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ABSTRACT 
Training deep neural networks can generate non-descriptive error 
messages or produce unusual output without any explicit errors at 
all. While experts rely on tacit knowledge to apply debugging strate-
gies, non-experts lack the experience required to interpret model 
output and correct Deep Learning (DL) programs. In this work, we 
identify DL debugging heuristics and strategies used by experts, 
and use them to guide the design of Umlaut. Umlaut checks DL 
program structure and model behavior against these heuristics; 
provides human-readable error messages to users; and annotates 
erroneous model output to facilitate error correction. Umlaut links 
code, model output, and tutorial-driven error messages in a single 
interface. We evaluated Umlaut in a study with 15 participants to 
determine its efectiveness in helping developers fnd and fx errors 
in their DL programs. Participants using Umlaut found and fxed 
signifcantly more bugs compared to a baseline condition. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools; • Computing methodologies → Machine learning; • Soft-
ware and its engineering → Software testing and debugging. 
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1 INTRODUCTION 
The surge of interest in Machine Learning (ML) has resulted 
in groundbreaking advances in many domains, from healthcare 
[38, 55], to transportation [72], to entertainment [1]. An enabling 
factor of these applications are Deep Neural Network (DNN) mod-
els, which can extract and discriminate features from raw data by 
using massive amounts of learned parameters [9]. These “Deep 
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Learning” (DL) approaches are incredibly powerful, even surpass-
ing human-level accuracy on some tasks [24]. DNNs also enable 
many new interactions over “Classical ML”, such as generating 
high-dimensional data [21], and supporting transfer learning, where 
selected parameters from a DNN may be retrained to generalize to 
new applications, creating high performing models without needing 
millions of data points or massive computational resources. 

Non-expert ML programmers, such as software engineers, do-
main experts, and artists, can use transfer learning to create their 
own models by using recent frameworks which make this task 
more approachable with high-level APIs [12, 35]. However, when 
bugs are introduced, the default failure mode of DL programs is to 
produce unexpected output without explicit errors [70]. ML novices 
often expect models to behave as APIs, and have limited mental 
models to facilitate debugging, sometimes even abandoning ML 
approaches altogether when they fail [10, 30]. Further compound-
ing the issue, DNNs are considered “black box” models, and cannot 
be debugged with traditional means such as breakpoints. Experts 
rely on their experience and tools such as Tensorboard [2] and 
tfdbg [11] to begin inspecting model behavior, but often fall back 
on trial-and-error approaches guided by intuition [10]. Adding 
structure to the DL development process through explanations and 
guidance could help users close this debugging loop and bridge 
theory with practice [3, 64]. 

We introduce Umlaut, the Usable Machine LeArning UTility, a 
system which uses a multifactor approach to assist non-experts in 
identifying, understanding, and fxing bugs in their DL programs1 

(Figure 1). Umlaut draws inspiration from tools and metaphors 
in software engineering which inspect code to provide warning 
messages and suggestions to developers. This includes linting [39], 
unit testing, dynamic analysis [57], and explanation-based debug-
ging [46]. Umlaut attaches to the DL program runtime, running 
heuristic checks of model structure and behavior that encode the 
tacit knowledge of experts. Umlaut then displays results of checks 
as error messages that integrate program context, explain best prac-
tices, and suggest code recipes to address the root cause(s). Our 
aim is not to defne new heuristics or outperform experts, but to 
show how existing heuristics used by experts can be automatically 
checked and made accessible to a broader set of users. 

A key objective of Umlaut is to support users in overcoming 
three critical “gulfs” of the DL debugging process: mapping from 
symptoms to their root cause(s), choosing a strategy to address 
the underlying problem, and mapping from strategy to concrete 
code implementation. Umlaut uses an automated checking infras-
tructure to detect errant model behavior and raise error messages 
refecting the surrounding context. Error messages are presented 

1Source code for our system is available at https://github.com/BerkeleyHCI/umlaut 

This work is licensed under a Creative Commons Attribution International 
4.0 License.
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Figure 1: The Umlaut web interface combines visualizations 
of model metrics (1); a timeline showing errors over epochs 
(2); and explanations of underlying error conditions with 
the program context and suggestions for best practices with 
code examples (3). Plots and the timeline are automatically 
annotated with with relevant data when errors are clicked. 

in a web interface that tightly couples errors with visualizations 
of model output, linking root causes to their symptoms. Error mes-
sages include descriptions of their underlying theoretical concepts, 
and suggest potential debugging strategies to bridge theoretical 
and practical knowledge gaps. To translate these strategies into 
actionable changes, Umlaut errors include code recipes which im-
plement suggested fxes, outbound links to curated Stack overfow 
and documentation searches, and links to the suspect lines of code 
in source. 

Our work makes the following contributions: 

• A discussion of opportunities for supporting the DL debug-
ging process, in contrast to Classical ML, through novel user 
interfaces 

• A novel approach of encoding expert heuristics into com-
putational checks of DL program structure and DL model 
behavior 

• The Umlaut system, a tool which implements several auto-
matic checks to assist in fnding, understanding, and fxing 
bugs in Keras programs 

• An evaluation which shows Umlaut helps non-expert ML 
users fnd and fx signifcantly more bugs in DL applications. 

2 BACKGROUND: CHALLENGES IN DEEP 
LEARNING (DL) DEVELOPMENT 

The recent success of deep learning in a variety of domains has led to 
an increase in users of DL, and a corresponding growth of tools that 
have emerged to help developers with DL workfows. This section 
summarizes background information and design considerations for 
tools that aim to aid the DL development process. 
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Figure 2: To debug DL programs, users frst recognize symp-

toms from errant model behavior or code structure. Experts 
use mental models built from experience to translate from 
these symptoms to hypotheses of underlying root causes. Fi-
nally, code changes are implemented to test the underlying 
hypotheses, and training is rerun to check them. 

2.1 Key Diferences of Designing for DL over 
Classical ML 

Both “classical” and “deep” ML development processes are often 
exploratory [64], where the data, model, and scafold code are iter-
atively refned to reach target benchmarks [30]. However, there are 
critical diferences between the implementation of classical ML and 
DL approaches which signifcantly alter the developer experience. 
While classical ML can be efectively applied to many problems, DL 
can handle high-dimensional, unstructured input and output spaces, 
such as object detection and audio-cue detection. We characterize 
the fundamental diferences between classical ML and DL in this 
section and introduce a unique set of challenges that DL support 
tools should address. 

Data Requirements: Both DL and classical ML models require 
ground truth labeled data to train. However, DNNs often require 
signifcantly more data: a rule of thumb suggests a minimum of 
5,000 samples per class [20], while classical algorithms such as SVM 
or Random Forests require far fewer data points. Handling large-
scale datasets drives up costs for data collection and processing, 
particularly in domains with noisy or incomplete data [55]. 

Featurization: Classical ML algorithms require hand-engineered 
features to maximize signal from input data. In contrast, DNNs 
learn features from patterns in the data directly, eliminating the 
developer-driven feature engineering step [3, 20]. While this pro-
vides DNNs tremendous fexibility in handling unstructured input 
data, this ofers less control and means developers cannot verify 
whether the model has received “features” from extraneous patterns 
in the data that confound the efectiveness of the model. 

Interpretability: A key feature of classical ML algorithms are 
that they are often more interpretable than DNNs. While there are 
many meanings and subsets of model interpretability, it is widely 
accepted that we do not yet fully understand the exact rules and 
features that DNNs rely on to produce specifc outputs, and how 
well DNNs generalize to new problems [49]. This makes pinpointing 
the exact source of numerical errors in DNNs very difcult and 
gives rise to “silent errors” in the model that can only be spotted by 
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experts with experience pattern-matching code smells to possible 
errors [78]. Visualization has been a critical tool in interpreting 
DNN behavior, but this still remains an open research question [32]. 
In contrast, some classical approaches intrinsically attribute the 
hand-engineered features most relevant to any prediction. 

