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Biology and electronics are both expert at receiving, analyzing,

and responding to information, yet they use entirely different

information processing paradigms. Biology processes

information using networks that are intrinsically molecular while

electronics process information through circuits that control the

flow of electrons. There is great interest in coupling the

molecular logic of biology with the electronic logic of

technology, and we suggest that redox (reduction-oxidation) is

a uniquely suited modality for interfacing biology with

electronics. Specifically, redox is a native biological modality

and is accessible to electronics through electrodes. We

summarize recent advances in mediated electrochemistry to

direct information transfer into biological systems intentionally

altering function, exposing it for more advanced interpretation,

which can dramatically expand the biotechnological toolbox.

Addresses
1 Fischell Department of Bioengineering, University of Maryland, College

Park, MD 20742, United States
2 Institute for Bioscience and Biotechnology Research, University of

Maryland, College Park, MD 20742, United States
3Robert E. Fischell Institute for Biomedical Devices, University of

Maryland, College Park, MD 20742 United States

Corresponding authors: Payne, Gregory F (gpayne@umd.edu)

Current Opinion in Biotechnology 2021, 71:137–144

This review comes from a themed issue on Analytical biotechnology

Edited by Julian N Rosenberg, William E Bentley and

Michael J Betenbaugh

For a complete overview see the Issue and the Editorial

Available online 5th August 2021

https://doi.org/10.1016/j.copbio.2021.07.017

0958-1669/ã 2021 Elsevier Ltd. All rights reserved.

Introduction
Biology and electronics have powerful and complemen-

tary information processing capabilities. Biology is adept

at receiving and transmitting information that is coded in

molecular structure while electronics generally receives
$ Given his role as Guest Editor, William E. Bentley had no involvement in

its peer-review. Full responsibility for the editorial process of this article w
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and transmits information that is coded in electromag-

netic radiation. The fusion of biological-electronic infor-

mation processing could have transformative impacts,

such as the development of molecular biodevices that

enable direct communication with biology [1�,2�]. How-

ever, a key challenge to realizing this vision is the inter-

facing of biology and electronics. We contend that the

biology’s native redox modality (i.e. the exchange of

electrons between chemical species) can uniquely serve

as the interface between biology and electrodes. Here, we

describe the interfacing of biology to electrodes through

redox and summarize recent studies in which biological

systems were engineered to respond to electrode-

imposed cues in order to control responses that range

from molecular assembly to gene expression (i.e. electro-

genetics). In turn, the same redox-enabled bioelectronics

can enable assessment. Overall, the entanglement of

sensing and actuation enables far more advanced inter-

pretation and understanding.

Mediated electrochemistry to access the
redox modality
Electrochemistry is a broad field that encompasses a large

number of applications and concerns the flow of electrons

at the electrode surface. A subset of the field is mediated

electrochemistry, where redox mediators are used to

shuttle electrons from the electrode surface into solution

in a manner analogous to biology’s use of diffusible

oxidants (e.g. O2) and reductants (e.g. NADPH) to shuttle

electrons within and between cells.

Our approach for using mediated electrochemical probing

is approximately analogous to how bats use echolocation

to hunt for prey. As depicted in Figure 1a, bats echolocate

by transmitting a finely tuned signal (i.e. a high-frequency

sound wave) to probe their local environment. This signal

propagates through air and is perturbed by interactions

with objects to generate a response signal (i.e. the echo)

that is detected by the bat’s ears and transduced into an

electrical signal that is decoded in the brain. The bat’s

survival depends on its ability to convert these real-time

measurements of the activities in a local environment into

actionable information.
 the peer review of the article and has no access to information regarding
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Figure 1

(a) (b)

(c) Mediated electrochemical targeting

Echolocation analogy Mediated electrochemical probing

Current Opinion in Biotechnology

Redox probing and targeting. (a) Analogy to echolocation. (b) Mediated electrochemical probing to access redox-based biological information. (c)

Mediated electrochemistry for redox-based actuation of biology. Reactive oxidants target molecules and cells, modifying function.
Similar to echolocation, mediated electrochemical prob-

ing uses a tunable electrode-generated  transmission that

probes a local environment for redox-based information.

