Risso & Fabre 1998; Ravelet et al. 2011). Another
relevant time scale lies in the turbulence correlation time of the fluctuations at the bubble
scale also discussed by several authors (Risso & Fabre 1998; Martinez-Bazan et al. 1999;
Ravelet et al. 2011). Depending on the Weber number, another time scale is eventually
given either by the bubble lifetime or the saturation time.
The modes � = 2 carry most of the surface energy as they correspond to the largest

available spatial scale. Therefore, the typical characteristic amplitude and time scales of
ζΩ are set by the modes � = 2 of oscillation. The first relevant time scale is the oscillator
reduced period t2 = 1/ω2 of the second mode � = 2 of oscillation, which has been proven
to dominate the deformation (Risso & Fabre 1998). On a time significantly shorter than
the reduced period ω2t < 1, the response will be purely inertial and independent of surface
tension (Risso & Fabre 1998).
The second characteristic time scale arises from the turbulence temporal correlations

τ�,m and τ̃ �,m of, respectively, the coefficients u�,m and π�,m of the spherical
decomposition of the velocity and pressure fluctuations. They can be defined from the
autocorrelation functions of velocity and pressure, respectively, i.e.

τ�,m = 1
〈u2�,m〉

∫ +∞

−∞
ds 〈u�,m(t) u�,m(t + s)〉. (2.12)

τ̃ �,m = 1
〈π2

�,m〉
∫ +∞

−∞
ds 〈π�,m(t)π�,m(t + s)〉. (2.13)

The estimate of τ�,m presents some difficulties, as there is no clear consensus on the
time scales in turbulence. The velocity fluctuations we consider here are neither associated
with the Eulerian frame of reference nor a local Lagrangian framework. To provide an
estimate of the time scale τ2,m of the dominant mode of deformation, we consider the
time scales tE and tL, respectively, of the Eulerian velocity increments and the Lagrangian
velocity increments at the bubble scale. The ratio tE/tL scales as (Reλ)1/2 from the random
sweeping hypothesis (Tennekes 1975), such that tE and tL can respectively be considered
as lower and upper bounds of the correlation time τ2,m. The frozen Taylor hypothesis
will henceforth be considered as valid for t < tE, and we estimate τ̃2,m from the eddy
turnover time at the bubble scale tc = ε−1/3d2/30 . The correlation times τ�,m and τ̃�,m of
the higher-order modes (� > 2) are expected to scale as �−2/3 whereas the capillary time
1/ω� scales as �−3/2. The criterion ω2τ2 < 1 therefore implies that ω�τ� < 1 for higher
values of �.
Figure 2 shows the ratio of the typical capillary time scales (t0 and t2) with the

eddy turnover time scale tc as a function of Weber number. Below the critical value
We < Wec with Wec = 3, we have t2 � tc, and this separation persists at moderate We
while being reduced. The crossover between these two time scales, t2 = tc, occurs at
higher Weber number, namely We = 192 (and ω2 = √

192/(tc
√
We)). For reference, we

provide typical time scales in table 1, corresponding to experimental conditions of bubbles
evolving in turbulent flow created from underwater turbulent jets (Risso & Fabre 1998;
Martinez-Bazan et al. 1999; Vejražka et al. 2018; Ruth et al. 2019). Note that these
experimental systems can present large variations in turbulence levels within the flow, and
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10–1 100 101

We

t/tc

102

t0 = 1/ω0
t2 = 1/ω2
tc

10–2

10–1

100

101

Figure 2. Ratio of characteristic bubble oscillation time scales with the turbulence time scale of the problem
as a function of the Weber number. The turbulence time scale is the eddy turnover time at the bubble scale,

tc = ε−1/3d2/30 , the capillary oscillation time is t0 = 1/ω0 = 1/
√

γ /(R3
0ρ�) and the time associated to mode 2

is t2 = 1/ω2 = 1/(2
√
3ω0). Symbols correspond to the direct numerical simulation cases in § 3.

Reference ε (m2 s−3) L (mm) d (mm) t2 (ms) tc (ms)

Ruth et al. (2019) 0.5–1 13 2–6 1–6 20–40
Risso & Fabre (1998) 0.1–2 21 4–16 2–40 50–140
Ravelet et al. (2011) 1 10 9 10 50
Martinez-Bazan et al. (1999) 3–100 48–115 3 2 5–35
Vejražka et al. (2018) 0.1–10 4–6 2–6 1–6 15–140
Masuk et al. (2019) 0.16 45–60 2–6 1–6 15–30

Table 1. Estimated experimental time scales and length scales for typical laboratory experiments of bubble
deformation and break-up in turbulence. All experiments are made with air bubbles in water. Dissipation
rate ε and bubble diameter d were directly provided by all authors. Estimates of the integral length scale
L were provided by most of the authors, we infer the values for Martinez-Bazan et al. (1999) using the
usual statistical properties of a turbulent jet (Hussein, Capp & George 1994). The oscillation time is given

by t2 = 1/2
√
3
√

γ /(R3
0ρ�) and the eddy turnover time at the bubble scale is given by tc = ε−1/3d2/30 .

significant mean shear. A complete discussion on the challenges of experimental systems
to study bubble deformation and break-up in homogeneous and isotropic turbulence can
be found in Masuk et al. (2019). The long-time evolution of bubble deformation depends
eventually on the bubble stability. The stability being dependent on the deformation, we
postpone the discussion on either the saturation or the break-up time to the end of the direct
numerical simulations section (§ 3). The following sections derive asymptotic solutions
associated to each temporal regimes.
We note that the compressible mode of deformation for a bubble or diameter 2R in a

infinite domain of water oscillates at the Minnaert frequency fM = 1/(2πR)(3Γ p0/ρ�)
1/2

(Minnaert 1933), where Γ is the polytropic coefficient and p0 the bubble pressure. When
considering millimetric air bubbles in water, the Minnaert frequency fM ranges from
[0.5, 10] kHz for sizes in the range [10, 0.5]mm (Deane & Stokes 2002). The acoustic
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Bubble deformation by a turbulent background

frequency fM can be compared with the Lamb oscillation frequency 1/t2 = ω2/(2π)

(Lamb 1995) which is driven by surface tension forces and characteristic of the large
deformation and break-up dynamics. For an air bubble in water of millimetric size, this
second mode of oscillation 1/t2 ranges between [0.025,1] kHz, so that the ratio fMt2 > 10
and air compressibility can be neglected when analysing large deformations leading to
break-up.

