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ABSTRACT ARTICLE HISTORY
In this paper, we first extend the diminishing stepsize method Received 9 July 2020
for nonconvex constrained problems presented in F. Facchinei,  Accepted 18 November 2020

V. Kungurtsev, L. Lampariello and G. Scutari [Ghost penalties in KEYWORDS
nonconvex constrained optimization: Diminishing stepsizes and itera- Constrained optimization;
tion complexity, To appear on Math. Oper. Res. 2020. Available at nonconvex optimization;
https://arxiv.org/abs/1709.03384.] to deal with equality constraints composite optimization;
and a nonsmooth objective function of composite type. We then diminishing stepsize
consider the particular case in which the constraints are convex

and satisfy a standard constraint qualification and show that in this

setting the algorithm can be considerably simplified, reducing the

computational burden of each iteration.

1. Introduction

We consider the nonconvex constrained optimization problem

minimize f(x) + q(x)
s.t. gx) <0 P)
h(x) =0
x €K,

where K € R” is a nonempty closed and convex set, and f: R” — R, ¢: R" — R™,
h:R" — RP are C"! (i.e. continuously differentiable with locally Lipschitz continuous
gradients) functions on an open set containing K, while g : R* — R is convex on K and
locally Lipschitz continuous on an open set containing K. In [4], building on an extended
SQP-like approach, we analyse the first Diminishing Stepsize Method (DSM) for a general
optimization problem with a nonconvex objective function and nonconvex constraints; we
refer the reader to [4] for a detailed discussion on DSMs in nonconvex settings. However,

CONTACT Francisco Facchinei 8 francisco.facchinei@uniroma1.it

© 2020 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1854253&domain=pdf&date_stamp=2020-12-02
https://arxiv.org/abs/1709.03384
mailto:francisco.facchinei@uniroma1.it

2 (& F.FACCHINEIETAL.

the problem considered in [4] includes neither equality constraints nor a possibly nons-
mooth term g(x) in the objective function. The main contributions of the present paper
are

(a) the study of the DSM for the more general problem (P) including equality constraints
and a possibly nonsmooth term g(x) in the objective;

(b) the development of a new DSM for (P) whenever constraints are convex (with f still
possibly nonconvex), which results in a simpler algorithm than the one in (a) while
maintaining global convergence guarantees.

Regarding (a), the importance of the (possibly) nonsmooth term g (for example the ¢;
norm) cannot be overestimated: in the past 10 years, objective functions including such
terms have become pervasive, especially in the domains of machine learning and statistics.
The presence of equality constraints of course also further widens the domain of applicabil-
ity of our DSM. It should be remarked that equality constraints pose some subtle technical
challenges making the extension of the results in [4] to equality constrained problems much
less immediate than might be anticipated. Passing to (b), we notice that, similarly to [4],
the main cost of the new DSM (cf. Section 4) is solving at each iteration two convex sub-
problems, whose computational complexity depends on the specific (inner) algorithm that
is chosen to address them. However, if the constraints in (P) are known to be regular and
convex, a simplified variant of the algorithm can be devised to good effect, which is more
reminiscent of classical SQP methods and now only requires the solution of one strongly
convex subproblem at each iteration; this algorithm is discussed in Section 5.

The algorithms we focus on are DSMs. At each iteration v, a direction d(x") is computed
by solving a (surrogate) strongly convex optimization subproblem whose definition may
require the solution of a further auxilary convex subproblem, actually a linear program if
the appropriate choices are made. These subproblems are described in Section 3, where
their properties are also analysed in detail. A step-size y¥ scales this direction so that the
iterative sequence satisfies

B =" 4y d("), (1)
with the stepsizes y" such that the classical conditions
o0
: v o__ [ —
van;Oy =0 and Zoy =00 (2)
y=

hold. The convergence properties of this algorithm are analysed in Section 4. Note that
this algorithm does not require any assumptions, such as nonemptiness of the feasible set
or constraint qualifications, to be well-defined and enjoy global convergence from arbitrary
starting points to some limit point with desirable features. More specifically, the method
is shown to be (subsequentially) convergent to points satisfying a (rather standard) gener-
alized stationarity condition; the specific definition of generalized stationarity, along with
its associated relevant properties, is discussed in Section 2. In the final part of the paper,
see Section 5, we discuss the specific case in which the constraints are convex and a stan-
dard Mangasarian-Fromovitz-type constraint qualification is satisfied. For this setting, we
introduce an alternative method, simpler than the one discussed in Sections 3 and 4 and
show its global (subsequential) convergence to KKT points.



OPTIMIZATION METHODS & SOFTWARE . 3

We refer the reader to [4] for a detailed literature review and comparison of the class of
approaches we study with other algorithms; [4] is also a good entry point for a discussion
about generalized stationarity concepts.

We conclude this introduction by mentioning that an important theoretical tool we put
forth in our convergence analysis is the classical penalty function

A 1
Wk e) = f(x) +q(x) + —¢(x),
where ¢ is a positive penalty parameter, and

px) = mi?x{gi(xu, i)}, (3)

where ;. 2 max{0, a}. The penalty function acts as a Lyapunov function in the conver-
gence analysis in Section 5, when a constraint qualification holds. However, when analysing
the more general case considered in Section 4, the role of W in the convergence analysis
becomes more complex and is no longer that of a classical Lyapunov function. Note also
that, in our analysis, the penalty function turns out to be just a theoretical tool and only
enters in our convergence proof, and no penalty parameter needs to be actually computed
in the algorithm itself. For these reasons, we refer to W as a ghost penalty function.

2. Generalized stationarity

In this section, we introduce the concept of generalized stationarity. As we study the con-
vergence properties of our algorithm without assuming constraint qualifications or even
nonemptiness of the feasible set of (P), we need to define what sort of stationarity is pos-
sible and desirable to achieve in the case that no limit point is KKT or even feasible. The
concept of generalized stationarity, which characterizes stationarity across the full taxon-
omy of possible desirable limit points, is discussed in more detail in [4] and the references
therein, and here we extend those considerations to account for the additional structural
components of (P).
Let us denote the feasible set of (P) by

Xé{xeR" :g(x)fO,h(x)zO,xeK}.

The general constrained problem (P) can be viewed as a combination of two problems:
(i) the feasibility one, i.e. the problem of finding a feasible point; and (ii) the problem of
finding a local minimum point of the objective function over the feasible set. Consistently,
stationary solutions in a generalized sense are points that are either stationary for (P) or
for the following violation-of-the-constraints optimization problem:

minimize ¢@(x),
X

x €K )
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where we recall that ¢(x), defined in (3), measures the degree of infeasibility. The KKT
system for problem (P) is
0 € Vf(x) + 9q(x) + Vg(x)é + Vh(x)m + Nk (x)
0=§1lgl)=0
(5)
h(x) =0

x € K,

where Vf(x) is the gradient of f in x, Vg(x) and Vh(x) are the transposed Jacobians of g
and h evaluated at x, ¢ is the subdifferential of q at x, and Nk (x) is the normal cone to K at
x. The vectors & and 7 appearing in (5) are KKT multipliers and an equivalent formulation
of the condition is the existence of some pair (£, ) in the set,

M) 2 {(€.m) | € € Npn(@(0), 7 € No(h),
0 € VF(x) + 9q(x) + Vg®)E + Vh(x)T + NK(x)}
=™ 1 § € Nan(ge, ho = 0,
0 € Vf(x) + dq(x) + Vg(x)& + Vh(x)w + NK(x)}.

Note that indeed the KKT conditions are satisfied at a point x if and only if M (x) # @. We
also introduce the set of “abnormal” multipliers

M) 2 {(6,7) | & € Npn(g() — (™), 7 € N, (),

0 € Vg(x)& + Vh(x)m +NK(x)})

where B, is the closed unit ball in R? associated with the infinity-norm, e” € R is the
vector of all ones, and, again, Ngm (y), N(p(x)IBp (z) and Nk (x) are the normal cones to the

convex sets R, ¢ (x)B5, and K at y, z and x, respectively. Let % be a local minimum point
of (P), then it is well-known that either M, (X) # @, (the point is a KKT point) or My (%) #
{0} (the point is a Fritz-John point), or both. Otherwise, i.e. if ¥ € K is stationary but not
feasible, in view of the regularity of the functions involved, then the appropriate stationarity
condition is the one for problem (4), i.e.

