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ABSTRACT

Growing evidence implicates an association between psychosocial stress and oxidative stress (OxSt) although
there are not yet reliable biomarkers to study this association. We used a Trier Social Stress Test (TSST) and
compared the response of a healthy control group (HC; N=10) against the response of a schizophrenia group
(SCZ; N=10) that is expected to have higher levels of OxSt. Because our previous study showed inconsistent
changes in conventional molecular markers for stress responses in the neuroendocrine and immune systems, we
analyzed the same serum samples using a separate reducing capacity assay that provides a more global mea-
surement of OxSt. This assay uses the moderately strong oxidizing agent iridium (Ir) to probe a sample’s reducing
capacity. Specifically, we characterized OxSt by this Ir-reducing capacity assay (Ir-RCA) using two measurement
modalities (optical and electrochemical) and we tuned this assay by imposing an input voltage sequence that
generates multiple output metrics for data-driven analysis. We defined five OxSt metrics (one optical and four
electrochemical metrics) and showed: (i) internal consistency among each metric in the measurements of all 40
samples (baseline and post TSST for N=20); (ii) all five metrics were consistent with expectations of higher levels
of OxSt for the SCZ group (three individual metrics showed statistically significant differences); and (iii) all five
metrics showed higher levels of OxSt Post-TSST (one metric showed statistically significant difference). Using
multivariant analysis, we showed that combinations of OxSt metrics could discern statistically significant in-
creases in OxSt for both the SCZ and HC groups 90 min after the imposed acute psychosocial stress.

The primary conclusions from this study are: the Ir-RCA provides
robust global measurements of OxSt that can detect changes over
comparatively short time scales (i.e., hours); and the results from this
study support growing evidence for an association between psychosocial
and oxidative stress.

1. Introduction

Fig. 1aillustrates that the biological response to external stresses (e.
g., psychosocial stresses) involves a complex interconnection among the
nervous, endocrine, and immune systems [1,2]. In response to stress, the
activated hypothalamic-pituitary-adrenal (HPA) axis in the neuroen-
docrine system leads to secretion of the stress hormone cortisol that
serves to interconnect the CNS with the immune system [3-7]. Also,
activation of the immune system can result in the generation of

cytokines that affect the CNS (e.g., neuroinflammation) and other sys-
tems [5,8-12]. Thus, it appears that cortisol and cytokines are key
components for bidirectional communication between the CNS and
immune system.

Previously, we designed a pilot study to investigate the response to
acute psychosocial stresses by the endocrine system (as measured by
cortisol) and the immune system (as measured by the pro-inflammatory
biomarkers, TNF-a, and IL-6). Because the stress-response system of
Fig. 1ais implicated in the pathology of schizophrenia [13-17], we also
focused on a comparison between persons diagnosed with schizophrenia
(SCZ; N=10) and healthy controls (HC; N=10) [18]. In that study, we
employed the Trier Social Stress Test (TSST) protocol that is one of the
most widely used laboratory stress tests to examine the effects of acute
stress on psychological and physiological functioning in humans
[19-25]. The results from that previously-published study are replotted
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in Fig. 1b and show significant changes in cortisol levels during that
short term study. Specifically, the HC group showed a transient increase
in cortisol levels following the imposed stress, while the SCZ group
showed a markedly different response pattern. The results with the two
pro-inflammatory biomarkers were more difficult to interpret. At all
measurement times, these two pro-inflammatory biomarkers were lower
for the SCZ vs HC group which is inconsistent with evidence linking
inflammation and schizophrenia [26-28]. In addition, both groups
showed trends of gradual increases in IL-6 but no changes in TNF-o:
recent studies suggest psychological stress activates the immune system
[1,15,29,30] although inconsistent responses of inflammatory bio-
markers across studies have been reported [9,26,31,32]. These dis-
crepancies in inflammation biomarkers have been explained by: i) the
immune response susceptibility to various confounding factors [9,33];
ii) inter-individual differences [26,34]; and iii) inconsistencies in sample
collection, storage and measurement protocols [26,35].

