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Measurements of atmospheric dust have long influenced our understanding of dust sources and dust model
calibration. However, assessing dust emission magnitude and frequency may reveal different dust source dy-
namics and is critical for informing land management. Here we use MODIS (500 m) albedo-based daily wind
friction estimates to produce a new dust emission climatology of North America (2001-2020), calibrated by the
novel use of dust point sources from optical satellite observations (rather than being tuned to dust in the at-
mosphere). Calibrated dust emission occurred predominantly in the biomes of the Great Plains (GP) and North
American Deserts (NAD), in broad agreement with maps of aerosol optical depth and dust deposition but with
considerably smaller frequency and magnitude. Combined, these biomes produced 7.2 Tg y! with contributions
split between biomes (59.8% NAD, 40.2% GP) due to the contrasting conditions. Dust emission is dependent on
different wind friction conditions on either side of the Rocky Mountains. In general, across the deserts, aero-
dynamic roughness was persistently small and dust sources were activated in areas prone to large wind speeds;
desert dust emissions were wind speed limited. Across the Great Plains, large winds persist, and dust emission
occurred when vegetation cover was reduced; vegetated dust emissions were roughness limited. We found
comparable aerodynamic roughness exists across biomes/vegetation classes demonstrating that dust emission
areas are not restricted to a single biome, instead they are spread across an ‘envelope’ of conducive wind friction
conditions. Wind friction dynamics, describing the interplay between changing vegetation roughness (e.g., due to
climate and land management) and changing winds (stilling and its reversal), influence modelled dust emission
magnitude and frequency and its current and future climatology. We confirm previous results that in the second
half of the 21st century the southern Great Plains is the most vulnerable to increased dust emission and show for
the first time that risk is due to increased wind friction (by decreased vegetation roughness and / or increased
wind speed). Regardless of how well calibrated models are to atmospheric dust, assuming roughness is static in
time and / or homogeneous over space, will not adequately represent current and future dust source dynamics.

Introduction

Across North America, land use practices, land cover change, and
climate change are influencing wind erosion and dust emission, often
with profound regional impacts (Ravi et al., 2010; Hand et al., 2016).
Locally, wind erosion is leading to substantial removal of soil, carbon,
and other nutrients from vulnerable landscapes, negatively affecting
cropland productivity (Zobeck et al., 2013) ecosystem function

(Breshears et al., 2009; Field et al., 2010) and the provision of ecosystem
services from managed lands (Okin et al., 2011; Webb et al., 2020).
Increasing concentrations of aerosol dust are negatively impacting
human health and livelihoods (Li et al., 2018), regional water supplies
(Painter et al., 2018), and affecting the climate (Schepanski, 2018).
Resolving the impacts of regional ecosystem and climate changes on
aeolian processes is necessary to understand anthropogenic effects on
landscapes and identify management options (Webb and Pierre, 2018).
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Management options are now required to avoid further land degradation
and desertification of ecosystems (Bestelmeyer et al., 2015), provide
food security (Pimentel, 2000), reduce dust impacts on communities
(UNEP UNCD, 2016,), and enable climate change adaptation and sus-
tainable development of agroecosystems (Edwards et al., 2019; Webb
et al.,, 2017a; Webb et al., 2017b). Identifying significant sources and
spatio-temporal patterns of dust emission across North America is crit-
ical for understanding links between causal mechanisms and drivers of
change across land use and cover types (Webb et al., 2017a; Webb et al.,
2017b).

Our current understanding of the location and extent of regional
North American dust sources was mainly established from satellite ob-
servations of aerosol optical depth (AOD) and ground-based aerosol
monitoring networks. Prospero et al. (2002) and Ginoux et al. (2012)
provided synoptic-scale analyses of persistent dust hotspots using Total
Ozone Mapping Spectrometer (TOMS) and Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Deep Blue data, respectively. Those
studies identified the North American deserts and Great Plains as the
most likely dominant dust source areas. However, atmospheric dust
concentrations are dependent on the varying magnitude and frequency
of dust emission, dust transport and dust residence time, which com-
bined, makes actual dust source contributions more complicated to
identify. Finer-scale field monitoring and remote sensing analyses tar-
geting dust point sources found similar regional patterns and revealed
the spatio-temporal heterogeneity of dust source erodibility within the
deserts and Great Plains (e.g., Lee et al., 2009; Baddock et al., 2011;
Kandakji et al., 2020, b). Analyses of blowing dust observations (e.g.,
Orgill and Sehmel, 1976; Goudie, 1983; Goudie and Middleton, 1992),
AOD (e.g., Eibedingil et al., 2021), and dust concentration data from
ground-based monitoring networks (e.g., Hand et al., 2016) also show
consistent regional patterns in the deserts and the Great Plains and have
revealed trends in dustiness that suggest a substantial anthropogenic
influence on dust emissions. Targeted field-based, remote sensing, and
modelling studies support the case that ecosystem changes driven by
land use and climate are changing the extent of North American dust
sources and the magnitude of emissions (e.g. Li et al., 2013; Webb et al.,
2014; Nauman et al., 2018).