Training: Unlike classical ML algorithms, DNNs require noncon-
vex optimization of a large number of parameters. This requires 
proper initialization of neural network weights [25] and an involved 
search process for network hyperparameters [6]. DNN training time 
can take days or weeks, often even requiring online tuning in order 
to converge [69], lengthening the feedback loop. Experts rely on 
experience to determine an ‘educated guess’ of the typical range of 
hyperparameters which can drastically decrease the search space. 
Novices encounter difculty in this process, especially when it 
generates unknown or ambiguous symptoms. 

Transfer Learning: DNNs allow developers to reuse the “feature-
picking” parts of the NN, and “fne-tune” the bottom layers to 
use those feature for new domains and applications. A common 
interaction is fne-tuning a model trained on many images to a new, 
smaller, dataset. 

2.2 Detecting Errors during DL Training and 
Evaluation 

To show how Umlaut fts in the DL development process, we 
identify four high-level stages of DL development from prior 
work [3, 63]: (1) Data Processing, (2) Training and Tuning, (3) Eval-
uation; and (4) Deployment. We focus on the challenges that DL 
developers face in Phases (2) and (3). 

Typical DL workfows require developers to iteratively train and 
evaluate their models to identify bugs and modeling issues [3, 70]. 
We characterize this debugging process using the DL debugging cy-
cle shown in Figure 2. During this cycle, developers repeatedly train 
models with a specifc experimental setup of network architectures, 
loss functions, and hyperparameters. The model performance is 
then evaluated by qualitatively inspecting the classifcation results 
of various data examples, and quantitatively by calculating accuracy 
on a validation set. Using the results generated by the training run, 
developers recognize symptoms, form hypotheses to the root causes 
of problems, and make decisions to modify the experimental setup 
using their theoretical understanding of the models. They will then 
re-run the experiment and this cycle continues until developers 
obtain a model with satisfactory performance. 

Debugging DL models is challenging because even though errors 
occur in both the training and evaluation phase, the symptoms 
often only materialize in the evaluation phase in the form of poor 
model performance [3]. While experts often rely on a continuously 
refned set of best practices that pattern-match model outputs to 
efective modifcations, novices often think of DL models as black 
boxes and can have difculty in recognizing and understanding 
symptoms [3, 10, 30]. 

2.3 Mapping Symptoms to Root Causes 
One critical step in the DL debugging cycle (Figure 2) is to map 
modeling issues from symptoms to their root causes. This step re-
quires developers to analyze model outputs and training curves, 
classify specifc issues from these statistics, and convert them into 

actionable items. Current error mitigation practices are often ad 
hoc, such that developers usually only have tools that document 
performance metrics and general theory resources, but are required 
to manually draw connections between them. For example, a devel-
oper might need to consult best practices collected from literature, 
expert blogs, and academic lectures [7, 40, 41, 67] to derive a set of 
actionable items that resolve their issues. Developing this skill re-
quires extensive time and exposure to errors at diferent stages and 
levels of abstraction: the program, theory, data, etc. These skills are 
essential for successfully training a model with high performance, 
yet helping novices gain the tacit knowledge needed to successfully 
diagnose and debug model issues remains an open challenge [5]. 

3 RELATED WORK 
We map prior work in three axes that correspond to Section 2 
based on their contributions, and discover design opportunities for 
Umlaut in complementary areas. 

3.1 Interfaces for Supporting Classical 
Machine Learning Workfows 

HCI research has produced novel interfaces which allow users to 
interactively train and tune ML models as early as 2003 [14, 15, 43, 
51]. Gestalt is a toolkit which adds structure to the ML development 
process with an IDE [63]. Makers can use ESP to interactively 
train and deploy gesture recognition models on hardware [53]. 
Other works help compare DL model performance, but only once 
the models are trained [56]. While these tools support the feature 
engineering workfow required for classical ML, Umlaut focuses 
on training and tuning DNNs. DNNs instead learn features from 
input data and enable powerful new applications. 

3.2 Tools for comparing and improving DL 
Model Performance 

Research and engineering teams have produced novel interfaces 
to compare model performance [56, 71, 76] and subsequently de-
bug modeling issues. Because of the intrinsic relationship between 
training data and a model, these tools can highlight relevant train-
ing data contributing to outliers [31, 62, 74] and refne the model 
itself [4]. Taking steps towards debugging these issues, Tensor-
Fuzz adapts coverage-based fuzzing to identify model inputs which 
generate numerical errors [59]. 

In addition, Umlaut is inspired by a feld of academic research 
in Explainable Artifcial Intelligence (XAI) which help practitioners 
interpret the output and behavior of their ML models. DNNs often 
have too many parameters to easily understand, and explaining 
their output is an active area of research [18]. Methods like Saliency 
Maps can highlight the specifc parts of an input image used to 
make a prediction [42, 60], while Concept Activation Vectors (CAV) 
can explain the higher-level concepts used [44]. 

Evaluating the performance of ML models is a critical step, but 
all of the aforementioned prior work depends on having an already-
trained model. Umlaut assists users in the training step required 
before evaluation. We believe Umlaut is an early step in both debug-
ging and providing explanations of neural network output during 
the training process. 
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3.3 Prescribing Best Practices and Code 
Changes in Context 

As mentioned in Section 2, current tools mostly help inform code 
changes in DL development workfows by tracking and instrument-
ing experiments for large-scale deployments [17, 36, 48]. While 
these tools are critical for developers to track the progress of their 
experiments, they typically do not directly report any potential 
errors. ML practitioners can also add instrumentation and visualiza-
tions to their DL models using toolkits such as TensorWatch [66] 
and Lucid [60], but the choice of visualization and its interpretation 
requires expertise. 

Several studies conduct empirical analyses of bugs found in ML 
programs using data from Stack Overfow and GitHub [34, 37, 77, 
78]. These works create a high-level classifcation of common bugs, 
but don’t link between symptoms, root causes, and actionable items 
in context. On the other hand, some tools in research [7, 65] and 
deployment (such as EarlyStoppingHooks [12]) use algorithmic 
checks for training. However, while these actions are taken in 
context during training, they do not produce error messages, link 
to root causes, or tie back to other information (e.g. learning curves). 

Inspired by work in supporting traditional software develop-
ment [8, 16, 19, 23], Umlaut also suggests code examples from of-
cial documentation and best practices pulled from StackOverfow, 
which helps users to directly address errors and dive deeper into 
the code. Umlaut builds upon established paradigms in software 
engineering such as linting [39], unit testing, dynamic analysis [57], 
and explanation-based debugging [27, 46]. Umlaut works in con-
text to help users interpret the behavior and inspect the points of 
failure of their ML applications [29], as similar paradigms have 
not been extensively explored for DL development. We draw ad-
ditional inspiration from software visualization [68] and tutorial 
systems for complex user interfaces [22]. Umlaut also adapts an 
automated-checking infrastructure that enables running tests over 
model runtime behavior to fag problems for non-expert users. This 
approach has been used in other HCI research to assist debugging 
electrical circuits and embedded systems [13, 52]. 

4 DEBUGGING ML PROGRAMS WITH 
UMLAUT 

To use Umlaut, users attach a Umlaut client to their program, 
which injects static and dynamic heuristic checks on the program, 
parameters, model structure, and model behavior. Violated heuris-
tics raise error fags which are propagated to a web-based interface 
that uses interlinked visualizations, tutorial explanations, and code 
snippets to help users fnd and fx errors in their model. Umlaut also 
emits fagged error messages to the command line, inline with Keras 
training output, to reduce context switching. Heuristics, errors, and 
their implementation are described further in Section 6. 

To illustrate how Umlaut works in practice, consider Jordan, a 
park ranger who wants to receive a notifcation when rare birds 
appear in a bird feeder camera. Jordan has domain expertise in or-
nithology and birding, and has taken an online data science course, 
but they are not an ML expert. Jordan was able to prepare a labeled 
dataset of birds at the feeder using previous recordings, and they 
found a template project from the data science course to use a pre-
trained Resnet image classifcation model [26] for transfer learning. 