Fig. 1a also suggests that psychosocial stress is linked to oxidative
stress (OxSt) although the mechanistic details remain unclear. While
OxSt is believed to result from the excessive generation of reactive ox-
ygen species (ROS), there is growing evidence that ROS also perform
important redox signaling functions [36-39] and are embedded within a
broader network of redox reactions (i.e., the redox interactome [36,40])
important for maintaining homeostasis. Further, this redox network
appears to serve as an interface: at the molecular level with other bio-
logical networks (e.g., transcription and protein interaction networks)
[41,42]; and at a systems level between exposure to various internal and
external stressors (the exposome) [43] and the biological
stress-responses [7,44-46]. Thus, there is increasing interest in under-
standing the relationships among ROS, redox signaling, OxSt and the
integrated stress response systems [7,36,40,47,48].

There is no generally-accepted measurement for OxSt but various
molecular biomarkers have been considered [49-54]. Such molecular
biomarkers include the reactive oxidants (e.g., ROS and RNS) [50,54,
55], the endogenously generated protective antioxidants (e.g., GSH and
ascorbic acid) [56,57], proteins for antioxidant protection (e.g., defense
enzymes) or the ROS-induced damage (e.g., lipid peroxidation and
protein carbonylation) [58-64]. An alternative approach to assess OxSt
is to obtain a global measurement of antioxidant status that integrates
the contributions from various molecular species [65-69].

(a) Biological stress response system
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We are developing a new global measurement for the OxSt using an
Ir-reducing capacity assay (Ir-RCA) that probes a serum sample using the
moderately strong oxidant KxIrClg(IV) (designated Irox) [70,71] to
determine the electron-donating activities of the various serum com-
ponents (e.g., glutathione, ascorbate and proteins). In our first report
[70], we showed that the 1'% could be reduced upon incubation with
diluted serum sample, which could be detected by electrochemical and
optical measurements. In addition, the Ir-RCA results were compared
with a commercial Cu-reducing capacity assay (Cu-RCA). Ir-RCA could
discern higher levels of OxSt in the serum from a SCZ group (N=10) vsa
HC group (N=5) while a commercial Cu-RCA could not discern differ-
ences in OxSt between the SCZ and HC groups. In our second report [71]
using only an optical measurement, we validated that the Ir-RCA can
discern higher OxSt in the SCZ group (N=73) vs HC group (N=45).

Here, we modified the Ir-RCA and investigated its ability to discern
changes in OxSt in response to acute psychosocial stress. Specifically, we
modified the assay to detect reducing capacity in serum using inde-
pendent optical and electrochemical measurements, and we imposed a
sequence of electrical voltage inputs to enrich the output signal to
generate multiple metrics suitable for data-driven analysis. We applied
this assay method to the same serum samples collected from our pre-
vious study (i.e., in Fig. 1b [18]). Consistent with our previous studies
[70,71], we observed that this Ir-RCA can discern higher levels of OxSt
in the SCZ group vs the HC group. More importantly, our measurements
showed that increases in OxSt for both groups were observable within 2
h of the imposed psychosocial stress. By incorporating an enhanced data
analytics approach, our results demonstrate the value of an Ir-RCA in
providing a global indicator of OxSt. Moreover, our data reinforces the
link between psychosocial stress and oxidative stress.

2. Materials and methods
2.1. Chemicals

The following were purchased from Sigma-Aldrich: KIrClg (IV), and
phosphate buffered saline (PBS, pH 7.4). The water (>>18 MQ) used in
this study was obtained from a Super Q water system (Millipore). A stock
solution of 10 mM K5IrClg (lrox) was prepared in PBS (pH 7.4) and its
aliquot was stored in —80 °C freezer.

(b) Endocrine and immune responses to psychosocial stress
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Fig. 1. Psychosocial stress and oxidative stress. (a) The integrated biological stress response system includes the central nervous, endocrine, and immune systems.
(b) Cortisol and pro-inflammatory cytokines were used as molecular biomarkers in a prior study involving acute psychosocial stress (results are adapted with
permission under a Creative Commons Attribution License from Ref. [18]). The same serum samples were used for the work reported here. (c) Summary of the Trier

Social Stress Test procedure.
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2.2. Study participants

The recruitment of participants was described in the previous report
[18] and more details are provided in the Supplementary Material.

