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Distributed Algorithms for Composite Optimization:
Unified Framework and Convergence Analysis

Jinming Xu, Ye Tian"”, Ying Sun

Abstract—We study distributed composite optimization over
networks: agents minimize a sum of smooth (strongly) convex
functions—the agents’ sum-utility—plus a nonsmooth (extended-
valued) convex one. We propose a general unified algorithmic
framework for such a class of problems and provide a convergence
analysis leveraging the theory of operator splitting. Distinguishing
features of our scheme are: (i) When each of the agent’s func-
tions is strongly convex, the algorithm converges at a linear rate,
whose dependence on the agents’ functions and network topology
is decoupled; (ii) When the objective function is convex (but not
strongly convex), similar decoupling as in (i) is established for the
coefficient of the proved sublinear rate. This also reveals the role
of function heterogeneity on the convergence rate. (iii) The algo-
rithm can adjust the ratio between the number of communications
and computations to achieve a rate (in terms of computations)
independent on the network connectivity; and (iv) A by-product
of our analysis is a tuning recommendation for several existing
(non-accelerated) distributed algorithms yielding provably faster
(worst-case) convergence rate for the class of problems under
consideration.

Index Terms—Distributed optimization, linear convergence.

1. INTRODUCTION

E STUDY distributed optimization over networks, mod-
eled as undirected static graphs. Agents aim at solving

min F(z) + G(z), F(z)2 % Z fi(x), (P)

zeR4

where f; : R% — R is the cost function of agent ¢, assumed to be
L-smooth, p-strongly convex (with ¢ > 0), and known only to
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the agent; and G : R — R U {—00, 00} is a nonsmooth, con-
vex (extended-value) function, which can be used to force shared
constraints or some structure on the solution (e.g., sparsity). This
setting is fairly general and finds applications in several areas,
including network information processing, telecommunications,
multi-agent control, and machine learning; see Section V-D for
a case-study in machine learning.

The focus of this paper is the design of a unified (first-order)
algorithmic framework for Problem (P) over undirected graphs
with provably convergence rate. When G = Oand p > 0, several
distributed schemes have been proposed in the literature that
enjoy linear rate; examples include EXTRA [3], AugDGM [4],
[5], NEXT [6], Harnessing [7], SONATA [8], [9], DIGing [10],
NIDS [11], Exact Diffusion [12], MSDA [13], and the distributed
algorithms in [14], [15]. When . = O and still G = 0, a sublinear
rate of O(1/k) (k counts the number of gradient evaluations)
has been certified for some of the above methods [4], [6],
[7] and other primal-dual schemes, including D-ADMM [16].
Results for G # 0 are relatively scarce; to our knowledge, the
only two schemes achieving linear rate for strongly convex
(P) are SONATA [9] and the one in [17]. Sublinear rate of
O(1/k) has been proved for a variety of schemes, including
PG-EXTRA [18], D-FBBS [19] and DPGA [20]. Notice that
convergence of some of these algorithms have been studied
under weaker assumptions on F' and network topology than
those considered in this paper. For instance, linear rate of [3], [6],
[9], [10], [12], [17] is established for F' strongly convex (rather
than each f; to be so); [8]-[10], [21], [22] are applicable also
to directed graphs, with [8]—[10] considering also time-varying
topologies.

Even restricted to the setting of this paper, none of the above
studies provide a unified algorithmic design and convergence
analysis. Furthermore, for most of the schemes, there is a gap
between theory and practice: tuning recommendations and rate
bounds provided by the analysis are showed numerically being
too conservative. To make these algorithms work in practice,
practitioners often use manual, ad-hoc tunings. This however
makes the comparison of different schemes hard. These issues
suggest the following questions:

Q1) Can one unify the design and analysis of distributed

algorithms for Problem (P)?

Q2) How do provable rates of such schemes compare each
other and with that of the centralized proximal-gradient
algorithm applied to (P)?

On (Q1): Recent efforts toward a better understanding of

the taxonomy of distributed algorithms are the following: [14]

1053-587X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on December 09,2021 at 15:34:45 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-9085-6280
https://orcid.org/0000-0002-9709-6509
https://orcid.org/0000-0002-6453-6870
mailto:jimmyxu@zju.edu.cn
mailto:tian110@purdue.edu
mailto:gscutari@purdue.edu
mailto:sun578@purdue.edu
https://doi.org/10.1109/TSP.2021.3086579

3556

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

TABLE I
CONVERGENCE PROPERTIES OF DISTRIBUTED ALGORITHMS FOR L-SMOOTH AND £4-STRONGLY CONVEX { f; } (v > 0)

P2 Omax(W — J) with J = 21,17 X2 Apin (W), and W™ £ {W|W1ly, = 1, 17 W =1] and p < 1}, and S™ 2 {W|W = W " }.
Original assumption Stepsize Rate: O (§ log(%))
Algorithm
S N i iterature (upper bount this paper (Corollal , literature , this paper
w F li (upper bound) his paper (Corollary 19) 6, li 4, this pap
m m ) n(1—p) 2 1—p 2 .
EXTRA [3] s Nw F sevx o (152 s > i =2 =
NEXT [6] 2 max {Lﬂ
wm F scvx min{iufp) =} 2 e max {H ot }
% 3L L+tn 12
AugDGM [4], [5] 0LpVnvi [ D—" a-e
1—p—+/10Lpv/n/Ey
: m (1—p)? 2 2Amin (W?) w15 { © 1 }
DIGing [10] W F scvx (@] (;ml-\')\/i> T (WhTr 2 s RS max S (W) (=2
Exact Diffusion [12] wm F scvx O ({7) ﬁ 1%2,, max{k, 1%,,}
arnessi m g (1-p)? 2 22 min (W?) 2 { " 1 }
Hamessing (7] v Ui} sewx © ( @z ) N R a2 PN K (W2 =)
NIDS [11] smNnwm {fi} scvx 2z ﬁ max{x, l%p} max{x, l%p
— m m s (a-p)? 2 2Amin (W2) <2 { 1 }
[14] (b =0) S NW {fi} scvx (@] ( — ) T (Wi > Pmint (12p)2 max )\min’?wg) gy
_ 1 2 1—
[14] (b= I W) s™Nnwm {fi} scvx N.A. P IEEsSET > L—JL N.A. e
m m R ; . 2 20-2)AK 1 K
[15] ST NW {fi} scvx (14) in the paper P AIESSELS] > T N.A. max{lipx, (175\)5\;(}
1) ST OWT | Feen <z Tiax > T > max{%, sr=p ) max{§, s}
this paper S NwW™ {fi} scvx ﬁ max {n", ﬁ }
Postilla: Not all the algorithms above were studied under the same setting; the different assumptions on F' and W are listed above. The expressions of the stepsize as reported above
for DIGing, Exact Diffusion, Harnessing and NIDS (resp. AugDGM and NEXT) are obtained under the extra assumption that W is invertible (resp. W = 0).

provides a connection between EXTRA and DIGing; [23] pro-
vides a canonical representation of some of the distributed algo-
rithms above—NIDS and Exact-Diffusion are proved to be equiv-
alent; and [24] provides an automatic (numerical) procedure to
prove linear rate of some classes of distributed algorithms. These
efforts model only first-order distributed algorithms applicable
to Problem (P) with G = 0 and employing a single round of
communication and gradient computation. Despite these con-
nections, convergence of these schemes has been established
by ad-hoc analysis, resulting in different rate expressions and
stepsize bounds—Table I summarizes these results within the
setting of our paper. For instance, a direct comparison between
NIDS [11] and Exact Diffusion [12] shows that, although equiv-
alent [14], [23], they exhibit different theretical rate bounds and
admissible stepsize values.

On (Q2): Question (Q2) has been only partially addressed in
the literature. For instance, MSDA [13] uses multiple communi-
cation steps to achieve the lower complexity bound of (P) when
© > 0and G = 0; the OPTRA algorithm [25] achieves the lower
bound when i = 0 (still and G = 0); and the algorithms in [26]
and [11] achieve linear rate and can adjust the number of com-
munications performed at each iteration to match the rate of the
centralized gradient descent. However it is not clear how to ex-
tend (if possible) these methods and their convergence analysis
to the more general composite (G # 0) setting (P). Furthermore,
even when G = 0, the rate results of existing algorithms are
not theoretically comparable with each other—see Table I; they
have been obtained under different stepsize range values and
problem assumptions (e.g., on the weight matrices). Similarly,
when p = 0, EXTRA [3], DIGing [7], [10] D-ADMM [16],
and PG-EXTRA [18], D-FBBS [19], DPGA [20] achieve a
sublinear rate of O(1/k) for G = 0 and G # 0, respectively.
However, the rate expression therein lacks of insight on the

dependence of the rate on the key design parameters (e.g., the
stepsize).

This paper aims at addressing Q1 and Q2 in the setting (P),
over undirected graphs. Our major contributions are discussed
next.