2.5. Early-time solution: linear regime
Starting from a spherical shape at t = 0, the first instants verify ω�t � 1 and t � tc. In
this limit we can consider u�,m and π�,m as independent of time, and neglect the surface
tension term. From (2.8) and its initial conditions, we get by double integration over time,

a�,m = u�,mt + C(�)

2R0
π�,mt2. (2.14)

The relative influence of each term will depend on the characteristic time scale
2R0u�,m/π�,m, of order tc as it also corresponds to a characteristic time scale of the
turbulence at the bubble scale R0. For t � tc, the pressure contribution is then negligible
and the dynamics of each mode a�,m reduce to a simple advection by the background flow.
Performing an ensemble-average operation yields

〈a2�,m〉 = 〈u2�,m〉t2. (2.15)

At short time (ω2t � 1, t � tc), the evolution of a�,m is then expected to be independent
of surface tension and pressure fluctuations, and this first linear growth regime should
hold for all Weber numbers. Note that this limit is similar to the frozen turbulence regime
identified for bubble pinch-off in turbulence, in which most of the pinching dynamics
occur on a fraction of the eddy turnover time at the scale of the neck (Ruth et al. 2019).
In both cases, the influence of the turbulent background flow reduces to the set of initial
conditions.
Later on, the linear growth regime is limited in time by either the bubble natural

oscillations at 1/ω2 or by the correlation time of the turbulent flow tc, depending on
the Weber number as shown in figure 2, or by viscous effects which are not investigated
here. For We � 1, when tc < t2, the linear regime occurs until t ≈ R0/u′

�,m ≈ tc, which
corresponds to ζΩ/R0 ≈ 1, a deformation amplitude sufficient to trigger bubble breaking.
Here tc then coincides with the bubble lifetime, and no later-time evolution is expected.

2.6. Forced oscillator regime
We consider We < 100, in which the linear growth is first limited by surface tension
(ω2tc > 1). For t < tc, we still consider that u�,m and π�,m are independent of time. We
have

ä�,m + ω2
�a�,m = u̇�,m + C(�)

R0
π�,m, (2.16)

ȧ�,m(0) = u�,m, (2.17)

which admits a solution of the form

a�,m = u�,m

ω�

sin(ω�t) + C(�)π�,m

R0ω
2
�

(1 − cos(ω�t)). (2.18)

920 A15-9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
09

 D
ec

 2
02

1 
at

 1
5:

16
:1

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

37
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.379


S. Perrard, A. Rivière, W. Mostert and L. Deike

The evolution of 〈a2�,m〉 at short time is given by

〈a2�,m〉 = 〈u2�,m〉t2 + C(�)〈π�,mu�,m〉
R0

t3 − 1
3
ω2

�〈u2�,m〉t4 + C(�)2〈π2
�,m〉

R2
0

t4

4
+ O(t5).

(2.19)

However, since the terms in 〈π�,mu�,m〉/R0 and 〈π2
�,m〉/R2

0 are respectively of order
〈u2�,m〉/tc and 〈u2�,m〉/t2c , their contribution can be neglected for t � tc. The first relevant
nonlinear term in the range 1/ω� < t < tc is then the term −1/3〈u2�,m〉t4, and the equation
for a�,m becomes

〈a2�,m〉 = 〈u2�,m〉t2 − 1
3ω

2
�〈u2�,m〉t4 + O(t5), (2.20)

which corresponds to a saturation of the linear growth by capillary forces on a time scale
1/ω�.

3. Direct numerical simulation of bubble deformation in a turbulent flow

3.1. Numerical methods: the Basilisk flow solver
We perform direct numerical simulations of the three-dimensional, incompressible
Navier–Stokes equations, either with a single phase (the turbulence precursor simulation)
or with two phases (air bubble and turbulent water) with surface tension, using the free
software Basilisk (http://basilisk.fr/) (Popinet 2009, 2018). We use a spatial adaptive octree
grid allowing us to save computational time while resolving the different length scales
of the problem and a momentum conserving scheme. The interface is reconstructed by
a sharp geometric volume of fluid method (Popinet 2009, 2018). The solver has been
extensively described in recent publications (Popinet 2015; Fuster & Popinet 2018; Popinet
2018; van Hooft et al. 2018; Mostert & Deike 2020), and its accuracy has been largely
validated on complex multiphase flow, including bubble dynamics (Cano-Lozano et al.
2016), bubble bursting (Deike et al. 2018; Lai, Eggers & Deike 2018; Berny et al. 2020)
and wave breaking (Deike, Melville & Popinet 2016; Mostert & Deike 2020; Mostert,
Popinet & Deike 2021). We do not consider the effect of gravity in this work. The turbulent
two-phase simulations of bubble deformation in turbulence are presented below.

3.2. Preparation: creation of the turbulence and insertion of the bubble
The turbulent flow is generated by adding to the Navier–Stokes equation a volumetric
forcing term locally proportional to the velocity field fu, following the approach of
Rosales & Meneveau (2005), previously implemented and provided as an example in the
Basilisk library (http://basilisk.fr/src/examples/isotropic.c). Rosales & Meneveau (2005)
showed that such forcing in every point of the real space leads to a well-characterized
homogeneous and isotropic turbulent flow with properties similar to those obtained with
a spectral code and forcing. Such an approach has also been used by Loisy & Naso (2017)
to study rising bubbles in a turbulent flow.
We consider a cubic box of size L with periodic boundary conditions on each side.