To address the need for understanding dust source activity by land
use and land cover types, we develop a climatology of dust emission
across North America during the period January 2001 to December
2020, inclusive. We simulate at-source dust emission using a model that
implements the MODIS albedo-based drag partition scheme developed
by Chappell and Webb (2016; hereafter CW16) to resolve effects of
heterogeneous and dynamic surface roughness on wind friction veloc-
ities. However, models continue to over-estimate dust emission with
crude assumptions about threshold and the infinite supply of dry, loose
erodible material. To overcome these long-standing assumptions and
better constrain the modelling, we implement a novel calibration of the
dust emission model using published dust point source observations
from satellite observations. We then identify spatial and temporal pat-
terns of dust emission among different north American ecoregions and
elaborate where and when modelled dust emissions are responding to
changes in aerodynamic roughness and wind speed (wind friction). Our
analysis provides the first comprehensive assessment of the location and
intensity of North American dust emission sources and change (not to be
confused with dust in the atmosphere).

Data and methods
CW16 dust emission model

We calculated daily dust emission F (kg m~2 y'!) and made annual
average estimates using the albedo-based approach developed by
Chappell and Webb (2016). Dust emission models rely on estimates of
saltation flux Q (g m™* s™!) to predict F. The Q for a given particle
diameter (d), soil moisture (w), wind speed (Uy), and albedo (w) were
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calculated as

o i) - (222

@

where p, is air density (1.23 kg m™>), g is gravitational acceleration
(9.81 m s2), ¢ is a dimensionless fitting parameter (set to 1), u«(d) is
threshold wind friction velocity (m s™1). Soil surface wind friction ve-
locity (hereafter wind friction) us+ describes wind shear stress acting on
the soil following attenuation of momentum by roughness elements at
all scales (topography, vegetation, soil). The H(w) is a correction for soil
moisture following Fécan et al. (1999). The definition of u«s follows
(Marticorena and Bergametti, 1995) as described in the workflow of
Darmenova et al. (2009). The above equation (Eq. (1)) describes how the
magnitude of sediment transport is calculated and adjusted by the fre-
quency of occurrence (0 or 1) i.e., us+ > us , and if transport occurs then
the magnitude is attenuated by H(w) and u;+ available at the soil surface.
Calculation of us+ from wind speed U (m s Hata single height h (m)
requires a description of the aerodynamic roughness of the surface.
CW16 uses daily black sky albedo (w) measurements from Moderate-
resolution Imaging Spectroradiometer (MODIS) (MCD43A3 v6) data
(500 m resolution) to represent aerodynamic roughness as the propor-
tion of shelter approximated using shadow (1-0) (Chappell and Webb,
2016). Following CW16, the ug+ per pixel per day is calculated by:

e @, 131
5 0.0311 (exp—2m ) 10.007 2
U, (”p 0.016 )+ 2)

where ug+/Up, from Marshall (1971) reconstructed from wind tunnel
experiments is related empirically to shadow (reciprocal of black-sky
albedo; ), spectrally normalized (w,) using the MODIS isotropic
parameter f;s, , to remove the spectral influence of the observed surface
(e.g., colour, material, moisture content) and then rescaled (wys) from a
MODIS range (@pmin = 0, @pmax = 35) for a given illumination zenith
angle (9 = 0). To describe conditions of U, during sediment transport,
the daily maximum wind speed at h = 10 m above the soil surface was
obtained from ECMWF Climate Reanalysis, ERA5-Land hourly wind
field data at 11 km spatial resolution (Munoz Sabater, 2019). The ratio
between us+ and Uy, describes relative aerodynamic roughness (us+/Up)
independent of wind speed (Fig. 1).
Dust emission F (kg m~2 s’l) is calculated as:

F(d) = A;AMQ(d)10(134%060) 3)

We allowed %1,y to realistically vary spatially but with the restric-
tion max(%clay) = 20. We recognise that restricting %cjay to a maximum
value of 20% has produced reasonable results when applied in regional
models. The proportion of emitted dust in the atmosphere M for a given
size fraction (d). We calculated the relative surface area (M). In each
pixel, the coverage of snow (A;) and whether the soil surface is frozen
(Ap) is used to reduce dust emission and is obtained from daily ERA5-
Land data. Unlike existing dust models, the use of w,; to dynamically
estimate u;- removes the need for vegetation indices and fixed vegeta-
tion coefficients to determine effective aerodynamic roughness.
Furthermore, because us+ is spatially explicit, it is not necessary to apply
preferential dust source masks to pre-condition F (i.e., increasing F in
areas perceived to have greater erodibility).

Dust emission model calibration

Typically, dust model calibration relies on either ground-station data
that are often not collected at dust sources (e.g., Dubovik et al., 2000) or
satellite observations of aerosol optical depth (AOD) (e.g., Eck et al.,
1999; Carboni et al., 2012). Each of these data have inherent limitations,
linked to the lack of spatial resolution or frequency of observation.
Importantly, neither dust concentrations nor AOD pertain exclusively to
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Fig. 1. Surface conditions in areas of different aerodynamic roughness (3;:) located in Fig. 2. Areas A-D show vegetation cover in areas with specified roughness

measurements.

observations of emission, with both capturing advected dust that has
been transported some distance from source and resides in the atmo-
sphere for some time. Thus, dust emission model calibration using AOD,
or dust concentrations will ensure dust loads are calibrated, but given
the range of factors influencing dust loads, the location of source areas
and magnitude of emissions from various sources may be incorrect and /
or biased to those dust sources which have long atmospheric residence
times (Huneeus et al., 2011).