2.3. Design of the study
This study consists of two visits as described in Fig. 1c.

2.3.1. Consent and screening in the first visit

In the first visit, all participants signed informed consent and
completed a screening to evaluate eligibility. Details of screening pro-
cess were previously described [18] and are provided in the Supple-
mentary Material. During the first visit, the participants completed
various clinical assessments to evaluate psychiatric symptoms including
the Structured Clinical Interview for the DSM-IV Diagnoses (SCID) [72],
Brief Psychiatric Rating Scale (BPRS) (18-item) [73], Hamilton
Depression Scale (HAMD) [74], Scale for the Assessment of Negative
Symptoms (SANS) [75], and the Clinical Global Impression Scale (CGIS)
[76]. Participants also completed the Repeatable Battery for the As-
sessments of Neuropsychiatric Status (RBANS) [77].

2.3.2. Trier social stress test (TSST) in the second visit

Upon arrival of the second visit, participants had an intravenous
catheter inserted and then the baseline blood was drawn (i.e., 15 min
before TSST). After the participants watched the introducing video
about the role-playing and prepared for their speech for 15 min, they
returned to the room with the “panel of judges” to deliver their speech
and complete the mental math (e.g., TSST). Blood was drawn just prior
to the TSST (t=0), and 15, 30, 60, 90 min post stressor as described in
Fig. 1c. In this study, we assayed the serum samples collected at 15 min
before TSST (t-15 min: Baseline) and 90 min after TSST (t+90 min:
post-TSST). More details for TSST are provided in Supplementary
Material.

2.4. Biochemical analysis (cortisol, cytokines, C-reactive protein)

The analysis of serum cortisol and cytokines (IL-6 and TNF-x) was
described in the previous study [18] and Supplementary Material. Here,
we used the previously published results and we measured serum
C-reactive protein (CRP) using a commercial Human C-Reactive Protein
ELISA Kit (MilliporeSigma, MO, USA), following manufacturer’s rec-
ommended protocol.

2.5. Ir-reducing capacity assay (Ir-RCA)

Before the measurement, we thawed each aliquot of serum and a 10
mM Ir% stock solution that had all been frozen at —80 °C. Sample so-
lution (3000 pL) was prepared by diluting serum (1000-fold) and %%
stock solution (20-fold) with 0.1 M PBS. After 1-h incubation at room
temperature, two 200 pL aliquots of each sample were transferred to
each of 2 wells of a 96 well microplate for duplicate optical absorbance
measurements at 490 nm using a standard absorbance microplate reader
(iMark, Bio-Rad Laboratories, Inc.). At the same time, 2600 pL of the
samples were analyzed electrochemically (Fig. S1 provides more infor-
mation of an electrochemical system); and an imposed voltage sequence
that included a 2 min wait (i.e., OFF) period followed by a sequence of 3
separate voltage inputs (between each input the samples were stirred
and a 2 min OFF period was used). Fig. 2b explains each imposed voltage
input and its electrochemical output in detail.

Two independent analyses of the 40 serum samples were performed
over a 60-day period. At each analysis, each sample was measured in
triplicate using both optical and electrochemical methods, and the
triplicate measurements were averaged for the further data analysis.
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(a) Probing of oxidative stress related chemical information
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Fig. 2. Optical and electrochemical metrics of the Ir-reducing capacity
assay. (a) A redox-mediator (K,IrClg, Ir°%) is used to detect oxidative stress by
probing the reducing capacities of a diluted serum sample. During a 1 h incu-
bation, Ir°® is converted to Ir**? by accepting electrons from the sample’s re-
ductants. Independent measures of the residual Ir°* are obtained optically (Abs
at 490 nm) and electrochemically (reductive charge; Q.RED), while measures of
the generated Ir**4 are obtained electrochemically (oxidative charge; Q.0X). (b)
For the electrochemical measurement, three sequential electrical input voltages
are imposed: (i) E1 is a 2-min imposed oxidation voltage (+0.7 V vs Ag/AgCl)
that yields one metric (the cumulative oxidative charge during these 2 min; Q.
OX); (ii) E2 is a 2-min imposed reduction voltage (+0.1 V vs Ag/AgCl) that
yields a second metric (the cumulative reductive charge during these 2 min; Q.
RED); and (iii) E3 is a 10-min imposed cyclic voltage (CV) that generates 2
additional metrics (Q.CV1 and Q.CV3) that reflect the dynamic balance be-
tween the reduction of the residual Ir°* and oxidation of the generated Ir?®d,
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