Adaptive mesh refinement is used on the velocity field, and the maximum level of
refinement N allows comparison with a fixed grid resolution having 2N grid points in
each direction. The turbulent flow is generated for increasing resolutions with N going
from 6 to 8, corresponding to an equivalent 643 to 2563 grid size on a fixed grid. This
resolution is modest but will be increased around the interface when we inject the bubble
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Figure 3. (a) Kinetic energy as a function of time in the precursor simulation for increasing numerical
resolution, respectively, level N = 6, 7 and 8. A statistically stationary state is reached after 15τ and numerical
convergence is reached for level N = 7, with a corresponding turbulent Reynolds number Reλ = 38. A bubble
will be immersed in this statistically stationary flow, using different initial times as initial conditions.
(b) Second-order structure function DLL and DNN in the longitudinal and transverse directions, respectively,
compensated by the homogeneous and isotropic turbulence scaling (rε)−2/3 and DLL = 3/4DNN . Kolmogorov
theory is superimposed in the red dashed line. (c) Visualization of a snapshot of the instantaneous radial
velocity component of the turbulent flow evaluated on a sphere of radius R/ηk = 32 that a bubble of
corresponding size will face.

in the flow, and is chosen to keep the computational cost reasonable for each simulation
as we aim to perform a large number of simulations to assess statistical properties of the
bubble deformation dynamics.
Figure 3(a) shows the time evolution of the kinetic energy in the precursor simulation,

K = (1/V)
∫∫∫ 1

2ρ�u(x, t)2 dV . After a short transient, injection and dissipation of energy
eventually balances on average and we obtain a statistically stationary, homogeneous
and isotropic turbulence. The statistically stationary state is reached after approximately
15 eddy turnover times at the integral scale τ = u′2/ε, where ε is the asymptotic
dissipation rate and u′ the asymptotic root mean squared velocity. The associated
Taylor Reynolds number is Reλ = (2K/3μ)

√
15μ/ε ≈ 38, which is a typical value for

current two-phase simulations of turbulent flow (Loisy & Naso 2017; Elghobashi 2019).
Convergence of the statistical properties of the flow with respect to numerical resolution
is achieved and is shown with simulations performed at lower maximum refinement. Note
that while the flow is statistically stationary and equivalent for the various resolutions,
because of the chaotic nature of the flow and the forcing, each realization presents
differences one from each other.
Figure 3(b) shows the statistical properties of the turbulent flow once the stationary state

is reached. We characterize the fluctuations using the second-order structure functions in
the longitudinal DLL(d) and in the transverse direction DNN(d), defined as

DLL(d) = 1
3

∑
i

〈(ui(r, t) − ui(r + dr̂i, t)
)2〉, (3.1)

DNN(d) = 1
6

∑
i /= j

〈(ui(r, t) − ui(r + dr̂j, t)
)2〉, (3.2)

for homogeneous and isotropic flows, with r̂i the unit vector along the i direction.
The transverse structure function is compensated by its scaling for a homogeneous and
isotropic flow (dε)2/3, and we indeed observe a plateau value close to C = 2 (Pope 2000).
The relation DLL = 3/4DNN is also verified by representing the compensated longitudinal
structure function 4/3DLL(d)(dε)−2/3. The inertial range is obviously quite limited due
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to the relatively coarse resolution, but the turbulent flow at the scale of the bubble to be
injected is reasonable, and the bubble radius lies within the inertial range. The quantity of
interest for the bubble deformation is the spherical velocity increments, which are defined
on a sphere of radius R by

δuS(R, θ, ϕ) = ũ(R, t) · r̂, (3.3)

ũ(R) = u − 1
4π

∫∫
dΩu(R, θ, ϕ, t). (3.4)

From homogeneity and isotropy, the statistical properties of δuS(R) shall only depend on r.
Figure 3(c) shows the velocity increment δuS over a sphere of radius R/ηk = 32, displaying
an example of the broad range of forcing scales the bubble sees and feels in the flow. The
ensemble-average value δu′

S(R) =
√

〈(δuS(R))2〉 compensated by (εd)2/3 is represented
in red in figure 3(b). We observe δu′

S(R) = DNN(d/2) for Reλ = 38 in the entire inertial
range. The statistical properties of the spherical increment and their link with surface
deformations will be further discussed in § 3.
Once the statistically stationary regime is reached, the temporal recording of the velocity

field is stored from 20 to 60τ . Different instants are used as initial times for numerical
simulations of bubble deformation and break-up. A central sphere of radius R0, diameter
d0 and density ρg = 1/850ρ� is placed in the periodic box, and the flow in the inner
phase is initially set to zero. The bubble diameter is located in the inertial range. For
Reλ = 38, we have d0/ηK = 17.6, d0/λ = 1.49 and d0/L = 0.13, where ηK = (ν3/ε)1/4 is
the Kolmogorov length scale, λ is the Taylor microscale λ =

√
15νu′2/ε for homogeneous

and isotropic turbulence and L is the box size. The level of refinement around the interface
is N = 9 for the majority of the numerical runs, and convergence tests at level N = 10 have
been performed. The results on bubble deformation by the turbulent flow presented here
are independent of the resolution between refinement levels N = 9 and N = 10, as shown
in the Appendix. These resolutions correspond to 70 and 140 points across the initial
bubble diameter, which is comparable to the resolution successfully used to resolve rising
motion and path instability of bubbles using the same numerical methods (Cano-Lozano
et al. 2016).
In a turbulent flow the critical Weber number, or break-up threshold, is defined in a

statistical sense; therefore, the probability of breaking does not vanish for a Weber number
immediately smaller thanWe = Wec. To determine the critical Weber number, we perform
an ensemble of simulations by using different initial times from the turbulence precursor
simulation (each precursor typically spaced by 1 − 3tc). We do not observe any break-up
at We = 1.5 while running the simulations up to 20tc for more than 10 runs with different
initial conditions. For We = 3, we observe break-ups a little over 50% of the time by 20tc
for an ensemble of 35 runs with different initial conditions. It is clear that given the broad
lifetime statistics of a bubble in these conditions close to stability, the percentage of cases
that do not break might change if the simulations are run for longer times. For We = 6,
and above, all bubbles break within a few tc. As such, we consider Wec = 3 as the critical
Weber number in our configuration and this value is within the variation of experimental
measurements discussed in the literature.
Note that we have verified that the order of magnitude of the pressure fluctuations at the

bubble surface are too small to induce compressibility effects in the bubble’s dynamical
response, hence validating the incompressible framework to study millimetric bubbles in
water turbulence.
The Weber number, (1.1), is defined considering the temporal average of the turbulence

dissipation rate, and we vary the Weber number by changing the surface tension.
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We = 3

0.05tc 0.15tc 0.3tc 0.8tc 1tc

Figure 4. Snapshots of a bubble for one run atWe = 3, with the interface in white and each background plane
showing one component of the velocity. The bubble is injected in the centre of the turbulent domain at t = 0
with no velocity and starts to deform quickly. During the first eddy turnover time, no break-up event occurs,
but we observe strong and erratic deformations over time as well as advection by the turbulent flow.

