ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Biotechnology

Mediated electrochemistry for redox-based biological
targeting: entangling sensing and actuation for

maximizing information transfer*

Check for

Dana Motabar'#°, Jinyang Li"*® Gregory F Payne®® and

William E Bentley'*°

Biology and electronics are both expert at receiving, analyzing,
and responding to information, yet they use entirely different
information processing paradigms. Biology processes
information using networks that are intrinsically molecular while
electronics process information through circuits that control the
flow of electrons. There is great interest in coupling the
molecular logic of biology with the electronic logic of
technology, and we suggest that redox (reduction-oxidation) is
a uniquely suited modality for interfacing biology with
electronics. Specifically, redox is a native biological modality
and is accessible to electronics through electrodes. We
summarize recent advances in mediated electrochemistry to
direct information transfer into biological systems intentionally
altering function, exposing it for more advanced interpretation,
which can dramatically expand the biotechnological toolbox.
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Introduction

Biology and electronics have powerful and complemen-
tary information processing capabilities. Biology is adept
at receiving and transmitting information that is coded in
molecular structure while electronics generally receives

and transmits information that is coded in electromag-
netic radiation. The fusion of biological-electronic infor-
mation processing could have transformative impacts,
such as the development of molecular biodevices that
enable direct communication with biology [1°,2°]. How-
ever, a key challenge to realizing this vision is the inter-
facing of biology and electronics. We contend that the
biology’s native redox modality (i.e. the exchange of
electrons between chemical species) can uniquely serve
as the interface between biology and electrodes. Here, we
describe the interfacing of biology to electrodes through
redox and summarize recent studies in which biological
systems were engineered to respond to electrode-
imposed cues in order to control responses that range
from molecular assembly to gene expression (i.e. electro-
genetics). In turn, the same redox-enabled bioelectronics
can enable assessment. Overall, the entanglement of
sensing and actuation enables far more advanced inter-
pretation and understanding.

Mediated electrochemistry to access the
redox modality

Electrochemistry is a broad field that encompasses a large
number of applications and concerns the flow of electrons
at the electrode surface. A subset of the field is mediated
electrochemistry, where redox mediators are used to
shuttle electrons from the electrode surface into solution
in a manner analogous to biology’s use of diffusible
oxidants (e.g. O;) and reductants (e.g. NADPH) to shuttle
electrons within and between cells.

Our approach for using mediated electrochemical probing
is approximately analogous to how bats use echolocation
to hunt for prey. As depicted in Figure 1a, bats echolocate
by transmitting a finely tuned signal (i.e. a high-frequency
sound wave) to probe their local environment. This signal
propagates through air and is perturbed by interactions
with objects to generate a response signal (i.e. the echo)
that is detected by the bat’s ears and transduced into an
electrical signal that is decoded in the brain. The bat’s
survival depends on its ability to convert these real-time
measurements of the activities in a local environment into
actionable information.
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Redox probing and targeting. (a) Analogy to echolocation. (b) Mediated electrochemical probing to access redox-based biological information. (c)
Mediated electrochemistry for redox-based actuation of biology. Reactive oxidants target molecules and cells, modifying function.

Similar to echolocation, mediated electrochemical prob-
ing uses a tunable electrode-generated transmission that
probes a local environment for redox-based information.
As illustrated in Figure 1b, these transmissions are
redox-active mediators (i.e. electron shuttles) that are
either exogenously added or natively present. Informa-
tion is then coded into these transmissions using the
electrode to set the mediators’ redox state. These dif-
fusible mediators propagate into the local environment
where they undergo redox-based electron-transfer inter-
actions with a biological component that switches the
mediator’s redox state. The changes in the mediator’s
redox state then serve as the response signal (analogous
to the echo). The response signal is sensitively detected
by the electrode and transduced into an electronic for-
mat that can be decoded using advanced information
processing methods. Thus, mediated electrochemical
probing offers a sensitive real-time measurement that
provides information of redox characteristics and activi-
ties in a local environment. This echolocation analogy
emphasizes the use of mediated electrochemical probing

for sensing, and various studies have shown the detec-
tion of information that ranges from intracellular redox
activities [3-8], to cell viability [9], and metabolic activ-
ity [10], as well as new insight on biological materials
[11-13] and to extracellular measures of oxidative stress
[14-17].