Jordan’s next step is to fne-tune the pretrained model on their new 
dataset. After fxing the input image shapes from a bug produced 
by Keras, Jordan is able to get the training loop to run. The loss is 
now decreasing, and accuracy rising, but only to 60%–not enough 
for their application. Jordan manages to contact their former data 
science instructor, who volunteers a quick look at the program, but 
can’t seem to fnd anything wrong. Jordan hears that Umlaut can 
help detect and fx bugs in DL programs, and gives it a try. 

4.1 Importing Umlaut and Creating a Session 
To use Umlaut, Jordan adds three simple lines of code to import 
and attach it to their program: they import the Umlaut package, 
pass the model and other inputs to the Umlaut object, and add the 
Umlaut callback to the training loop. 

A key design principle of Umlaut is to ensure it integrates 
smoothly into existing DL frameworks and development tools. We 
choose to integrate Umlaut into the Keras API of Tensorfow 2, 
because of its high-level API and its broad community support. At 
runtime, the Umlaut client adds a callback and injects shims into 
the Keras training routine. While the model is training, the client 
runs several heuristic checks, sending metrics and raised errors to a 
Umlaut server through a named session. Colliding session names 
are appended with an auto-incremented integer. 

4.2 User specifcation of Umlaut checks 
Before running Umlaut with their training loop, Jordan tells Um-
laut that their model expects images as input and a sparse vector out-
put indicating the predicted class by passing the inputtype=’image’ 
and outputtype=’classification’ arguments to their Um-
laut call. These fags tell Umlaut to run additional checks (e.g., 
ensuring the input dimensions are consistent with image formats and 
that a softmax layer is used on the output). 

Users can supply arguments to Umlaut which specify the ex-
pected input and output formats of the model, refecting the high-
level problem statement. Umlaut supports image or sparse text 
inputs, and classifcation or regression outputs. Depending on the 
user’s guidance, Umlaut selects diferent checks to run based on 
the input, and alters the content of output error messages (e.g., en-
suring an RGB color image has 3 dimensions and is normalized, or 
that a classifcation loss function such as cross entropy is not used 
for a regression output). This specifcation is optional, but leads 
to more detail in error messages and a wider selection of checks. 
This is a novel interaction for DL debugging, and can be used to 
ensure the model architecture and data preparation match with the 
intended problem type. 

4.3 Actionable Error messages 
When Jordan runs Umlaut with a training session, they see some 
errors appear in the web interface. They frst turn to an error marked 
as Critical (“Missing Activation Functions”). 

A signifcant, novel component of the Umlaut system is that it 
generates error messages to explain silent error conditions. Um-
laut lists suspected DL program issues, highlights their root 
cause(s) with integrated program context, ofers potential solutions 
from collected best practices, and directly links error messages to 
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Figure 3: Umlaut errors include several elements to help de-
velopers close the DL debugging loop. Errors include short 
and long descriptions (1) with suggested solutions (2), of-
ten incorporating program context (3). Solutions can include 
code snippets or hints (4), and outbound documentation and 
Stack Overfow links (5). To help users pinpoint the root 
cause(s) in code, some errors include links to open the source 
fle in VSCode at the specifc location of the suspected root 
cause (6). 

visualizations of model output. Error messages produced by Um-
laut contain the following elements: 

4.3.1 Title and Severity Qalifier. Error messages produced by Um-
laut have titles which refect their respective root causes. Titles are 
given severity qualifers (Warning, Error, and Critical) depending 
on the expected impact on model performance. Warnings have 
minimal impact on accuracy, but may lead to issues in the future 
(e.g., an issue with validation data). Critical errors can prevent the 
model from learning from data at all (e.g., a hyperparameter causing 
loss to reach NaN). Severity qualifers are added manually to error 
message titles, but future iterations of Umlaut could automatically 
assign them based on predicted impact. 

4.3.2 Instructional Description with Program Context. Studies of 
the experiences of non-expert ML developers show that building an 
understanding of ML theory and bridging that theory with practice 
are signifcant hurdles [10, 30]. In Umlaut error messages, descrip-
tions explain the surrounding ML theory, describe the heuristic 
check used to raise the error, and suggest actionable bug resolution 
steps in order to bridge knowledge gaps for non-expert users. Error 
messages can also include program context to shed light on the 
particular conditions which raised an error during program execu-
tion. The context is dependent on the particular error, and includes 
runtime data, such as values of variables which exceeded the limits 
of a heuristic, prototypes of API calls with invalid arguments, or 
names of model layers with invalid hyperparameters assigned. 

Jordan remembers learning about diferent activation functions 
for DNNs in their class, helped by the quick refresher from Umlaut’s 

error description. Jordan looks at the program context in the error and 
sees that Umlaut printed the names of layers in the model with linear 
activation functions—the bottom layers which were swapped in for 
transfer learning on the bird dataset. It was a simple mistake: Jordan 
simply forgot to add an activation argument, and Keras assigns linear 
activations when the argument is omitted. 

4.3.3 Bridging to Best Practices with Code Examples. While theory 
is critical for building mental models to aid in DL debugging, the-
ory alone is not enough to guide users in decision making when 
debugging. Furthermore, understanding the proper API usage of 
DL frameworks themselves can remain challenging to novices [30]. 
Umlaut makes error messages actionable by including descriptions 
of potential solutions based on best practices and by instantiating 
them with concrete code examples. 

Beyond code snippets, error messages in Umlaut can provide 
outbound links to curated Stack Overfow searches (e.g., [keras] 
is:closed from_logits to search for closed issues with a “Keras” 
tag for a search query) and links to Tensorfow documentation for 
relevant APIs. Altogether, program context, grounded in explana-
tions of why it has raised errors, helps develop user mental models 
of DL debugging; while code snippets embodying best practices 
help users close the debugging loop by making the appropriate 
fxes to their application. 

Jordan remembers learning about many kinds of activations in 
their class—sigmoid, tanh, relu, . . .—but can’t remember when to use 
which one. Reading further in the Umlaut error message, a code hint 
suggests adding activation=’relu’ when working with image data. 
Jordan copies this hint to paste into their program. 

4.3.4 Referencing the Suspected Root Cause in Code. To further 
assist users in closing the debugging loop in larger models or more 
complex programs, the Umlaut client ingests the source of the 
program being debugged and inspects stack frames in the Python 
runtime to guess the closest line of code to the source of a given 
error. The Umlaut web interface renders these links as URLs which 
open the Visual Studio Code editor to the specifed line and charac-
ter in the fle where the bug occurred. 

Jordan notices the error message has an “Open in VSCode link”. 
They click the button and are taken directly to frst layer missing an 
activation function. They paste the code hint from Umlaut there and 
into the other layers missing nonlinear activations. Relieved it wasn’t 
something more serious, Jordan restarts the training process. 

4.4 Bidirectional Link Between Errors and 
Interactive Visualizations 

Inspired by development tools such as Tensorboard [2] and Weights 
and Biases2, Umlaut uses simple visualizations to show how model 
training progresses over time. Line plots show loss and validation 
accuracy values at the end of every training epoch (a complete 
iteration over the training dataset), with multiple traces for training 
and validation. As a rule of thumb, decreasing loss and increasing 
accuracy plots that slow over time are a positive indicator. When 
errors are present in a DL program, anomalies may appear in these 
plots, which are often subtle and require expertise to decipher [40]. 

2https://www.wandb.com/ 

https://2https://www.wandb.com
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Jordan keeps an eye on the Umlaut plots as new training met-

rics stream in. They notice the validation loss plot starts decreasing, 
then plateaus and starts increasing. A new warning message pops 
up: “Possible Overftting”. Clicking the error highlights the epochs in 
the loss plot where the validation curve started increasing while the 
training curve decreased, confrming Jordan’s suspicion that this was 
an undesired result. Following the recommendations of the overftting 
warning, Jordan adds Dropout to the model and reruns training. 

4.4.1 Error Timeline. Umlaut also displays a timeline visualiza-
tion, which encodes the type and frequency of errors encountered 
in the DL program over time. For every training epoch, unique 
errors are stacked on a vertical axis, distinguished by a 4-element 
categorical color scale. This visualization allows the user to inspect 
the behavior of the model and training process over time, e.g., spot-
ting errors fagged before the beginning of the training process 
(plotted below the horizontal axis) or errors which only appear 
later during training (such as overftting or spiking loss from an 
outlier in data). Users can click on the timeline or on error messages 
to highlight specifc regions in the line plots. Plot annotations show 
which epoch(s) the errors occurred, and where the behavior of the 
curves caused a heuristic to raise an error. Inspecting the timeline 
may also help determine when a raised error was a false positive, 
e.g., when an error appears sporadically, or rarely. 