Starting from a sphere, we study the growth of the surface deformation until either the
saturation of bubble deformation for stable bubbles or the breaking for unstable cases. We
perform simulations for a wide range of Weber numbers, 1.5 < We < 45. The critical
Weber number is found at Wec = 3, for which about half of the runs do not exhibit
bubble break-up after 20τ . We will discuss simulations where, for small Weber numbers
(We ≤ 1.5), no break-up occurs, while for large Weber number, (We ≥ 3), we will analyse
the dynamics before the first break-up. We perform an ensemble of simulations of 10 to
15 runs for each Weber number, using various stored initial conditions from the precursor
flow field, leading to a total of about 80 simulations.
Figure 4 shows an example of a bubble evolving in the turbulent flow field in the vicinity

of the instability threshold at We = 3, during the first eddy turnover time at the bubble
scale tc. The bubble is initially spherical and quickly deforms for t < 0.5tc, and then
starts to exhibit erratic oscillations. These deformations do not lead to break-up, and occur
together with advection by the turbulent background flow.

3.3. Computing the bubble deformation through a Voronoi decomposition
The interface sampling points ri are by essence non-uniformly spread, as more points
are dynamically added in regions of larger curvature due to the adaptive algorithm. To
compute averages accurately over the bubble interface, we then construct a surface scheme
using a spherical Voronoi decomposition (Voronoi 1908). The bubble surface is partitioned
into regions close to each of the points.
For each region located around the point ri, we associate a region area Ai and a

corresponding solid angle Ωi = Ai/r2i . We evaluate the surface integral of any function
f by

1
4π

∫∫
dΩf (r) = 1

4π

∑
i

f (ri)Ωi, (3.5)

where
∑

i Ωi = 4π. The computation of the region areas Ai and the corresponding solid
angles Ωi is illustrated in figure 5. The Ωi are computed in three steps. We first project all
interface points on the unit sphere (step 1). We then compute the region locations using a
spherical Voronoi algorithm based on a robust Delaunay triangulation (Caroli et al. 2009)
(step 2). The area Ai of each convex polygon is eventually estimated using the shoelace
formula (step 3). On the unit sphere, the Ai andΩi are identical. An example of our Voronoi
decomposition is shown in figure 5(b) on the unit sphere, and in figure 5(c) after projection
on the initial bubble shape. The numerical error on the total solid angle

∑
i Ωi is less than

0.1%.
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(b)(a) (c)

Figure 5. Illustration of the interface tesselation using a spherical Voronoi diagram. (a) Bubble deformed by
the turbulent background (one case at We = 3, t/tc = 0.22). The output data points are unevenly distributed
at the interface. The bubble surface in grey levels has been reconstructed using a two-dimensional spline
interpolation. (b) Projection of each point on the unit sphere, and computation of a spherical Voronoi diagram.
Each polygon corresponds to the region associated to a single data point. (c) Projection of the Voronoi diagram
onto the initial shape bubble using the spline interpolation. The weight of each data point is given by the
associated polygon area.

To analyse the interface dynamics using (2.8), we introduce the spherical harmonics
Ym

� (θ, ϕ). The numerical estimate of the harmonic coefficient a�,m is obtained by a sum
over the interface points ri weighted by their local solid angle Ωi,

a�,m =
∑
i

Ωiζ(ri)Ym
� (θi, ϕi), (3.6)

where (ri, θi, ϕi) are the spherical coordinates of ri. We have first checked the orthonormal
property of the spherical harmonics (1/4π)

∫∫
dΩ Ym

� · Y(�′,m′) = δ�,�′δm,m′ for � ∈ [0, 10]
and all correspondingm values on a set of 900 points, typical of a surface bubble sampling,
and randomly spread on a unit sphere. The typical error is 0.1% for � < 5, and increases
for higher � values. The harmonic decomposition has been tested on synthetic shapes, i.e.
a set of 900 points randomly spread on an interface of known spherical decomposition.
The relative error on the harmonic coefficient is about 0.5% of the largest non-zero
harmonic coefficient for � ∈ [1, 5]. In practice, since the amplitude decreases rapidly with
�, an accurate estimate of the harmonics coefficient is limited to � ≤ 5 for the interface
deformation and around � ∼ 10 for the velocity field.
The bubble centre position evolves with time, the interface being advected by the

turbulent background flow. To analyse specifically the surface deformations, we look
for the centre position rc of the bubble frame of reference, for which a1,m = 0 for
m ∈ {−1, 0, 1}, as defined in § 2. The centre position rc is computed recursively as follows.
At each step, we compute the Voronoi diagram and the associated spherical harmonic
functions Y1,m using the regions area Ai. Then, since each function Y1,m presents a
symmetry of revolution, a one-dimensional gradient descent on each function is sufficient
to find the position centre that minimizes each coefficient a1,m. For bubble interfaces with
a single-valued radial distance ri(θ, ϕ), the gradient descent indeed converges to a centre
position rc for which the three mode 1 coefficients a1,m vanish.

3.4. Deformation dynamics for stable conditions: bubble deformation and temporal
evolution of spherical modes

We first describe the temporal evolution of the coefficients a�,m for a single run atWe = 3,
as an illustration of the analysis performed on each simulation. Several modes a�,m of the
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Bubble deformation by a turbulent background

same � and different m values are associated to the same oscillation frequency (see (2.8));
therefore, we introduce the global coefficient a� describing the energy contained in each
mode �, defined by

a2� =
�∑

m=−�

a2�,m, (3.7)

where a� is then positive by convention. The global surface deformation is obtained by a
sum over all modes �. We recall the expression of the root mean squared deformation ζΩ :
ζ 2
Ω(t) = ∑+∞

�=2
∑�

m=−� a
2
�,m(t). Figure 6(a) shows the time evolution of ζΩ/R0 together

with the total amplitude of mode 2, a2/R0. We observe a rapid linear rise, consistent with
the prediction for t � t2, tc, before oscillations and saturation of the total deformation
around ζΩ/R0 ≈ 0.15. As shown in the figure, most of the deformation comes from the
mode � = 2. This first observation is in agreement with various experimental studies on
large bubbles immersed in a turbulent flow, which have reported the dominance of mode 2
deformation in bubble dynamics (Risso & Fabre 1998; Ravelet et al. 2011). In practice, a
sum over the first three modes � = 2, 3, 4 estimates the amplitude deformation ζΩ within
less than 2% error as long as ζΩ/R0 < 1 for all cases. It confirms the predominance of
the first modes of oscillation, and validates the spherical decomposition approach. In the
following, we focus on the modes � = 2, 3 and 4 which contribute mostly to the surface
deformation.
Figure 6(b) shows the temporal evolution of a2� for the first few spherical harmonics

� ∈ [1, 4] for a single run. The modes � = 1 have zero amplitude from the choice of
the centre position, and the modes � = 2 dominate the surface energy deformation. The
energy contained in modes � = 2 oscillates with time, at a frequency close to 2ω2 and the
energies in the higher-order modes � = 3, 4 and 5 remain smaller at all times. Figure 6(c)
shows the temporal evolution of each individual harmonic coefficient a2,m for different m
components. All five coefficients appear to oscillate with comparable amplitude and with
frequencies close to ω2.