1) Unified framework and rate analysis: We propose a gen-
eral primal-dual distributed algorithmic framework that unifies
both ATC (Adapt-Then-Combine)- and CTA (Combine-Then-
Adapt)-based distributed algorithms, solving either smooth
(G = 0) or composite optimization problems (G # 0). Most of
existing ATC and CTA schemes are special cases of the proposed
framework—see Table II. By product of our unified framework
and convergence conditions, several existing schemes, proposed
only to solve smooth instances of (P) [3], [4], [6], [7], [11], [12],
gain now their “proximal” extension and thus become applicable
also to composite optimization while enjoying the same conver-
gence rate (as derived in this paper) of their “non-proximal”
counterparts.

2) Improving upon existing results and tuning recommenda-
tions: Under the setting of this work, our results improve on
existing convergence conditions and rate bounds, such as [3],
[4]1, [6], [7], [11], [12]-Table I shows the improvement achieved
by our analysis in terms of stepsize bounds and rate expression
(see Section V-C for more details). The tightness of our rates as
well as the established ranking of the algorithms based on the
new rate expressions are supported by numerical results.

3) Rate separation when G # 0: For ATC-based schemes,
when p > 0, the dependency of the linear rate on the agents’
functions and the network topology are decoupled, matching
the rate of the proximal gradient algorithm applied to (P).
Furthermore, the optimal stepsize value is independent on
the network and matches the optimal choice for the central-
ized proximal gradient algorithm. When p = 0, we provide an
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TABLE II
SPECIAL CASES OF ALGORITHM (4) FOR SPECIFIC CHOICES OF A, B, C' MATRICES AND GIVEN GOSSIP MATRIX — < W < I.

Algorithm Problem Choice of the A, B, C # communications
EXTRA [3] F A=W p=1 =¥ 1
NEXT [6]/AugDGM [4], [5] F A=W? B=W? C=(1-W)? 2
DIGing [10]/Harnessing [7] F A=W? B=1 C=(I-W)>? 2
NIDS [11)/Exact Diffusion [12] F A=W p= LW o= I-W 1
[14] (B" = bI) F A=W244b(I-W) B=1 C=I—-W)2+~b(I—-W) 2
[15] F A=wX B=37'Ww' c=1-wF K
[17] F+G A=W B=1 C=al-W)with0<W <Tanda<1 1

explicit expression of the sublinear rate (beyond the “Big-O”
decay) revealing a similar decoupling between optimization
and network parameters. This expression sheds also light on
the choice of the stepsize minimizing the rate bound, which
is not necessarily 1/L but instead depends on the network
parameters as well as the degree of heterogeneity of the agents’
functions (cf. Section VI). This shows that one can achieve
faster rates when the agents’ functions are similar, a fact that
happens often in machine learning applications, as discussed in
details in Section V-D. These results are a major departure from
existing analyses, which do not show such a clear separation,
and complements those in [11] applicable only to smooth and
strongly convex instances of (P).

4) Balancing computation and communication: When p > 0,
the proposed scheme can adjust the ratio between the number
of communication and computation steps to improve the overall
rate. We show that Chebyshev acceleration can also be employed
to further reduce the number of communication steps per com-
putation.

The results of this work have been partially presented in [1],
[2]. While preparing the final version of this manuscript, we
noticed the arxiv submission [27], which is an independent and
parallel work (cf. [1]). There are some substantial differences
between our findings and [27]: 1) our algorithmic framework
unifies ATC and CTA schemes while [27] can cover only ATC
ones; our analysis is based on an operator contraction-based
analysis, which is of independent interest; and ii) we study
convergence also when F' is convex but not strongly convex
while [27] focuses only on strongly convex problems.

Due to space limits, some of the proofs are omitted and
reported in the on-line supplementary material of this paper.
The full version of the paper is also available online [28].

II. PROBLEM STATEMENT

We study Problem (P) under the following assumption, cap-
turing either strongly convex or just convex objectives.

Assumption 1: (i) Each f; : R? — R is p-strongly convex,
w >0, and L-smooth; (ii) and G : RY — R U {+00} is proper,
closed and convex. When 1 > 0, define x = L/ .

Network model: Agents are embedded in a network, modeled
as an undirected, static graph G = (V, £), where V is the set of
nodes (agents)and {7, j} € £ if there is an edge (communication
link) between node 7 and j. We make the blanket assumption that

G is connected. We introduce the following matrices associated
with G, which will be used to build the proposed distributed
algorithms.

Definition 2 (Gossip matrix): A matrix W £ [W;;] € R™*™
is said to be compliant to the graph G = (V, &) if W;; # 0 for
{i,j} € €, and W;; = 0 otherwise. The set of such matrices is
denoted by Wjg.

Definition 3 (K -hop gossip matrix): Given K € N, amatrix
W' e R™*™ is said to be a K-hop gossip matrix associated to
G=W,E) it W = P (W), for some W € Wg, where Pk ()
is a monic polynomial of order K.

Note that, if W € Wy, using W;; to linearly combine in-
formation between two immediate neighbor agents i and j
corresponds to performing a single communication round. Using
a K-hop matrix W' = Pk (W) requires instead K consecutive
rounds of communications. K-hop gossip matrices are crucial to
employ acceleration of the communication step, which will be a
key ingredient to exploit the tradeoff between communications
and computations (cf. Section V-C3).

A saddle-point reformulation: Our path to design distributed
solution methods for (P) is to solve a saddle-point reformulation
of (P) via general proximal splitting algorithms that are imple-
mentable over G. Following a standard path in the literature, we
introduce local copies z; € R? (the i-th one is owned by agent
1) of x and functions

FX)2Y filw:) and g(X) 2> G(z:), (1)
i=1 i=1
with X £ [1,... ,xm]T € R™*4: (P) can be rewritten as
min  f(X) 4 g(X), s.t. VCX =0, 2)

XecRmxd

where C' satisfies the following assumption (span(e) and
null(e) denote the range space and null space of the argument
vector/matrix, respectively):

Assumption 4: C € ST and null(C) = span(l,,).

Under this condition, the constraint vVCX = 0 enforces a
consensus among x;’s and thus (2) is equivalent to (P).

The set of points satisfying the KKT conditions of (2) reads:

Sixr = {X € R™4|3Y € R™* such that

VX =0, Vf(X)+VCY € —ag(X)} NG
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where  Vf(X) = [Vfi(x1),Vfa(22),. .,V m(zn)]" and
0g(X) denotes the subdifferential of g at X. Then we have
the following standard result.

Lemma 5: Under Assumption 1, z* € R¢ is an optimal solu-
tion of Problem (P) if and only if 1,,2* " € Sgkr.

Building on Lemma 5, in the next section, we propose a
general distributed algorithm for (P) based on a suitably defined
operator splitting solving the KKT system (3).

III. A GENERAL PRIMAL-DUAL PROXIMAL ALGORITHM

The proposed general primal-dual proximal algorithm, termed
ABC— Algorithm, reads

X* = prox,, (2¥), (4a)
ZM = AXF — 4BV f(XF) - Y, (4b)
Yk+1 _ Yk + CVZ/€+17 (4C)

with Z° € R™*? and Y°=0. In (4a), prox,,(X)=
argminy g(Y') + % || X — Y||? is the standard proximal opera-
tor. Eq. (4a) and (4b) represent the update of the primal variables,
where A, B € R™*™ are suitably chosen weight matrices, and
~v > 0 is the stepsize. Eq. (4c) represents the update of the dual
variables.

Define the set

Srix 2 {X e R™?|CX =0and
1, (I—A)X+~1),BVf(X)€e—y1,09(X)}. (5

Since all agents share the same G, it is not difficult to check that
any fixed point (X*, Z*, Y*) of Algorithm (4) is such that X* €
Srix. The following are necessary and sufficient conditions on
A, B for X* € Sg;4 to be a solution of (2).

Assumption 6: The weight matrices A, B € R™*"™ satisfy:
1) A1, =m,and 1] B=1].

Lemma 7: Under Assumption 4, Sgxr = Srix if and only if
A, B satisfy Assumption 6.

Proof: See the details in the supplementary material. |

A. Connections With Existing Distributed Algorithms

Algorithm (4) contains a gamut of distributed (and central-
ized) schemes, corresponding to different choices of the weight
matrices A, B and C; any A, B,C € Wy leads to distributed
implementations. The use of general matrices A and B (rather
the more classical choices A = B or B = [) permits a unifica-
tion of both ATC- and CTA-based updates; this includes several
existing distributed algorithms proposed for special cases of (P),
as discussed next.

We begin rewriting (4) in the following equivalent form by
subtracting (4b) at iteration k + 1 from (4b) at iteration k:

Zk:+2 _ (I . C)zk+1 + A<Xk+1 o Xk)
—yB(Vf(XF) = v (X)), (6)

where X* = prox_,(Z%).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

When G = 0, (6) reduces to
XM= (I —C+ AXHH!
— AX" —AB(Vf(XFH) — V(X))

We show next that the schemes in [3], [4], [6], [7], [10]-[12],
[14], [15], [17] are all special cases of Algorithm (4). Table II
summarizes the specific choices of A, B and C'in (4) yielding
the desired equivalence, where W € Wy is the weight matrix
used in the target distributed algorithms. Notice that all these
choices satisfy Assumptions 4 and 6.