After the last training run, Jordan keeps an eye on the loss and 
validation plots. They seem to look fne this time, but the Overftting 
warning pops up again. They’re skeptical, since they just implemented 
a fx earlier, so they click the error to highlight parts of the error 
timeline, and the loss and accuracy plots. Jordan sees there were 
two epochs when the validation loss went up a small amount, but 
the overall trend looks fne. They make the judgment call that the 
error was likely a false alarm, and save the model checkpoint, at an 
accuracy of 84%. 

With the model trained, Jordan writes a quick program that uses 
it to classify live images from the camera feed and notify them by 
email when a rare bird appears. The system not only helps Jordan 
enjoy the wildlife, but logging the rare birds’ feeding activity from 
the classifer output also helps in their conservation eforts. 

5 UMLAUT HEURISTICS 
In order to codify best practices from experts into Umlaut’s au-
tomated checking infrastructure, we identify and implement 10 
preliminary heuristics based on commonalities in various sources 
including lecture notes [40, 58, 67], industry courses and arti-
cles [33, 50], textbooks [20], expert practitioner blogs [41], default 
values in APIs [2, 12], and early-stage research cataloguing tensor-
fow program tests [7]. We prioritized heuristics which covered bugs 
and conceptual misunderstandings shown to be common themes 
in Stack Overfow questions, open source DL projects, and expert 
interviews from existing literature [34, 77, 78]. 

Our heuristics map to common issues in data preparation, model 
architecture, and parameter tuning. We implement a check for each 
which is static (using a snapshot of the program prior to training) 
or dynamic (analyzing the program during model training runtime). 
Each heuristic check has an associated severity qualifer (Critical, 
Error, Warning) and error message written by the authors. These 
error messages include context and suggestions summarized from 

the heuristic’s sources, and are described in Appendix A. Our list 
is not exhaustive, and we discuss how Umlaut may be extended 
with additional heuristics checks in Section 6. 

Although the heuristics we select are widely-accepted and often 
apply to common use cases, they may not always apply to a user’s 
specifc context (resulting in a false positive or negative). In partic-
ular, some heuristics used in the ML community suggest concrete 
values, e.g., for learning rate or image dimensions. Umlaut adopts 
commonly used values, e.g., input normalization between -1 and 
1. There values might change with new developments in under-
lying algorithms or community conventions. Future versions of 
Umlaut could have such values exposed as confguration parame-
ters that users can update over time. 

5.1 Data Preparation 
5.1.1 Input Data Exceeds Typical Limits (dynamic). Normalizing 
input data to a common scale can help models converge more 
quickly, weigh features more evenly, and prevent numerical er-
rors [50, 67]. Normalization is often regarded as an important “de-
fault” setting [70]. Umlaut checks if the input data exceeds the 
typical normalization interval of [−1, 1]. 

5.1.2 NaN Encountered in Loss or Input (dynamic). The loss value 
of a training batch can overfow and become NaN during training 
as a result of non-normalized inputs or an unusually high learning 
rate [40, 50]. Umlaut checks whether NaN values appear in the loss 
output, and, if so, whether they appear in the input. Umlaut sep-
arately checks if the current learning rate is unreasonably high 
(Section 5.3.1) which could also be causing NaN loss values. 

5.1.3 Image input data may have incorrect shape (dynamic). DL 
frameworks expect image inputs to convolutional layers to follow 
a particular format (typically “NHWC” or “NCHW”)3. If these di-
mensions are not ordered as expected, the program may still run 
without an error, but the network will have incorrect calculations 
of convolutions in those layers (i.e. convolving over the wrong 
channels). This can reduce accuracy and speed due to a resulting 
incorrect number of parameters. Umlaut checks the input sizes 
of these dimensions (assuming input image height matches width, 
common for many vision tasks) against the confgured ordering. 
Umlaut raises an additional error message if the confgured chan-
nel ordering is not optimal for the hardware the program is running 
on (CPU or GPU). 

5.1.4 Unexpected Validation Accuracy (dynamic). When a model’s 
prediction accuracy on a validation set is unusually high or when 
it exceeds the value of its training set accuracy, this may indicate 
leakage between the training and validation data splits [50]. Um-
laut checks if the validation accuracy exceeds the training accuracy 
or exceeds 95% after the third epoch (to reduce noise). 

5.2 Model Architecture 
5.2.1 Missing Activation Functions (static). When multiple linear, 
or “Dense” layers are stacked together without a non-linear activa-
tion in-between, they mathematically collapse into a single linear 

3https://www.tensorfow.org/api_docs/python/tf/nn/conv2d 

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
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layer rendering additional parameters useless. Therefore, a non-
linear activation function must be used between them to produce 
nonlinear decision boundaries [20, 67]. Umlaut inspects the model 
architecture and raises an error if two linear layers are stacked 
together without a nonlinear activation in between. 

5.2.2 Missing Sofmax Layer before Cross Entropy Loss (static). 
Some loss functions expect normalized inputs from a softmax layer 
(i.e., classifcation outputs that model a probability distribution, 
such that each class’s probability is between 0-1 and sums to 1) [70]. 
The Keras defaults for cross-entropy loss expect softmax inputs, 
so omitting a softmax layer (or omitting the from_logits=True 
argument to the loss function) can result in a model that learns in-
efciently due to improper gradients. Umlaut checks that softmax 
is being calculated before the cross-entropy loss calculation. 

5.2.3 Final Layer has Multiple Activations (static). A complemen-
tary problem to a missing softmax layer prior to the loss calculation 
is the addition of an extra activation function. Umlaut checks 
for stacked activation functions, which is redundant or may even 
impact model performance negatively. 

5.3 Parameter Tuning 
5.3.1 Learning Rate out of common range (dynamic). Setting the 
learning rate too high or too low can cause drastic changes to model 
behavior and cause several symptoms in output. A learning rate 
which is too high can cause NaN outputs or a non-decreasing loss 
value during training, while a low learning rate can cause loss to 
converge to non-optimal values early [40, 70]. Best practices for 
initializing learning rates vary: Keras initializes the Adam optimizer 
with a learning rate of 0.001, while some experts suggest 0.0003 [41]. 
Because selecting a learning rate is highly problem-specifc, Um-
laut checks that the optimizer’s learning rate falls between 0.01 and 
10−7 (near the limit of precision for 32-bit foating point numbers) 
and raises an error if it falls outside this range. 

5.3.2 Possible Overfiting (dynamic). Overftting occurs when a 
model fts training data too closely, reducing its ability to general-
ize to new data. This is a core challenge to DL development since 
features created by a DNN may capture subtle elements dispropor-
tionately common in training data [49]. To check for overftting, 
Umlaut determines if the generalization error of its model has 
started to increase while the training error continues to drop, a 
widely-accepted indicator of overftting [20, 40, 50, 67]. Our imple-
mentation of this check is reproduced in pseudocode below: 

function DetectOverfitting(epoch, model, logs) 
d_loss = logs.loss - model.history.prev_loss 
d_val_loss = logs.val_loss - model.history.prev_val_loss 
if d_val_loss > 0 and d_loss <= 0 then 

raise OverfttingError(epoch, context=(d_loss, d_val_loss)) 
end if 

end function 

5.3.3 High Dropout Rate (static). In order to prevent overftting and 
aid in generalization, dropout can be used, which probabilistically 
prevents a percentage of neurons from receiving gradient updates. 
Umlaut checks the model confguration before training and raises 
a warning if the dropout probability exceeds 50%, which could 
lead to redundancy in the model and a reduction in accuracy due 
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Figure 4: Umlaut uses the Keras callback system to col-
lect metrics about the training process during runtime. Um-
laut also injects variables into the underlying Tensorfow 
model graph to capture input and output values, and collects 
a reference to the model object. 
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Figure 5: The Umlaut client uses data collected from shims 
to run static checks of the model before training, and dy-
namic checks during training. Heuristic checks and errors 
(refecting root causes) are distinct concepts in Umlaut’s ar-
chitecture, allowing similar, yet subtly diferent symptoms 
to raise diferent root causes from within the same check. 

to lower-than-desired number of parameters. This error is often 
be caused by the users’ confusion between the ‘drop’ and ‘keep’ 
probability, which are opposites. Our implementation of this check 
is reproduced in pseudocode below: 

function DetectHighDropout(model) 
fagLayers = list() 
for layer in model do 

if layer is Dropout and layer.dropoutRate >= 0.5 then 
fagLayers.append(layer.index, layer.name, layer.dropoutRate) 

end if 
end for 
if fagLayers then raise HighDropoutError(context=fagLayers) 
end if 

end function 

6 IMPLEMENTATION 
Umlaut is comprised of 2 major components. The frst is a client 
program which interfaces with a Keras training session, injects 
checks into the runtime, then uses those checks to raise errors. 