2.6. Statistical analysis

Statistical analyses were performed with R version 3.4.3. Group
differences in demographic information, clinical assessments, and Ir-
reducing capacity measurements were assessed using Kruskal-Wallis
test for continuous variables and chi-squared test for categorical vari-
ables. The intraclass correlation coefficient (ICC) is calculated using the
‘irr” package [78] based on an absolute-agreement, one-way random
effect analysis of variance (ANOVA) model [79,80]. Spearman’s cotre-
lation coefficients were calculated to examine the relationship between
the 5 OxSt metrics and the 5 clinical assessments. A logistic regression
model [81-83] (‘nnet” package) [84], was used to assess the combina-
tion effect of multiple OxSt metrics on i) the discerning ability of SCZ
group from HC group and ii) discriminating ability of post-stressed
status relative to baseline. We used Akaike Information Criterion (AIC)
to estimate the quality of each model. The discriminating ability was
evaluated using ROC (Receiver Operating Characteristic) metric with
AUC (Area Under Curve) (i.e., c-statistic)) and p-values [85-91].

3. Results

Table 1 summarizes the characteristics of the HC group (N=10) and
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Table 1

Demographic information for healthy controls and schizophrenia group (*; p<0.05).
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Variable Healthy Controls (HC, N =10) Schizophrenia Group (SCZ, N=10) Test Statistics
Age/years 35.4+123 40.9 = 14.7 7 =046,p=0.49
Sex/Male 10 (50%) 10 (50%) £=020,p=1
Race ~=028p=1
African American 7 (70%) 7 (70%)
Caucasian 2 (20%) 3 (30%)
Mixed 1 (10%)
Smoker 3 (30%) 4 (40%) 7 =095p=062
Clinical Assessment (Symptoms)
*BPRS Total Score 19.6 + 1.8 332453 #=1259,p=39x107*
*SANS Total Score 1.0 £ 2.8 25.7 +£ 9.2 #=1526,p=936x 10°
*HAMD 0.67 + 1.4 8.845.8 A =1161,p=657x 107*
*CGIS 1.0 £ 0.0 4.5+ 0.8 ¥ =16.59, p=4.63 x 10~°
*RBANS Total Score 86.4 +15.1 71.0 + 16.0 72 =4.66, p=0.031
Perceived Stress Scale 11.2 £ 9.7 145+ 5.2 #=057,p=045
Physiological Measurement
Systolic Blood Pressure (mmHg) 122.7 £ 21.7 117.7 £13.1 ¥ =0.036,p=085
*Diastolic Blood Pressure (mmHg) 67.2 +10.8 74.9 £ 5.2 =418 p=0041
Pulse (bpm) 73 + 14.4 83.9£12.9 7 =1.56,p=0.21

the persons with SCZ (N=10) at baseline study entry [18]. Table 1 shows
that there is no significant difference between the two groups for age,
gender, race, current smoking status or perceived stress. However, the
psychiatric symptoms assessments (BPRS, SANS, HAMD, CGIS) shows
the significantly higher scores and the RBANS shows significantly lower
scores in the SCZ group compared with HC group as expected. With
respect to physiological measurements, there is no significant difference
in pulse or systolic blood pressure, while the SCZ group had a signifi-
cantly higher diastolic blood pressure.

3.1. Description of Ir-RCA and OxSt metrics

Fig. 2a illustrates the redox probing method (i.e., Ir-RCA) used in this
study. Ir% is incubated with diluted serum samples and accepts elec-
trons from serum components converting the yellow-colored 1 into its
colorless reduced form (IrRed). This decrease in Ir%% and increase of IrRed
are measured both optically and electrochemically after 1-h incubation.
The optical absorbance (Abs) at 490 nm measures the yellow-color
associated with remaining Ir%% in the sample after the 1-h incubation:
samples from persons with higher levels of OxSt (i.e., less serum
reducing capacity) are expected to have more Ir°% and thus higher Abs
values.

Fig. 2b shows that we used three independent electrochemical
measurements of Ir°* and Ir¥"¢, Specifically, an electrode was inserted
into the sample and three different input voltage sequences were
imposed while measuring the output current responses. Importantly,
electrochemistry measures a small region of the sample (we estimate
~0.15% of the sample volume) [92] and thus allows multiple mea-
surements to be performed while minimally altering the sample (note
between each of the three voltage input sequences we stirred the sample
to refresh the measurement region and then used a 2 min OFF time).