Further, mediated electrochemistry is being extended
from sensing to actuation [18]. In this case, Figure 1c
shows how redox input signals can be imposed to ‘target’
biological interactions that induce changes in structure
and function. In terms of a biological analogy, such redox-
mediated actuation mimics biology’s use of reactive oxi-
dants (including reactive oxygen species; ROS) for the
targeted post-translational modification of proteins.
Importantly, advances in redox biology are revealing a
broader range of biological redox targets and this knowl-
edge is being translated into an expanding redox-based
biotechnological toolbox. Next, we highlight recent
advances in mediated electrochemistry for molecular-
level and cellular-level redox-targeting.
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Mediated electrochemistry for molecular-level
redox targeting

As noted above, our use of mediated electrochemistry is
analogous to biology’s use of reactive oxidants (e.g. ROS)
when used for targeting. Initially, ROS were recognized
as important molecules for the immune system’s targeting
of pathogens [19,20], but more recently there has been a
growing appreciation of the broader roles of reactive
oxidants. We now realize that biology uses redox as a
communication modality, with ROS serving as redox
signaling molecules that transfer information and actuate
responses through electron transfer reactions [21-23].
Further, the oxidation of amino acid residues by ROS
provides mechanisms for post-translational modification
that can adjust a protein’s functional attributes [24-28].
Importantly, emerging research in redox biology is reveal-
ing a surprising level of chemical selectivity in the reac-
tions of reactive oxidants which further supports their
roles in targeting [29,30°].

Analogous to biology’s use of reactive oxidants, mediated
electrochemistry allows the controlled generation of oxi-
dants for the selective targeting of amino acid residues for
protein post-translational modification. For instance,
Figure 2a depicts three redox mediators that can each
be oxidized at an electrode but have differing abilities to
oxidize (i.e. target) amino acid residues [31]. In some
cases, the differing reactivities of the mediators can be
simply explained in terms of their thermodynamic redox
potential. The mediator with the least oxidative redox
potential, ferrocene dimethanol (Fc), can oxidize Cys to
generate a disulfide, but Fc¢ cannot oxidize the amino
acids Liys or Tyr. In contrast, acetosyringone (AS) and
K;IrClg (Ir) have more oxidative redox potentials and
these mediators can oxidize all three amino acids [31].
"This example demonstrates that redox mediators can be
selected to have different oxidative targeting abilities
analogous to biology’s use of different ROS to target
different amino acid residues.

In biology, oxidative post translational modifications can
alter a protein’s structure and function. The most famil-
iar example is probably the oxidation of cysteine thiols to
disulfides (sometimes referred to as sulfur switching)
with the resulting change in protein structure sometimes
being integral to intracellular signal transduction path-
ways that regulate biological response [32°°]. For exam-
ple, oxidation of the cysteine-rich protein, Keapl, leads
to activation of the transcription factor, Nrf2, which acts
as a master regulator of the antioxidant responses [33,34].
Similarly, redox mediators can be used as reactive oxi-
dants to alter a protein’s activity. Such mediated elec-
trochemical actuation is illustrated in Figure 2b which
shows the AS-targeting of solvent-accessible sulfhydryl
groups to attenuate enzymatic activity [35]. In chis
example, a multi-domain fusion protein was engineered
by fusing the enzymes (LuxS and Pfs) from a two-step

biosynthetic pathway for the bacterial quorum sensing
(QS) signaling molecule, autoinducer-2 (AI-2) [36]. Both
enzymes have labile Cys residues that upon oxidation
leads to an attenuation in the generation of the AI-2
quorum signal [35]. This attenuation of AI-2 signal
generation attenuates an Al-Z-inducible biological
response in a surrounding bacterial population (e.g. in
this example expression of a fluorescent protein). The
plot in Figure 2b shows that an increase in electrical
input (i.e. the number of electrons transferred during
AS-mediated oxidation) results in a systematic attenua-
tion of both the AI-2 signal generated and the response
of the bacterial population. This study illustrates how
mediators and electrical inputs can controllably attenu-
ate the generation of a biochemical signaling molecule to
modulate biological function.