CHI ’21, May 8–13, 2021, Yokohama, Japan Eldon Schoop, Forrest Huang, and Björn Hartmann 

Metrics and errors are streamed from the Umlaut client to the 
second component, the Umlaut server. The server logs errors and 
metrics in a database, and renders data and error messages with a 
web application. 

6.1 Umlaut Client Shims and Structure 
The Umlaut client is packaged as a Python library which 
can be imported and confgured for use with a Keras pro-
gram in 3 lines. Users import the library, confgure and ini-
tialize the imported UmlautCallback object which returns a 
tf.Keras.callbacks.Callback instance, and pass that callback 
instance as an argument to the model.fit training function. 

In order to access and diagnose a broad range of error symptoms, 
Umlaut requires several data sources from the DL program runtime. 
Because these sources must be transparently instrumented, we refer 
to the instrumentation as “Model Shims”. Umlaut uses various APIs 
and shims to ingest the following runtime information (Figure 4). 

Keras Callbacks Provide Epoch Number and Training 
logs: The Keras framework implements a callback mechanism 
which provides hooks at various steps during the model training 
process. The Umlaut client is primarily implemented as a Keras 
callback which runs static program checks before training starts 
and dynamic checks after the completion of every training epoch. 
Pre-training checks are not provided data from Keras, and rely on 
access to the model object and source module (described below). 
Callbacks fred during training are passed epoch numbers for in-
dexing, and a logs object which contains the loss and accuracy 
values from the current epoch on the training and validation data. 

Users Provide the tf.keras.Model Object: When initializing 
the UmlautCallback, Users must pass the model being trained 
as an argument. The model object exposes many critical ele-
ments for diagnosing errors. The logs object provided by Keras 
callbacks only provides a snapshot of the model’s loss and ac-
curacy metrics. Having access to the model instance exposes a 
tf.Keras.callbacks.History object which stores loss and ac-
curacy values from every epoch in the current training run. The 
history object allows Umlaut to check the behavior of the model 
over time, enabling more complex heuristics (e.g., detecting overft-
ting). The model object also exposes its underlying structure, e.g., 
the individual layers and optimizer. 

Model call Overrided to Access Input and Output: In order 
to access copies of data passed into and predictions from the model 
during training, we override its call function. To do this, we add 
two tf.Variable objects to the model execution graph (before and 
after). The variables store copies of the model’s latest input and 
output data, and can be evaluated in the Tensorfow session used 
in the Keras backend. 

Module Source Code Captured by Searching Stack Frames: 
Some error messages rely on the location and contents of the pro-
gram source code. Umlaut uses the Python traceback library to 
guess which source module contains the training loop, and then 
stores the contents of the fle for searching. 

6.2 Umlaut Client Logic: Running Checks and 
Raising Errors 

During the training process, Umlaut aggregates inputs from model 
shims and dispatches them to test runners. Test runners run static 

checks before training starts, and dynamic checks during program 
execution, after every training epoch. Checks during either of these 
stages can raise errors, which include client program context, and 
are stored on the Umlaut server. A key design choice in the im-
plementation of Umlaut was to decouple checks and errors. This 
allows more fexibility and brevity in cases where one heuristic 
could detect similar symptoms that map to diferent errors. 

Static checks inspect the structure of the model and its parame-
ters without any context from runtime. Dynamic checks use con-
text from program runtime in concert with model structure and 
parameters. Dynamic checks can capture snapshots of the program 
execution environment (e.g., to fnd input data with NaN values), or 
can track the behavior of the model over time (e.g., capturing over-
ftting when training loss decreases and validation loss increases). 
The performance impact of static checks is minimal, and model 
size impacts performance on the order of ms. For dynamic checks, 
Umlaut mostly operates on aggregate metrics already collected 
by Keras, and the added operations from shims have no noticeable 
efect on performance. We confrmed this by running Umlaut on 
more complex models (see Section 7). 

When a check raises an error, it initializes that error with the 
program context necessary to render the error in Umlaut’s web 
application (e.g., including the names of layers with missing acti-
vation functions or the value of a high learning rate). At the end 
of every epoch, the client sends metrics (loss and accuracy for test 
and validation sets) and errors to the server. For errors, only a 
unique error key and the related context is sent to the server, and 
the server renders the error’s static description and contents. Since 
these requests use aggregate data, they impact performance on the 
order of tens to hundreds of ms (including network latency) per 
epoch. 

Umlaut’s design allows new checks and errors to be added in 
a standardized way. To do this, a developer must add a new error 
message by subclassing a base error template in the Umlaut server, 
and a check function that raises the new error to a check runner in 
the Umlaut client. 

6.3 Umlaut Server 
The Umlaut web interface is implemented using Plotly Dash with 
the Flask web framework, and MongoDB for the database. The web 
application exposes a REST API to accept updates from the Um-
laut client which stores errors and metrics associated with their 
session in the database. When a user navigates to the Umlaut ses-
sion view, the page polls the database and rerenders the page when 
new data is present. Interactive graphing features in the web ap-
plication are implemented using Plotly Dash’s Pattern Matching 
Callbacks feature. This functionality allows click events on an error, 
the timeline, or a plot to update the other corresponding elements. 

7 USER EVALUATION 
We evaluate the usability of Umlaut’s interface as well as its 
ability to help developers fnd and fx bugs in ML programs in a 
within-subjects user study with 15 participants. We introduce bugs 
into two image classifcation programs, and measure the number 
of bugs participants fnd and fx, with and without Umlaut. 
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7.1 Participants 
We recruited 15 participants (12 male, 3 female; ages 18-30, µ = 23.8, 
σ = 3.1) from university mailing lists to participate in our study. 
Through a recruiting survey, we accepted participants who were at 
least familiar with ML concepts and development, but who did not 
identify as an expert or professional (i.e., excluding ML reserachers 
who primarily develop ML models). Of our participants, 12 had 
integrated existing machine learning models into projects, and 
9 had retrained the last layers of an existing machine learning 
model to adapt it to a use case. 4 participants had developed new 
machine learning models, and 2 had contributed to open source 
machine learning projects. Questions determining expertise were 
adapted from Cai et al. [10]. 14 participants were graduate students, 
and 1 undergraduate. 11 had academic backgrounds in computer 
science, 3 in electrical or computer engineering, and 1 in mechanical 
engineering. Participants were compensated $20 USD. Evaluations 
lasted under 60 minutes. 

7.2 Setup 
Due to the COVID-19 pandemic, the study was conducted remotely 
using Zoom video-conferencing software on the experimenter’s 
laptop, a 2016 MacBook Pro. Participants used the Visual Studio 
Code IDE with the Pylance Python language server [61] and VS 
IntelliCode [54], which together provide relevance-ranked auto-
completion and syntax checking. Python fles for the debugging 
tasks were loaded and executed by the IDE on a Google Cloud 
Platform instance with an Nvidia Tesla T4 GPU to reduce model 
training time. For the CIFAR-10 task, training the provided model 
for 10 epochs took under 1 minute. 