1) EXTRA [3]: EXTRA solves (P) with G = 0, and reads

Xk’+2 — (I+ W)Xk'-i-l _ WXk
= (VX = Vf(XP)), ®)

where W, W are two design weight matrices satisfying
(I +W)/2>=W =W and W - 0. Clearly, (8) is an instance
of (7) [and thus (4)], with A=W, B =1,andC = W — W.
2) NIDS [11] / Exact diffusion [12], [29]: The NIDS (Exact
Diffusion) algorithm applies to (P) with G = 0, and reads

I+W

k2 . (2x*+1 _ x*k

=y (VAXE) = V(X))

which is an instance of our general scheme, with A =B =
(I+W)/2andC = (I —W)/2.

3) NEXT [6] & AugDGM [4]: The gradient tracking-based
algorithms NEXT/AugDGM applied to (P) with G = 0, are:

XM =W (XP —qY"), (%)

YR = W(yh+ Vi) - vE(xR). b

Eliminating the Y -variable, (9) can be rewritten as:
XH2 = oW P — WwxH
—AWA(VF(XM) = VF(XY),

which is clearly an instance of our general scheme (4), with
A=B=W?2 C = (I — W)2. Notice that distributed gradient
tracking schemes in the so-called CTA form are also special
cases of Algorithm (4). For instance, one can show that the DIG-
ing algorithm [10] corresponds to the setting A = W2 B = I,
and C = (I — W)2,

4) General primal-dual scheme [14], [15]: A general dis-

tributed primal-dual algorithm was proposed in [14] for (P) with
G = 0 as follows

X = WXP —y(VF(XP) +Y"),
Y =y (1 W) (VX" +YF - B'XF),

(10a)
(10b)

where B’ can be bl or bW for some positive constant b > 0
therein. Eliminating the Y -variable, (10) reduces to

Xk+2 _ 2ka+1 _ <W2 + ’Y(I _ W)B/)Xk
— V(XM = VF(XY),

which corresponds to the proposed algorithm, with A = W?2 +
YI-=W)B/B=1I1,C=(1-W)?+~(I-W)B.
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Similarly, building on a general augmented Lagrangian, an-
other general primal-dual algorithm was proposed in [15] for (P)
with G = 0, which reads

XM= (I —aB)KX* —aC'(Vf(XF) + ATYF), (11a)

Y= YR gA X (11b)

where A, B, C' are certain weight matrices therein and C’ =
> fi 61 (I — aB')", with K being the number of communication
steps performed at each iteration. Eliminating Y yields

Xk+2 _ (I+ (I _ O[BI)K _ aBC/A/TA/)Xk-l-l
(1= aB)KXE — aC! (VX - VX)),

which corresponds to Algorithm (4) with A= (I —
aBYK B=C/C =aBC'A'TA’. Notice that, letting
W =1—-aB and B'=pATA", we have A=W¥X B=
SES Wi and € = (I -W)X K, Wi =1 - WX, which
satisfy Assumption 6.

6) Decentralized proximal algorithm [17]: A proximal algo-
rithm is proposed to solve (P) with G # 0, which reads

782 = (I —aB)ZM" + (I - B) (X — XF)
= (VX =V (x5,

where X" = prox_ ,(Z*) and 0 < B’ < I is some matrix en-
suring consensus. It is easy to show that the above algorithm
corresponds to Algorithm (4) with A=1— B/ B=1,C =
aB’.ChoosingW =1 — B',wehave A=W,B =TandC =
a(l — W), which clearly satisfy Assumption 6. Note that, since
B =1, this algorithm (and thus [17]) is of CTA form and
cannot model ATC-based schemes, such as NEXT/AugDGM
and NIDS/Exact Diffusion listed in Table II.

IV. AN OPERATOR SPLITTING INTERPRETATION

Our convergence analysis builds on an equivalent fixed-point
reformulation of Algorithm (4), whose mapping enjoys a favor-
able decomposition in terms of contractive and nonexpansive
operators. We begin introducing the following assumptions.

Assumption 8: The weight matrices satisfy:

i) A= BD;

ii) B and C' commute.

Under the above assumption, the following lemma provides
an operator splitting form for Algorithm (4).

Proposition 9: Given the sequence {(Z" X" Y*)} N,
generated by Algorithm (4), define U* = [(Z*)T, (Y*)T]T. Un-
der Assumption 8, the following hold:

1
7k

B 0 Z
\Fcffkl 42

0 BVC

and {U*} satisfies the following dynamics

Uk = U*, with U*2

[kl _ (D =~Vf)oprox,, oB —/C 7k s
VC(D =~V f)oprox,,oB I—-C| =~ =7

T
13)

3559
with initialization Z* = Y* = (D — yV f)(X°);
2) The operator 7" can be decomposed as
r_| 1 —VC||D=aVf 0 prox,, 0| |B 0
VO I1-C 0 1| o 1ffo 1|
——
AT. 271y AT, AT
(14)

where T and T'p are the operators associated with communica-
tions while T'; and T, are the gradient and proximal operators,
respectively; _ _ _

3) Every fixed point U* £ [Z*,+/CY™*] of T is such that
X* £ prox,yg(BZ*) € Srix. Therefore, X* = 1,,2*", where
x* is an optimal solution of (P).

Proof: From (4), we have Z¥+1 = (I — C)Z% + A(X* —
XF-1) —AB(Vf(X*) — Vf(X*1)), which applied recur-
sively yields

Zk?+1

k
= > (I-C)F (A(Xt - Xt

CB(VH(XY) Vf<X“>>

+ (I - C)F (AX" —yBVf(X"))

+(1-C)F (DX° - va(XO»)

k
=B (I-C)" (D —4Vf)(X"
t=0
k—1
~BY (I -C)* (D -V ) (XY,
t=0

where in (%) we used Assumption 17 i) and 17 iv).
Define Z* such that Z¥ = BZ* k > 1; and let

k+1 k
YLD Z20=) (1= O (D =9V, 15)
t=1 t=0
for k£ > 0. It is clear from the definition of Z and Y that
ZF (D =V f)oprox,, 0B ~C | |ZF
YEHL T (D =4V ) oprox,, 0B I-C Yk
(16)

Introducing U* as defined in (12), it follows from (16) that Uk
obeys the dynamics (13). The equation Y* = BCY* follows
readily from (4c) and (15). Finally, the decomposition of the
transition matrix 7" can be checked by inspection.

We prove now the last statement of the theorem. For every
fixed point U* £ [Z*,\/CY*] of T, we have span(Z*) C
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span(1l) and

17 (B(D —Vf)oprox,, oB (Z*)) +1"BZ* =0.
a7

* A 7\ *
For X* = prox.,,(BZ*), it holds span(X*) C span(1) and

BZ* € X* 4+ ~v0g(X™). (18)
Combining (17) and (18) leads to 17(1— A)X*+
y1"BVf(X*) € —y1"dg(X*), which is equivalent to
X* € Spix. The proof follows from Lemma 5 and 7. [ |

We summarize next the main properties of the operators 7,
Ty, Ty, and T'g, which will be instrumental to establish linear
convergence rate of the proposed algorithm. We will use the
following notation: given X € R?™*< we denote by (X),
and (X), its upper and lower m x d matrix-block; for any
matrix A € R™*™ we denote Ay = diag(4,1) € R2m*2m
and V4 = diag(I, A) € R2mx2m,

Lemma 10 (Contraction of Tc): The operator T satisfies

ITe X =Te Y|y, . =I1X=Y]y, ., VXY € R2mxd,

Proof: Theresult comes readily from the definition of 7T~ and
the fact that TLA;_cTc = Vi_c. [ ]

Lemma 11 (Contraction of Ty): Consider the operator T’y
under Assumption 1, with > 0,and 0 < D < I. If 0 < v <
~*(D) with

2)\min(D)
*(D) & -_— 19
then
Ty X ) — (T4Y)ul? < a(D, ) [(X)u — (V)ullp
VXY € R?™*¢ where
2vL
D =-1-— 20
q(D,) (D) (20)

The stepsize minimizing the contraction factor is v = v*(D),
resulting in the smallest achievable ¢(D, ), given by

R — )Vmin (D) 2
(D) & [ 222 21
1 ( ) <H+)‘-Inin(D)> ( )
Proof: See Section A in Appendix. |

We conclude with the properties of Ty, and T, which fol-
low readily from the non-expansive property of the proximal
operator and the linear nature of Tz, respectively.

Lemma 12 (Non-expansiveness of Ty): The operator T}, sat-
isfies: VX, Y € R?mx¢,

2 2
H(Tg X)u - (Tg Y)ull < H(X)u - (Y)u”
(T, X): = (X

Lemma 13 (Non-expansiveness of Tg): The operator Tp
satisfies: VX € R2mxd

I(Ts X)ull® = (Xl s (Ty X)e = (X)e.
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V. LINEAR CONVERGENCE

In this section we prove linear convergence of Algorithm (4),
under strong convexity of each f;. Since most of the algorithms
in the literature considered only the case G = 0, we begin with
that setting (cf. Section V-A). Sec. V-B extends our analysis to
G # 0. Finally, we comment our results in Section V-C.