The first voltage input (designated E1) was a 2-min step change to an
oxidative value (0.7 V vs Ag/AgCl reference electrode). The number of
electrons transferred during this oxidative pulse (Q.0X; pC) provides a
measure of how much Ir**¢ was formed during the 1-h incubation:
Fig. 2b illustrates that samples from persons with higher levels of OxSt
are expected to form less 1r**d and show a smaller Q.0x response (by
convention, oxidative Q values have a negative value and thus a smaller
response corresponds to a less negative Q.0x).

The second voltage input (E2) was a 2-min step change to a
moderately reductive value sufficient to reduce Ir°* (+0.1 V vs Ag/
AgCl). The number of electrons transferred during this reductive pulse
(Q.RED; pC) provides a measure of how much 1r°% remained in the
sample after the 1-h incubation: Fig. 2b illustrates that samples from
persons with higher levels of OxSt are expected to have higher Ir®* and
thus larger Q.RED values.

The final voltage input (E3) was a 3-cycle (10 min) oscillating cyclic
voltage (CV) between the oxidative value (+0.75 V) and a reductive
value (40.25 V). Fig. 2b shows an oscillating output Q is observed with a
trend toward larger (i.e., reductive) values and we characterized this
output response by two metrics: the first metric is the minimum charge
after the first cycle (Q.CV1) and the second is the final charge after the
third cycle (Q.CV3). This sequence provides an independent measure of
the 1'% remaining in the sample after the 1-h incubation: Fig. 2b il-
lustrates that serum from persons with higher levels of OxSt are expected
to have higher Ir°% levels and thus higher Q.CV1 and Q.CV3 values.
Here, we defined five output metrics of Ir-RCA including Abs, Q.0X, Q.
RED, Q.CV1 and Q.CV3 as OxSt metrics.

3.2. Reliability of Ir-RCA

To investigate the reliability of Ir-RCA, we analyzed the 40 samples
(20 samples at baseline and 20 samples post TSST) at two different times
that spanned 60 days. At each analysis, a single aliquot for each of the 40
frozen serum samples (-80°C) was thawed, and measured in triplicate to
generate our 5 OxSt metrics (Abs, Q.0x, Q.RED, Q.CV1 and Q.CV3). The
triplicate measurements of each analysis were averaged to 1% mean and
2" mean. Fig. 3 represents the correlation between two mean values of
each sample for each metric.

To quantify the reliability of our assay, we calculated the intraclass
correlation coefficient (ICC) [79,93,94] which assesses the absolute
agreement between different analyses. Each calculated ICC for 5 metric
measurements was relatively high indicating a good agreement for the 6
replicate measurements. Importantly, the high reliability of this assay
indicates that the assay is measuring a stable feature in the serum (i.e., it
is not measuring unstable reactive species) and it is not sensitive to the
presence of air (i.e., no precautions were made to exclude oxygen when
drawing the blood, processing the serum or assaying the samples).

3.3. Correlation between OxSt metrics and clinical assessments

Fig. 4 presents the correlation heat map between 5 OxSt metrics and
5 clinical assessments at the baseline. Each colored cell of the heat map
indicates a statistically significant correlation between variables. First,
the lower left region of this heat map shows the strong correlations
between the 5 OxSt metrics, which supports the internal consistency of
the optical and electrochemical metrics of OxSt. Second, the upper right
region of the heat map of Fig. 4 shows strong correlations between the 5
different clinical assessments (Fig. S2 provides correlation plots). The
symptom severity-related assessments (BPRS, CGIS, SANS) show posi-
tive correlations with each other, but a negative correlation with RBANS
scales that assess cognition [32,95-97].
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Fig. 3. Reliability of Ir-RCA. The cross plots of the individual metrics show good agreement between two independent analyses of 40 samples (20: Baseline, 20: Post
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each sample in the 1% and 2" analysis. The intraclass correlation coefficient (ICC) is calculated to assess the agreement of 6 replicate measurements for each of the
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Fig. 4. Correlations of the metrics from the Ir-RCA with clinical assess-
ments. Heat map of Spearman correlation coefficients of the 5 OxSt metrics and
5 clinical assessments (BPRS, RBANS, CGIS, SANS, HAMD) at baseline show:
excellent internal consistency among the 5 OxSt metrics (lower left); strong
internal consistency among the clinical assessments (upper right); and some
correlation between OxSt metrics and clinical assessments (lower right). Q.0X
metric shows correlation with BPRS and RBANS and Q.CV1 shows a correlation
with BPRS and SANS: these correlations indicate that symptom severity is
associated with OxSt.