0 € dp(X) + Nk (%), (6)

which is equivalent to My (x) # {0}. Hence, the (generalized) stationarity criteria for the
original problem (P) can naturally be specified by using the sets M; and M), as detailed in
Definition 2.1.

Definition 2.1: A point X € K is, for problem (P),

e a KKT solution if g(x) < 0, h(x) = 0 and M;(x) # 0;
e a Fritz-John (FJ) solution if g(x) < 0, h(x) = 0 and My (x) # {0};
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e an External Stationary (ES) solution if gj(X) > 0 or hj(X) # 0 for at least one i €
{1,...,m}oronej e {1,...,p},and My(x) # {0}.

We call ¥ € K a stationary solution of (P) if any of these cases occurs.

The constraint qualification (CQ) we use is the Mangasarian-Fromovitz CQ, suitably
extended to (possibly) infeasible points.

Definition 2.2: We say that the extended Mangasarian-Fromovitz Constraint Qualifica-
tion (eMFCQ) holds at x € K if

My (%) = {0}.

If x € X and K = R", this condition reduces to the classical MFCQ and in turn, when-
ever the constraints are convex, it is well-known that the MFCQ is equivalent to Slater’s
CQ, i.e. to the existence of a point X such that g(x) < 0 and h(x) = 0. Below, we state a
result that extends a standard property of the classical MFCQ for feasible points.

Proposition 2.1: If the eMFCQ holds at x € K, then there exists a neighbourhood V of X
such that, for every x € KNV, the eMFCQ is satisfied.

Proof: If x € K is feasible, this is a rather classical result: suffice it to reason by contra-
diction and to rely on the outer semicontinuity properties of the normal cone mappings
Nrm, Nk (see [13, Proposition 6.6]) and N(pB;;O (refer to point (iv) in the forthcoming
Lemma 3.1). If X € K is not feasible, the condition My(x) = {0} implies that X is not a
stationary point for the feasibility problem (4), i.e. 0 & d¢(X) + Nx(%). The assertion then
follows from the outer semicontinuity and local boundedness of the subdifferential map-
ping d¢(e) and by, again, the outer semicontinuity properties of the set-valued mapping
Nk (see [13] for the definition of outer semicontinuity). [ |

3. Algorithmic scheme and preliminary results

The key step in our algorithm is the computation of the direction d(x") along which the
update is performed. Specifically, at each iteration, we move from the current iterate x"
along the direction d(x") with a stepsize y " satisfying (2). We compute d(x") as the solution
of a strongly convex approximation of the original (possibly) nonconvex problem, with
the approximating subproblem being reminiscent of (actually a generalization of) that of
classical SQP methods. More precisely, given a point x € K (which will actually be the
current iterate x” in the algorithm), d(x) is the unique solution of the following strongly
convex optimization problem:

minidmize f(d; X)+qx+d
s.t. g(d;x) < k(x)e™
—k(x)e? < h(d;x) < K (x)eP, (Py)
ldllec < B,
deK—x

where 8 is a user-chosen positive constant, and the constraint ||d||oc < 8 is introduced
to prevent the direction d(x”) from becoming too large. Moreover, f is a strongly convex
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surrogate of function f, while g;s are convex surrogate of the original constraint functions
gi (see Assumption A below for the conditions these surrogates must satisfy), and

h(d;x) £ h(x) + Vh(x)"d.
Finally, the term « (x) in the surrogate constraints is defined, for every x € K, as

K(x) = (1 —21) mi?x{g,(xn, |hj(x)[}

+ Amin {m.ax{gi(d;xn, i 0} | dlloo < py d € K — x} . O
)

with A € (0,1) and p € (0, B). The goal of k(x) is making the feasible set of (P,) always
nonempty. To computation of « (x), therefore, requires one to calculate the optimal value
of the convex problem

min {rr}ej,tx{éi(d;x)+, |hj(ds )1} | | dlloo < p, d € K — X} (8)

that is always solvable because its feasible set is nonempty and compact. Note that in the
most common case in which linear approximations are used for the inequality constraints,
this problem can easily be reformulated as an LP and hence efficiently solved; nevertheless,
the computation of k (x) is a somewhat expensive task, the more so when nonlinear approx-
imations are used for g. In the last section of this paper, we see that under some additional
assumptions the burden of this computation can be avoided altogether. Furthermore, note
that if x is feasible for (P), then « (x) = 0.
The method we propose is summarized in Algorithm 1.

Algorithm 1: DSM Algorithm for (P)

Data: ¥ € (0,1] such that (2) holds, x° € K, v <— 0;

repeat
(8.1) if xV is a generalized stationary point of (P) then

‘ stop and return x”;
end

(S:2) compute x (x") and the solution d(x") of problem (P,»);
(8.3) set x" Tl = x¥ + yVd(x"),v «— v+ 1;

end

A few remarks are in order. Subproblem (P,) is a generalization, along the lines explored
in [6,14], of the direction finding subproblem considered in [2], to which it reduces when
the classical quadratic/linear approximations are used for f and g:

~ 1
f(dsx) & VF(x)'d+ Endué; g(dix) £ g(x) + Vg(x)'d. (9)

where B is some positive definite symmetric matrix. Note that if these approximations are
employed and we set k(x) = 0 and 8 = 400, (Px) boils down to the classical SQP-type



OPTIMIZATION METHODS & SOFTWARE . 7

subproblem. In Section 5, we shall see that under certain conditions, setting « (x) = 0 and
B = oo is appropriate. For the time being we adopt the approach in [2] by taking « (x)
not necessarily zero and 8 < 400 in order to guarantee the existence and continuity of the
solution mapping d(x). In addition, we introduce the use of general approximations f and
¢: this may be very convenient in practice by allowing flexibility in tailoring the direction
finding subproblem to the problem at hand and to exploit any available specific structure
in (P) amenable to fast computation. It is clear that we implicitly suppose that the solution
of subproblem (P,) is ‘easy’ and, in any case, simpler than the original problem (P). We
do not insist on this point because it is very dependent on the choice of f and § which, in
turn, is guided by the original problem (P). It is worth mentioning that the use of models
that go beyond the standard quadratic/linear one in optimization is steadily emerging in
the literature, motivated, on the one hand, by the advances in the efficient solution of more
complex subproblems than the classical quadratic ones and, on the other hand, by the desire
of faster convergence rates, see~f0r example the discussion in Section 3 of [9].

In the sequel, we denote by X' (x) and d(x) the convex feasible set and the unique solution
of subproblem (Py), respectively, i.e.

Xx) 2 {d eR" : §(dix) < k(x) ", k()& < h(dsx) < k(x)e,
ldloe < B, d € K - x},

d(x) £ argmdin{f(d; x)|de )’(V(x)},

and we equivalently write the constraints —« (x)ef < fz(d; x) < k(x)ef and ||d||c < B as
h(d;x) € /c(x)IB%go and d € BB, respectively.

For our approach to be legitimate and lead to useful convergence results, we obviously
need to make assumptions on the surrogate functions f and 3.