Here we tackle this long-standing discrepancy in dust emission
model calibration. We use satellite observed dust emission point source
(DPS) observations of dust emission frequency, identified through visual
inspection of satellite data by Baddock et al. (2011), Lee et al., 2009, and
Kandakji et al. (2020a) to calibrate CW16. Human interpretation of
satellite data provides many advantages compared to automated ap-
proaches (Schepanski et al., 2012). Through pattern recognition, the
human eye is adept at delineating the point at the head of a dust plume,
especially where the dust plume is spectrally like bare ground (Hennen
et al., 2019). Disadvantages related to image sampling frequency and
occasional opaque atmosphere due to clouds or atmospheric dust are
unavoidable. However, in the absence of extensive networks providing
dust emission measurements, DPS data provide the best available and
most proximal data for calibrating the location and timing of dust
emission. Accordingly, we calibrate F estimates by comparing published
dust source observations to modelled F. First, we calculated the DPS
probability of occurrence P(DPS > 0), a first order approximation of the
probability of sediment transport P(Q > 0), which is directly

proportional to dust (F) emission P(F > 0) at those locations. Next, we
equated this to study durations equal to the frequency uy exceeds s
adjusted by H(w)

P(DPS > 0) = P(Q > 0)P(F > 0) = uy- > u=sH (W){ é @

Accurate estimates of the magnitude and frequency of F depend on
correctly predicting P(F > 0), which itself depends on u:;H(w) . How-
ever, the dust emission scheme (specifically u«) assumes that the soil
surface is uniform and covered with an infinite supply of loose erodible
material, which when mobilised by sufficient wind friction (at the sur-
face uy+) causes dust emission. This (energy limited) assumption is rarely
justified in dust source regions where the soil surface is rough due to soil
aggregates, rocks, or gravel, sealed with biological or physicals crusts, or
loose sediment is simply unavailable. We address this weak assumption
using the observed dust emission frequencies at DPS data locations.
Furthermore, we reduced the reported uncertainty associated with the
precise location of the dust emission point sources by aggregating over
1° grid boxes. We calculated daily (mean kg m~2 y!) dust emission
values (Egs. (1) & (3)) for locations, when and where DPS observations
identified dust (sediment transport occurred).

0= C%uf*P(DPS >0) (5)

We compare those estimates with dust emission determined by
CW16. Both observed and modelled DPS emission values and



M. Hennen et al.

frequencies are aggregated within a 1°x1° grid cell, where a mean value
is calculated from all DPS locations that intersect that grid cell. The
mean difference between the pairs of data (i) is described by the root-
mean-square-difference (RMSE),

(S~ 0’

where n is the number of grid boxes, S is modelled, and O observed
values for each grid box, and degrees of freedom (df) describe the
number of independent variables in the calculation of F (here df = 9; Eq.
(1) and Eq. (3)). We use only half of the available grid box data to fit the
functions. We sampled half of the available data by systematically
stratifying across the log-scale, with random selection within each
stratum. We reserved the unused half of these data to validate the
calibration of CW16. The quality of the validation demonstrates the
ability of the calibration for only a small portion of North America to be
predicted elsewhere. This novel approach enables routine adjustment of
dust emission model predictions by DPS observed frequency of occur-
rence whilst us; remains poorly constrained in dust emission modelling.

North American dust emission climatology (2001-2020)

We used the Google Earth Engine parallel computing to run the
CW16 model utilising the catalogue of MODIS and ERA5-Land data. We
produced daily estimates of dust emission at 500 m spatial resolution
(visualised in maps at 5 km pixels) for North America during the period
January 2001 to December 2020, inclusive. Model estimates were
spatially classified by ecological units (Fig. 2) to characterise geographic
and vegetation dependencies in patterns of dust emission, wind, and
aerodynamic roughness. The Environmental Protection Agency (EPA)
level II ecological classification scheme divides the region into 22
ecoregions, which are grouped into four vegetation-type biomes (shown
previously in Fig. 1 including desert (barren), shrubland, short grass
prairie and tall grass prairie; Omernik, 1987). Ecoregions were used to
identify distinct areas of large dust emission potential and explain be-
tween- and within-group variance in dust emission, surface aero-
dynamic roughness, and wind speed.
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Results
Model calibration