In addition to oxidatively modifying proteins to alter
structure and function, biology also uses oxidation reac-
tions for hierarchical assembly. Familiar examples of
oxidative crosslinking include those that target the: cys-
teine residues of mucin; lysine residues of collagen [37];
tyrosine residues of the insect’s resilin protein [38]; and
dopamine residues of the mussel glue protein [39]. In an
analogous manner, mediated electrochemistry can be
used for oxidative assembly. For instance, Figure 2c
shows a thiol-functionalized hydrogel can be oxidatively
activated for protein conjugation through accessible sulf-
hydryl residues. As depicted in Figure 2c¢, the bacterial
protein, protein G, was enginecered to have a redox-
responsive fusion tag (5 added cysteine residues at its
C-terminus) to facilitate its oxidative assembly to the
activated hydrogel [31]. This covalently assembled pro-
tein G retained its functional activity and was capable of
binding IgG antibodies [40] to generate antibody-pre-
senting surfaces. This example demonstrates how medi-
ated electrochemistry and protein engineering can be
leveraged to rapidly and simply control covalent bond
formation for the hierarchical assembly of functional
materials [41].

Mediated electrochemistry for cellular-level
redox targeting

In biology, ROS are known to impose oxidative stresses
that induce cellular stress-responses (e.g. the Keap1-Nrf2
pathway) [27,42]. Two of the best-known examples are
the redox-responsive SoxRS and OxyR regulons in
Escherichia coli that induce separate antioxidant defense
responses. SoxRS has an iron-sulfur cluster that is
believed to be targeted by superoxide-related activities
and upregulates several genes including superoxide dis-
mutase [43-45], while OxyR has sulfur switching thiols
believed to be targeted by H,O, and upregulates H,0,
inducible genes such as catalase [26,46,47]. These exam-
ples illustrate that biology is equipped with the molecular
machinery to recognize imposed redox inputs and trans-
duce these inputs into changes in gene expression. These
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Figure 2
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Molecular-level redox targeting. (a) Mediators can selectively target a protein’s amino acid residues. Selectivity is provided by redox potential,
specific mediators, and targeted residues. (b) Mediated oxidation of an enzyme’s sulfhydryl residues actuates signal response. In this example,
the activity of an enzyme complex that synthesizes a quorum sensing (QS) signal is modulated by electrode oxidized mediators. Adapted from

[35]. (c) Covalent bond formation is electrochemically controlled to generate

functional materials. Here, thiolated polyethylene glycol is crosslinked

by oxidized mediators and activated to create sulfenic acid groups that subsequently covalently bind to cysteine residues engineered onto the C-

terminus of protein G, enabling a platform for sensing IgG.

examples have also motivated efforts to use mediated
electrochemistry to impose redox inputs capable to acces-
sing this native redox-based information processing
machinery.

Analogous to ROS, mediated electrochemistry can be
used to target intracellular redox machinery to regulate
signal transduction. As shown in Figure 3a, dual mediators
can actuate gene expression from the SoxRS regulon
through targeted oxidation of the iron-sulfur clusters of
the SoxR protein [48]. One of the mediators, the bacterial

metabolite pyocyanin (Pyo), is believed to enter the cell
to actuate gene induction by oxidizing SoxR. The second
mediator, ferricyanide (Fcn), is electrochemically con-
trolled by the electrode and was used to modulate the
level of induction. The plot in Figure 3a shows that as the
electrode’s voltage was increased to be more oxidative,
the electrons transferred for Fcn-oxidation increased thus
exposing the cells to a greater redox input (labeled as
‘Input Change’). This increased oxidative input resulted
in a greater cellular response as measured by the SoxR-
inducible expression of a fluorescent protein. The