Assumption 3.1: Let Oy and O, be open neighbourhoods of BB} and K, respectively,
and f: Oy x Oy > R and g : R" x Oy — R, for every i = 1,...,m, be continuously
differentiable on O4 with respect to the first argument and satisfy

(A1) f(e;x) is a strongly convex function on O, for every x € K, with modulus of strong
convexity ¢ > 0 independent of x;

(A2) f(o; o) is continuous on O; X Oy;

(A3) Vlf(o; o) is continuous Oy x Oy;

(A4) Vlf(o; x) = Vf(x) for every x € K;

(A5) gi(e;x) is a convex function on Oy for every x € K;

(A6) gi(e;e) is continuous on R” x Oy;

(A7) gi(0;x) = gi(x) for every x € K;

(A8) Vgi(e;e)iscontinuous on Og X Oy;

(A9) V14i(0;x) = Vgi(x), for every x € K;

where Vlf(u; x) and V1g;(u; x) denote the partial gradient off(o; x) and g;(e; x) evaluated
at u.
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These conditions are certainly satisfied if we use the classical surrogates (9), but they
allow us to cover a much wider array of approximations, both for f and for g; we refer
the reader to [6,14] as good sources of examples of nonlinear surrogates f and § satisfying
Assumption A. Note that, under Assumption A, Algorithm 1 is always well defined and
d(x") exists and is unique.

3.1. Main properties of subproblem (Py)

In this section, we state the main properties of k (x) and problem (P,).

Since k (x) is always nonnegative, it restores feasibility by enlarging the range of admis-
sible constraint function values. Indeed, the point d where a minimum is reached in the
optimization problem in (7) is easily seen to be always feasible for (P). Moreover, for every
x € K, the following relations hold thanks to Assumption A:

min {m;x{g,-(d;xn, (s )} | dlloe < p, d € K — x} < () = max(gi)-, 01,
(10)

and

K(x) = n}:;@x{gi(x)+, hj(x)[}
¢
n}gx{gi(x)+, |hj(x)|} = min {n33x{§i(d;x)+, hj(d 01} dlloo < p, d € K — x}
¢

0 € argmin {max{éi(d;x)Jr, Ihi(ds 0} | dlloo < po d € K — x} .
L]

(11)
Also, k (x) = Oifand onlyif 0 = max;j{gi(x)+, |hj(x)|} = ming{max;;{gi(d; x)+, ||h;j(d;x)|}]
ldlloc < p,d € K —x}.

In the remaining part of this section we give some highly technical results needed in
the convergence analysis. The developments are along lines similar to those considered in
[4, Section 3.2] with, however, the additional hurdle of the equality constraints and the
nonsmooth term g(x) that need a specific, in some cases non trivial, treatment.

In Lemma 3.1, we establish some preliminary properties concerning the feasible set of
problem (Py).

Lemma3.1: (i) For every X € K, and for every a > 0 and d € aB, N (K — %), the
constraint qualification

[—Nepz, (d)] N Ng_z(d) = {0} (12)

holds and, in turn, Nygr k-3 (d) = Nopr (d) + Ng_z(d);

(ii) for every a > 0, the set-valued mapping aBB’, N (K — e) is continuous on K relative
to K;

(iii) letting C 2 {(d,x) € BBL, x K : d+ x € K}, the set-valued mapping Nggr (k—e)
(®) is outer semicontinuous on C relative to C;
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(iv) letting ¢ : R" — R be any nonnegative function that is continuous on K relative to
K, and D = {(u,x) € w(x)Bfgo x K}, the set-valued mapping Nw(.)Bp () is outer
semicontinuous on D relative to D.

Proof: (i) Let 0 # n € [—Ngypn (d)] N Ng_3(d). Thanks to the convexity of the sets « B,
and K — %, we have —n" (v — d) < 0 Vv € B’ and n"(y — d) < 0Vy € (K — %). Choos-
ingy = 0 € (K — X), one gets the following contradiction:

0 <o max{—n"v|[|[V|eo = 1} = —=n'd < 0,
v

thus proving relation (12). As a consequence, the other claim in (i) follows from [13,
Theorem 6.42].

(ii) The property is due to the continuity (relative to K) of the set-valued mapping K — e
at every x € K and to the fact that « B} N (K — x) # ¢ for every x € K.

(iii) Suppose by contradiction that (d*, x") —C> (d,%), n° € Nggr nk—x)(d"), 0" — 7

with 77 ¢ Ngpr nk—3) (d). Hence, z € BBL, N (K — x) exists such that " (z — d) > 0. By
the inner semicontinuity relative to K (see [13, Chapter 5, Section B] for the definition of
inner semicontinuity) of BB, N (K — e) at X, 2" exists such that z¥ — zand z" € BB. N
(K — x"). In turn, eventually we get (n”)"(z” — d") > 0 in contradiction to the inclusion
eta’ € NﬁBgoﬂ(K—xV)(dU)~

(iv) Taking into account the continuity of the set-valued mapping v ()B2, the proof
follows the same line of reasoning as in (iii). [ |

The function « (x) is obviously continuous and, under the local Lipschitz continuity of
Z(e; ) (which is part of Assumption C to be introduced shortly), also locally Lipschitz
continuous. This result has been shown in [2] when g is a linear approximation and readily
generalizes to the case of the surrogate ¢ we consider here.

Proposition 3.1: Under Assumption A, k (e) is continuous on K relative to K. If, in addi-
tion, g(e; e) is locally Lipschitz continuous on Oy x Oy, then k(o) is also locally Lipschitz
continuous on an open neighbourhood of K.

Proof: The continuity of « (e) follows readily from the continuity (relative to K) of the set-
valued mapping pB/, N (K — e) atevery x € K: this in turn follows from (ii) in Lemma 3.1
witha = p.

The Lipschitz continuity under the additional condition derives from, e.g. [12,
Theorem 3.1]. Suffice it to observe that the constraint qualification (12) with « = p holds
foreveryx € Kandd € pB}_ N K — x, and the problem (8) in the definition of x is solvable
for every x in an open neighbourhood of K. The latter claim is due to pB}_ N (K — x) # ¢
for every x in an open neighbourhood of K, since, for every x € K, 0 € int(pBZ ) N (K —
x), and in view of the continuity of the set-valued mapping K — e. |

The following technical lemma is very useful for the subsequent developments.

Lemma 3.2: Under Assumption A, the following results hold for any x € K:
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() if max;j{gi(X)+, [hj(X)]} > 0 and k(x) < max;j{gi(X)+, |hj(X)|}, then, for all p €
(0, B), there exists d € int(BB”) Nrelint(K — X) such that g(d;x) < k(x)e™ and
K(R)el < h(d;%) < Kk (R)eb;

(ii) ifmax;;{gi(X), [hj(X)|} > 0and k (X) = max;;{gi(X)+, |hj(X)|}, then X is an ES point
for (P);

(iii) if max;;{gi(X)+, hi(X)|} = O, then either X is a FJ point for (P) or, for all p €
(0, B), there exists d € int(BB} ) N relint(K — x) such that g(d; x) < O,jjz(d; xX)=0
and {0} = {7 [ (Vh(X)m)"'w = 0,Yw € Tgpn nk—x (v)} for every v € X (%), where
Tgpr, N(k—3) (v) denotes the tangent cone to BBZ, N (K — X) at v.

Proof: (i) First, we recall that in this case, in view of the preliminary relations discussed at
the beginning of Section 3.1, k (x) > 0. Choosing de arg ming{max;;j{gi(d; x), |fzj(d; x)|}
|ldlloo < p, d € K — x} with p € (0, 8), we can infer g;(d;%) < ming{max;;{g:(d; %)+,
Ihi(d )1} | dllos < p,d € K =3} for every i, and |hj(d:&)| < ming(max;;{Zi(d; %)+,
lhi(d; %)} ldlloc < p,d € K — ) foreveryj, withd € pBZ N (K — %). The claim follows
in view of (10) and (11), and by continuity since p < S.

(ii) By (11), equality « (X) = max;;{g;(x)+, |hj(X)|} holds if and only if d = 0 solves the
minimization problem in the definition of x and, in turn, My(x) # {0} since condition (6)
holds at x by (12) with @ = p, A7 and A9.

(iii) With max; j{g; (%) +, |hj(X)|} being equal to zero, we have x (x) = 0,and g(x) < 0and
h(x) = 0. If My(x) # {0}, then, by definition, X is a FJ point for (P) and the result holds.