The satellite observed dust emission point sources (DPS) from three
published datasets describe the dust emission frequency across the
Southern High Plains and northern Chihuahuan Desert in southwest
North America (Fig. 3b & 3d). The DPS observations and modelled
outputs were aggregated into 1° grid boxes (Fig. 3b & 3d), preventing
any inconsistency due to subjective dust source identification affecting
the comparison. Sample locations within each dataset were stratified
across all probability and dust emission values (Fig. 3b & 3d) to main-
tain consistency in the correlation across all ranges of dustiness. We
reserved the other half of the data to validate the model. Observed DPS
frequency and modelled dust emission (F > 0) frequency are presented
in Fig. 3a, where modelled frequency (mean 12.3 days/y) exceeds
observed frequency (mean 0.02 days/y) by two orders of magnitude (R?
= 0.85). Mean modelled dust emission (F; kg m—2 y'l) on observed DPS
days only, were compared with modelled F on all days (Fig. 3c).
Modelled estimates exceeded observations, with an RMSE modelled F =
140.8 kg m~2 y'! (with an R? = 0.74) greater than those from DPS days.
Using the remaining 50% of grid boxes from each dataset, we calibrated
the modelled frequency and dust emission on all days, to those on DPS
days. We used linear regression of log data to calibrate modelled P(F >
0):

Log,o(Pear) = 0.49Log,(P) —2.17 @
and modelled F:

Log,y(Feur) = 0.88Log o (F) —2.02 (8

where F,y and P,y are the adjustment of modelled values using these
calibrations. Our approach provides for the first time a calibration of
large area dust emission consistent with satellite observed dust emission.
It assumes, like other large area estimates of dust emission, that the
magnitude of dust emission does not need to be adjusted i.e., C = 1. With
its use of DPS, this approach overcomes the currently poor model
constraint of the sediment transport threshold u . It should be noted
that DPS data is very likely biased away from the smallest dust sources
which may not appear or are difficult for operators to detect using

Great Plains
386. Canadian Aspen forests and parklands
388. Central Tallgrass prairie
389 Central Southern US mixed grasslands
390: Cross-Timbers savanna-woodland
391 Edwards Plateau savanna
392: Flint Hills taligrass prairie
394. Montana Valley and Foothill grasslands £
395. Nebraska Sand Hills mixed grasslands i
396 Northern Shortgrass prairie
397. Northern Tallgrass prairie
437. Tamaulipan mezquital
401. Texas blackland prairies
402 Western shortgrass prairie

120w 110w

90w

Fig. 2. Ecological regions of the Great Plains and North American Deserts. Red circles identify the location of the images showing land surface roughness (Fig. 1).
Source: RESOLVE (Dinerstein et al., 2017). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Comparison of observed and modelled dust emission frequency (F > 0) and magnitude (F). The albedo-based annual (2001-2020) average dust emission
frequency (A) and magnitude (C) at dust point source (DPS) locations (i.e., panel B and D) on observed DPS days (y-axis) and all days during observation period (x-
axis). The dashed line is the 1:1 line. The inset plot shows the validation of the calibration function fitted to albedo-based dust emission values. Uncalibrated
modelled average annual dust emission frequency (B) and magnitude (D) in the region of the DPS locations. DPS locations include results from Lee et al. (2012);

Baddock et al. (2011); Kandakji et al. (2020).

optical reflectance (Urban et al., 2018). Under these assumptions, the
calibrated model (F.4) provides precise and accurate maps of seasonal
dust emission, temporal dynamics and mean regional dust emission
without tuning to atmospheric optical measurements.

Spatial and seasonal patterns of North American dust emission
2001-2020

Fig. 4 presents the mean annual dust emission and frequency of days
per year where F.y >0 kg m~2 y'! across North America during the
period 2001 to 2020. We found F,q was almost entirely (98% of all dust
emission) produced from two biomes: the North American Deserts
(NAD) and Great Plains (GP) regions. Combined, the regions generated

on average 7.2 Tg y' (59.8% NAD, 40.2% GP), with a mean dust
emission per unit area of 0.08 kg m 2y (0.12 and 0.06 kg m 2 y! for
NAD and GP respectively). The F.4 had large spatial variability within
each region, with the largest concentration of dust source areas occur-
ring in a central corridor surrounding the Central Rocky Mountains
(Fig. 4). Dust emission occurred most frequently across the Southern
High Plains (southwest GP), northern Chihuahuan Desert, and south-
west Colorado Plateau and the Great Divide Basin within the Wyoming
Basin. Short grass prairies contributed the most dust by biome (2.86 Tg
y'1, followed by shrublands (2.4 Tg y'1), deserts (1.89 Tg y™1), and tall
grass prairies (0.02 Tg y!) (Table 1). Deserts produced the highest mean
dust frequency (10 dust days per year / 1° grid box), followed by
shrublands (7.5), short grass prairies (7.4) and tall grass prairies (1.9).
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Descriptive statisitics of calibrated dust emission (F.4) magnitude, frequency, and wind speed (Uy) of North American biomes for the period 2001-2021. Source of Uy, =

ECMWF (ERA5-Land).