A. Convergence Under G =0
Consider Problem (P) with G = 0. Algorithm (4) reduces to

XM = AX® — yBVf(XF) - YF, (22a)

Yl — vk oxRHL (22b)

with X0 € R™*4 and Y° = 0.

Theorem 15 below establishes linear convergence of Algo-
rithm (22) under the following assumption on A, B and C.

Assumption 14: The weight matrices A € R™*™, B, C' €
S™ and the stepsize y satisfy:

i) A=BDwithDeS™and0 <D <1;

ii) 1) D1,,=mand1] B=1];

iii) 0 XC <Tandnull(C) = span(l,,);

iv) B and C commute;

v) ¢(D,y)AB < (I —C)and 0 <y <~*(D),
where ¢(D, ) and v* (D) are defined in (20) and (19), respec-
tively.

Assumption 14 is quite mild and satisfied by a variety of
algorithms. For instance, all the algorithms in Table IT can satisfy
it with proper choices of W. The commuting property of B and
C'is trivially satisfied when B,C € Pk (W), for some given
W eW;s.

Theorem 15 (Linear rate for TcTyTp): Consider Prob-
lem (P) under Assumption 1, ¢ > 0, and G = 0, with solution
a*. Let {(X*,Y*)},en, be the sequence generated by Al-
gorithm (22) under Assumption 14. Then, || X* — 1,,2*T||? =
O(6%), with

§ £ max (q(D, ) Amax(AB(I — C)71),1 = 22(C)), (23)

where q(D, ) is defined in (20).

Proof: Since (22) corresponds to Algorithm (4) with G =
0, by Assumption 14 and Prop. 9, (22) can be equivalently
rewritten in the form (13), with T;, = I; and thus the Z- and
X-variables coincide. Define X* = Z* 2 1,,2*". Let U*F =
[(ZF)T, (\/517’“)T]T be the auxiliary sequence defined in (12)
with U* £ [Z*,\/CY*] the fixed point of T = ToT;T. Then,
we have

B e
B2
)‘maX(B2) 7k 7% 2
o )‘-min(l - C) HZ Z 1-c
)”maX(BQ) rrk rrx 2
= Amin(I — C) HU -v Are’ @4

Using (13) in (24), it is sufficient to prove that 7" is contractive
w.r.t. the norm || - ||, .. To this end, consider the following
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chain of inequalities: V X, Y € R?"*?, X, Y; € span(v/C),
2
ITX-TYI}, .

= |TcoTfoTs (X)—TcoTsoTs (Y|}, .

Lem. 10

[Ty oTp (X)—TfoTp (Y)”\Z/,,O (25)
Lem. 11 2
< ||TB (X) —Tg (Y)”diag(q(D,'y) D,I-C)

Lem. 13 2
= ||X - Y”diag(q(D,'y) BDB,I-C) "

Note that: i) for all (Z), € R™*4,

1(Z2)ull}ps = 11 = OV (Z)ul?_cy-12mDB0-C)-12
< Amax (AB(I = C) |1 = )3 (Z).|?
= hmax(AB(I = C) Y [(2)ull}—c;

and i) X,, Y, € span(\/é). The upper block term of the
RHS of (25) can be upper bounded by ¢(D,~y)Amax (AB(I —
O)1)|| Xy — Yull%, .; and the lower block term of that can be
upper bounded by (1 — A5(C))|| X, — Y;||?. Together we have
ITX -TY3,  <o|x Y3, .. r

Note that Theorem 15 is the first unified convergence re-
sult stating linear rate for ATC (corresponding to D = I) and
CTA (corresponding to B = I) schemes. Because of this gen-
erality and consistency with existing conditions for the con-
vergence of CTA-based schemes, the choice of the stepsize
satisfying Assumption 14 might depend on some network pa-
rameters. This is due to the fact that Ay (AB(I — C)~1) >
1, since (I — C)"'/2AB(I — C)~'/?1,, = 1,,. Hence, when
Amax(AB(I — C)71) > 1, the stepsize needs to be leveraged
to guarantee that ¢(D, ) Amax(AB(I — C)~1) < 1, reducing
the range of feasible values. For instance, this happens for 1)
CTA schemes (B = I) such that D < I — C does not hold; of
i) for ATC schemes (D = I) that do not satisfy the condition
B*<I-C.

Corollary 16 below provides a condition on the weight ma-
trices enlarging the range of the stepsize to [0, v*(D)]. Further-
more, the tuning minimizing the contraction factor ¢ in (23) is
derived.

Corollary 16: Consider the setting of Theorem 15, and further
assume AB < I — C. Then, || X* — 1,,2*T||? = O(6¥), with

5 = max (¢(D,7), 1 - 22(C)). (26)

2hmin (D)

The stepsize that minimizes (26) is v = v*(D) = T — I

resulting in the contraction factor

R — )\min(D) 2
0= —_— 1—2x2(C) ). 27
maX((/ﬁ—f—)\,min(D)) ) 2( )) ( )
The smallest § is achieved choosing D = I, which yields v =
*2 _2_and

7= AT
k—1)2
6*:maX{<K+1> s 1—)\.2(0)}

(28)
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Proof: Since (I —C)~Y2AB(I —C)~Y/?1,, =1,, and
AB <1 —C, we have Apax(AB(I —C)™')=1, which
together with (23) yield (26). Eq. (27) follows readily from
the decreasing property of ¢(D,v) on « € (0,v*(D)], for
any given 0 <D <. Finally, (28) is the result of the
following optimization problem: max pegm Amin (D), subject to
0 < D < I [Assumption 14(i)] and 1,TnD1m = m [Assumption
14(ii)], whose solutionis D = 1. |

B. The General Case G # 0

We establish now linear convergence of Algorithm (4) ap-
plied to Problem (P), with G # 0. We introduce the following
assumption similar to Assumption 14 for G = 0.

Assumption 17: The weight matrices A € R™*™ B, C €
S™ and the stepsize ~y satisfy:

i) A=BDwithD e S"and0 <D < 1I;

ii) 1/ D1,,=mand1] B=1];

iii) 0 2C <Tandnull(C) = span(ly);

iv) B and C commute;

v) q(D,v)B? < (I —C)and 0 <y <~*(D),
where ¢(D, ) and 4* (D) are defined in (20) and (19), respec-
tively.

Condition v) in Assumption 17 is slightly stronger than its
counterpart in Assumption 14 (as BDB < B?). This is due to
the complication of dealing with the nonsmooth function G (the
presence of the proximal operator Ty ). However, as shown in
Corollary 19 below, this does not affect the smallest achievable
contraction rate, which coincides with the one attainable when
G = 0. Note that Assumption 17 is satisfied by all the algorithms
in Table II.

Theorem 18 (Linear rate for T'=TcTyT,Tg): Consider
Problem (P) under Assumption 1 with x> 0, whose optimal
solution is z*. Let {(X*, Z*¥ Y*)};>( be the sequence gen-
erated by Algorithm (4) under Assumption 17. Then || X* —
L,z*T||? = O(6%), with

§ 2 max (q(D,7) Amax(B2(I — C)71), 1= 22(C)), (29)

where ¢(D, ) is defined in (20).

The proof of Theorem 18 is similar to that of Theorem 15 and
can be found in the supplementary material.

Corollary 19: Consider the setting of Theorem 18, and further
assume B2 < I — C. Then, the same conclusions as in Corollary
16 hold for Algorithm (4).

Remark: We point out that linear convergence of Algo-
rithm (4) can be established requiring that only F' is strongly
convex (rather than all f;’s). The proof of this result can be
found in the supplementary material. However, differently from
(29), the proved convergence rate does show a coupling between
optimization and network parameters. This is consistent with
existing results in the literature.

C. Discussion

1) Unified Convergence Conditions: Theorems 15 and 18
offer a unified platform for the analysis and design of a gamut
of linearly convergent algorithms—all the schemes, new and old,
that can be written in the form (22) and (4) satisfying Assumption
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14 and 17, respectively—e.g., all the algorithms listed in Table I.
In particular, our convergence results embrace both ATC and
CTA algorithms, solving either smooth (G = 0) or composite
(G # 0) optimization problems. This improves the resultsin [17]
and [27].