Thus, let us suppose My (%) = {0}. Following the same line of reasoning as in [13, Exer-
cise 6.39], in view of the regularity of the involved sets, we see preliminarily that this
condition holds at X € K if and only if

(0} = {7‘[ | (VhR))Tw = 0,¥w € TK(&)},

(13)
3d € relint Tx (%) : Vgi(X)'d <0, Vi:gi(x) =0, Vh()'d = 0.
First, we show that condition
(0) = {7 | (VRGIT) "W = 0,¥w € Tymy (@) | (14)

holds for any d € X (). If this were not the case, there Vyould exist some d € X (%)
and 7 # 0 such that (Vh(X)7)"'w = 0,Yw € Tgpn nk—2 (d). Thus, with —Vh(X)7r €
NgBr n(K—%) (d), for some 7 € Nggn, (d)yand ¢ € NK_;C(;i) it would hold that,

0= (VA@T)" (—d) +n"(=d) + ¢ (—d) = n"(~=d) + ¢ (=d),

thanks to [13, Theorem 6.42] and observing that —de Tgmr, nk-5) (d) since 0 € BBL. N
(K — %). In turn,

0=n"d+¢'d > p max(n'v| [Vl = 1} 2 0,
v
where the first inequality follows from ¢”d > 0, in view of 0 € BB . As a consequence,
n =0and ¢"d = 0, entailing { € Nk(x). Therefore, we would get
0=Vh@)m + ¢,
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with 7 # 0 and ¢ € Nk (%), in contradiction with the assumed condition My (%) = {0}.
Hence, (14) is verified at any d € X' (X).

Then, for those j € {1,...,m} such that gj(X) < 0, we have g;(0;x) = gj(x) < 0; as for
indices k € {1, ..., m} with g(X) = 0, by (13), there exists d € relint Tk (%) such that

0> Veu®)'d = Vige(0 2)7d = lim SLTED) Z8(OGH.

7]0 T
as well as Vh(fc)Tci = 0. Taking the cue from the proof of [13, Theorem 6.9], one
can observe that relint Tg(x) = {d € R" |Ja > 0 with X + ad € relintK} due to [13,
Proposition 2.40]. Hence, in view of [11, Theorem 6.1], for every v > 0 sufficiently small,
% 4 7d € relintK as well. The claim follows by continuity, observing that g(td; %) < 0 for
every i and for any 7 sufficiently small. |

The quantity
6(x) £ n}?x{gi(-%)-i-’ |hi)1} — k(x) = )"(n}?x{gi(-%)-i-’ |hj()1}

— min {mQX@i(dQX)-i-y hi(d; )} | lldllco < p> d € K — x} ) (15)
ij

with A € (0, 1), plays a key role in the previous lemma and in all the subsequent develop-
ments. As shown in the following proposition, 6 turns out to be a stationarity measure for
the violation-of-the-constraints problem (4).

Proposition 3.2: Under Assumption A,

(i) the nonnegative function 0 (e) is continuous on K relative to K;
(i) O(x) = 0ifand only if X is a stationary point for problem (4);

(iii) we have, for every x € K,
Vg(xV)T
o0 =| (Ter)

Proof: (i) The nonnegativity of 6 follows readily from (10) while continuity follows from
Proposition 3.1.

(ii) At any feasible point X of (P), 8(x) = 0; of course, every feasible point of (P) is
stationary for problem (4). Consider now an infeasible point x for (P) and suppose that
6 (x) = 0. By (ii) in Lemma 3.2, X turns out to be an ES point for (P). Hence, we are left to
show that if X is an ES point for (P), then 6(x) = 0. For X to be ES, it is necessary and suf-
ficient (see condition (6)) to have My(x) # {0} which in turn, by the Motzkin’s alternative
theorem (see e.g. [3, 2.5.2]), holds if and only if

Id)1l. (16)

‘ o0

Bde Tx() : Vgi®)'d <0, Vie LX) £ {i : gi(}) = rr%’;}X{gi(fc)Jr, 1hi ()1},
th(fc)Td <0, Vel R 2{: hi(x) = rr}?x{g,-(fc)Jr, |hj(%)[}}, and, (17)

VI > 0, € J-(3) £ (j : Bi® = —max(gi®) . @)
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Suppose by contradiction that (k) > 0. Then, noting that d € K — & implies d € Tk (%),
Lemma 3.2 (i) states that d € Tx(x) exists such that g;(d; x) < «(X) for all i € I (%) and
Ifzj (d;x)| < k(%) for all j € J4 (%) UJ_(X). But then, using A5, A7, and A9, we can write,
for any d,

H}S}X{gi(ﬁ?)Jr, Y > k(&) > &Gi(d:%) > §0;%) + V1gi(0;%)7(d — 0)
> gi(%) + Vgi(x)'d,
max(gi®), IR} > . ®) > b(ds D) = hi®) + VhR)'d,
— max{gi(®)-+, @) < —c@) < hi(d; %) = (%) + V(D) d,
for every i € I1 (%), j € J+ (%) and j € J_(X), respectively. In turn, we get a contradiction

to (17).
(iii) Furthermore,

0<0(x") = H}’;}X{gi(x”)Jr, 1)1} — K (x¥)
(a) -
< H%?X{gi(x'))% 1hi(x")[}} — rgé}x{éi(d(x");x”)% |hi(d(x"); x") [}

(b) v v
< maxlgi) . 1))
— max{(0") + Vg A 4 ) + Vi) TG )

©
= H}?X{(gi(x”) — &i(x") = Vgi(x")Td(x")) 4, [hi(x") — Bj(x") — Vhi(x")"d(x")1}

VNT V\T
(57 o] < (522

Vh(x")T
where (a) follows from g(d(x"); x") < k(x")e™, —k (x")ef < fl(d(x");x") < k(x")ef, and
max{0, o1} < max{0,ay} for any a;, az € R such that o) < ay; (b) is due to A5, A7 and
A9; and (¢) follows from max{0, o1, 81} — max{0, ay, B2} < max{0,x; — a3, B1 — B2}, for
any a1, a2, B1, f2 € R, and |B1| — |B2| < |B1 — Bzl for any By, B2 € R. u

a1l

.

Leveraging Lemma 3.2, we can establish a key continuity property for the solution map-
ping d(e) of subprobleg} (Px). Preliminarily, for the reader’s convenience, we report the
MFCQ for (Py) atd € X (x).

(0) = {(€.7) 1§ € Nen@(ds ) = k()€™ 7 € N, (5 ),
0 € V1g(d 0§ + VAT + Npsz k0@ |
Proposition 3.3: Under Assumption A, let the eMFCQ hold at X € K. Then,

(i) the MFCQ holds at every point of X (x);
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(i) a neighbourhood )V of X exists such that, for every point x € K NV, the mapping d(e)
is continuous relative to K.

Proof: (i) Since eMFCQ holds at X, case (ii) in Lemma 3.2 cannot occur. On the other
hand, as for both cases (i) and (iii) in Lemma 3.2, Slater’s constraint qualification holds for
X (X) and, since X (%) is convex, this proves (i), see e.g. again [13, Exercise 6.39], but now
applied to subproblem (P;).