Third, the lower right region of the heat map of Fig. 4 shows the
correlations between the 5 OxSt metrics and the 5 different clinical as-
sessments. Importantly, Fig. 5S2a shows the response of each metric is
consistent with expectations that higher OxSt is associated with more
severe symptoms [98-100] and lower cognition [95,97]. As indicated in
the Table of Fig. 4, four of these correlations are statistically significant.
The BPRS assessment of psychiatric symptoms shows a negative

correlation with the Q.0X metric (r = —0.45, p = 0.047) and a positive
correlation with the Q.CV1 metric (r = +0.53, p = 0.017). Also, the
SANS assessment of negative symptoms shows a positive correlation
with the Q.CV1 metric (r = +0.51, p = 0.02). The RBANS assessment of
cognition shows a positive correlation with the Q.0X metric (r = +0.45,
p = 0.048). Thus, the OxSt metrics are consistent with clinical expec-
tations and, in some cases, statistically significant correlations were
observed between individual metrics and clinical assessments despite
the small sample size.

When we checked the correlation between the 5 OxSt metrics and
other biochemical markers including cortisol and inflammation markers
(CRP, IL-6, TNF-u) in Fig. S2a, only one metric, Q.0X, shows a positive
correlation (r = +0.46, p = 0.005) with TNF-a. The relationship is not
consistent with the other studies that show an elevation of TNF-a levels
with higher level of OxSt biomarkers [101,102].

3.4. Discriminating abilities of individual OxSt metrics

In addition to identifying correlations to baseline clinical assess-
ments, we also examined the abilities of the individual assay metrics to
discern differences between the two groups (SCZ and HC) and the two
states (pre- and post-TSST). Fig. 5a shows the ability of Ir-mediated OxSt
assay to discriminate the SCZ group from the HCs at baseline and post-
TSST using the 5 OxSt metrics. The first important observation in Fig. 5a
is that all 5 metrics consistently show higher OxSt for the SCZ (vs HC)
group both at baseline and post-TSST. The differences between SCZ and
HC groups for three of these metrics was statistically significant (Q.OX at
baseline (p=0.034) and post TSST (p=0.010), and Q.CV1 at baseline
(p=0.034)). This observation agrees with our previous studies that show
higher OxSt for persons diagnosed with SCZ vs healthy controls [70,71,
103]. The second important observation in Fig. 5a is that all 5 metrics
changed in the direction of increasing OxSt in post-TSST compared with
baseline for both the SCZ and HC groups. Fig. 5b shows results when the
groups were combined to consider only the effect of the TSST. Again, all
five metrics showed the expected responses that OxSt was higher
post-TSST compared to baseline and one metric showed a statistically
significant difference (Q.0X (p=0.045)). These two observations -
increasing OxSt for the SCZ group (vs. HC) and post-TSST (vs. pre-TSST)
- are consistent with the expectations (Note: Fig. S3 provides additional
plots to show the changes of OxSt metrics for individual samples pre/-
post TSST and Fig. 54 provides additional analysis of the difference of
OxSt metrics between pre and post TSST).

3.5. Combining effect of multiple OxSt metrics

In Fig. 6, we investigated the additive effect of multiple metrics on
discerning higher levels of oxidative stress using a logistic regression
model [81-83]. First, Fig. 6a estimates the probabilities for discrimi-
nating the SCZ group from HC group using one or combinations of
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(a) OxSt output metrics to show the difference between HC group and SCZ group
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(b) OxSt output metrics to show the difference between baseline and post-TSST
Optical Metric Electrochemical Metrics
Abs Q.0X Q.RED Q.Cv1 Q.CV3
08 o 0 Baseline O - 250 6001
, % 200 Post.TSST % 40d I -5 L
8 071 -: & Ozcwdatwc 5 Pu 6; 200 . ('_); 500 | F&—
c | @ E = =
€ oo B 250 stress 8 250 5 150 o
8 i 5 S ) & 400
= xidajve| o ¥ ] Oxidat o Oxidatye| S '
73} 200 4 Xigatye
0.5 = 200 2 £ 100 £ 300 Oxidative
2 stress 5 : 8 200 stress o stress © stress
© Baseline = k=] O Baseline 50 @ Baseline O Baseline
04 PosL.TSST S 150 2 Post-TSST Post.TSST e Post.TSST
Baseline Post-TSST Baseline Post-TSST Baseline Post-TSST Baseline Post-TSST Baseline Post-TSST
p 0.14 p 0.045* p 0.15 p 0.19 p 0.18