Biome Total F.q (Tg y'l) Mean F 4 (kg m~2 y'l) Stdev F 4 (kg m~2 y'l) Mean Freq. (dust days/y) Stdev Freq. (dust days/y) Mean Uj (ms™') Stdev U, (ms™ 1)
Desert 1.89 0.118 0.195 10.0 6.2 4.0 1.0
Shrubland ~ 2.41 0.122 0.268 7.5 5.7 4.0 1.1
Short Grass  2.87 0.080 0.161 7.4 5.2 5.2 0.9
Tall Grass  0.03 0.004 0.006 1.9 1.4 4.5 0.6

Shrublands produced the most dust by area (0.12 kg m~2 y!) with the
largest spatial variability or standard deviation of F (0.26 kg m 2 y™1),
followed by deserts (0.12 kg m~2 y™), short grass prairies (0.08 kg m ™2
y'1), and tall grass prairies (0.004 kg m~2 y!) where spatial variability
was smaller (0.19, 0.16 and 0.006 kg m~2 y!, respectively). Spatial
variability by ecoregion showed the Western shortgrass prairie ecor-
egion produced the largest total dust emission (2.22 Tg y1), followed by
the Chihuahuan Desert (1.5 Tg y'l) and Colorado Plateau (1.45 Tg y'l)
(Table 2). Of the 22 ecoregions, 15 produced total dust emission<0.1 Tg
v, including the Mojave and Baja California Deserts, Great Basin,
Mesata Central Matorral and Snake Columbia shrublands, and all tall
and short grass prairies except Western and Northern shortgrass prairie
ecoregions. Nine ecoregions produced a mean dust emission
frequency<4 (dust day per year for a MODIS pixel), including all tall
grass prairie ecoregions, Montana Valley and Foothill grasslands and
Snake-Columbia shrub steppe. The shrublands of the Colorado Plateau
and Wyoming Basin produced the largest dust emission per unit area
(0.262 and 0.255 kg m~2 y!, respectively), each with large spatial
variability (standard deviation = 0.38 and 0.34 kg m~2 y!, respec-
tively). Patterns of mean dust activation frequency followed those of
dust emission magnitude, with the Western shortgrass prairie (13.4 dust
days per year/1° grid), followed by the Chihuahuan Desert highest
(12.2), Colorado Plateau (11.8), and Wyoming Basin (11.1).

Spatial variability in mean us+/Uy and Uy, are shown in Fig. 5. As the
biomes very well describe vegetation patterns, within-biome variability
of us+/Up was visually small in all biomes (<0.2 10, while variability
between biomes was visually distinct (Fig. 5b). Barren environments
within deserts (e.g., Fig. 1a) had the largest mean us+/Up, (0.025), rep-
resenting the lowest attenuation of Uy due to vegetation. The us+/Up

Table 2

decreased in other biomes, as us+ was increasingly reduced (relative to
Up) in response to vegetation cover increasing (shrub and grasslands),
and / or vegetation structure becoming increasingly taller (tall grass and
trees) (Fig. 1b-d). Accordingly, deserts had the largest mean us+/Up
compared with shrublands (0.023), short grass (0.02), and tall grass
(0.016) prairies. The two grassland biomes of the Great Plains were
distinguished by increasing roughness towards the east, as arid shrub,
and patchy grassland transition over space into more continuous
grassland and arable lands.

Spatial variability in mean Up, varied between the GP and NAD re-
gions (Fig. 5a), as both short and long grass prairies observed higher
mean wind speeds (5.2 and 4.5 m s}, respectively) than deserts and
shrublands (both 4.0 m s~ 1). Both GP and NAD produced discreet peaks
in Uy, of 8.3 m s™! on the Southern High Plains (GP) and Wyoming Basin
(NAD) respectively (Fig. 5a).

Seasonal patterns of F, us+/Up, and U, in each of the 22 ecoregions are
shown in Fig. 6, these were shown as monthly anomalies against the
annual mean (Table 1), normalising the varying magnitude between
each ecoregion. Comparisons between mean monthly F showed varia-
tion between biomes, with most seasonal variability (+/- 0.2kgm2y™)
in the shrublands of the Wyoming Basin and Colorado Plateau, and the
least seasonal variability in the desert ecoregions. In the Chihuahuan
Deserts, Colorado Plateau and Western Shortgrass Prairie, F.q peaked
during March-May (MAM), while in most other ecoregions F,q reached a
maximum during December, January, and February (DJF). Minimum
Fcq typically occurred during June-August (JJA), with small variability
between ecoregions within the four biomes. The magnitude of us+/Up
variability was consistent within the biomes, with deserts and shrub-
lands having a smaller range of roughness conditions than short and tall

Calibrated dust emission magnitude (F.4) and frequency (F > 0) for the 22 ecoregions of the Great Plains and North American Deserts.