2) On the Rate Expression: We comment the expression of
the rate focusing on Theorem 18 and Corollary 19 (G # 0);
same conclusions can be drawn for Algorithm (22) (Theorem 15
and Corollary 16). Theorem 18 provides the explicit expression
of the linear rate provably achievable by Algorithm (4), for a
given choice of the weight matrices A, B and C' and stepsize
v (satisfying Assumption 17). In general, this rate depends on
both optimization parameters (L and p) and network-related
quantities (A, B and C); furthermore, feasible stepsize values
and network parameters are coupled by Assumption 17v). CTA-
based schemes: This is consistent with existing convergence
results of CTA-based algorithms (known only for G = 0), which
are special cases of Algorithm (22). For instance, consider
EXTRA [3] and DIGing [10] (corresponding to Algorithm (22)
with B = I, cf. Table I): v, C' and D are coupled via the
condition ¢(D,~) < (I — (), instrumental to achieve linear
rate. ATC-based schemes: For algorithms in the ATC form,
i.e., A = B,lessrestrictive conditions are required. For instance,
when Assumption 17 v) is satisfied by B? < I — C—a condition
that is met by several algorithms in Table I-the stepsize can be
chosen in the larger region [0,+*(D)], resulting in the smaller
rate max(q(D,v),1 — 12(C)) > max(¢*(D),1 — x2(C)) (re-
call that, in such a case, Amax(B?(I — C)~1) = 1), where the
lower bound is achieved when v = v*(D) (cf. Corollary 19).

On the other hand, when the algorithm parameters can be
freely designed, Corollary 16 offers the “optimal” choice, result-
ing in the smallest contraction factor, as in (28). This instance
enjoys two desirable properties, namely:

i) Network-independent stepsize: The stepsize v* in Corol-
lary 16 does not depend on the network parameters but only
on the optimization and its value coincides with the optimal
stepsize of the centralized proximal-gradient algorithm. This is
amajor advantage over current distributed schemes applicable to
(P) (but with G # 0) and complements the results in [11], whose
algorithm however cannot deal with the non-smooth term G and
use more stringent stepsize.

ii) Rate-separation: The rate (28) is determined by the worst
rate between the one due to the communication 1 — A5(C') and
that of the optimization ((x — 1)/(x + 1))2. This separation is
the key enabler for our distributed scheme to achieve the con-
vergence rate of the centralized proximal gradient algorithm-we
elaborate on this property next.

3) Balancing Computation and Communications: Note that
Popt = (kK — 1)/(k + 1) is the rate of the centralized proximal-
gradient algorithm applied to (P), under Assumption 1. This
means thatif the network is “sufficiently connected,” specifically
1-22(C) < pgpt, the proposed algorithm converges at the
desired linear rate pop:. On the other hand, when 1 — A2(C) >
ngt’ one can still achieve the centralized rate popc by enabling
multiple (finite) rounds of communications per proximal gra-
dient evaluations. Two strategies are: 1) performing multiple
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rounds of consensus using each time the same weight matrix; or
2) employing acceleration via Chebyshev polynomials. 1) Mul-
tiple rounds of consensus: Given a weight matrix W € W, as
concrete example, consider the case W € S, and A=B=
I—C=WZK, with K > 1, which implies B? < I — C (cf.
Corollary 16). The resulting algorithm will require K rounds
of communications (each of them using W) per gradient eval-
uation. Denote peom = Amax(W — J); we have 1 — 15(C) =
Amax(WE — J) = pK __ The value of K is chosen to minimize
the resulting rate A [cf. (28)], i.e., such that pfom < pgpt, which
leads to K = [log,, (p2,.)]-

2) Chebyshev acceleration: To further reduce the commu-
nication cost, we can leverage Chebyshev acceleration [30].
As specific example, consider the case W € S™ is invertible;
we set A= Pg(W) and Pk (1) =1 (the latter is to ensure
the double stochasticity of A), with Px € P, where Py de-
notes the set of polynomials with degree less than or equal
than K. This leads to 1 — A2(C) = Amax (A% — J). The idea
of Chebyshev acceleration is to find the “optimal” polyno-
mial P such that Anyay (A% —J) is minimized, ie., po =
Minp, cpy, Py (1)=1 MaX¢e[—p_ poon] | P (t)]. The optimal so-
lution of this problem is Pk (z) = TK(ﬁ)/TK(pCﬁ) [30,
Theorem 6.2], with &/ = —pcom, 8 = pPeom, ¥’ = 1 (Which are
certain parameters therein), where Tk is the K -order Chebyshev
polynomials that can be computed in a distributed manner via the
following iterates [13], [30]: Tk41(&) = 26 Tx (&) — Th—-1(€),
k> 1,withTy(§) = 1,71 (&) = . Also, invoking [30, Corollary

ViI-1

_ 2cK _ _ 1+4pceon
6.3], wehave po = Tie K ,wherec = NCIER Y = 717pcom.Thus,

the minimum value of K thatleads to pc < pgpt can be obtained

as K = [10gc(1/p§pt +4/1/pdoe — 1)1 . Note that to be used,

A must be returned as nonsingular. More details of Chebyshev
acceleration applied to the ABC-Algorithm along with some
numerical results can be found in [1]

4) Improvement Upon Existing Results and Tuning Recom-
mendations: Theorems 15 and 18 improve upon existing con-
vergence conditions and rate bounds (when restricted to our
setting, cf. Assumptions 1 and 4). A comparison with notable
distributed algorithms in the literature is presented in Table I.
Since all the schemes therein are special cases of Algorithm
(22) [with the exception of [17] that is an instance of Algorithm
(4)] (cf. Table II) and satisfy Assumption 14 (or Assumption
17), one can readily apply Theorem 15 (or Theorem 18) and
determine, for each of them, a new stepsize range and achievable
rate: the column ““Stepsize/this paper (optimal, Corollary 16)”
reports the stepsize value 4*(D) for the different algorithms
(i.e., given B, C and D) while the column “Rate/d this paper”
shows the resulting provably rate, as given in (27). A direct com-
parison with the columns “Stepsize/literature (upper bound)”
and “Rate/d, literature” respectively, shows that our theorems
provide strictly larger ranges for the stepsize of EXTRA [3]
NEXT [6]/AugDGM [4], [31] and Exact Diffusion [12], and
faster linear rates for all the algorithms in the table.

Table I also serves as comparison of the convergence rates
provably achievable by the different algorithms. For instance,
we notice that, although EXTRA and NIDS both require one
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Fig. 1.  Instance of the ABC algorithm on problems of the same ill-conditioned
optimization data, but over different graph topologies.
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Fig. 2. Instance of the ABC algorithm on problems over the same line graph,
but with optimization data of different condition numbers.
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Fig.3. Elasticnet problem: Number of iterations (gradient evaluations) needed
to reach an accuracy of 10~ by Algorithm 4 employing Chebyshev acceleration
(dashed lines) and multiple rounds of consensus (solid lines).

communication per gradient evaluation, NIDS is provably faster,
achieving a linear rate of 0*log(1/e), with 6* defined in
(28), versus the linear rate (x/(1 — p))log(1/e) of EXTRA. In
Section VII-A we show that the ranking based on our theoretical
findings in Table I is reflected by our numerical experiments—see
Fig. 3. For the sake of fairness, we remark one more time that,
the stepsize and rate expressions of some of the algorithms listed
in Table I were obtained under weaker conditions on F' and W
than Assumptions 1 and 4.

5) Generalizing Existing Algorithms to the Case G # 0: All
the algorithms listed in Table I but [6] and [17] are designed
for Problem (P) with G = 0. Since they are special cases of
our general framework and Algorithm (4) can deal with the
case G # 0, they inherit the same feature. Their “proximal”
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extension is given by (6), with the matrices A, B and C' as in
original algorithm (cf. Table II). Theorem 18 and Corollary 19
show that these new algorithms enjoy the same convergence
rates of their “no-proximal” counterpart. For instance, consider
AugDGM, corresponding to Algorithm (22) with A = B =
W2 D=1, C = (I—W)?%itclearly satisfies Assumption 17
for W - 0. Its extension to the general optimization with G' # 0
comes readily substituting these choices of A, B, C into (6) (or
Algorithm 22), yielding

XL — prox., (ZkH) ,
Zk+2 <2W W2)zk+1 + W2 (Xk+1 Xk)
—y WAV (XH) = V(X))

As second example, consider the primal-dual scheme such as
NIDS and Exact Diffusion; they correspond to Algorithm (22)
with A =B =% ¢ = L2

L=W - Similarly, we can introduce
their “proximal” version as follows:
k _ k
X" =prox,, (2"),

ghi2 _ T+ W (241 4 XK+ x*
2

VX = V(X))

D. Application to Statistical Learning

We customize our rate results to the instance of (P) modeling
statistical learning tasks over networks. This is an example where
the local strong convexity and smoothness constants of the agent
functions are different; still, we will show that, when the data
sets across the agents are sufficiently similar, the rate achieved
by the proposed algorithm is within a range of O(1/+/n) of that
of the centralized counterpart.