7.3 Study Design and Tasks 
We modeled the design of our user evaluation after that of 
Gestalt [63]. Our study was a within-subjects design, comparing 
Umlaut to a baseline condition across two debugging tasks. To 
account for interaction efects from the ordering of these conditions, 
tasks were counterbalanced by condition (baseline vs Umlaut) and 
by order (Program A vs Program B). We measured the number of 
bugs found (i.e., the explicit root cause verbally indicated by the 
participant) and fxed in each task. Bugs which only had a partial fx 
(e.g., adding missing nonlinearities in convolutional but not linear 
layers) were not counted as fxed. 

For the debugging tasks, we created a simple Keras program 
which loads the CIFAR-10 dataset [47], constructs a 7-layer convo-
lutional neural network, confgures cross entropy loss and Adam 
optimization [45], trains the model for 10 epochs, and evaluates 
model accuracy on the CIFAR-10 test set. We designed this program 
to be as simple as possible—under 35 lines of code (under 40 when 
adding Umlaut)—for two key reasons. First, simplicity strengthens 
the baseline condition by being easier for the participant to fully 
understand. Second, the model is able to train quickly (under one 
minute on a GPU) before the test accuracy plateaus around 77%, 
making more iteration feasible in the study timeframe compared to 
a larger (but potentially more accurate) model. 

We created two modifcations of this program, Program A and 
Program B, and inoculated both with three unique bugs. These pro-
grams both execute without any explicit Python errors or warnings, 

but the bugs impact the accuracy of the model at diferent levels of 
severity: low (approx. 0-5% reduction in accuracy), medium (approx. 
6-20% reduction in accuracy), and high (accuracy will not increase 
beyond random chance). The bugs in both programs were also cho-
sen to span common stages of the ML development process: Model 
Architecture, Parameter Tuning, and Data Preparation. Finally, the 
bugs may generalize well to diferent learning tasks, e.g., image 
classifcation, sentiment classifcation, pose estimation,. . . ). 

The bugs introduced into Program A were: 

• A1: No softmax function was added after the fnal Dense 
layer, causing the optimizer to receive unnormalized logits 
and not improve loss (High severity, model architecture) 

• A2: Dropout rate set to 0.8, resulting in only 20% of model 
capacity being used (Medium severity, parameter tuning) 

• A3: Input images were not normalized, with values ranging 
from 0-255 (Low severity, data preparation) 

The bugs introduced into Program B were: 

• B1: Learning rate was set to -1e3 instead of 1e-3, resulting 
model being unable to learn from data (High severity, pa-
rameter tuning) 

• B2: No ReLU activation functions were added to the model, 
resulting in stacked convolution or dense layers collapsing 
into a single layer (Medium severity, model architecture) 

• B3: Validation data overlapped with the training set, picking 
the frst 100 training images (Low severity, data preparation) 

As a test, we connected Umlaut with VGG16 and ResNet101 
from the Keras.applications API and ran it in the same scenarios 
as our user evaluation (adding bugs A1, A3, B1, B3). A2 and B2 were 
not considered as they would require source code changes to Keras. 
We verifed the same errors as our small test model were raised. 

7.4 Procedure 
After completing an entry survey, participants were shown a 
minimum-example Keras program which ft a linear model (2 Dense 
layers) on a diferent, simpler dataset (Fashion-MNIST [75]) in the 
Visual Studio IDE. Participants were shown the dataset Readme, 
the structure of the program was explained (imports, data loading, 
model architecture, training confguration, training, and evalua-
tion), and the program was executed in the editor. For participants 
starting in the Umlaut condition, the application had lines of code 
added for invoking Umlaut. The Umlaut web interface was loaded 
on a web browser on the researcher’s laptop, and the example pro-
gram was run with an Umlaut session attached. The Umlaut com-
mand line and web interfaces were explained, and participants 
were told error messages were based on heuristics, so there may be 
false positives. For participants starting in the baseline condition, 
the example program with Umlaut code added was demonstrated 
between completing the baseline and Umlaut tasks. 

Before starting the frst debugging task, participants were shown 
the Readme for the dataset used by their debugging task programs, 
CIFAR-10 [47]. Participants were told they would be shown a pro-
gram with multiple bugs, and their task would be to fnd, explain, 
and fx all the bugs they found in that program. Participants were 
told they should not need to make major architectural changes to 
the models (e.g., by adding or removing layers, or changing the 
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sizes of Conv2D or Dense layers), but were able to if desired. Partic-
ipants were told they could use any online resources needed, e.g., 
documentation, Stack Overfow, or web search; and the researcher 
could troubleshoot the apparatus or explain the Umlaut interface, 
but not assist with debugging. Finally, participants were told a bug 
free version of this program could have a target test accuracy of 
77%, but were reminded their goal was not to maximize accuracy, 
and that a high accuracy does not guarantee a bug-free model. The 
training period took approximately 15 minutes (plus 5 for Umlaut). 

Participants were then shown program A or B, in the baseline or 
Umlaut condition. The only diferences between conditions were 
that Umlaut code was added to the program and opened in a web 
browser. Participants were not allowed to use Umlaut software in 
the baseline condition. After completing the frst task, the other pro-
gram was shown, in the other condition. Participants were limited 
to 15 minutes of debugging time per program. 

8 RESULTS AND DISCUSSION 
8.1 Umlaut Helped Participants Find and Fix 

Signifcantly More Bugs 
Across both programs, participants using Umlaut found more bugs 
(µ = 2.8, σ = 0.4) compared to the baseline condition (µ = 1.8, σ = 
1.1). This diference is statistically signifcant (Wilcoxon Signed-
Rank test, Z = 2.67, p = 0.004). Furthermore, participants using 
Umlaut were able to implement fxes for more bugs (µ = 2.5, σ = 
0.5) compared to the baseline condition (µ = 1.5, σ = 0.9). Again, 
this diference is statistically signifcant (Wilcoxon Signed-Rank 
test, Z = 2.65, p = 0.004).4 

Furthermore, survey responses collected from participants con-
frm and strengthen these fndings. On 5-point Likert scale ques-
tions (1= strongly disagree, 5=strongly agree), participants indi-
cated that Umlaut helped them fnd (µ = 4.3, σ = 0.70) and fx 
(µ = 4.0, σ = 1.1) bugs they would have not noticed without it. Par-
ticipants also indicated a high likelihood of integrating Umlaut as a 
regular part of [their] ML development processes (µ = 4.3, σ = 0.60). 
The distribution of ratings for these questions is shown in Figure 6. 

8.2 Open-Ended Feedback 
We asked participants to share open-ended comments on the advan-
tages and disadvantages of Umlaut, what they liked and disliked 
about its interface, and what additional features would make it truly 
useful. We conducted an open coding phase over the qualitative 
responses, and further grouped codes into related topics [73]. 

8.2.1 Model Checks Illuminate Silent Errors and Save Time. Many 
participants commented on the general difculty of debugging ML 
code, and remarked that Umlaut was a signifcant step in making 
the process quicker and easier. P7 related ML debugging to trial-and-
error, and suggested Umlaut added missing structure: “[Umlaut] 
Makes the whole guess-and-check debugging fow a lot faster and 
smoother. Instead of having to comb over the code and form my own 
hypotheses about what could be wrong, Umlaut will provide you with 
a list of possible issues.” 

4We measure signifcance using a non-parametric test to account for the possibility that 
our participants’ actual skill levels may not be normally distributed due to recruiting 
graduate students in engineering departments. 

Figure 6: Distribution of participants’ ratings on likert-
scale questions (Top row: 1=Strongly Disagree to 5=Strongly 
Agree; Bottom Row: 1=Very Unlikely to 5=Very Likely) 

Others validated the prevalence of silent errors in ML debugging, 
and how Umlaut shed light on these difcult-to-fnd errors, saving 
time: “[The primary advantage of using Umlaut was] automatic 
checking for common "errors" like missing activations or strange 
learning rates that don’t cause runtime errors but prevent successful 
training” (P2); “[Umlaut helped] me quickly fnd bugs in my machine 
learning model that are difcult to detect through code inspection. I 
have always found debugging machine learning models to be a time-

consuming and error-prone process” (P9); “[Umlaut can] Identify 
basic bugs (e.g. out-of-distribution that aren’t trivially caught through 
type/shape checks)” (P8). 