(ii) Since « (o) is continuous by Proposition 3.1, thanks to A6 and (ii) in Lemma 3.1, we
can assert the outer semicontinuity, relative to K, at X for the set-valued mapping X' (e) =
(BB N (K —e)]N{deR": g(dse) < k(e)e™, —k(o)eP < h(d;e) < k(e)eP} (see [I,
Theorem 3.1.1])

As for the inner semicontinuity property, we distinguish two cases. If max;;{g;(X)+,
|h; x|} >0, .)?(o), by virtue of Lemma 3.2 (i), A5, A6 and (ii) in Lemma 3.1, is also inner
semicontinuous (see [1, Theorem 3.1.6]) at X relative to K. Else, if max; ;{gi(X) +, |hj(X)|} =
0, in order to prove the inner semicontinuity of .)?(o) ={deR": g(d o) <k(e)e"}IN
({deR" : —k(o)e? < h(d;e) < k(8)el, |dlloc < B,d e K— o} at %, relatlve to K, suf-
fice it to show, thanks again to [1, Theorem 3.1.6], that the mappmg 'H(o) ={deR":
h(d o) =0, |d]lcc < B, d € K— e} is inner semicontinuous at X, relative to K. Suppose
by contradiction that the latter mapping is not inner semicontinuous at X relative to K.
Thus, there exists d € 'F((fc), a sequence x" Tg xand & > 0, such that, eventually,

Id° —d|l >e, Vd eH. (18)

Taking into account Lemma 3.2 (iii), we know that d € int(8B[,) N relint(K — X) exists
such that h(d; %) = h(X) + Vh(%)"d = 0. Letaff K = {v € R" | Ev = e} be the affine hull of
K, where Eisa k x n full row rank matrix. If aff K = R", we take k = 0, and E and e are vac-
uous. In view of condition {0} = {7 | (VhZ)7)"™w = 0,Vw € Tgmr (k-3 (V)} for every

v € X (%), the matrix (th“)T) has full row rank, see [10, Theorem 3]. As a consequence,
denoting by

Vi A -1
(Vh}(zx)T) 2 (Vh(%) ET)[(WI(E’C)T> (VhG) ET)]

the Moore-Penrose pseudoinverse of ( th‘)T ), on the one hand z € R” exists such that

- (VR [ h®) ve®™\" (vE®™N\ |, e .
o= () (20 )« [i= (P () s emmrncc—s

(19)
on the other hand z € R" exists such that

(VRN [ W) V@™ (VhG)"
o= (") (B2 [ (") ()]

z € int(BB},) Nrelint(K — X). (20)
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By [11, Theorem 6.1], for every " € (0, 1), the direction

ba v (VE®T [ k&) Vh@ N (VRG)T
ot (B8 (20 e[ () ()]
Z+1"(z—-2)],

belongs to int(BB/,) N relint(K — x). Let us introduce

v o _ (VRO G VA" (VRN e
d__< E )(Ex”—e>+|:1_< E )( E ):|[Z+T(Z—Z)].

Pre-multiplying d" by (Vh%‘V)T>, we observe that h(x") + Vh(x")'d” = 0 and E(d" +
x”) = e. Thanks to the latter relation and recalling that in our case the pseudoinverse is
continuous because <thC)T) has full row rank, we have, by continuity, that t" € (0, 1)

exists such that 7V | 0 and d" € int(BB} ) N relint(K — x"). Thus, we get a contradiction
to (18) and we have shown the required inner semicontinuity. In turn, thanks to Al, the
continuity (relative to K) of d(e), leveraging [1, Theorem 4.3.3], follows from [13, Corollary
5.20]. ]

To enforce the convergence results in the next section, we need d(e) to be not only
continuous, but also Holder continuous on compact sets: for this reason, we introduce
Assumption B.

Assumption 3.2: For any compact set S C K, two positive constants 1 and « exist such
that

ld(y) —d@)| < uly —zl* Vy.zeS.

Since it is not immediately obvious when this condition is satisfied, below we give a set of
simple sufficient conditions on f and g for Assumption B to hold.

Assumption 3.3: C1) ]‘(o; o) is locally Lipschitz continuous on O x Oy;
C2) each gj(e;e) is locally Lipschitz continuous on Oy x Oy.

Note that Assumption C is automatically satisfied if we use the quadratic/linear approx-
imations (9). The following proposition shows the desired result.

Proposition 3.4: Under Assumptions A and C, let S C K be compact. Suppose further that
the eMFCQ holds at every x € K. Then, there exists ;1 > 0 such that, for every y,z € §,

1d(y) — d@) || < ully — zI|2. (21)

Proof: Preliminarily, observe that by Proposition 3.1, « (e) is locally Lipschitz continu-
ous. Furthermore, by Proposition 3.3 (i), the MFCQ holds at every pointin X (%). In turn,
by [12, Theorem 3.2], for every X € K, the set-valued mapping & has the Aubin prop-
erty relative to K at X for any element belonging to X' (x) (see [13] for the definition of
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the Aubin property). Even more, in the light of [13, Theorems 9.38 and 9.30] being X
outer semicontinuous and locally bounded at X relative to K, for every x € K, X" is Lip-
schitz continuous (see [13] for the definition of the Lipschitz continuity in the context
of set-valued mappings) on a neighbourhood of & relative to K. Therefore, in view of [8,
Theorem 3.3], for every X € K, there exist i > 0 and a neighbourhood V of x such that,
foreveryy, ze VNK

1d() — d@)| < filly — 21| 2.

This together with the compactness of set S implying a uniform bound p across x implies

(21). |
We recall that the KKT conditions for problem (P,) can be written as follows:
0 € Vif(d(x);x) + 3q(x + d(x)) + V1§(d(x); )& + Vh()T + Ngpn k0 (d(x)),

with the KKT multipliers £ and 7 satisfying the conditions & € Ngm(g(d(x); x) — k (x)e™),
and 7 € NK(x)BgO (fl(d(x);x)), respectively.

Proposition 3.5: Under Assumption A, let X € K and suppose that de int(BBL,) N
relint(K — X) exists such that g(dA; X) < k(x)e™ and either k (X)ef < il(&i; x) < k(X)el (if
©€®) > 0), or h(d; ) = 0 with {0} = {r | (Vih(d; R)7)"w = 0,%w € Typs ki) (")}, for
every v e X(x) (if k() = 0). Then, a neighbourhood V of X exists such that, for every
point x € KNV, the unique solution d(x) of (Py) is a KKT point for problem (Py) and the
set-valued mapping of the KKT multipliers is locally bounded at X relative to K.

Proof: The condition g(&; %) < k(X)e™ and either k (X)e? < h(d; %) < k(®)eP (if k(X) >
0), or ft(dA; x) =0 and {0} = {7 | (Vlfl(ci; Xm)'w=0,Yw € Tgpn nk—x)(v)}, for every
Ve /’?(&), (if« (x) = 0), with de int(BBZ ) Nrelint(K — %) is nothing else but the Slater’s
CQ for problem (P3;), which obviously implies that the MFCQ holds at the unique solu-
tion of problem (P;) (see also again point (i) in Proposition 3.3). The derivation of the
result is then rather classical and follows from, e.g.[7, Proposition 5.4.3] taking into account
Lemma 3.1 (ii), Propositions 3.1 and 3.3, and the outer semicontinuity of Nggn n(x—e)(®)
and N, (0)BL, (o), see Lemma 3.1 (iii) and (iv) (with ¥ = «), respectively.

4. Convergence of the method in the general case

We are now ready to study convergence of Algorithm 1. The main result is stated below.

Theorem 4.1: Consider the sequence {x") generated by Algorithm 1 with f and § satisfying
Assumption A. The whole sequence {x"} is contained in K and either is unbounded or satisfies
the following assertions:

(i) at least one limit limit point X of {x"} is generalized stationary for problem (P); in
particular, if the eMFCQ holds at %, then X is a KKT point for problem (P);

(i) if, in addition, the eMFCQ holds at every limit point of {x"}, under Assumption B,
every limit point of {x"} is a KKT solution for problem (P).
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Proof: Since the starting point x° belongs to the convex set K, the stepsize satisfies y” < 1
by construction and, by the last constraint in (P,»), x* + d(x") € K forall v, it is easily seen
that all points x" generated by the algorithm belong to K. We now assume, without loss of
generality, that the sequence {x"} is bounded.