3.5. Deformation dynamics for increasing Weber number and unstable conditions
For one particular configuration of the turbulent flow, we investigate the role of the
Weber number on the deformation by changing only the value of the surface tension.
Figure 7 shows snapshots of the bubbles for increasing Weber numbers, We = 3, 6 and
15, for the same initial turbulent conditions. For all cases, we observe early growth of
surface deformation, while the turbulent background flow stays identical for all runs and
independent of surface tension, validating the no-feedback hypothesis introduced in § 2.
For all We, the short time deformation under the same turbulence conditions appears
identical, in agreement with the theoretical description of the linear regime for t � tc. For
stable conditions (hereWe = 3), the deformation rapidly saturates as previously described.
For unstable conditions (hereWe = 6 and 15), the deformations eventually lead to break-up
at various times. The highest Weber number (We = 15) displays a break-up event relatively
early at t/tc ≈ 0.8, while for conditions closer to the stability threshold, break-up occurs
at t/tc > 1.
A quantitative description of the Weber number influence for one particular run is

given in figure 8. We compute the total deformation ζΩ starting from the same initial
condition of the flow configuration, and increasing values of the Weber numberWe = 1.5,
3, 6, 15, 30 and 45. Figure 8 shows the deformation ζΩ/R0 as a function of time t/tc.
We observe a universal rapid linear growth, followed by a saturation that depends on
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Figure 6. (a) Total deformation ζΩ/R0 as a function of time, together with the root mean square (r.m.s.)
amplitude of the mode 2 oscillations. (b) Energy a2� = ∑m=l

m=−l a
2
l,m of the spherical harmonics for modes � = 1

to � = 4 for one run at We = 3. Mode 1 energy vanishes by definition. Mode 2 appears as the most energetic
mode, in agreement with experimental literature, with oscillation close to f2 = ω2/(2π). As � increases, the
energy contained decreases sharply. (c) Temporal evolution of the amplitude coefficients a2,m for mode � = 2,
and m = −2 to m = +2. All modes m oscillate with similar amplitude and frequency.

the Weber number. The rapid linear growth is independent of the Weber number for
t/tc < 0.1, as expected from (2.14). As time passes, the curves diverge from each other,
and the lower Weber number curves exhibit earlier sublinear growth. The saturation leads
to long-time oscillations at the low Weber numbers, namely We = 1.5, 3 and 6 during
several eddy turnover times, with increasing amplitude as the Weber number increases.
For larger Weber numbers (hereWe = 15 and 45), the bubble experiences break-up during
the first eddy turnover time, when surface deformation reaches ζΩ/R0 ≈ 0.74. Note that
the deformation at break-up is estimated from a fit of the bubble interface by an ellipsoidal
shape at the break-up time, as the Voronoi decomposition fails at large deformation,
significantly before break-up.

3.6. Ensemble-averaged deformations at one Weber number: linear growth and
saturated regime

To obtain ensemble-average quantities, we analysed between 10 to 15 runs for each
Weber number, starting from different turbulent flow configurations, which are obtained
from different times of the precursor simulations. For each run, we perform the analysis
described above, from the Voronoi decomposition to the computation of the surface
deformation ζΩ and the first harmonics coefficients a2, a3 and a4.
Figure 9(a) shows the temporal evolution of each individual realisation of ζΩ/R0

performed at We = 3, as a function of the dimensionless time t/tc. The ensemble average
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Bubble deformation by a turbulent background

0.05tc 0.5tc >1tc

We = 3

We = 6

We = 15

0.8tc

Figure 7. Bubble deformation and break-up as time progresses for the same initial conditions but increasing
Weber number. Time increases from left to right while We increases from top to bottom. At We = 3, this
particular condition does not lead to break-up. At We = 6, break-up occurs for t/tc ≈ 1.5, while break-up
occurs earlier for We = 15 at t/tc ≈ 0.8. The initial stage of deformation for t < 0.5tc appears very similar at
all Weber numbers.

〈ζΩ〉/R0 is superimposed in black, and follows a linear increase, as predicted by (2.15).
The mode 2 amplitude a2/R0 is superimposed in figure 9(a) (�, red), confirming in a
statistical sense the predominance of the mode 2 oscillations. The modes a2/R0 and a3/R0
follow the same trend, as shown in figures 9(b) and 9(c), each coloured curve being
an individual realisation. Again, at short time the linear regime predicted by (2.15) is
observed.
We observe a transition to a sublinear regime for 〈ζΩ〉, 〈a2〉 and 〈a3〉 around 0.1 < t <

0.3. This transition is well described by the theoretical expression derived in § 2 (2.20),
i.e. ∝ t

√
(1 − (κt)2), with κ = ω2/

√
3 for 〈ζΩ〉 or 〈a2〉, and κ = ω3/

√
3 for 〈a3〉. The

prefactor is related to the turbulence velocity field statistics u�,m, which will be evaluated
in an upcoming section. In order to evaluate the saturation with time, we describe the
temporal evolution of 〈ζΩ〉, 〈a2〉 and 〈a3〉 by the empirical expression a∞

� (1 − e−t/tsat)

with two fit parameters a∞
� and tsat. The early-time evolution is proportional to a∞

� /tsat,
while the characteristic time of saturation is given by tsat. Eventually, we perform for each
ensemble-average mode 〈a�〉, a linear fit a� = s�t in the early-time evolution (t < tsat/2)
by a simple linear model, which gives an accurate measure of the growth velocity s�.