Suppose each agent  has access to n .i.d. samples {z; }jep,
following the distribution P. The goal is to learn a model pa-
rameter  using the samples from all the agents; mathematically,
we aim at solving the following empirical risk minimization
problem: min,cgra D ;e () 2 jep, £(;2;), where £(z; z;) is the
loss function measuring the fitness of the statistical model
parameterized by x to sample z;; we assume each £(x; z;) to
be quadratic in 2 and satisfy i < V2/(x;z) < LI, for all z
This problem is an instance of (P) with f;(x) = > jep, L@ 25).
Denote the largest and the smallest eigenvalues of V2 f; () (resp.
V2F(z))as L; and yu; (resp. L and fz). Then, each f;(z) is p =
mil;e,] ii-strongly convex and L = maxX;ec(m,] L;-smooth. Re-
calling k = L/, the rate in (28) reduces to ((k — 1) /(x + 1))?,
when 1 — 42(C) < ((k — 1)/(k + 1))? (possibly using mul-
tiple rounds of communications), resulting in O(rxlog(1/e))
overall number of gradient evaluations. On the other hand, the
complexity of the centralized gradient descent algorithm reads
0(% log()). To compare these two quantities, compute

|IL—L|i+L|a—p
e

‘L L‘ ’Lu Lu’

7
< max|L 7L|+Lmax|ul ﬁ|)

zem
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, with probability 1 —

@ p+L \/ 32L2log(dm/5)
— 72

1L n

< 8\[ log(dm/é),

n
where in (a) we used [32, Corollary 6.3.8]
max (i — il L|) < ||V fi(z) — V2 f(2)]|, (30)
and [33, Lemma 2]
2121
max [[V2fi(x) = V2 (a) | < 3#@””/5) 31)
1€

with probability at least 1 — 4. Therefore the complex1ty of
our algorithm becomes (’)(( + O(u \F)) log(1)), with O
hiding the factor log(dm/J). ThlS shows that when agents have
enough data locally (n is large), the above rate is of the same
order of that of the centralized gradient descent algorithm.

VI. SUBLINEAR CONVERGENCE (CONVEX CASE)

We consider now Problem (P) when f;’s are assumed to be
convex (¢ = 0) but not strongly-convex. We study the sublinear
convergence for two splitting schemes, namely: 1) T' = T Ty 15
applied to (P) with G = 0; and ii) T' = T-T,T;1Ts applied to
(P) with G # 0.

A. Convergence Under G =0

We establish sublinear convergence of Algorithm (22) (cor-
responding to 7' = TcT;T'g) under the following assumption.

Assumption 20: The weight matrices A € R™*™, B, C €
S™ satisfy:

i) A=BD,withB>=0,D ¢ S™and D > 0;

ii)y Dl,,=1,andl) B=1];

iii) C = 0andnull(C) = span(l,,);

iv) B and C commute;

v) I-31C—-VBDVB=0 (&1-3C—-A=0,if B

commutes with D).

We quantify the progress of algorithms towards optimality in

this setting using the following merit function:

M(X) & max {||(I = N)X| [VF(X)],IF(X) -

SXII},
where J £ TL 1,1} and X* £ 1,,(z*)7; the first term encodes

consensus errors while the second term measures the optimality
gap.

We begin by rewriting Algorithm (22) in an equivalent form
given in Lemma 21, which does not have a mixing matrix
multiplied to the gradient term.

Lemma 21:  Suppose Assumption 8 holds. Then, Algo-
rithm (22) can be rewritten as (with Y £ 0):

Xk = BXF, (32a)
XFH = DX* —y(VF(XF) + YD), (32b)
Yyl —yr 4 %ng“. (32¢)
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Proof: since Y9 =0, we know span(X1!),span(Y'!) C
span(B). It is easy then to deduce from induction
that span(X*), span(Y*) C span(B), Vk. Setting Y* =
fyBXk and X* = BXP" leads to this equivalent form. |

Define ¢(X,Y) = f(X) + (Y, X). In Lemma 22 and 23 be-
low, we establish two fundamental inequalities on ¢(X*, Y) and
¢(X,Y) for X € span(l,,) and Y € span(C), instrumental
to prove the sublinear rate; the proofs are reported in Section B
in Appendix.

Lemma 22: Consider the setting of Theorem 24,
let {X* X* YFlien , be the sequence generated by
Algorithm (32) under Assumption 20. Then, it holds:

P(XMLY)
<O5Y) = S IX s
- % (XFHL— XP XA X
(YR YR oy Ry g § ket — Xk
(33)

for all X € span(
bJ) 1B, b > 2.
Lemma 23: Under the same conditions as in Lemma 22, if

1,,) and Y € span(C'), where B’ = (C' +

v < 7‘“‘“( ) then
o(X"Y) — 6(X.Y)
1 1 2 (B J)
< —(—-IIxX°-X —|Y 34
—Zk(7|\ 15 +~% w0 | ||) (34)
for all X € span(l,,) and Y € span(C), where X* £

Lyh e

We now prove the sublinear convergence rate.

Theorem 24 (Sublinear rate for TcT;Tg): Consider Prob-
lem (P) under Assumption 1 with 4 = 0 and G = 0; and let z*
be an optimal solution. Let {(X*,Y*)},.n, be the sequence
generated by Algorithm (22) under Assumptions 20. Then, if

Amin (D)
0<~y< T,wehave

1
M(E) < ( 0~ x|,
(35)
p(B—J)

+2 12(C)

V£ ()2

where X% = 1LS% | Xt
Proof: Setting X = X™* in (33), it holds

BXEY) —o(X*,Y) = F(XF) - f(x*) — (XF — x* )

= F(R®) = f(x*) = (X5,7) < h(Y ),

for Y € span(C), where h(-) = ;L (1 X0 — X*||% +
B-J : 1-)X :
VTSR ()?). Seting Y = WHY*H, with
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Y* = -V f(X™*), we have

) = 5 + 207 |[(1 = DEH| < 2y,

By the convexity of f, f(X*) — f(X*) + <(I — )X*, Y*> =
FIX®) — F(X*) + <X’k Y*> 0, we have f(X*)—
FX*) > = IV — J)Xk|| Combining the above two
relations, we have M(X*) < h(2||Y*|). This completes the
proof. |
Finally, we leverage Young inequality to provide the choice

of ~ that optimizes the rate given in Theorem 24.
Corollary 25: Consider the setting of Theorem 24. The step-

size that minimizes the right hand side of (35) is
D) , (36)

min(D) M(C) |IX° =X~

e 1
= min —
v L 2

p(B—=J) [[VF(XH]
leading to a sublinear rate
- 1 L|x° |
M(XF) < = —= b
( )_kmax{ (D)
(37
p(B—J) « x
2 (A2 |- ) 19 .

Note that the stepsize in (36) depends on [ X°—
X*Ip/IVf(X™*)]||, an information that is not generally avail-
able; we discuss this issue in Sec. VI-C.

B. Convergence Under G # 0

We consider now Problem (P) with G # 0 and p = 0. We
study convergence of a variation of the general scheme (4),
where the proximal operator is employed before T’y and B = I,
yielding the operator decomposition 7T, Ty." This scheme
reads

XM = DxF —y(Vf(XF) +YF),

X = Prox,, (Xkﬂ) )

(38)

Yk+1 _ Yk + lCXk_'_l,
Y

with Y? £ 0. Note that a key difference between (4) and the
above algorithm is that the former uses X in the update of the
dual variable Y, the variable before the operator prox.,,, (+), while
the latter uses the variable X, i.e., the variable after the operator
prox.,,(-). It is not difficult to check that (38) subsumes many
existing proximal-gradient methods, such as PG-EXTRA [18] or
ID-FBBS [19] (with D = W, C' = I — W). We present a unified
result of the sublinear convergence for the algorithm (38), under
the following assumption.

Assumption 26: The weight matrices C', D € S™ satisfy:

i) ljnDlm =m;
ii) C'>0andnull(C) = span(l,,);

't is not difficult to check that any fixed point of T cTy'Ty has the same
fixed-points of the operator in (14)
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i) 0<D=<1-%.

Note that the above assumption is, indeed, a customization of
Assumption 20. We study convergence of Algorithm (38) using
the following merit function measuring the progresses of the
algorithms from consensus and optimality. Define

M(X) £ max { |(I = HX| Y]], |(f + 9)(X)
— (f+9) (XM}

where Y* = —(Vf(X*) + 1,,(£*) "), for some £* € G(x*)
such that £* + VF(z*) =&+ L 3" Vfi(z*) = 0. Note
that, since 1, Y* = 0, we have Y* € span(C).

We are now ready to state our convergence result, whose proof
is left to the supplementary material due to its similarity to that
of Theorem 24.

Theorem 27 (Sublinear rate for T = TcTyTy): Consider
Problem (P) under Assumption 1 with ;4 = 0; and let * be an
optimal solution. Let {(X*, Y*)} -0 be the sequence generated

by Algorithm (38) under Assumptions 26. Then, if vy < "““(D),
we have
Sk 1 .
MO < 1 (X0 X[+ 23 s IO,
(39)

where X% = 1Y% x*,
Corollary 28: Consider the setting of Theorem 27. The step-
size that minimizes the right hand side of (39) is

. (kmln
~ = min

leading to a sublinear rate

X -

| X0 -x*,
3V3(C e ) @O

1X° = x|,
mln D) ’

2\ ey X - Xl IV

1) OnRate Seperation: Differently from most of the existing
works, such as [3], [7], [20], the above convergence results
(Corollary 25 and 28) establish the explicit dependency of the
rate on the network parameter as well as the properties of the
cost functions. Specifically, the rate coefficients in (37) and (41)
show an explicit dependence on the network and optimization
parameters, with the first term on the RHS corresponding to the
rate of the centralized optimization algorithm while the second
term related to both the communication network and the het-
erogeneity of the cost functions of the agents (i.e., ||V f(x*)]]).
The smaller ||V f(2*)]], jecti i
agents have. For instance, when f;’s share a common minimizer,
ie., ||V f(z*)| = 0, the rate will reduce to the centralized one.