Preliminarily, observe that, at each step, the solution d(x") of subproblem (P,v) is also
a KKT point for (P,»). In fact, suppose that at a certain iteration v, d(x") does not satisfy
the KKT conditions for (P,s). The subproblem is always feasible by construction; let us
analyse the three exhaustive cases considered in Lemma 3.2. In case (i), Slater’s condition
holds for (P,s) and d(x") is a KKT point. In case (ii), x" is an ES point of (P): hence, we
would have stopped at step (S1). In case (iii), either Slater’s condition holds for (P,s) and
d(x") is a KKT point, or x” is a FJ point for (P), in which case we would have stopped at
step (S1). Therefore, d(x") is a KKT point and multipliers {£"} and {7"} exist with " €
Ny (B(d(x");x") = k(x)e), 7" € N, (e (R(d(x");x")) and

0 € Vif(d(x"); x") + 0g(x" + d(x")) + V18(d(x"); x")E" + Vh(x")m"
+ Nggr nx—x) (d(x")). (22)
Using to Al and A4, we have
Vif(@d(");x") d(x") = [Vif (d(x");x") — Vif(0;x") + Vif (05 x)]"d(x")
> clldx")[|* 4+ Vf(x") d(x"). (23)

Also, by the convexity of g, for every p¥ € dgq(x” + d(x")),

pVTd(x") > q(x” + d(x")) — q(x"). (24)
Moreover, in view of A5, for everyi=1,...,m,
— V1gi(d(x");x")Td(x") < gi(0;x") — gi(d(x"); x") (25)

and, by A7, since £" is nonnegative, in turn,

—&'V1&(d(x");x") d(x") < §[gi(0;x") — Zi(d(x");x")] = & [gi(x") — k (x")], (26)
where the equality follows observing that £” belongs to Npm(g(d(x");x") — k(x")e).
Also, taking into account w" € N, B, (fl(d(x”);x”)), we have for every j=1,...,p,
Jij [hi(x") + th(x”)Td(x”)] = |Jij| k(xV) and in turn

— 7] Vhi(x")'d(x") = 7' h(x") — |7 ke () < || (e = k(D] (27)
Therefore, by (22), (23), (24), (26) and (27), we have, for some p" € dq(x” + d(x")) and
¢V € Ngpr nk—xv) (d(x")),

clldGe)1? + V) d(") + g + d(x")) — q(x")

< Vif(d(x);x")d(x") + p"Td(x")
= —£"TV1Z(d(");x") d(x") — 7" VR(x") T d(x") — ¢ Td(x")
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p
< £"g(x") — kel + ) I || — k()]

j=1

< E”T[rg?x{gi(x”)Jr, Ihj(x")[} — K (x")]e

p
+ I (max{gi(e") 1, 111} = e (<)] = O GIE" 7 "),
j=1 ’

where the second inequality is due to 0 € SB7_ N (K — x”). Hence, we get
V") () < —clld&x) >+ 06 1E", ) 11 +q(x") — q" +d(x")).  (28)
We also notice that, since d(x") is feasible for problem (P,v), by A5, A7 and A9, for all i,
K(x") = Zi(d(x"); x") = gi(0;x") + Vgi(0;x) T d(x") = gi(x") + Vgi(x") d(x").  (29)

Let us now consider the nonsmooth (ghost) penalty function already described in the
introduction

1
W(xse) = f(x) + q(x) + - H}?X{gi(x)+, [hj ()1} (30)

with a positive penalty parameter ¢. This function plays a key role in the subsequent
convergence analysis although it does not appear anywhere in the algorithm itself.

In the following analysis we will freely invoke some properties of function () =
max{0, o}, namely max{0,c;} < max{0,2} for any aj, @z € R such that o) < oy,
max{0,aa} = a max{0,a} for any o € R and nonnegative scalar 4, and max{0,o; +
o} < max{0, o1} + max{0, oy }. We have

W't e) — Wse) = f(x" + y d(x") — f(x") + q(x" + y d(x")) — q(x")
1
+ [ maxtge’ +y dee ) I+ dee ) - maxlgGe)s, ) )]

a ")2L
@ rfeydee) + LY

1A 12 + q(x” + Y d(x")) — q(x*)
1
+ g[rr}?»x{(gf(x”) + ¥ Vgi(x") d(x")) 1, (") + ¥ Vhi(x") d(x")]}

(y")? max;j{Lvg;, Ly}
2

— max(gi() 1 ()1} + ||d(x”>||2]

V)2 i L i’L .
Q) + (Vz) (Lw 4 it - V’”}) 1dG) P
+gq(x” + yVd(x")) — q(x")
1
+ g[n}?x{a G4 ), (0 — B+ )

- rr%ejlx{gi(xv)+, |hj(xv)|}]
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V)2 iitLvg; Lvh
_ VG TARY) + (V ) (Lw+ maxist - V’”}) 1A |12
+q(x" + yVd(x")) — q(x”)

1
+ g[(l -v" H}?X{gi(x”)+> |hj(x")|} — H}?X{gi(x”)Jr, |hi(x")1} + VUK(x”)]

V)2 i,‘{L i’L }
=y V(") d(x >+(” (Lw+max] Zg vy )ual(x")u2

v

g0y ) — g6 = 7| maxtgc) o Iy G — 6]

V)2 iitLvg; Lvh;
=y VI d(") + (V ) (Lw+ maxist Zg V’”}) 1) |2

- %G(x”)q(x“ +Yd(x)) — q(x") (31)

where (a) follows applying the descent lemma to f, g; and h; for every i =1,...,m, j =
->p> with Lyy, Lvg and Lyy, being the Lipschitz moduli of Vf, Vg; and Vh; on the
bounded set containing all iterates, and noticing that, for all js,

(y")? max;j{Lvg, Lvp;}

> Gy 11%s

|hj(x” 4+ yVd(x" )] < [hi(x") + ¥y " Vhi(x") d(x")]| +
(b) holds for any positive y” <1 since, in view of (29), Vgi(x")"d(x") < k(x") —

gi(x"), and, recalling |h;(x") + Vhi(x")"d(x")| < k(x"), |hj(x") + y"Vhi(x")Td(x")| <
YV i (x") + (1 — y")|hj(x")|. Furthermore, we observe that

1
" [Vf(xv)Td(x”) 2 9(?6”)] +q(" +yYd(") — q(x") <y [=clld)|)?

<I|($ )l — —) O]+ y"[q(x") — q(x” + d(x"))]
+ (" +yd(x") — q(x")

<y’ [—CIIGI(X")II2 + (II(S 7l = —) 0(x" )} (32)

where the first inequality is due to (28) and the second relation is a consequence of the
convexity of q. We also notice that, for any fixed x" and for any 7 € (0, 1], there exists
g” > 0 such that

Vi) Td(x") — 9(x”)+ [q(x +y"d(x") — q(x")]
—neld")|> Ve e (0,5”]- (33)

We now distinguish two cases.
(I) Suppose that (33) does not hold uniformly for every x", thatis n € (0, 1] and a subse-
quence {x"} s exists, where N € {0,1,2,...}, such that we can construct a corresponding
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subsequence {¢"}r € Ry with&” | 0 on A and

1 1
Vi) d(x") — e 0(x") + F[q(x” +yVd(x") — g > —nelld)IIP (34)

for every v € . For (34) to hold, relying on (32), the multipliers’ subsequence {(§”, ")} s
must be unbounded. Combining (32) and (34), we get

1
0 <c(l—nld")|* < ((m +PIIEY, 7)o — 8—,,) 0(x"),
and, thus, 6(x”) > 0 for every v € \. By the previous relation and (34), we also have

1 VO A + Sslqx” 4+ yPd(x") — g(e)] + nelld ()|
<

gy 0(x")

(35)

As&” | 0 on N, the right-hand side of (35) goes to infinity: since, by the (local) Lipschitz
continuity of g, the numerator is bounded, we have

0(x") = 0. (36)

Let x be a cluster point of the subsequence {x"}xs. By (36), only cases (ii) and (iii) in
Lemma 3.2 can occur at ¥ € K. The existence of a d as stipulated in Lemma 3.2 (iii) would
entail, by Proposition 3.5, the boundedness of the KKT multipliers (§”, 7") forv € N large
enough, thus giving a contradiction. Therefore, by Lemma 3.2 (ii), we conclude that X is
either an ES or FJ point for (P).