Current Opinion in Biotechnology 2021, 71:137-144
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Figure 3
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Cellular-level redox targeting. (a) Mediators target intracellular gene expression to modulate cell behavior. On the left, cells (pink) are engineered to
synthesize bacterial quorum sensing autoinducer (Al-1) in response to soxR-mediated gene expression that, in turn, is actuated by electrode
oxidized pyocyanin and ferricyanide (electrical signal). The synthesized Al-1 signals to a second cell population (green) engineered that, in turn,
responds as a collective unit. On the right, soxR-actuated cells generate fluorescent phiLOV marker in response to applied voltage and oxidized
Pyo & Fcn. Adapted from [48]. (b) eCRISPR is electrochemically controlled to both actuate and silence gene expression from multiple targets in
multiplexed manner. (c) Electrochemically generated oxidants actuate biological response without added mediators. Here, electrode-generated
hydrogen peroxide permeates electrode-assembled bacteria. In turn, they produce quorum sensing signal molecules that convey “information” to
cell network (populations 1 and 2) that (i) confer information transfer (population 1) or (i) generate a model therapeutic (population 2).

electrochemically inducible SoxRS regulon was then
engineered (i.e. re-programmed) to produce a QS signal-
ing molecule that subsequently altered the biological
response of a second population of cells [48]. This exam-
ple illustrates how mediated electrochemistry enables
controlled access to biology’s redox signaling modality
to target programmable cellular responses.

Similar to how the SoxRS and OxyR regulons protect
against oxidative stress, CRISPR serves as bacteria’s
protective immune system against viruses [49]. Using
synthetic biology approaches, the CRISPR system has
been engineered for a multitude of applications including

mammalian cell biocomputing [50], information storage
[51°°], and antibody production. Recently, an electrically
controllable CRISPR system (referred to as eCRISPR)
was integrated with mediated electrochemistry to enable
extensive intracellular control [52]. As depicted in
Figure 3b, the eCRISPR genetic system consists of
two parts: (i) the redox responsive SoxS-based promotor
and, (i1) CRISPR-based transcriptional factors designed
to silence the expression of multiple genes associated
with the native oxidative stress response. Dual mediators,
Pyo and Fcn, were used to actuate the response of the
SoxS-based promotor resulting in expression of CRISPR-
based transcriptional factors [52]. The dovetailing of
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synthetic biology and mediated electrochemistry offers
the unique opportunity to program the cell’s molecular
machinery to be interfaced to electronics through a com-
munication modality (i.e. redox) that is common to both
[53-55,56°°].

In the examples above, we described how electrochemi-
cal inputs could be coupled with redox mediators for the
oxidative targeting of intracellular machinery. However,
it is also possible to use electrodes to directly generate
some of the same reactive oxidants used by biology (e.g.
H,0,, HOCI) [57]. For instance, as illustrated in
Figure 3c, electrochemically generated H,0O, (in place
of exogenously added mediators) was used to induce the
OxyR regulon through oxidative targeting of the cysteine
residues of the OxyR protein [58]. The bacterial cells
were specifically engineered with (i) a cell surface peptide
to allow their uniform assembly onto the electrode sur-
face; and (i1) H,O,-responsive gene expression from the
OxyR regulon which was re-programmed to produce a QS
signal. This synthetic biology construct thus allows elec-
trochemically generated H,0O, to locally activate QS
signal production to actuate the biological responses from
two separate surrounding populations of cells [58]. This
example demonstrates how precisely controlled elec-
tronic inputs can be transduced into chemical-based
molecular outputs by accessing the information proces-
sing capabilities of biology.

Perspective

Similar to biology’s use of reactive oxidants for selective
targeting, mediated electrochemistry provides a simple
means to generate redox signals capable of actuating
biological responses. We highlighted examples of the
use of mediated redox targeting to: modify molecular
structure and activities; induce the hierarchical assembly
of functional materials; and activate redox-responsive
gene expression (e.g. electrogenetics). These examples
further illustrate the potential for developing a redox-
based biotechnology toolbox for protein engineering and
synthetic biology that allows both the re-programming of
redox-targetable biological structures and functions for
user-defined purposes and for enabling greater insight on
biological function. That is, these examples suggest a
broader potential for interfacing the molecular logic of
biology with the electronic logic of technology to fuse
their complementary (and seemingly disparate) informa-
tion processing capabilities. These can enable far greater
understanding than rote use of redox for electrochemical
sensing; they enable more in-depth assessment and even
control of biological function. Thus, we envision that
mediated electrochemistry can act as a unique and trans-
formative bridge between biology and electronics.
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