3.7. Ensemble-averaged deformations for increasing Weber number
Figure 10 summarizes the surface deformation growth for increasing Weber number.
Figure 10(a) shows the evolution of 〈ζΩ〉 averaged over at least 10 runs by Weber number,
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Figure 8. (a) Root mean square surface deformation ζΩ as a function of time t/tc for the same initial turbulent
flow condition and increasing Weber number We = 1.5, 3, 6, 15, 30. (b) Zoom-in on the early stage dynamics.
For t/tc < 0.1, a universal linear increase of the deformation is observed at all Weber numbers. Earlier
saturation time is reached for higher surface tension forces (lowerWe), leading to lower values of the saturated
deformation amplitude.
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Figure 9. (a) Individual realisations of ζΩ at We = 3, as a function of the dimensionless time t/tc in
transparent colours. Ensemble average 〈ζΩ 〉 of the surface deformation is superimposed (black full symbols),
together with the ensemble-average mode 2 amplitude (red full symbol). (b) Coefficient a2 as a function of
dimensionless time t/tc for We = 3 (individual realisations in transparent colours). Ensemble average 〈a2〉 is
superimposed (full red symbol). Fit by A(1 − e−t/tsat ) of the ensemble average a2 in shown by the dashed
lines. (c) Coefficient a3 as a function of dimensionless time t/tc for We = 3 and the equivalent exponential fit
(individual realisations are transparent colours and the green full triangle is ensemble average 〈a3〉).
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Figure 10. (a) Ensemble-averaged deformation 〈ζΩ 〉 as a function of time for increasing Weber number. For
the lower We, a fit by A(1 − e−t/tsat ) captures the transition from linear growth to saturation, with saturation
values increasing with We. Open symbols are used once half of the bubbles in the ensemble have broken.
(b) Slope at the origin as a function of the Weber number for 〈ζΩ 〉, 〈a2〉, 〈a3〉, 〈a4〉. The slope at the origin for
〈ζΩ 〉 is independent of We. (c) Amplitude of saturation of the global deformation and modes as a function of
We.

as a function of the Weber number. The evolution is shown in solid symbols until half of
the bubbles have broken, and in open symbols later. At early time, we show the existence
of a universal regime, with a linear increase in time of the deformations independent of
the Weber number. Similar results are observed when considering the spherical harmonics
amplitude 〈a2〉, 〈a3〉 and 〈a4〉. The dimensionless growth velocity s�tc/R0 at short time,
obtained from the linear fits, is shown in figure 10(b) as a function of the Weber number
for 〈ζΩ〉/R0 (◦), 〈a2〉 (red square), 〈a3〉 (green triangle) and 〈a4〉 (blue pentagon). For the
low Weber numbers We = 1.5 and We = 3, only the modes that are significantly above
the noise level have been represented, excluding modes 3 and 4 at We = 1.5, and mode 4
at We = 3. The growth velocity s� depends on the mode �, but is independent of Weber
number, as expected from (2.8) and (2.15).
The departure from linear growth that occurs at a time increasing with Weber number is

compatible with the prediction given the second mode reduced period t2. Eventually, the
saturation can be measured using the exponential fit for the lowest Weber number (We =
1.5, 3 and 6) where a saturation is clearly visible. For higher Weber numbers, we consider
the value of the linear fitting model, evaluated at the time of the first break-up. The
saturation time forWe < 10 and the earliest break-up value forWe > 10 is shown in figure
10(c). We observe a continuous growth with Weber number, premising the likelihood of
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bubble break-up. At higher Weber numbers, we also remark that the relative amplitudes
of modes 3 and 4 are increasing for both the growth velocity s� and the saturation a∞

� .
At high Weber numbers, the higher-order modes of deformation in the global dynamics
become more important and are likely to influence the break-up geometry that the bubble
will experience.
Note that treating the saturation at an intermediate Weber number would require

considering the role of nonlinear and viscous effects. Note also that for ζΩ/R0 > 0.25,
a significant part of the bubbles have broken, and the mean deformation observed
when considering all break-up events is ζΩ/R0 ≈ 0.74, which is compatible with the
observations on areas of deformation at break-up made by Risso & Fabre (1998).
Having access to the full velocity flow, we can now relate the surface deformation

growth parametrized by a� and s� to the statistics of the surrounding turbulent flow.

3.8. Statistics of velocity increments on a sphere predict the linear growth of deformation
From the theory developed in § 2, the prefactor of the linear growth regime of the
spherical harmonics mode amplitude shall be related to the statistics of the turbulent
flow. Indeed, the growth of the spherical harmonics coefficients a�,m is linked to their
counterpart in the turbulent fluctuations, u�,m and π�,m in (2.8), (2.15) and (2.20). It bears
significant importance from a practical point of view, as measuring velocity statistics
in an experimental or natural turbulent flow is relatively accessible while measuring
deformation properties on a bubble interface is much more challenging. We recall the
description of the spherical increments, δuS, which can be decomposed in the spherical
harmonics base, δuS = ∑+∞

�=2
∑�

m=−� u�,mYm
� (θ, ϕ), where u�,m depends on the radius r

of the sphere.
Using the velocity flow in the direct numerical simulations, we computed the ensemble

average 〈u�〉 of the harmonic coefficients of δuS(r) for r = R0, using the same procedure
as for the a�. The dimensionless coefficients 〈u�〉tc/R0 are shown in figure 11(a), and
in table 2 as red stars for � = 2, 3 and 4 and correspond to the intensity of velocity
fluctuations at the bubble scale for specific modes �. The coefficients s�tc/R0 obtained
from the processing of surface deformations are superimposed in black circles and
correspond to the intensity of deformations of the bubbles for the corresponding modes �.
For modes � = 2, 3 and 4, we find a quantitative agreement between 〈a�,m〉 and 〈u�,m〉t, as
expected from § 2, (2.15). For � = 4, we observe a slight difference for � = 4 with s4 > u4,
which can be attributed to the limit of resolution of the harmonics coefficient computation
on the bubble deformation for higher � values.
Beyond the equality of the ensemble-average values, the prediction made in § 2 shall be

valid for each individual realisation. This equality can be used to infer the full statistics of
a�,m at short time, using the statistics of the u�,m in the background flow.
Figure 11(b) shows the probability density function (p.d.f.) of the dimensionless mode 2