The term /£ (B( C; ) accounts for the network effect on the rate.

Forinstance, set C' = I — B,sothat Ao(C) =1 — p(B — J).If
p(B — J) — 0 (meaning a network tending to a fully connected

M(Xk) < - ! max{
(41)

C. Discussion
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graph), /£ iig‘g) — 0, leading to the rate of the centralized gra-

dient algorithm [cf. (37)]. On the other hand, if p(B — J) — 1

piﬁ?;‘? — 400, deteriorating

the overall rate. As a result, when the agents have similar cost
functions (i.e., small value of |V f (z*)||) or the network is well
connected, the first term will dominate the second, leading to
the centralized performance. The impact of the heterogeneity
quantity ||V f(«*)|| on the convergence behavior is validated by
our numerical results—see Section VII-B1.

2) On the Choice of Stepsize: The optimal stepsize, as in-
dicated in (36) (resp. (40)), is such that the two terms in
(35) (resp. (39)) are balanced. Albeit (36) and (40) generally
are not implementable, due to the unknown quantity || X° —
X*|p/|IVf(X™*)], the result is interesting on the theoretical
side, showing that the “optimal” stepsize is not necessarily 1/L
but depends on the the network and the degree of heterogeneity
of the cost functions as well. In particular, the optimal choice
is 1/L when the network is well connected and agents share
similar “interests,” i.e., ||V f(z*)] is small. On the other hand,
as the connectivity of the network becomes worse and/or the
heterogeneity of local cost functions becomes larger, stepsize
values smaller than 1/L ensure better performance. This obser-
vation provides recommendations on stepsize tuning and it is
validated by our numerical experiments as well.

(poorly connected network),

VII. NUMERICAL RESULTS

We report some numerical results on strongly convex and
convex instances of (P), supporting our theoretical findings. The
obtained stepsize bounds and rates are shown to predict well
the practical behavior of the algorithms. For instance, the ATC-
based schemes exhibit a clear rate separation [as predicted by
(28)]: the convergence rate cannot be continuously improved
by unilaterally decreasing the condition number of the f;’s or
increasing the connectivity of the network.

A. Strongly Convex Problems

We consider a regularized least squares problem over an
undirected graph consisting of 50 nodes, generated through the
Erdos-Renyi model with activating probability of 0.05 for each
edge. The problem reads

50
. 1
i <5OZ|Uix—vi||2> +pllel+alaly . @2
i=1

zeR4

where U; € R™? and v; € R™*! are the feature vector
and labels, respectively, only accessible by node i. For
brevity, we denote U = [Uy; Us; - -+ ; Uso] € R4 and v =
[v1;v2; -+ sU50] € R%07<1 and use M. ; (resp. M; ;) to denote
the i-th column (resp. row) of a matrix M. In the simulation,
we set r = 20, d =40, p =20 and A = 1. We generate the
matrix U of the feature vectors according to the following
procedure, proposed in [34]: we first generate an innovation
matrix Z with each entry i.i.d. drawn from A/(0,1). Using a
control parameter w € [0,1), we then generate columns of U
such that the first column is U. ; = Z.1/v/1 — w? and the rest

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

are recursively set as U.; =wU. ;1 + Z.;, for i =2,...,d.
As a result, each row U; . € R is a Gaussian random vector
and its covariance matrix ¥ = cov(U. ;) is the identity matrix if
w = 0and becomes extremely ill-conditioned as w — 1. Finally,
we generate zo € R? with sparsity level 0.3 and each nonzero
entry i.i.d. drawn from N(0, 1), and set v = Uz + £, where
each component of the noise € is i.i.d. drawn from N (0, 0.04).
By changing w one can control the conditional number x of the
smooth objective in (42).

1) Validating the Rate Separation: We validate here the rate
results predicted by Corollary 16 and 19. We consider Algorithm
4), with A =B = # and C' = I — B, and run two exper-
iments. 1) We simulated problem (42), with p = 10 and w =
0.999—this leads to an extremely large condition number, ((x —
1)/(k +1))? ~ 0.9999)-and run the algorithm over different
graphs, namely: a line, a cycle, a star, and a random graph with
637 edges, with 1 — A2 (C') being 0.9993, 0.9974, 0.9900 and
0.6948 respectively; Fig. 1 plots the optimality gap \/% | X* —

1,,z*"|| versus the number of iterations, achieved over the
different graph topologies. 2) On the other extreme, in the second
experiment, we considered a poorly connected line graph with
1 —22(C) =~ 0.9993 and run the algorithm for different in-
stances of the optimization problem—specifically, p = Sandw =
{0.75,0.8,0.85,0.88 }-resulting in ((x —1)/(x + 1))* being
0.9782, 0.9845, 0.9895 and 0.9922 respectively; Fig. 2 plots
the optimality gap (defined as in Fig. 1) versus the number of it-
erations, achieved for the different optimization problems. These
experiments clearly support the rate separation predicted by our
theory: the rate is determined by the bottleneck between the
network and optimization. Fig. 1: For ill-conditioned problems—
meaning ((k —1)/(k + 1)) > 1 — A2(C)~the algorithm ex-
hibits almost identical rates, irrespectively of the specific graph
instances. On the other hand, Fig. 2 shows that, on poorly
connected networks, the convergence rate of the algorithm is not
affected by the condition number of the optimization problem,
aslongas ((k —1)/(k+1))% <1 - 12(C).

2) More on the Rate Separation (28): We simulated the
following instances of Algorithm 4. We set A = B = (LE)K
and C' = I — B, where W is a weight matrix generated using
the Metropolis-Hastings rule [35], and K > 1 is the number
of inner consensus steps. When Chebyshev acceleration is em-
ployed in the inner consensus steps, we instead used A = B =
I+ PK(W))/Q and C = I — B (condition of Corollary 19
is satisfied). In Fig. 3, we plot the number of iterations (gra-
dient evaluations) needed by the algorithm to reach an accu-
racy of 10~8, versus the number of inner consensus K, for
different values of «; solid (resp. dashed) line-curves refer to
non-accelerated (Chebyshev) consensus steps. The markers (di-
amond symbol) correspond to the number of iterations predicted
by (28) for the max in (28) to achieve the minimum value, that is,

{2 log(:—ﬁ)/log(%’l(‘/‘/))—‘. The following comments are

in order. (i) As K increases, the number of iterations needed
to reach the desired solution accuracy decreases till it reaches
a plateau; further communication rounds do not improve the
performance, as the optimization component becomes the bot-
tleneck [as predicted by (28)]. (ii) Less number of iterations are
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100 prox-EXTRA
— prox-NEXT/AugDGM

prox-DIGing
prox-NIDS

&
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10710 . . .
0 500 1000 1500 2000

Global iterations

Fig. 4. Performance comparison of the proximal extensions of some existing
algorithms—these extension schemes are all new and are instances of (4).

needed when x becomes smaller (simpler problem). Finally, (iii)
Chebyshev acceleration further reduces the number of iterations.
These were all predicted by our theoretical findings.

3) Validating Table 1. Comparison of the “prox”-Versions of
Existing Algorithms: In Fig. 4 we compare the “prox” version
of several existing algorithms, applied to (42): we plot the
optimality gap || X* — 1,,2*T|| versus the overall number of
iterations (gradient evaluations). The setting is the same as in the
previous example, except that now we set w = 0.8. The stepsize
of each algorithm is chosen according to (19). The network is
the Erdos-Renyi model with connection probability of 0.25; in
this setting, the max in (28) is achieved at (v — 1)/(k + 1).
It follows from the figure that ATC-based schemes, such as
Prox-NEXT/AugDGM, Prox-NIDS, outperform non-ATC ones,
such as Prox-EXTRA and Prox-DIGing, validating the ranking
established in (the last column of) Table 1.

B. Non-Strongly-Convex Problems

To illustrate the results for non-strongly convex problems, we
report here a logistic regression problem using the Ionosphere
Data Set as follows [36]:

i

50
1
min 530S gt + exp( g
velk =1 k=T(i_1)+1

where uy, € R3* and v, € {—1,1} are respectively the fea-
ture vector and label of the k-th sample. We use U =
[u1,usz, ..., us50]" to denote the feature matrix. We construct
several problems with different Lipschitz constant by multi-
plying the feature matrix U with different scaling factors. In
particular, given the original problem with an L-smooth objec-
tive function f, one can multiply U by a scalar 0 < a < 1 to
construct a new o L-smooth objective function f,(-). In the
simulation, we consider the polynomial method and thus set
A=B=WEK and C =1 — B. The stepsize of the algorithm
is chosen? according to (36). Figure 5 plots the number of
iterations (gradient evaluations) needed by the algorithm to
reach an accuracy of 10~* in solving different problems with
different difficulty versus the number of inner loop of consensus.