As illustrated in Figure 1b, these transmissions are

redox-active mediators (i.e. electron shuttles) that are

either exogenously added or natively present. Informa-

tion is then coded into these transmissions using the

electrode to set the mediators’ redox state. These dif-

fusible mediators propagate into the local environment

where they undergo redox-based electron-transfer inter-

actions with a biological component that switches the

mediator’s redox state. The changes in the mediator’s

redox state then serve as the response signal (analogous

to the echo). The response signal is sensitively detected

by the electrode and transduced into an electronic for-

mat that can be decoded using advanced information

processing methods. Thus, mediated electrochemical

probing offers a sensitive real-time measurement that

provides information of redox characteristics and activi-

ties in a local environment. This echolocation analogy

emphasizes the use of mediated electrochemical probing
Current Opinion in Biotechnology 2021, 71:137–144 
for sensing, and various studies have shown the detec-

tion of information that ranges from intracellular redox

activities [3–8], to cell viability [9], and metabolic activ-

ity [10], as well as new insight on biological materials

[11–13] and to extracellular measures of oxidative stress

[14–17].

Further, mediated electrochemistry is being extended

from sensing to actuation [18]. In this case, Figure 1c

shows how redox input signals can be imposed to ‘target’

biological interactions that induce changes in structure

and function. In terms of a biological analogy, such redox-

mediated actuation mimics biology’s use of reactive oxi-

dants (including reactive oxygen species; ROS) for the

targeted post-translational modification of proteins.

Importantly, advances in redox biology are revealing a

broader range of biological redox targets and this knowl-

edge is being translated into an expanding redox-based

biotechnological toolbox. Next, we highlight recent

advances in mediated electrochemistry for molecular-

level and cellular-level redox-targeting.
www.sciencedirect.com
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Mediated electrochemistry for molecular-level
redox targeting
As noted above, our use of mediated electrochemistry is

analogous to biology’s use of reactive oxidants (e.g. ROS)

when used for targeting. Initially, ROS were recognized

as important molecules for the immune system’s targeting

of pathogens [19,20], but more recently there has been a

growing appreciation of the broader roles of reactive

oxidants. We now realize that biology uses redox as a

communication modality, with ROS serving as redox

signaling molecules that transfer information and actuate

responses through electron transfer reactions [21–23].

Further, the oxidation of amino acid residues by ROS

provides mechanisms for post-translational modification

that can adjust a protein’s functional attributes [24–28].

Importantly, emerging research in redox biology is reveal-

ing a surprising level of chemical selectivity in the reac-

tions of reactive oxidants which further supports their

roles in targeting [29,30�].

Analogous to biology’s use of reactive oxidants, mediated

electrochemistry allows the controlled generation of oxi-

dants for the selective targeting of amino acid residues for

protein post-translational modification. For instance,

Figure 2a depicts three redox mediators that can each

be oxidized at an electrode but have differing abilities to

oxidize (i.e. target) amino acid residues [31]. In some

cases, the differing reactivities of the mediators can be

simply explained in terms of their thermodynamic redox

potential. The mediator with the least oxidative redox

potential, ferrocene dimethanol (Fc), can oxidize Cys to

generate a disulfide, but Fc cannot oxidize the amino

acids Lys or Tyr. In contrast, acetosyringone (AS) and

K3IrCl6 (Ir) have more oxidative redox potentials and

these mediators can oxidize all three amino acids [31].

This example demonstrates that redox mediators can be

selected to have different oxidative targeting abilities

analogous to biology’s use of different ROS to target

different amino acid residues.

In biology, oxidative post translational modifications can

alter a protein’s structure and function. The most famil-

iar example is probably the oxidation of cysteine thiols to

disulfides (sometimes referred to as sulfur switching)

with the resulting change in protein structure sometimes

being integral to intracellular signal transduction path-

ways that regulate biological response [32��]. For exam-

ple, oxidation of the cysteine-rich protein, Keap1, leads

to activation of the transcription factor, Nrf2, which acts

as a master regulator of the antioxidant responses [33,34].

Similarly, redox mediators can be used as reactive oxi-

dants to alter a protein’s activity. Such mediated elec-

trochemical actuation is illustrated in Figure 2b which

shows the AS-targeting of solvent-accessible sulfhydryl

groups to attenuate enzymatic activity [35]. In this

example, a multi-domain fusion protein was engineered

by fusing the enzymes (LuxS and Pfs) from a two-step
www.sciencedirect.com 
biosynthetic pathway for the bacterial quorum sensing

(QS) signaling molecule, autoinducer-2 (AI-2) [36]. Both

enzymes have labile Cys residues that upon oxidation

leads to an attenuation in the generation of the AI-2

quorum signal [35]. This attenuation of AI-2 signal

generation attenuates an AI-2-inducible biological

response in a surrounding bacterial population (e.g. in

this example expression of a fluorescent protein). The

plot in Figure 2b shows that an increase in electrical

input (i.e. the number of electrons transferred during

AS-mediated oxidation) results in a systematic attenua-

tion of both the AI-2 signal generated and the response

of the bacterial population. This study illustrates how

mediators and electrical inputs can controllably attenu-

ate the generation of a biochemical signaling molecule to

modulate biological function.