Biome Eco Region Total Fo (Tgy° Mean Fq (kg m ™2 Stdev Fq (kg m—2 Mean Freq. (dust Stdev Freq. (dust
p) vh vhH days/y) days/y)
Deserts 426: Baja California desert 0.0095 0.016 0.032 5.2 3.0
428: Chihuahuan desert 1.5012 0.169 0.238 12.2 6.6
433: Mojave desert 0.0587 0.043 0.096 8.5 3.8
435: Sonoran desert 0.2153 0.075 0.095 8.8 5.8
Shrublands  429: Colorado Plateau shrublands 1.4564 0.262 0.376 11.8 6.0
430: Great Basin shrub steppe 0.0661 0.021 0.049 4.5 2.8
432: Meseta Central matorral 0.0255 0.028 0.030 7.9 3.4
434: Snake-Columbia shrub steppe 0.0192 0.012 0.019 3.6 1.7
438: Wyoming Basin shrub steppe 0.6405 0.255 0.335 11.1 6.7
Short grass  389: Central-Southern US mixed 0.0703 0.022 0.031 5.5 2.5
grasslands
391: Edwards Plateau savanna 0.0216 0.035 0.060 4.3 4.1
394: Montana Valley and Foothill 0.0027 0.008 0.012 1.6 1.7
grasslands
395: Nebraska Sand Hills mixed 0.0221 0.032 0.038 6.1 1.6
grasslands
396: Northern Shortgrass prairie 0.3480 0.029 0.061 5.3 2.7
402: Western shortgrass prairie 2.2213 0.218 0.246 13.4 5.2
Tall grass 386: Canadian Aspen forests and 0.0100 0.004 0.003 1.9 0.9
parklands
388: Central Tallgrass prairie 0.0098 0.005 0.005 1.9 1.5
390: Cross-Timbers savanna-woodland 0.0012 0.004 0.006 1.3 1.0
392: Flint Hills tallgrass prairie 0.0003 0.002 0.002 3.5 0.4
397: Northern Tallgrass prairie 0.0003 0.002 0.002 0.8 0.7
401: Texas blackland prairies 0.0002 0.002 0.004 0.6 0.4
437: Tamaulipan mezquital 0.0034 0.005 0.012 2.8 2.1
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Fig. 5. Wind and roughness spatial variability across RESOLVE eco-regions of the Great Plains and North American Deserts.

grass prairies. Ecoregions in short and tall grass prairies had a maximum deciduous pattern of vegetation in temperate climates. In all biomes,
ug+/Up during December to February (DJF), with the ensuing decrease in peak Uy tended to occur during MAM and decreased to a minimum in
us+/Up (increasing roughness) during MAM or JJA, reflecting the JJA, varying between 1 and 2 m s~L.
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Fig. 6. Monthly anomalies of calibrated dust emission (F.4), roughness (us+/Up) and wind speed (Up) for North America ecoregions (RESOLVE), grouped into biomes.

Discussion

Our results describe two distinct patterns of wind and surface
roughness conditions, which coincide in different ways to generate
changes in dust emission. Calibrated modelled dust emission in the
Great Plains is limited by fluctuations in roughness, occurring only over
areas of small vegetation roughness (Fig. 4) as winds were strong enough
to produce dust emission most of the time (roughness limited) (Fig. 5). In
contrast, dust emission over North American Deserts is wind speed
limited, occurring only in exposed areas where wind speeds peak (Fig. 4)
as surface roughness is small most of the time (wind limited) (Fig. 5).
Despite these contrasting conditions, both biomes produced large vol-
umes of dust (short grass prairie = 2.9 Tg y'!, deserts and shrublands
combined = 4.3 Tg y'!). These modelled and calibrated dust emission
values agree broadly with patterns described in previous literature,
while explicitly describing only dust emission, not dust transport or
deposition.

Previous studies identified an increase in daily frequencies of AOD
(over a given threshold) over western areas of the GP, the Southern High
Plains, Sonoran, and Mojave deserts (Pu and Ginoux, 2017; Ginoux
etal., 2012). According to the CW16 model, the magnitude of F (Fig. 4b)
varies spatially due to both the frequency of (F.q > 0) and the associated
mean wind speed attenuated by surface roughness (wind friction ve-
locity (ug+ m sh- Eq. (2)). Here, our results correspond with fine-dust
(FD) and course-mineral (CM) dust products, measured from the

Interagency Monitoring of Protected Visual Environments (IMPROVE)
ground station network (Hand et al., 2017). The CM peaks (15.1 mg
m~3) during MAM over the Southern High Plains in North Texas / New
Mexico, contributing up to 72% of local PM;o mass. The FD concen-
trations peak (2.5 mg m~°>) during MAM over large areas of the Chi-
huahuan and Sonoran Deserts contributing up to 50% of PM; 5 by mass
(Hand et al., 2017).

North American Deserts: Interplay of vegetation structure and
dynamic wind speeds

The EPA Desert (barren) biome incorporates four deserts of North
America (Mojave, Chihuahuan, Sonoran and Baja). Described as arid or
semi-arid landscapes, these ecoregions have limited precipitation, high
temperatures and periodic droughts (Omernik, 1987). Their vegetation
patterns remain consistent between seasons (Fig. 6) with desert scrub
providing limited aerodynamic roughness (mean us+/Up, = 0.027 -
0.029) over much of the biome (Fig. 5). This is a testimony to the sim-
ilarity between the ecoregion classification and the reduced complexity
description of the aerodynamic roughness, indicating differences in the
structural diversity of vegetation among the regions (LaRue et al., 2019).
Despite these broad similarities, each ecoregion presented distinctly
different dust emission. The Chihuahuan Desert ecoregion produced the
greatest dust emission by magnitude (79% of biome total), and mean
number of dust days (Table 2). Dust emission variability followed a
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distinct north-south divide, where sediment transport was limited to
areas in the north (eastern New Mexico / west Texas). This pattern
followed synoptic patterns of Uy, which increased to a mean Uy = 4.5 —
57 m s ' (Fig. 5a), as frequent cyclonic activity to the northeast
(Albuquerque lows) creates large frontal systems with south-westerly
winds (Rivera Rivera et al., 2009). Low-relief alluvial and playa sur-
faces, including Lake Palomas produce limited aerodynamic drag,
generating the largest modelled dust emission (1.4 kg m~2y™! - Fig. 4 in
agreement with previous dust emission observations studies (Fig. 2;
Baddock et al., 2011; Lee et al., 2009). Areas to the south of the Chi-
huahuan Desert present broadly similar roughness conditions (mean us+/
Un = 0.25-0.29 - Fig. 5), yet the absence of frequent high Uy prevent
frequent dust emission. These conditions are typical of desert ecoregions
in North America.