2This choice is not implementable in practice but only for illustration.
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——L =0.23567
—L=0.15083
L =0.058916

——L=0.02121
— L =0.0094266

number of iterations

0 20 40 60 80 100 120
number of inner consensus
Fig. 5. Logistic regression problem: Number of iterations (gradient evalu-

ations) needed to reach an accuracy of 10~* by Algorithm 22 (equivalently
Algorithm 32) employing multiple rounds of consensus.

—e—heterogeneity 33626.6221
107 ——heterogeneity 3382.4912
—=—heterogeneity 372.4989
***** heterogeneity 188.7224

optimality gap

1000 1500 2000 2500 3000 3500 4000
number of iterations

0 500

Fig. 6. Convergence behavior of the ABC algorithm and the centralized
gradient descent for problems with different level of heterogeneity (measured
by ||V f(X™*)|)). The blue curves are associated with the ABC algorithm while
the red ones with the centralized gradient descent.

It follows from the figure that, similar as with the strongly
convex case, the number of iterations needed is decreasing with
the number of inner loops of consensus, until it reaches to a
turning point which appears later as the Lipschitz constant L
decreases. This observation verifies the result as shown in (37)
where the two quantities is to be properly balanced with multiple
communication steps.

1) On the Heterogeneity of f;’s: We exemplify the role of
the heterogeneity measure ||V f(X*)|| on the convergence rate,
stated in Corollary 25 and Corollary 28. We consider the dis-
tributed least squares problem (42), with p = A = 0. Each row
of U is now drawn i.i.d. from a multivariate normal distribution
N (i, aX). Each element of the mean vector 4 is generated
iid. from Unif(0,1) and ¥ £ BB with each entry of B
generated i.i.d. from the standard normal. We then generate v
as v = U * & + &, wherein each element of & and ¢ is drawn
i.i.d. from the standard Normal. The local observation matrices
U,;’s become more similar to each other (thus ||V f(X™*)]| be-
coming smaller), when we decrease the positive scalar ov. We
generate a graph via the Erdos-Renyi model with a connection
probability 0.05 and a conforming weight matrix W. We set
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A=B=1 +2W and C' = TW and compare the convergence
of the ABC with that of the centralized gradient descent al-
gorithm, for o = {100,1,1072,1073} respectively. Note that
all the above generated problems are ill-conditioned. For fair
comparison, we rescale the metric M (X) by 1/50 for the ABC
and use the metric F'(x) — F™* for the centralized algorithm. As
shown in Fig. 6, when the agents’ cost functions become more
similar (i.e. ||V f(X™*)| becomes smaller), the performance of
the ABC algorithm (the red lines) become closer to its central-
ized counterpart, as predicted by Corollary 25 and 28.

VIII. CONCLUSION

We proposed a unified distributed algorithmic framework for
composite optimization problems over networks; the framework
subsumes many existing schemes. When the agents’ functions
are strongly convex, linear convergence is proved leveraging
an operator contraction-based analysis. With a proper choice
of the design parameters, the rate dependency on the network
and cost functions can be decoupled, which permits to achieve
the rate of the centralized (proximal)-gradient method (applied
in the same setting) using a finite number of communications
per gradient evaluations. Our convergence conditions and rate
bounds improve on existing ones. When the functions of the
agents are (not strongly) convex, a sublinear convergence rate
was established, shedding light on the dependency of the conver-
gence on the connectivity of the network and the heterogeneity
of the cost functions.

APPENDIX
A. Proof of Lemma 11
Since 0 < D < I, we have

IDX =V f(X) = DY +7Vf(Y)|*
<|IDX ~AVf(X) —~ DY +Vf(Y)|} )
=[|X = Y[} =27 (X =Y, VF(X) = VA(Y))
+? [VAX) = V)]
Then we proceed to lower bound (X — Y, Vf(X) - Vf(Y)).

Let X' = /DX, f(X)= f(~D~1X). Given any two points

XY € R™*d we have
(X =Y, Vf(X) = V[f(Y))
= (VDIX' = VDY, Vf(VDIX') - V (VDY)

= (X' =Y, Vf(X') - VF(Y))

(*) L/Iu/ 9 1 ~ - 2
> X Y e [V - Vi)

L'y 2
where (%) is due to [37, Theorem 2.1.12], with L' = A%L(D) and
_ 2hmin(D) _ 2
/14/ = m ThuS knOWlng that O < AR < W = m
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and continuing from (43), we have

DX — AV f(X) = DY +~yV (V)|

L'y 2
< (1-mg ) Ix-vIg

~ (G =) V) = VI

L/
(127 >|| ~Y|5.

1ot

In particular, if we set v =", we have 1—2y*5 fu’ =
(L’fu’)z _ (H*H(D) )2
L+ w+n(D)/ *
B. Proof of Lemma 22
Since f is L-smooth, we have
f(Xk+1)
i i L i
< f(Xk) + <vf(Xk)7Xk+1 _ Xk> + 5 HXk+1 . XkHQ
(a)
< F(X) +(VAXF), XFE = X) + (VF(XF), XM - XF)
L k41 k(|2
-y
L
_ f(X) + <Vf(Xk),Xk+1 . X> + 5 HXIH-I . XkHQ )
(44)

where (a) is due to the fact that f(X)> f(XF)+
(Vf(X*),X — X¥) from the convexity of f.

Then, we relate the gradient term V f (X*) to other quantities
using (32b) as follows

<Vf(Xk),Xk+1 _ X> — _% <Xk+1,Xk+1 _ X>

+ —(DXF —qYF XM - X)

——{((I - C) XM XM - X)

’-‘«Q\H 2|

+ (DXF -yt XM — X)),

where we have used (32c) to obtain the last relation. Now,
substituting the above relation into (44), we further have

f(Xk—H) < f(X) _ % <(I _ C)Xk—i_l,Xk_H _ X>

l <DXk,Xk+1 o X> o <Xk+1,Xk+l _ X> (45)

=2

L 2

- Xk+1 o Xk
+3 I
Adding (Y, X" — X), with X € span(l,,) and Y €
span(C), to both sides of the above equation and noticing
(C+bJ)tC =TI — Jyields

Y) < ¢(X,Y) _ l <(I— C)Kk—ﬂ,B(Xk—H

P(XMH,
v

- X))
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1 k k1 Loyxertr _ xrp?
+7<DBX ,B(X' X))+ 5 | X XK

—((C+2 )oY —Y), B(XF! - X))

—_

= ¢(X,Y) — N (I -0)xF!, BXM! — X))

l k k+1 £ k+1 k|2
+7<DBX .B(X X))+ 5 | X XH|
_ <Xk+l _ }/’ CX]C+1>B,

=¢(X,Y) — % ((I-C - DB)XM! B(X*! - X))

4 <DB<K]<' _Kk’-‘rl)’B(Kk-i-l _ X)>

= |~

, L
BRA A G G O FE ] D

where we have used (32c) to obtain the last relation. Knowing

that X = BX from (32a), we complete the proof.

C. Proof of Lemma 23

Invoking Lemma 22 and using the identity
2(a—ba—c)=la=b]*—b—cl*+la—clf?,
we have that
H(XFLY)

1
<00 Y) = oo (X = Xl X - X

1 2 2
- ; HK]C—HHBfBCfAB - HXkH - XkH%ngl

v 2 2 9
= (X =Y = X" = Y5 + [ = Y*|[5)

(a) 1 2 2
= eXY) - o (flack+ = x5, = || x* - x5,

1 2 2

o ; ||Xk+1||B7%BCfAB B HXkH o XkH%ngl
y 2 2

=g (e =y = et - v

® 1 k+1 2 k 2
< 600Y) — o (1t = X - ¢ - X))

o 2 2
— (I =yl = -y

where (a) is due to the fact that |[Y*+1 —Y*|32,

L[ X* B0 since Y — YF = 1/7CX*! and B'C? =
C +bJ)"1C2B = CB; (b) comes from that v < *min(?) anq
( ¥ T

B—3BC— AB=+B(I - 3C - VBDVB)VB = 0.

(46)

Then, averaging (46) over k from O to ¢ — 1, we have

1E
t

[

(d)(XkJrl? Y) - ¢(X7 Y))
0

1 2
<“on (ll = x15, - [|1x° = x][3,)

k

g
=57 (Il =I5, = = v15)

47
(@ 1 @7

1 0 2 1 2
< % ('YHX —X||D+’YW ||Y||B>

1 /1 2 1
; (7 1X° = XI5 + 750 ||Y||QBJ)

2t
1 /1 0 2 p(B —J) 2
< o (B0 - xp 0 222 e

b

—~
=

where we used: (a) Y?=0 and Apax((C+bJ)71) =

1/)‘min(0 + bJ) - 1/)\.2(0) due

to C=<2I, (b) Ye

span(1,,)*. Using the convexity of ¢ we complete the
proof.
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