In addition to oxidatively modifying proteins to alter

structure and function, biology also uses oxidation reac-

tions for hierarchical assembly. Familiar examples of

oxidative crosslinking include those that target the: cys-

teine residues of mucin; lysine residues of collagen [37];

tyrosine residues of the insect’s resilin protein [38]; and

dopamine residues of the mussel glue protein [39]. In an

analogous manner, mediated electrochemistry can be

used for oxidative assembly. For instance, Figure 2c

shows a thiol-functionalized hydrogel can be oxidatively

activated for protein conjugation through accessible sulf-

hydryl residues. As depicted in Figure 2c, the bacterial

protein, protein G, was engineered to have a redox-

responsive fusion tag (5 added cysteine residues at its

C-terminus) to facilitate its oxidative assembly to the

activated hydrogel [31]. This covalently assembled pro-

tein G retained its functional activity and was capable of

binding IgG antibodies [40] to generate antibody-pre-

senting surfaces. This example demonstrates how medi-

ated electrochemistry and protein engineering can be

leveraged to rapidly and simply control covalent bond

formation for the hierarchical assembly of functional

materials [41].

Mediated electrochemistry for cellular-level
redox targeting
In biology, ROS are known to impose oxidative stresses

that induce cellular stress-responses (e.g. the Keap1-Nrf2

pathway) [27,42]. Two of the best-known examples are

the redox-responsive SoxRS and OxyR regulons in

Escherichia coli that induce separate antioxidant defense

responses. SoxRS has an iron-sulfur cluster that is

believed to be targeted by superoxide-related activities

and upregulates several genes including superoxide dis-

mutase [43–45], while OxyR has sulfur switching thiols

believed to be targeted by H2O2 and upregulates H2O2

inducible genes such as catalase [26,46,47]. These exam-

ples illustrate that biology is equipped with the molecular

machinery to recognize imposed redox inputs and trans-

duce these inputs into changes in gene expression. These
Current Opinion in Biotechnology 2021, 71:137–144
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Figure 2

(a)

(b)

(c)Amino acid targeting Oxidative assembly

Electrochemical signal modulation
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Molecular-level redox targeting. (a) Mediators can selectively target a protein’s amino acid residues. Selectivity is provided by redox potential,

specific mediators, and targeted residues. (b) Mediated oxidation of an enzyme’s sulfhydryl residues actuates signal response. In this example,

the activity of an enzyme complex that synthesizes a quorum sensing (QS) signal is modulated by electrode oxidized mediators. Adapted from

[35]. (c) Covalent bond formation is electrochemically controlled to generate functional materials. Here, thiolated polyethylene glycol is crosslinked

by oxidized mediators and activated to create sulfenic acid groups that subsequently covalently bind to cysteine residues engineered onto the C-

terminus of protein G, enabling a platform for sensing IgG.
examples have also motivated efforts to use mediated

electrochemistry to impose redox inputs capable to acces-

sing this native redox-based information processing

machinery.

Analogous to ROS, mediated electrochemistry can be

used to target intracellular redox machinery to regulate

signal transduction. As shown in Figure 3a, dual mediators

can actuate gene expression from the SoxRS regulon

through targeted oxidation of the iron-sulfur clusters of

the SoxR protein [48]. One of the mediators, the bacterial
Current Opinion in Biotechnology 2021, 71:137–144 
metabolite pyocyanin (Pyo), is believed to enter the cell

to actuate gene induction by oxidizing SoxR. The second

mediator, ferricyanide (Fcn), is electrochemically con-

trolled by the electrode and was used to modulate the

level of induction. The plot in Figure 3a shows that as the

electrode’s voltage was increased to be more oxidative,

the electrons transferred for Fcn-oxidation increased thus

exposing the cells to a greater redox input (labeled as

‘Input Change’). This increased oxidative input resulted

in a greater cellular response as measured by the SoxR-

inducible expression of a fluorescent protein. The
www.sciencedirect.com



Redox-based electrochemical sensing and actuation Motabar et al. 141

Figure 3

(a)

(b) (c)