One participant noted Umlaut’s time savings could reach be-
yond debugging itself, as validating bug fxes can also be time 
consuming: “[Umlaut’s primary advantage was] Finding ‘bugs’ that 
otherwise would not have produced an actual error (bad parameters, 
values outside recommended ranges, overftting). These bugs are by 
far more time consuming to debug because they usually require me to 
train a model for at least some time (5 epochs?) to verify that they’ve 
been fxed” (P5). 

8.2.2 Best Practices and Code Examples Help Close the Debugging 
Loop. Participants appreciated the explanations of underlying error 
conditions and suggestions based on best practices: “The potential 
diagnosis along with reasoning was quite helpful” (P3); “Error mes-

sages were descriptive and gave me specifc actions to do. Also good 
values for parameters e.g. dropout rate is much better than saying 
the value is too high” (P13); “Moreover, it does not only suggest to me 
what’s potentially wrong, but also how to fx it. Very useful” (P12). 

Code snippets were helpful in translating theory into practice 
and navigating complex APIs: “Web interface had very helpful blurbs-
e.g. for overftting it immediately suggests to adjust flter count or add 
dropout, and it gives the one line fx for the sparse cross entropy loss 
issue” (P5); “Because my goal was to make fxes to the code, it was 
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helpful to have concrete code snippets that I could copy into the code 
and modify lightly. It can be tricky to fnd up-to-date code snippets 
for machine learning libraries on the web as the libraries can change 
quite frequently, and often there are many diferent API members that 
can accomplish the same goals. Umlaut saved me a lot of time” (P9). 

Some participants wished Umlaut provided code samples more 
frequently: “I’d prefer to see more code suggestions (e.g. suggestions 
of what class to use for the logits case in the second example)” (P15). 
Integrating direct comparisons between snippets and the under-
lying program could help bridge gulfs in debugging: “Suggested 
code changes in context of actual source code (similar to GitHub PR 
suggested changes feature), would make debugging even easier” (P13); 
and counterexamples could potentially help users search for faulty 
code “There were a few instances where I felt like Umlaut could skip 
some of the prose (even though it’s only a few sentences long) and 
lead in with a code snippet showing an anti-pattern, and another code 
snippet that fxes it” (P9). 

Some error messages in Umlaut include explanations of API 
components, but not explicit snippets which can be copied and 
pasted into the source program, e.g., in cases where an unknown 
root cause could be addressed by one of many candidate solutions. 
This is discussed further below. 

8.2.3 Efectively Communicating the Heuristic Nature of Umlaut. 
Efectively communicating the uncertainty of ML models and intel-
ligent systems is an open research question. Umlaut uses heuristic 
checks which have the potential to miss errors or raise false posi-
tives. Some participants took this into consideration while using 
Umlaut: “I would use Umlaut with the understanding that it might 
not be perfect, so in my particular case, I don’t think I would be misled 
into thinking I had debugged all of the issues in my model if Um-

laut didn’t report any issues” (P9). However, P5 cautioned against 
potential over-reliance on Umlaut: “[The primary disadvantage 
is] “Autograder-driven development” efect [. . . ] I feel like relying on 
Umlaut to point out errors means I’m less likely to scrutinize parts 
of the program that Umlaut did not pick up on. [...] The second time 
around, without Umlaut providing feedback I felt more compelled 
to look at the entire program top to bottom.” Suggestions provided 
by Umlaut use qualifying language and ofer multiple solutions 
in cases where there is not a single guaranteed fx (e.g., overft-
ting). Identifying efective ways to communicate the underlying 
uncertainty of Umlaut is an important direction of future work. 

8.2.4 Umlaut as a Pedagogical Tool. 10 participants who indicated 
involvement with teaching or ML education also responded to a 
5-point Likert scale question indicating a high likelihood of inte-
grating Umlaut as a regular part of ML teaching (µ = 4.5, σ = 0.67). 
Open-ended comments also suggested the potential for Umlaut as 
an instructional aid: “I think this would be a fantastic tool especially 
for new students of deep learning” (P6); “It can point out areas where 
there are potential problems that someone especially someone new to 
ML might not notice” (P4); “It defnitely helped out in the debugging 
process, especially as someone returning to machine learning after a 
long time” (P15). 

8.2.5 UI Tweaks. Several participants (P1, P2, P3, P4, P7) suggested 
changing the sessions dropdown menu to automatically refresh 
(currently, the entire webpage must be refreshed). P15 suggested 

more deeply linking visualizations with errors: “It would also be 
nice to see an icon saying what warning/critical errors are associated 
with each epoch when I hover over it, instead of just the accuracies.” 

Some users appreciated the detailed descriptions and suggestions 
from error messages: “The error messages were designed and struc-
tured well. (having both short and long versions of the error message, 
and identifying the particular layer/epoch)” (P14). However, others 
thought the detail cluttered the Umlaut user interface, and should 
be hidden unless expanded by the user: “the textbox displaying the 
error messages cannot be resized, so it is difcult to see all the errors 
at once” (P6); “the longer blurbs tend to clog the screen so you have to 
scroll to see all of the errors & recommended solutions, if there’s a way 
to expand/collapse and just show a one-line blurb” (P5). These visual 
design issues could be addressed in a future iteration of Umlaut. 

9 LIMITATIONS AND FUTURE WORK 
Because of the stochastic nature of the DL training process itself, 
Umlaut has important limitations. As a prototype, it also has limi-
tations from engineering constraints. 

Model Checks are Based on Heuristics: Model checks are 
implemented as heuristics, so they may be raised as false positives 
or missed. For example, “Check Validation Accuracy” can be raised if 
random noise in data causes a spike in validation accuracy to exceed 
training accuracy during one epoch. While Umlaut errors include 
qualifying language and the error timeline can help determine if 
errors form a pattern, these mitigation strategies are not perfect and 
require some training to interpret. False positives could potentially 
be mitigated further with customizable fltering. 

Umlaut may also miss errors (false negatives) for several reasons. 
Model checks were developed to apply to general cases, but these 
cases may not generalize to some specifc conditions, e.g., omit-
ting a nonlinear activation may sometimes increase performance, 
and the range of reasonable learning rates is highly dependent on 
the model structure and data. Future iterations of Umlaut could 
use deeper inspection of the data and model to adjust heuristic 
boundary conditions. 

Mappings from Heuristics to Root Causes May Not Al-
ways Hold: In software debugging, there are often multiple pos-
sible root causes that lead to a common error symptom (e.g., null 
pointers). DL debugging is no exception, and Umlaut checks may 
miss the correct solution or possible suggest an incorrect one. Error 
messages include text to remind users of their inherent uncertainty, 
but this mitigation strategy is not perfect. 

Generalization to New Model Architectures: New types of 
model architectures produced by research may require new debug-
ging strategies, including diferent heuristics and parameter ranges. 
While signifcant work has been done to understand the taxononmy 
of DL errors [34], DL programming paradigms are still evolving, and 
the landscape of errors may change over time. Umlaut supports cus-
tom layers implementing the standard Keras.layers.get_config 
API. Umlaut also works with diferent types of input and output 
(e.g., NLP, tabular data, regression, etc.) and could be extended to 
work with novel data types. 

Crowd-based Error Message Creation: In the future, er-
ror message content and heuristic check thresholds could in-
clude crowdsourced best practices and tips from the broader DL 
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community and others who have faced similar issues such as in 
HelpMeOut [23]. 

Outbound Links are Hardcoded: Error messages with out-
bound links to Stack Overfow and documentation currently only 
support hardcoded links, with the intent for documentation to pro-
vide more context on suggested code recipes, and Stack Overfow 
searches to search for a wider net of related issues. Hardcoded links 
will not capture all cases, and future versions of Umlaut could inte-
grate program context into the links (e.g., searching Stack Overfow 
for normalization with the value 255 extracted from the program), 
but translating from a symptom to a well-formed search query is 
an open research problem. 