u2tc/R0 at the bubble scale R0. In contrary to the two-points velocity increment DLL(R0),
the p.d.f. of u2 in the inertial range does not exhibit large tails, and 95% of u2 values lie
in the range [0.5〈u2〉, 2〈u2〉]. The difference between the large tails of the p.d.f. of DLL
at d/λ = 1.5 and the short tails of u2 can be attributed to the spatial average operation
on the sphere, which smoothes out all the intermittent structures at a scale smaller than
the bubble, and suggests that the flow intermittency has a limited influence on the bubble
deformation in the inertial range. Considering a positive definite quantity, a fit of the p.d.f.
by a Γ -distribution of expression f (x, k, p) = xk−1 e−x/p/Γ (k)pk gives k = 7.5 and p =
0.135.
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Figure 11. (a) Ensemble average of the spherical harmonics growth rate 〈s�〉R0/tc for � = 2, 3 and 4, together
with the corresponding spherical harmonics flow coefficient 〈u�〉tc/R0 of the turbulent velocity fluctuations
at the bubble scale, shown as red stars. Black circles are 〈s�〉tc/R0 averaged for all We, while the coloured
squares correspond to the Weber number scale (see colourbar). The theoretical prediction a� = u�t from § 2
is well verified, with velocity fluctuations providing a quantitative prediction of the bubble deformation. The
interface deformation statistics at early times can thus be extracted from velocity fluctuations at the bubble
scale. (b) Probability distribution of the velocity fluctuations 〈u2〉 corresponding to the statistics of velocity
fluctuations on the bubble sphere responsible for mode 2 deformation. A fit by a Γ -distribution of expression
f (x, k, p) = xk−1 e−x/p/Γ (k)pk is superimposed (red dashed line) with k = 7.5 and p = 0.135.

We = 1.5 3 6 15 30 45 Reλ = 38

〈s2〉R0/tc 1.06 1 1.03 0.93 0.98 0.95 〈u2〉tc/R0 0.95
〈s3〉R0/tc 0.56 0.55 0.54 0.44 0.51 0.64 〈u3〉tc/R0 0.50
〈s4〉R0/tc 0.44 0.35 0.34 0.31 0.33 0.35 〈u4〉tc/R0 0.26
s′2R0/tc 0.41 0.36 0.33 0.32 0.33 0.27 u′

2tc/R0 0.34
s′3R0/tc 0.23 0.24 0.23 0.15 0.23 0.27 u′

3tc/R0 0.17
s′4R0/tc 0.08 0.06 0.08 0.08 0.10 0.09 u′

4tc/R0 0.09

Table 2. Values of the coefficients shown in figures 10 and 11. Ensemble average of spherical harmonics
growth rate 〈s�〉R0/tc for � = 2, 3 and 4. The corresponding spherical harmonics amplitude 〈u�〉tc/R0 of the
turbulent velocity fluctuations at the bubble scale is also provided, computed for Reλ = 38.

4. Implications for bubble lifetime statistics

Given the linear growth of deformation with time and a growth rate given by the mode
u2, the p.d.f. of u2 can be used to evaluate the bubble lifetime distribution at high Weber
number when surface tension becomes negligible. In the limit of inertial break-up, with
correlated velocity fluctuations, the distribution of lifetime N(T/tc) at high Weber number
is given by

N(T/tc) = N
( 〈ζc〉
u2tc

)
, (4.1)

where 〈ζc〉 is the average critical deformation of ζΩ at break-up. Here ζc cannot be
computed from the Voronoi decomposition of the interface, since the radius becomes
multivalued at high deformation. To evaluate the critical deformation ζc, we approximate
the shape at break-up by an ellipsoid of the same volume as the initial bubble and
whose longest axis corresponds to the maximum distance between two points on the

920 A15-21

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
09

 D
ec

 2
02

1 
at

 1
5:

16
:1

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

37
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.379


S. Perrard, A. Rivière, W. Mostert and L. Deike

00 0.25

Reλ = 38
Reλ = 76

0.50 0.75 1.00 1.25 1.50 1.75 2.00
ζc/(u2tc)

N
(ζ

cu
2t

c)

0.5

1.0

gt
c

1.5

2.0

2.5

100

10–1

10 20 30 40 50

We

(b)(a)

Figure 12. (a) Estimated probability distribution function of bubble lifetime in the limit of large Weber
number, obtained from N(T/tc) = N(ζc/u2tc) (4.1), and valid at high Weber number, i.e. We ≈> 30, using
ζc = 0.74R0. Mean and r.m.s. values are given in table 3. (b) Inverse of the bubble lifetime tc/T , and its
standard deviation, similar to the bubble break-up frequency, as a function of the Weber number. The mean
values for 10 to 20 simulations for each Weber number are used, and the error-bar corresponds to the standard
deviation in the lifetime. Dashed line corresponds to the model proposed by Martinez-Bazan et al. (1999)
and Martinez-Bazan et al. (2010), tc/T ∝ √

1 − Wec/We. At high Weber number, the bubble lifetime can be
predicted from the turbulence statistics, and given by ζc/u2tc.

bubble interface. From the large-Weber-number data (We ≥ 15) we find that 〈ζc〉 = 0.74.
Figure 12(a) shows the distribution N(T/tc) obtained from (4.1) for a bubble of size
d0/λ = 1.5 using the statistics of the mode u2 of the harmonic decomposition of uT for
a Taylor Reynolds number Reλ = 38 (the turbulence considered in the present paper).
The lower lifetime bound is 0.1tc, while the distribution shows exponential tails for large
values of the bubble lifetime. We also compute the same predicted lifetime statistics for
a turbulent flow obtained similarly but with higher Reynolds number, Reλ = 76, and test
values of d0/λ = 1.5 (red line on figure 12a) and d0/λ = 3 and observe only little changes
in the distribution. This suggests that the lifetime statistics are fairly insensitive to the
Reynolds number for bubbles within the inertial range (d0/λ > 1).
The average bubble lifetime can be computed from the numerical runs for each Weber

number from the break-up time of the initial bubble. Figure 12(b) shows the inverse of
the bubble lifetime tc/T , similar to the break-up frequency introduced in the literature,
for increasing Weber number. The errorbars correspond to the r.m.s. values Trms/tc.
We observe that the bubble lifetime decreases with Weber number, and reaches a value
independent of Weber number for We � Wec, here above We = 30. We observe that our
data can be reasonably well described by the model proposed by Martinez-Bazan et al.
(1999) and Martinez-Bazan et al. (2010) (dashed line), tc/T = Cg