(IT) As opposed to (I), consider the case in which relation (33) holds uniformly for every
x": that is, for any n € (0, 1], there exists & > 0 such that

1 1
V") dx") — - 0(x") + F[q(x” + y"d(x")) — q(x")]
< —neld(x")|* Ve € (0,€], V. (37)
Combining relations (31) and (37), we get

W (x" L — W(x"; &)
V)2 max;;{Ly ,->LVh-}

< —y nelldx")|1* + 5 _

v max;i{Lvg, Ly}
=—y’ [nc - y? <va + d gg : )} ld(x")|I%, (38)
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for any € € (0, £]. Since lim,, ¥ = 0, there exists a positive constant w such that, by (38),
for v > v sufficiently large,

W(xv+1;g‘) — W(Xv;g) < —a))/v”d(xv)”z' (39)

With W being bounded from below, by (39), the sequence {W(x"; &)} converges and
1%
: t 112
11‘1)ntz yiIdGeH P < 4o0.
=V

Therefore, since Y o2, " = +00, we have
lim inf |d(x")|| = 0. (40)
V—>00

Recalling relation (16), taking the limit on a subsequence N such that ||d(x")|| Xf) 0, we
have 0(x") X/) 0. Finally, let X be a cluster point of subsequence {x"}xr. Since 60 (x") Xf) 0

implies « (X) = max;;{gi(X)+, |hj(X)]}, cases (ii) or (iii) in Lemma 3.2 may occur: specifi-
cally, x is either an ES, or a FJ, or a KKT point for (P). In particular, if the eMFCQ holds at
X, case (i) in Lemma 3.2 is ruled out and max; ;{g;(X) +, |hj(X)|} cannot be strictly positive;
then, k (X) = max;;{gi(X)+, |h;(X)|} = 0. Furthermore, taking the limit in (22), we obtain,
by A3, A4, A6-A9, KKT multipliers’ boundedness and outer semicontinuity property of
dg(e), and of the normal cone mappings Ngpr (k—e)(®) and Nx(o)Bﬁo (®) (see Lemma 3.1
(iii) and (iv) with ¥ = «) and Ngm(e),

—Vf(%) = Vg®)E — V@A € 3q(3) + Nggz, k- (0) = 09(%) + {0} + Nx_3(0)
= 9g(%) + Nk (%),

with & € Ngm(g(®) — k(R)e) = Npm(g(R)), # € Nyoj(h(X)) = R? and where the first
equality follows from Lemma 3.1 (i). In turn, X is a KKT point for problem (P). This
concludes the proof of case (i).

As for point (ii), observe that if, instead of the weaker (40),

lim Jld(x")] =0 (41)
V—>00

holds, we can reason similarly to what done above after (40) for any convergent sub-
sequence of {x"}, and conclude that (ii) holds. Therefore, it is enough to show that
Assumption B entails (41).

Consider now the compact set containing all iterates x”. While lim inf,_, o |[d(x")|| =
0, suppose by contradiction that lim sup,_, . [|d(x")|| > 0. Then, there exists § > 0 such
that ||d(x")|| > & and ||d(x")|| < /2 for infinitely many vs. Therefore, there is an infinite
subset of indices NV such that, for each v € NV, and some i, > v, the following relations
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hold:
14D < 8/2, dG™)]| > 8 (42)
and,ifi, > v+1,
8/2 < G <8, v <j<i (43)

Hence, for all v € A/, we can write

. , @
8/2 < 1Al = 1) < [1d(x™) — d(x)| = wllx™ — x"||*

iy—1 a i,—1
(Qu[Zynd(x)n} < s (Zy) , (44)

where (a) is due to Assumption B with oz and p positive scalars, (b) comes from the triangle
inequality and the updating rule of the algorithm and in (c) we used (43). By (44) we have

ip,—1 o
liminf wdé® (Z y ) > 0. (45)

V—>00
t=v

We prove next that (45) is in contradiction with the convergence of {W(x"; )} for any
g € (0,¢], where ¢ is defined around (37). To this end, we first show that || d(x")|| > §/4,
for sufficiently large v € . Reasoning as in (44), we have

AT = 1dE) < plath = 1% < w(p)* 1dE)I1%,

for any given v. For v € A large enough so that wu(y")*(§/4)* < §/4, suppose by con-
tradiction that [|d(x")|| < 8/4; this would give ||d(x" )| < §/2 and, thus, condition (43)
(or (42)) would be violated. Then, it must be ||d(x")|| > §/4. From this, and using (39), we
have, for sufficiently large v € N,

iy—1 52 bl
W38 < W"38) —o )y ldE))* < W) - w— Z y.  (40)
t=v

Since {W(x"; &)} converges, as estabhshed above immediately after (39), renumbering if
necessary, relation (46) implies Z’“ 'yt — 0, in contradiction with (45). This shows that
(41) holds and concludes the proof of the theorem. |

Remark 4.1: Convergence to a generalized stationary point is obtained in Theorem 4.1 if
the sequence {x"} is bounded. In our framework, generating an unbounded sequence is
a natural possibility that cannot and should not be excluded in principle, since we do not
make any standard assumption such as feasibility, regularity of the constraints, coercivity
or even existence of a stationary point. Of course, the question arises of when the sequence
generated by the algorithm is bounded; can we give a priori conditions that guarantee the
boundedness of the iterations? It is possible to give a satisfactory answer to this question,
at the price of a much more convoluted analysis; we refer the reader to [4] for develop-
ments in this direction. Here we only mention that if K is bounded, a case very frequent in
applications, the sequence {x"}, which is contained in K, is also surely bounded.
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5. Convergence of a simplified version of the method for problems with
convex constraints satisfying eMFCQ

The result in Theorem 4.1 is very broadly applicable, implying some notion of stationarity
for limit points even for problems satisfying essentially no structural assumptions. In this
section, we add two classical assumptions with respect to the constraints, namely, convexity,
and a standard constraint qualification.

A simple corollary of Theorem 4.1 is obtained assuming that the eMFCQ holds
everywhere; note that this is commonly assumed in papers considering convergence of
algorithms for nonlinear constrained optimization. Theorem 4.1 immediately gives the
following result.

Corollary 5.1: Consider the sequence {x"} generated by Algorithm 1 withf and g such that
Assumption A holds and suppose that the eMFCQ holds everywhere in K. Then, the whole
sequence {x"} is contained in K and either the sequence {x"} is unbounded or the following
assertions hold:

(i) at least one limit limit point X of {x"} is a KKT point for problem (P);
(ii) if Assumption B also holds, then every limit point of {x"} is a KKT point for problem (P).

In what follows we further assume that the constraints are convex and we explore the
consequences of this structural property: we show that Algorithm 1 can actually be simpli-
fied while stronger convergence results can be obtained. Therefore, from now on we make
the following assumption.

Assumption 5.1: Each g; is convex and h is linear, i.e. h(x) = Ax + b, for some p x n
matrix A and vector b € R?, on an open neighbourhood of K, and K is bounded. Fur-
thermore, the feasible set X’ of (P) is nonempty and the eMFCQ holds at every point
in K.

We remark that, in the setting of Assumption A, eMFCQ on K is easily seen to be equiv-
alent to the more classical MFCQ assumed over the feasible set X (see, e.g.[5]). Also, note
that f is not assumed to be convex. In this setting, we show that one can always set « (x) = 0,
thus avoiding the non negligible task of computing this quantity, and make the resulting
modified version of Algorithm 1 resemble a pure, classical SQP-type method. The key point
here is that « (x) is introduced to relax the constraints in subproblem (P,) in order to ensure
nonemptiness of its feasible set and some continuity properties of d(x). It turns out that,
alternatively, Assumption A is also sufficient to achieve these results. The search direction
we consider is now defined to be the solution of the following strongly convex optimization
problem:

minidmize f(d; x) + q(x + d)

s.t. gx) +Vgx)'d <0 (PS)
Ax+d) +b=0, *
de K —x,

whose feasible set is denoted by Xe (x). Note that this is just a particular case of (Py) where
we take g to be the linear approximations of ¢ and omit the constraint ||d|| o, < B; this latter
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simplification is possible because we assume K to be bounded and therefore, if we take 8 to
be larger than the diameter of K, this constraint is superfluous (i.e. never active) and can be
omitted. Note also that if x° satisfies the linear equality constraints, every point generated
by the algorithm will satisfy them, and the equality constraints in (P{) can be rewritten as
Ad = 0, since at each iteration b + Ax" = 0.