Fig. 5. Discriminating abilities of individual OxSt metrics. (a) Five OxSt metrics including one optical metric (Abs) and four electrochemical metrics (Q.0X, Q.
RED, Q.CV1 and Q.CV3) consistently show the higher oxidative stress for the SCZ group vs HC group at baseline and post-TSST. Three metrics shows the statistically
significant difference between the two groups (*; p<0.05, Q.0OX at baseline, post-TSST, Q.CV1 at baseline). (b) Five OxSt metrics for the combined group show
consistently increasing OxSt for post-TSST vs baseline. One metric (Q.0X) shows the statistically significant difference between baseline and post-TSST (*; p<0.05).
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

multiple OxSt metrics. The goodness-of-fit for each model is evaluated
using the Akaike Information Criterion (AIC) [104] and the discrimi-
nating power is evaluated using ROC curve analysis [86-91]. The table
in Fig. 6a presents the calculated AIC and the AUC values (i.e., c-sta-
tistic) and the p-values from ROC curve for each combination of multiple
metrics at the baseline and post-TSST (Fig. S5 provides the ROC
analyzed results for each single metric). While the ROC analysis with a
single metric (Abs) shows lower AUC with higher p-value (>0.05), the
combination of OxSt metrics increased the AUC and the discriminating
ability became statistically more significant (p-value < 0.05). This result
indicates that the combination of multiple metrics increased the power
for discriminating the SCZ and HC groups based on their levels of OxSt.

In Fig. 6b, a logistic model is used to estimate the probabilities to
discern the post-TSST from baseline (pre-TSST) using one or combina-
tions of multiple OxSt metrics. The table in Fig. 6b shows that the
combination of OxSt metrics increases the AUC (c-statistic) and lowers
the p-value. This result indicates that the combination of multiple OxSt
metrics by logistic regression model can improve the ability to discern
increases in OxSt post-TSST.

4, Discussion

There is growing evidence for an integrative stress response system
[7,105,106] that includes the immune [11], nervous [2] and endocrine

systems, and also that persons with schizophrenia may have dysfunc-
tions in this stress response. In a previous pilot study using a short-time
psychosocial stress [18], we observed that the response in cortisol levels
(a marker of HPA axis response) for people with SCZ was markedly
different from healthy controls (HC) as expected from other studies [6,7,
105,107]. However, changes in the immune response biomarkers
(TNF-a and IL-6) were less consistent with expectations. First, these
measurements showed lower levels of TNF-a and IL-6 for the SCZ group
compared to HC group (Fig. 1b), and these cytokine levels did not
correlate to clinical measures of symptom severity (Fig. 4). These results
are inconsistent with other studies and the neuroimmune hypothesis of
schizophrenia [1,12,19,108,109]. Second, after psychosocial stress, IL-6
increased but TNF-a remained unchanged in both the SCZ and HC
groups (Fig. 1b) which is also inconsistent across studies and expecta-
tions (based on a neuroimmune hypotheses). These inconsistencies
suggest that pro-inflammatory cytokines may not be robust biomarkers
[110].

There is also evidence that HPA activation and inflammation are
linked to oxidative stress (OxSt) [19,26,111,112]. To examine this link,
we used an Ir reducing capacity assay (Ir-RCA) to measure the same
samples collected from this previous study [18]. In contrast to tradi-
tional molecular biomarkers or measures of oxidation [49,51,54,113,
114], the Ir-RCA provides a more global measure that is detected
through relatively simple optical and electrochemical methods. Here,
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(a) ROC analysis for discriminating SCZ group from HC group
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(b) ROC analysis for discerning post-TSST from baseline
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Fig. 6. Receiver operating characteristic (ROC) analyses for assessing the combination effect of multiple metrics. (a) ROC analysis for discerning SCZ group
from HC group at baseline and post-TSST. (b) ROC analysis for discerning post-TSST from baseline for HC group and SCZ group. ROC curves and Tables show that the
combination of multiple OxSt metrics increased its discerning ability (SCZ vs. HC, Post-TSST vs. Baseline) with higher AUC (c-statistic) and lower p-value (*; p<0.05).