The Mojave Desert was the most barren of the desert ecoregions
(mean us+/Up, = 0.027), occupying a rain-shadow, shielded by the sur-
rounding mountain ranges from advected humid air masses of the Pa-
cific Ocean (Hereford et al., 2006). However, small mean Uy, (3.5 m s’l)
limits modelled dust activity to several discrete locations, including
numerous dry lakes, distal alluvial fans and ephemerally active washes
surrounding the Rogers, Harper, and Coyote Lakes (117.2 — 116.8°W
35°N) within the Mojave National Preserve. These finding are consistent
with previous observations in the literature (e.g., Frank et al., 2007;
Sweeney et al., 2011). Here, mean Uy accelerates to ~ 5 m s~ over
barren surfaces (us+/Up > 0.3), promoting frequent sediment transport
(up to 17 dust days/y), equalling the peak frequency observed across
North America (Fig. 4a). However, the small peak in mean wind speeds
(Fig. 5b) limit dust emission to only small magnitudes (Fig. 4b).

Akin to deserts, modelled dust emission across shrubland ecoregions
to the north tend to be wind speed limited. These diverse environments
range from the arid and semi-arid deserts of the Colorado Plateau, and
the Great Basin, to the grasslands and dense shrublands of the Snake-
Columbia shrub steppe, and Wyoming Basin, with us+/Up conditions
ranging from 0.032 (barren) to 0.019 (grasslands) (Fig. 5). Wind speeds
increase with passing cold fronts, driven by Pacific low-pressure systems
traversing west to east bringing strong south-westerly winds (Jewell and
Nicoll, 2011; Reynolds et al., 2016). Complex topography creates dy-
namic wind patterns, accelerating over exposed areas (ridges, valley
floors), where average U, exceeds 5 m s ' (Fig. 5). Accordingly,
modelled F increases across barren exposed areas, including Great Salt
Lake Desert (116.8°W, 35.1°N) in eastern Great Basin, San Juan Basin
(108.7°W, 36.5°N) and Hopi Reservation (109.9°W, 36.5°N) of the
Colorado Plateau and the Great Divide Basin (108°W, 42°N) within the
Wyoming Basin (Fig. 4), while all other areas produce no effective dust
emission. These isolated hotspots are some of the most effective pro-
ducers of dust in North America, generating F. > 1 kg m~2y'L.

Dust emission sources over the high Central Rocky Mountains
(Fig. 4) are not recognised by AOD data (e.g., Pu and Ginoux, 2017;
Ginoux et al., 2012). Their omission emphasises the challenge of inter-
pretating AOD aggregates over space and time, where fixed daily orbits
of sun-synchronous satellites create a spatial bias, inherited from the
transport component between the moment of emission and observation
(Schepanski et al., 2012; Ashpole and Washington, 2013). The modelled
F represent actual dust emission, rather than atmospheric dust which
will be transported east along westerly winds (Jewell and Nicoll, 2011),
where it is frequently observed in AOD measurements over the Great
Plains (Pu and Ginoux, 2017), or removed entirely by rapid dry and wet
deposition onto the Rocky Mountains (Reynolds et al., 2016; Munroe
et al., 2019).

The Great Plains: Responding to regional variations in climate

Mean surface wind speeds over the Great Plains exceed those of the
deserts and shrublands to the west (Fig. 5a). This occurs as dry and warm
air masses follow westerly synoptic flow, descending the easterly slopes
of the Rocky Mountains and creating Chinook winds (a type of foehn
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wind), accelerating wind speeds and increasing evaporation (MacDon-
ald et al., 2018). The Western shortgrass prairie (WSP) ecoregion en-
compasses the semi-arid grasslands to the east of the Rocky Mountains.
From the CW16 model, WSP produced 77% of all dust emission from the
short grass prairie biome (2.2 Tg y')), the greatest of any ecoregion in
North America. With winds speeds frequently high, F.; magnitude
corresponds to vegetation cover, with greatest dust emission (up to 2.1
kg m 2 y'!) occurring across western rangelands, and cultivated crop-
lands in the southwest (Fig. 4). These areas are frequently barren (us+/
Up, = 0.026; Fig. 5), with cotton, corn, wheat, and sorghum crops rotated
in line with seasonal precipitation, and left fallow during the dry (and
windy) months between December and May (Rivera Rivera et al., 2010).
Dust emission point source (DPS) observations increase frequency dur-
ing periods of exceptional drought, as croplands remain barren for
extended periods (Kandakji et al., 2021; Lee et al., 2009; Fig. 3). Further
east, changes in climate conditions alter vegetation patterns over Texas,
Oklahoma, and Kansas, as precipitation increases from ~ 250 mm in the
west to >1000 mm in the east (Kukal and Irmak, 2016). Fig. 1c describes
the climatic transition, with native short grasses and arable vegetation
increasingly covering the landscape to east, decreasing us+/Up < 0.019
(Figs. 4 and 5), reducing us+ and prohibiting frequent dust emission
despite limited change in mean wind speed.