Our first order of business is then to ensure that the feasible set of (PY) is always
nonempty; this is rather classical to show, even if in our setting not totally immediate.

Proposition 5.1: Under Assumption A, for any x € K there exists d € relint(K — x)
such that g(x) + Vg(x)'d < 0 and A(x + d) + b = 0. Furthermore {0} = {7 | (A"m)"w =
0,Vw € Tk—_x(v)} for every v € X(x). A fortiori, the feasible set of (PS,) is nonempty.

Proof: The proof is an adaptation of the one for Lemma 3.2 (iii). Take a feasible point X.
In view of convexity, we recall that the eMFCQ holds at X if and only if (see [13, Exercise
6.39 (b)]) conditions (13), which under Assumption A read as follows, hold:

{0) = {n | (AT7)"w = 0,Vw € TK(&)},
- ) ) (47)
3d € relint Tg (%) : Vgi(x)'d <0, Vi:gi(x) =0, Ad=0.

First, observing that the tangent cone to the convex set K at a point X is given by the closure
of the cone of feasible directions for K at X, and borrowing again from the proof of [13,
Theorem 6.9], we have relint Tx () = {d € R" |3« > 0 with X + ad € relintK} due to
[13, Proposition 2.40]. Hence, in view of [11, Theorem 6.1], for every t > 0 sufficiently
small, ¥ + 7d £ X € relintK as well. As a consequence, by (47), x is still feasible for (P)
and, because of Vg; (X)"d < 0, Vi such that gi(x) = 0, and simple continuity arguments, it
holds that g(%) is stricty feasible, Le.g(a”c) < 0.

Concerning the feasible set X°(x) of subproblem (P¢), take d L5%—x Clearly, d €
rel int(K — x). Furthermore it can readily be seen that X satisfies the linear constraints,
i.e. b+ A(x + (x — x)) = 0 holds. Moreover, by using convexity, we can write, for all i,

0> gi(%) > gi(x) + Vgi(x)"(x — x) = gi(x) + Vgi(x)"d.

Finally, following the same line of reasoning (by contradiction) in the proof of Lemma 3.2
(iii) (see in particular the developments below (14)), but here considering the constraint
ldlloc < B as never active and thus omitted, since the eMFCQ holds everywhere, we get,
for every v € X¢(x),

{0} = {n | (A7) w = 0,¥w € TK,x(v)}. (48)
m

Paralleling Proposition (3.3) (ii), we now establish that d(x), also as the unique
solution of the modified subproblem (P{), remains continuous. Since the feasible set
of (Py) is nonempty and we assume, as usual, that the objective function of that
subproblem is strongly convex (see Assumption A), d(x) is well-defined to begin
with.
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Proposition 5.2: Under Assumptions A and A+, d(e) is continuous on K.

Proof: The proof can be derived from the one for Proposition 3.3. More specifically, in
view of thg continuity of the functions involved and by (ii) in Lemma 3.1, the set-valued
mapping X°(e) = (K —e) N {d € R" : g(e) + Vg(e)'d < 0,A(e + d) + b = 0} is outer
sgmicontinuous relative to K at any x € K, thanks to [1, Theorem 3.1.1]. To show that
X(o)={deR" : g(e)+Vg(e)'d<0}N{deR" : A(e+d)+b=0,de K—e}at
Xisalso inner semicontinuous atany x € K, relative to K it s~uﬁices to prove, thanks again to
[1, Theorem 3.1.6] and Proposition 5.1, that the mapping H*(e) L2({deR": A(e+d) +
b =0, d € K — e}isinner semicontinuous at x, relative to K. In the light of Proposition 5.1,
this can be done by a reductio ad absurdum, following the same steps as in the proof of
Proposition 3.3 (ii) (see in particular the developments below relation (18)), by recalling
that here the constraint ||d||oc < B is never active and thus omitted.

Finally, thanks to Al, the continuity (relative to K) of d(e), leveraging [I,
Theorem 4.3.3], follows from [13, Corollary 5.20]. [ |

The following proposition shows that, classically, [|d(x)|| is a stationarity
measure.

Proposition 5.3: Under Assumptions A and A, ||d(x)|| = 0 with x € K ifand only if x is a
KKT point of (P).

Proof: The (unique) solution of the strongly convex subproblem (P) satisfies the KKT
conditions because of Proposition 5.1. This KKT conditions can be written as
0 € Vif (d;x) 4+ 9g(x + d) + Vg(x)& + AT + Nx_x(d)
0<& L (¢x)+Veg)'d) <0
Ax+d)+b=0
de K —x,

(49)

where, we recall, the variable is d. Taking into account A4 and A9, and the fact that
Nk —x(0) = Nk(x), the assertion of the proposition can be checked easily by comparing
the KKT system (5) for the original problem to that for the subproblem, i.e. (49). [ |

We now have all the required preliminary derivations to analyse the following algorithm,
which is a variant of Algorithm 1 where we use (P%) instead of (P) to compute the direction
and therefore avoid the calculation of k.

We can now establish the convergence properties of this modified algorithm. Note that
in the following theorem below we assume that Assumption C holds, but this places a
requirement only on f, since § is the linearization of g and therefore Assumption C2 is
automatically satisfied.

Theorem 5.2: Consider the sequence {x"} generated by Algorithm 2 under Assumptions A,
C and A. The whole sequence {x"} is bounded and contained in K and each of its limit points
is a KKT solution for problem (P).
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Algorithm 2: Simplified DSM Algorithm for (P) under Assumption D

Data: ¥ € (0, 1] such that (2) holds, X eK,v<«—0;
repeat
(s.1) if x” is a KKT solution for (P) then
‘ stop and return x”;

end
(S.2) compute the solution d(x") of problem (P, );
(8.3) set x"T = x¥ 4+ Vd(x"), v «— v+ 15
end

Proof: The proofis formally similar to that of Theorem 4.1 and we do not repeat it for sake
of brevity. It is enough to follow the proof of Theorem 4.1 step by step, setting « (x) = 0
wherever this quantity appears and taking into account these points, which primarily even
simplify the analysis further:

e by Assumption A, the sequence {x"} is bounded, since K is bounded;

e Proposition 5.1 shows that d(x) is well-defined;

e Proposition 5.2 gives the required continuity of d(x) which, in the proof of Theorem 4.1,
was guaranteed by the results in Sections 2 and 3;

o at the beginning of the proof we need to show that d(x) is actually a KKT point for
subproblem (P¢) and this is now guaranteed by Proposition 5.1, where we prove that
that Slater’s CQ holds for subproblem (P%);

e since k(x) = 0, O(x) reduces to nothing else but the classical measure of the violation
of the constraints: 6 (x) = max;;{g; (%), k(%) |};

e Case I in the proof of Theorem 4.1 cannot occur since the eMFCQ holds;

e in Case II there, we have lim inf, _, o [|d(x")|| = 0. This, by the continuity of d(x) and
Proposition 5.3, implies there exists at least one limit point of the sequence generated
by the algorithm that turns out to be a KKT solution for (P);

e Assumption C1 guarantees that actually every limit point of the bounded sequence {x"}
is a KKT solution of (P) since it implies Assumption B.

6. Conclusions

In this paper, we first presented an extension of the diminishing stepsize method for
nonconvex constrained problems presented in [4] to deal with equality constraints and
a nonsmooth objective function of composite type. We then considered the particular
case in which the constraints are convex and satisfy a standard constraint qualification
and show that in this setting the algorithm can be considerably simplified, reducing the
computational burden of each iteration. A complexity analysis of the latter, simplified
method is carried out in [5]. In the near future, we plan to study the practical behaviour of
the methods presented in this paper; we expect that, for selected classes of problems, they
can be shown to be competitive. In this respect, the results in [15] are promising.
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