√
1 − Wec/We, with the

saturation value at high Weber number being the only adjusted parameter. We useWec = 3
and Cg = 1.5 is fitted to our numerical data, whereas Martinez-Bazan et al. (1999) and
Martinez-Bazan et al. (2010) used Cg = 0.673 and Wec = 1 to fit their data.
Table 3 summarizes the bubble lifetime and the estimated lifetime from velocity

statistics. The mean and standard deviation values of the inferred lifetime from the
turbulence statistics can be compared with the bubble lifetime obtained from the direct
numerical simulations for ensembles of 20 to 45 simulations. We observe excellent
agreement between the inferred and simulated mean lifetime, as well as for the r.m.s. value
of the distribution, considering a constant break-up threshold of ζc = 0.74R0, inferred
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We = 3 We = 6 We = 15 We = 30 We = 45 Reλ = 38

No of elements 45 (13) 39 (14) 20 (8) 20 (7) 20 (7)
T/tc 3.01 2.15 1.06 0.90 0.88 〈ζc〉/(〈u2〉tc) = 0.91
Trms/tc 0.86 1.18 0.65 0.45 0.40 〈ζc〉/(u′

2tc) = 0.41
〈ζc〉/R0 0.25 0.5 0.68 0.85 0.69

Table 3. Bubble lifetime obtained as a function of Weber number, obtained from the direct numerical
simulations and from the turbulence statistics. The mean T and r.m.s. Trms values of the bubble lifetime
obtained from ensembles of 20 to 45 simulations at increasing Weber number (number of elements indicated
in first row). We also provide the computed mean deformation at break-up 〈ζ 〉. The number in parentheses
corresponds to the number of elements used to compute the deformation at break-up ζc from the bubble
deformation simulations. On the right of the table, we show the predicted mean and r.m.s. lifetime from the
turbulence statistics, ζc/(〈u2〉tc), for a constant deformation threshold ζc/R0 = 0.74, for Reλ = 38. Excellent
agreement between the numerical values and those predicted by the turbulence statistics is observed at high
Weber number.

from the bubble deformation at break-up for high-Weber-number cases (We ≥ 15). The full
distribution N(T/tc) = N(〈ζc〉/(u2tc)) could hence be a good estimate of bubble lifetime
statistics in the limit of high Weber number.

5. Conclusion

We have presented a theoretical framework for bubble deformation in a turbulent flow by
performing a spherical harmonics decomposition of the bubble deformation and deriving a
general forced oscillator equation for these spherical harmonics modes, where each mode
is forced by the corresponding turbulent fluctuations mode. We identify various regimes
in the time evolution of the deformation, in particular, a short time scale regime where
deformations grow linearly with time, the prefactor being given by the strength of the
turbulent flow.
We perform direct numerical simulations of bubbles evolving in homogeneous

and isotropic turbulent flow at increasing Weber number and verify the theoretical
predictions. We observe the linear regime of deformation growth for individual events and
ensemble-averaged quantities and show that the prefactor of the linear growth is indeed
given by the statistics of the turbulence deformation at the bubble scale. We observe in
the simulations that the level of deformation saturates, with a saturation time and level
of saturation that depends on the Weber number, with lower Weber numbers saturating
earlier and at lower deformation. At low to intermediate Weber numbers, eigenmode 2
dominates the deformation. At lower Weber numbers, a much broader lifetime distribution
is observed, with break-up that can occur at much later time, as multiple eddies participate
in the deformation and break-up, as described in Risso & Fabre (1998). The broad
lifetime distribution can be interpreted as a consequence of a stochastic process with a
threshold, which gives rise to long oscillation before a fluctuation of higher amplitude
leads to break-up. Further stochastic analysis of the surface deformation fluctuations
around the average saturation, accounting for nonlinear and viscous effects, could provide
a quantitative prediction of the lifetime distribution at intermediate Weber numbers.
At highWeber numbers, break-up occurs within a single eddy turnover time, and close to

the linear regime of deformation. These findings have significant implications: the ability
to predict bubble deformation and break-up time from the turbulence statistics is now
possible by extracting the turbulence statistics and computing the spherical harmonics
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decomposition of the corresponding modes 2 and 3. According to our theory and as shown
in the final section, the statistics of such modes directly provide the bubble lifetime, if one
assumes a maximum deformation threshold. Our data typically suggest ζΩ/R0 ≈ 0.74.
The deformation also shows significant increase of higher frequency modes, which could
be related at high Weber numbers to the appearance of much smaller child bubbles.
A more elaborate model would require a better estimate of the deformation statistics at
break-up.
Experimental work probing the full three-dimensional turbulence, while challenging,

could further test these results on bubble deformation, bubble lifetime and break-up in
turbulence. Another prospect involves simulations at higher turbulent Reynolds numbers
investigating the roles of the ratio between the turbulent length scales and the bubble
deformation dynamics, as well as the local coupling between the turbulent flow in the
dense phase and the bubble deformations. Similarly, this numerical framework could be
used to explore the child bubble size distribution resulting from bubble break-up (see
Rivière et al. 2021) and its relationship with the turbulence statistics.
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Appendix. Convergence test

We present in figure 13 a convergence test on the interface resolution by running
simulations for maximum interface refinement levels N = 9 and N = 10, using the same
precursor simulation. As discussed in § 3, these resolutions correspond to 70 and 140
grid points per diameter, while the resolution of the turbulent flow remains the same,
and correspond to the Reλ = 38 flow with a velocity refinement of level 7. The interface
deformation ζΩ as a function of time is shown in figure 12, for increasing Weber number.
We observe quasi-identical results between the maximum levels 9 and 10, for all cases, for
times of the order of the eddy turnover time. This shows that the interface deformation
is correctly resolved at the chosen resolution, and the results presented in the paper
are independent of numerical resolution. It is important to remember that the increase
in resolution here only applies to the interface resolution, while the resolution on the
turbulent velocity field remains the same. However, we have independently verified that
the statistical properties of the turbulent flow are also converged at the resolution we are
using (see figure 3).
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Figure 13. Convergence test on ζΩ as a function of dimensionless time t/tc for We = 3, 6, 15, 30, 45. Level
N = 9 (blue) and level N = 10 (red). Excellent convergence agreement is observed between the two numerical
resolutions.
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