we extended the Ir-RCA from a single optical [71] or electrochemical
output metric [70,103] to multiple independently-measured output
metrics useful for a data-driven analysis [41,115-117]. Each of the five
output metrics showed that the SCZ group had higher OxSt compared
with the HC group which is consistent with expectations [70,71,103] (3
of these metrics showed statistically-significant differences: Fig. 5).
Further, each of the five output metrics showed that increased OxSt is
associated with greater symptom severity and lower cognition which is
also consistent with expectations [118-123] (2 of these metrics showed
statistically-significant correlation: Fig. 4). As expected, combining
output metrics increased the discriminating power of the Ir-RCA (e.g.,
Fig. 6a).

Although many studies suggest that the chronic psychosocial stress is
linked to OxSt and the pathologies of diverse diseases [6-8,45,46,124,
125], few studies focus on the association between acute psychosocial
stress and OxSt [126-128]. Jansakova et al. [127] examined the acute
effect of psychosocial stress on OxSt using saliva samples from children.
They found increases in the total antioxidant capacity (as measured by
ferric ion reducing antioxidant power) after exposure to acute psycho-
social stress (e.g., TSST) during the stress day, and higher lipid peroxi-
dation on stress day than control day but no significant difference prior
to and post TSST. Wiegand et al. [126] found a higher expression of the
microRNA, which is implicated in regulating the production of reactive
species, in the saliva of healthy subjects after the psychosocial stress test
(TSST). While both studies were performed in healthy groups, we
investigated for the first time the acute effect of psychosocial stress on
the OxSt in SCZ and HC groups. All five output metrics in our study
showed an increase in OxSt after the TSST compared with the baseline
(Fig. 5) and one metric (Q.0X) showed a statistically significant differ-
ence between baseline and post-TSST. Further, the results in Fig. 5
implicate an association between psychosocial stress and OxSt. The
combination of OxSt metrics was well-fitted with the model to distin-
guish post-TSST from baseline (Fig. 6b). While our results indicate that
the TSST test was associated with increased OxSt for both the SCZ and
HC groups, our Ir-RCA could not discern differences in response between
these two groups (using linear mixed effects model in Fig. 54).

There are several strengths and limitations of this study. One
strength is that the Ir-RCA appears to access stable features of the serum
samples. Specifically, we measured samples that had been stored at

—80 °C for 3 years, and our replicate measurements that were performed
60 days apart showed strong interclass correlations (Fig. 3). Presumably,
this assay is detecting stable differences in the oxidation state of proteins
and other antioxidants that provide a stable historical record of the
oxidative context that had been experienced by the serum at the time of
sampling (e.g., trace levels of reactive species are expected to rapidly
decay during sample processing while oxidized amino acid residues are
expected to be stable) [71]. A second strength is the cost and simplicity
of the Ir-RCA, as well as the ability to make independent measurements
to facilitate a data-driven analysis. A third strength is that all 5 metrics
measured in this study show responses consistent with expectations
(greater oxidative stress for the SCZ group and for both groups
post-TSST). One limitation of this study is that, since the optical and
electrochemical metrics generated by the Ir-RCA reflect a summation of
all oxidizable species (i.e., antioxidants) in the sample, it is generally not
possible to relate the Ir-RCA measurements to individual chemical spe-
cies or molecular mechanisms of OxSt. A second limitation of the Ir-RCA
is that there are several assay variables that could be adjusted (e.g.,
mediator types/levels, electrochemical input sequences, and output
response quantification) and optimizing this assay for clinical analysis is
limited by the small volumes of sample available for methods develop-
ment. A final limitation is the small sample size of this pilot study (N=10
schizophrenia and N=10 control). Thus, while this study supports the
growing evidence for a link between psychosocial stress, inflammation,
and oxidative stress, larger studies are needed to confirm these findings.

In summary, the results from this study indicate that acute psycho-
social stresses can lead to detectable increases in oxidative stress over
comparatively short times (<2 h).
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