Actuation of cellular response

Electricallly controllable CRISPR Electrochemically produced oxidants
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Cellular-level redox targeting. (a) Mediators target intracellular gene expression to modulate cell behavior. On the left, cells (pink) are engineered to

synthesize bacterial quorum sensing autoinducer (AI-1) in response to soxR-mediated gene expression that, in turn, is actuated by electrode

oxidized pyocyanin and ferricyanide (electrical signal). The synthesized AI-1 signals to a second cell population (green) engineered that, in turn,

responds as a collective unit. On the right, soxR-actuated cells generate fluorescent phiLOV marker in response to applied voltage and oxidized

Pyo & Fcn. Adapted from [48]. (b) eCRISPR is electrochemically controlled to both actuate and silence gene expression from multiple targets in

multiplexed manner. (c) Electrochemically generated oxidants actuate biological response without added mediators. Here, electrode-generated

hydrogen peroxide permeates electrode-assembled bacteria. In turn, they produce quorum sensing signal molecules that convey “information” to

cell network (populations 1 and 2) that (i) confer information transfer (population 1) or (ii) generate a model therapeutic (population 2).
electrochemically inducible SoxRS regulon was then

engineered (i.e. re-programmed) to produce a QS signal-

ing molecule that subsequently altered the biological

response of a second population of cells [48]. This exam-

ple illustrates how mediated electrochemistry enables

controlled access to biology’s redox signaling modality

to target programmable cellular responses.

Similar to how the SoxRS and OxyR regulons protect

against oxidative stress, CRISPR serves as bacteria’s

protective immune system against viruses [49]. Using

synthetic biology approaches, the CRISPR system has

been engineered for a multitude of applications including
www.sciencedirect.com 
mammalian cell biocomputing [50], information storage

[51��], and antibody production. Recently, an electrically

controllable CRISPR system (referred to as eCRISPR)

was integrated with mediated electrochemistry to enable

extensive intracellular control [52]. As depicted in

Figure 3b, the eCRISPR genetic system consists of

two parts: (i) the redox responsive SoxS-based promotor

and, (ii) CRISPR-based transcriptional factors designed

to silence the expression of multiple genes associated

with the native oxidative stress response. Dual mediators,

Pyo and Fcn, were used to actuate the response of the

SoxS-based promotor resulting in expression of CRISPR-

based transcriptional factors [52]. The dovetailing of
Current Opinion in Biotechnology 2021, 71:137–144
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synthetic biology and mediated electrochemistry offers

the unique opportunity to program the cell’s molecular

machinery to be interfaced to electronics through a com-

munication modality (i.e. redox) that is common to both

[53–55,56��].

In the examples above, we described how electrochemi-

cal inputs could be coupled with redox mediators for the

oxidative targeting of intracellular machinery. However,

it is also possible to use electrodes to directly generate

some of the same reactive oxidants used by biology (e.g.

H2O2, HOCl) [57]. For instance, as illustrated in

Figure 3c, electrochemically generated H2O2 (in place

of exogenously added mediators) was used to induce the

OxyR regulon through oxidative targeting of the cysteine

residues of the OxyR protein [58]. The bacterial cells

were specifically engineered with (i) a cell surface peptide

to allow their uniform assembly onto the electrode sur-

face; and (ii) H2O2-responsive gene expression from the

OxyR regulon which was re-programmed to produce a QS

signal. This synthetic biology construct thus allows elec-

trochemically generated H2O2 to locally activate QS

signal production to actuate the biological responses from

two separate surrounding populations of cells [58]. This

example demonstrates how precisely controlled elec-

tronic inputs can be transduced into chemical-based

molecular outputs by accessing the information proces-

sing capabilities of biology.

Perspective
Similar to biology’s use of reactive oxidants for selective

targeting, mediated electrochemistry provides a simple

means to generate redox signals capable of actuating

biological responses. We highlighted examples of the

use of mediated redox targeting to: modify molecular

structure and activities; induce the hierarchical assembly

of functional materials; and activate redox-responsive

gene expression (e.g. electrogenetics). These examples

further illustrate the potential for developing a redox-

based biotechnology toolbox for protein engineering and

synthetic biology that allows both the re-programming of

redox-targetable biological structures and functions for

user-defined purposes and for enabling greater insight on

biological function. That is, these examples suggest a

broader potential for interfacing the molecular logic of

biology with the electronic logic of technology to fuse

their complementary (and seemingly disparate) informa-

tion processing capabilities. These can enable far greater

understanding than rote use of redox for electrochemical

sensing; they enable more in-depth assessment and even

control of biological function. Thus, we envision that

mediated electrochemistry can act as a unique and trans-

formative bridge between biology and electronics.
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