Our results confirm previous findings that the roughness-limited dust
emission pattern of the southern Great Plains increases the risk of soil
loss in the second half of the 21st century. Here, historical precedents
demonstrate the impact of changing vegetation patterns due to pro-
longed periods of drought. During the 1930s Dust Bowl event, the
Southern High Plains in northern Texas and New Mexico suffered
frequent severe dust storms due to a combination of drought conditions
and damaging land use practices (Lee and Gill, 2015), causing both an
environmental and socioeconomic crisis (Cook et al., 2009). Recently
(2000-2014), IMPROVE time series data shows an increasing trend in
spring-time dust concentrations in the southwest, with a strong inverse
correlation with Pacific Decadal Oscillation (PDO) phase (R = —0.65p <
0.01; Hand et al., 2016). During the second half of the 21st century,
Coupled Model Intercomparison Project Phase 5 (CMIP5) models predict
a decrease in springtime rainfall (Pu and Ginoux, 2017), with the po-
tential for extensive and prolonged periods of drought (‘megadroughts’)
(Cook et al., 2015). These conditions will increasingly stress existing
arable and rangeland vegetation, in areas where grazing has increased
by 2-10 times per head of cattle since the 1930s (Bolles et al., 2017) and
dryland agriculture is expanding across multiple land cover types,
including native grasslands in parts of west Kansas, and northwest Texas
(Lark et al., 2015). Using the albedo-based dust emission modelling
approach, we demonstrate for the first time how changing patterns in
vegetation roughness during persistent Chinook (high) winds, alters u;-
(i.e., the wind friction force that controls sediment transport). This
provides a useful indicator of how reduced vegetation will have a greater
effect here, than in areas of lower or more variable wind patterns.

Summary and Conclusions

Using the albedo-based approach (CW16) we calculate spatial and
temporal variability in wind friction velocity (us+) to model a dust
emission climatology of North America during the period 2001 to 2020.
Our results are calibrated through a novel use of dust emission point
source (DPS) observations to accurately predict variability in dust
emission frequency and magnitude. We compared dust emission from
different ecological biomes (desert, shrubland, short, and tall grass
prairies), as defined by patterns of vegetation type. These four EPA bi-
omes are described by broad vegetation classification (Fig. 2). We rep-
resented that complexity and measured the proportion of shelter (as
described by normalised shadow) within these land cover types, deter-
mining the relative aerodynamic roughness of these surfaces. We found
comparable aerodynamic roughness exists across biomes/vegetation
classes (Fig. 5b). Dust emission is not restricted to specific biomes, rather
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to an ‘envelope’ of appropriate wind speed and vegetation roughness
conditions that determine u;-.

Calibrated modelled dust emission was restricted to the Great Plains
and North American Deserts, with the greatest magnitude occurring in a
central corridor surrounding the central Rocky Mountains, where semi-
arid conditions and Chinook (foehn) winds coincide to create ideal
conditions for frequent dust emission. Our results broadly agree with
maps of frequently large aerosol optical depth, and ground station ob-
servations, yet our results provide greater accuracy of the variability in
dust emission frequency, specifically the spatial and temporal coinci-
dence of vegetation and wind conditions.

Calibrated modelled dust emission in the Great Plains is limited by
fluctuations in roughness, occurring only over areas of small vegetation
roughness (Fig. 4) as winds were strong enough to produce dust emis-
sion most of the time (roughness limited) (Fig. 5). In contrast, dust
emission over North American Deserts is wind speed limited, occurring
only in exposed areas where wind speeds peak (Fig. 4) as surface
roughness is small most of the time (wind limited; Fig. 5).

We identified two distinct dust emission patterns from either side of
the Rocky Mountains. Across the barren environments of the southwest,
us+ and therefore dust emission is limited only by patterns of wind speed,
increasing over exposed areas where wind speeds peak (wind limited
system). Across the vast semi-arid rangelands of the Great Plains, mean
wind speeds remain high, with ug+ varying mostly due to fluctuations in
roughness, limiting dust emission to the most barren environments
(roughness limited system; Fig. 5). Despite these general patterns, each
of the biomes had internal variability in frequency and magnitude of
dust emission, which can be explained by spatial variations in us+/Up and
Uy, at the ecoregion and smaller scales.

These data support previous findings, which suggest the southern
Great Plains (e.g., the Southern High Plains) are most at risk of
increasing dust emission in response to climate change. We show for the
first time, how this increased threat is brought about by alterations in
us~. Where, in a roughness limited environment, more frequent and
longer duration droughts (as predicted in southern Great Plains in the
second half of the 21st century) dramatically disrupts the balance be-
tween wind and vegetation roughness, altering the geography of dust
emission frequency and magnitude, affecting the socioeconomical con-
ditions of surrounding communities.
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