Umlaut Code Awareness is Incompatible with Python 
Notebooks: Umlaut uses stack frame inspection to fnd a source 
module with a training loop. This routine currently fails on Python 
Notebooks, a common tool for developing DL programs [28]. This 
limitation could be overcome with additional engineering efort, or 
by implementing Umlaut as a Python Notebook extension. 

Version Control and Comparing Sessions: Umlaut cur-
rently has no ability to compare training sessions side by side. This 
would allow faster verifcation that underlying program bugs have 
been solved, and better enable users to track their experiments over 
time. 

10 CONCLUSION 
Umlaut addresses critical gaps in the DL development process 
by discovering bugs in programs automatically, and using theory-
grounded explanations to translate from their symptoms to their 
root causes. Umlaut assists in selecting a debugging strategy build-
ing from best practices, and guides the implementation of best 
practices with concrete code recipes. Umlaut unifes these princi-
ples into a single interface which blends together contextual error 
messages, visualizations, and code. An evaluation of Umlaut with 
15 participants demonstrated its ability to help non-expert ML users 
fnd and fx more bugs in a DL program compared to when not using 
Umlaut in an identical development environment. We believe Um-
laut is a stepping stone in the direction of designing user-centric 
ML development tools which enable users to learn from the process 
of DL development while making the overall process more efcient 
for users of all skill levels. 
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A ERROR MESSAGE CONTENT 
This section describes author-created error messages which may be raised by heuristic checks in the Umlaut client. At a minimum, 
these messages include a severity qualifer (Warning/Error/Critical), title, short description with related theory and background, and 
proposed solutions with examples instantiating best practices. Messages may additionally have a feld which provides program context 
with explanations, an outbound link to a curated Stack Overfow search query, an outbound link to documentation, and a link to open the 
VSCode editor to the suspected problem line of code. 

A.1 Data Preparation 
A.1.1 Warning: Input Data Exceeds Typical Limits. Your input data does not look normalized. You should normalize the input data so its 
values fall between the typical ranges of -1 to 1 before passing them into the model. For image data, (pixels ranging from 0-255), a typical 
way to normalize the pixel values to the range of -1 to 1 is: training_images = (training_images / 128.0) - 1 

Program context: Epoch <epoch>: <minimum/maximum> input value is <x_min>, <less/greater> than the typical value of <-1/1>. 
Stack overfow query: [keras] closed:yes normalization 
Documentation link: https://www.tensorfow.org/tutorials/keras/classifcation#preprocess_the_data 
This error includes a link to the source module where the model training loop is defned. 

A.1.2 Critical: NaN (Not a number) in input. Some values in your model input are NaN (could indicate infnity). Please double check your 
input and make sure no NaN exists in it. 

Stack overfow query: [keras] nan input 

A.1.3 Error: Image input data may have incorrect shape. Your input images may have their dimensions in the wrong order. Your input is 
4-dimensional with 2 equal dimensions, which is typically an image type. Most keras layers by default expect image data to be formatted 
as “NHWC” (Batch_size, Height, Width, Channel) unless otherwise specifed. If running on CPU, setting the Keras image backend to 
“channels_frst” and using “NCHW” (Batch_size, Channel, Height, Width) may sometimes improve performance. For example, you can 
tranpose your input data from “NCHW” to “NHWC”, using tf.transpose(X_train_images, [0, 2, 3, 1]). 

Program context: Epoch <epoch>: Input shape is not <N,C,H,W/N,H,W,C>. Instead got <x_train.shape> 

A.1.4 Warning: Check validation accuracy. The validation accuracy is either higher than typical results (near 100%) or higher than training 
accuracy (which can suggest problems with data labeling or splitting). However, during early epochs, this could be a false positive. A high 
validation accuracy (around 100%) can indicate a problem with data labels, overlap between the training and validation data, or diferences 
in preparing data for training and evaluation. Check to see if there is overlap between the training and validation sets, and inspect the 
validation set predictions by hand to ensure they make sense. 

Program context: Epoch <epoch>: validation accuracy is very high (<val_acc if val_acc > 95%>) 
Epoch <epoch>: validation accuracy <val_acc> is higher than train accuracy (<train_acc>) 
Stack overfow query: [keras] validation accuracy high 

A.2 Model Architecture 
A.2.1 Critical: Missing activation functions. The model has layers without nonlinear activation functions. This may limit the model’s ability 
to learn since stacked Dense layers without activations will mathematically collapse to a single Dense layer. Make sure the activation 
argument is passed into your Dense and Convolutional (e.g., Conv2D) layers. A common practice is to use activation=‘relu’. 

Program context: (for each problem layer) Layer <index> (layer.name) has a missing or linear activation 
Documentation link: https://www.tensorfow.org/api_docs/python/tf/keras/activations 
This error includes a link to the source module where the model was defned. 

A.2.2 Critical: Missing Sofmax layer before loss. The loss function of your model expects a probability distribution as input (i.e., the 
likelihood for all the classes sums to 1), but your model is producing un-normalized outputs, called “logits”. Logits can be normalized to a 
probability distribution with a softmax layer. 

Many Keras loss function classes can automatically compute softmax for you by passing in a from_logits fag: 
tf.keras.losses.<your loss function class here>(from_logits=True) 
where specifying from_logits=True will tell keras to apply softmax to your model output before calculating the loss function. Alterna-

tively, you can manually add a softmax layer to the end of your model using tf.keras.layers.Softmax(). 
Stack overfow query: [keras] is:closed from_logits 
Documentation link: https://www.tensorfow.org/api_docs/python/tf/keras/losses 
This error includes a link to the source module where the model was defned. 

A.2.3 Warning: Last model layer has redundant activation. The last layer of the model has an extra (redundant) nonlinear activation function 
before Softmax (which is non-linear by itself). This can prevent the model from learning efectively. Remove the activation argument from 
the last layer of your model. 

https://stackoverflow.com/search?q=[keras] closed:yes normalization
https://www.tensorflow.org/tutorials/keras/classification#preprocess_the_data
https://stackoverflow.com/search?q=[keras] nan input
https://stackoverflow.com/search?q=[keras] validation accuracy high
https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Softmax
https://stackoverflow.com/search?q=[keras] is:closed from_logits
https://www.tensorflow.org/api_docs/python/tf/keras/losses
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Program context: Last layer in model <last_layer.name> has activation ‘‘<layer_config.activation>’’ 
This error includes a link to the source module where the model was defned. 

A.3 Parameter Tuning 
A.3.1 Warning: Learning Rate is <high/low>. 5 The learning rate you set is <higher/lower> than the typical range. This could lead to the 
model’s inability to learn. This can also lead to NaN loss values. You can set your learning rate when you create your optimizer object. 
Typical learning rates for the Adam optimizer are between 0.00001 and 0.01. For example: 

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001)) 
Program context: Epoch <epoch>: Learning Rate is <lr> 
Documentation link: https://www.tensorfow.org/api_docs/python/tf/keras/optimizers/Adam 

A.3.2 Warning: Possible overfiting. The validation loss is increasing while training loss is stuck or decreasing. This could indicate overftting. 
However, if validation loss is still trending downwards afterwards, this error could be a false positive. Try adding dropout or reducing the 
number of parameters in your model. Dropout randomly omits weight updates during training (with some probability) which potentially 
increases robustness. You can reduce the number of parameters of your model by decreasing the units or filters parameters of Dense or 
Conv2D layers. 

Program context: Epoch <epoch>: training loss changed by <d_loss> while validation loss changed by <d_val_loss> 
Documentation link: https://www.tensorfow.org/api_docs/python/tf/keras/regularizers/Regularizer 

A.3.3 Warning: High dropout rate. The dropout parameter of the indicated layer(s) is above 0.5, meaning less than half of the gradient 
updates will propagate through. This can prevent your model from learning. Lower the dropout rate. Typical values fall within [0.1, 0.5]. 

Program context (for each problem layer): Layer <index> (layer.name) has dropout rate of <layer.dropout_rate> 
This error includes a link to the source module where the model was defned. 

5The title of this error dynamically changes if the detected learning rate is above or below a common range. 

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/Regularizer
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