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Abstract—We investigate the long-term scheduling and power
control scheme for a wirelessly powered cell-free Internet-of-
Things (IoT) network which consists of distributed access points
(APs) and a large number of sensors. In each time slot, a subset
of sensors is scheduled for uplink data transmission or downlink
power transfer. Through asymptotic analysis, we obtain closed-
form expressions for the harvested energy and the achievable
rates that are independent of random pilots. Then, using these
expressions, we formulate a long-term scheduling and power
control problem to maximize the minimum time-average achiev-
able rate among all sensors while maintaining the battery state
of each sensor higher than a predefined minimum level. Using
Lyapunov optimization, the transmission mode, the active sen-
sor set, and the power control coefficients for each time slot
are jointly determined. Finally, simulation results validate the
accuracy of our derived closed-form expressions and reveal that
the minimum time-average achievable rate is boosted signifi-
cantly by the proposed scheme compared with the simple greedy
transmission scheme.

Index Terms—Cell-free Internet of Things (IoT), long-term
scheduling and power control, Lyapunov optimization, max–min
fairness, wireless power transfer (WPT).

I. INTRODUCTION

NOWDAYS, the Internet of Things (IoT) has become a
ubiquitous technology with wide applications on trans-

portation, healthcare, agriculture, and other aspects of our daily
life [1], [2]. The limited energy storage of IoT devices [3] and
massive connectivity [4] are two main challenges to hinder the
proliferation of IoT technologies and have attracted intensive
research interests in recent years [5].

A. Related Work

Wireless power transfer (WPT) is regarded as a promis-
ing technology to tackle the energy shortage problem of
IoT devices. WPT has been mainly considered for three
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scenarios: 1) energy broadcasting without information trans-
mission [6], [7]; 2) simultaneous wireless information and
power transfer (SWIPT) [8], [9]; and 3) the wireless pow-
ered communication network (WPCN), which is more suitable
for IoT [10], [11]. In WPCN, IoT devices first harvest RF
energy from the downlink and then transmit data to access
points (APs) through the uplink. Although multiple antennas
can improve the efficiency of WPT [12], the performance of
cell-boundary users is still poor, which results from the heavy
path loss in both the downlink WPT phase and the uplink data
transmission phase.

Recently, cell-free massive MIMO with distributed and
cooperative APs has been proposed to improve both the spec-
tral and energy efficiencies. Compared with cellular massive
MIMO, the heavy path loss of the cell boundary terminals
can be avoided since the distances between the terminals
and served APs are smaller. With the help of cell-free
massive MIMO with a user-centric architecture [13], [14],
Wang et al. [15] proposed a wirelessly powered cell-free
IoT scheme with jointly optimized downlink and uplink
power control coefficients. Compared with WPT in small cells
and collocated massive MIMOs, the WPT efficiency of the
cell-free IoT has been improved significantly.

In cell-free massive MIMO systems, random pilots are
wildly adopted since it is impossible to allocate finite orthog-
onal pilots to massive amounts of sensors [15], [16]. Due
to the nonorthogonality of random pilots, the channel esti-
mate is degraded by pilot signals transmitted from other
users [13]. That is, the nonorthogonal random pilots will
reduce the accuracy of channel estimation and further decrease
the efficiency of WPT and data transmission. Therefore, user
scheduling is critical to satisfy the massive connections in
wirelessly powered cell-free IoT. The traditional scheduling
methods usually focus on improving the instantaneous network
performance [17], [18], which may cause some sensors with
bad channel conditions never scheduled.

Motivated by this fact, we aim to design a long-term
scheduling strategy to serve more sensors in the wirelessly
powered cell-free IoT network. The Lyapunov optimization
method is an effective way to improve the infinite horizon
average objective function without predicting the future state
[19], [20], which has been used to design scheduling strate-
gies in some works [20], [21]. In particular, with the help of
Lyapunov optimization, Zhai et al. [21] designed an energy-
efficient user scheduling for NOMA-based IoT networks to
minimize the time-average power consumption while sat-
isfying the time-average rate requirements for all devices.
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Through optimizing energy beamforming, Choi and Kim [22]
minimized the time-average power consumption of the AP
while meeting the given time-average rate requirements for
all nodes in a WPCN.

B. Contribution

To serve more sensors, we investigate the long-term
scheduling and power control scheme for a wirelessly pow-
ered cell-free IoT network. Our contributions in this work are
threefold.

1) We provide an asymptotic analysis to obtain closed-form
expressions for the harvested energy and the achievable
rates that are independent of random pilot sequences.

2) To serve massive amounts of sensors, a long-term
scheduling and power control optimization problem
is formulated to maximize the minimum time-average
achievable rate while maintaining the battery state of
each sensor higher than a predefined level. By solving
the problem, the transmission mode (energy harvest-
ing or data transmission), the active sensor set, and the
power control coefficients for each time slot are jointly
determined.

3) Under the Lyapunov optimization framework, the long-
term problem is transformed into a sequence of
optimization problems of minimizing the Lyapunov drift
plus penalty for each time slot, which can be solved effi-
ciently using our proposed low-complexity methods. The
simulation results reveal that our scheduling and power
control scheme can boost the minimum time-average
achievable rate significantly.

Different from previous works on WPT [23], we investi-
gate the wirelessly powered cell-free IoT with nonorthogonal
random pilots. Due to the nonorthogonal pilots, the estimates
of channel vectors between different sensors and the same
AP are dependent, which leads to challenges for deriving
the asymptotic expressions for the harvested energy and the
achievable rates. Compared with previous scheduling schemes
such as [24], it is challenging to jointly design the long-term
scheduling and power control scheme for a wirelessly powered
network, since we need to strike a balance between the WPT
and data transmission and to guarantee the fairness among
sensors.

The remainder of this article is organized as follows. In
Section II, we describe the system model and formulate the
problem. The asymptotic analysis is provided in Section III. In
Section IV, we transform the long-term scheduling and power
control problem into Lyapunov optimization. The algorithm
for solving the uplink and downlink subproblems in each time
slot is described in Section V. The simulation results are given
in Section VI. Finally, Section VII concludes the article.

II. SYSTEM MODEL AND OUTLINE OF RESULTS

A. System Model

We consider a wirelessly powered cell-free IoT network [15]
with L APs and a set of randomly distributed single-antenna
sensors denoted as K with |K| = K. Each AP equipped with
N antennas is connected to a central processing unit (CPU) via

Fig. 1. Scheduling for cell-free IoT.

a perfect back-haul network. In each time slot t, only a subset
K(t)

a with |K(t)
a | = Ka are scheduled as active sensors while the

remaining sensors are inactive. As shown in Fig. 1, each time
slot of duration � seconds contains Tc orthogonal frequency-
division multiplexing (OFDM) symbols, in which τ OFDM
symbols are used for channel estimation, while the remaining
Tc − τ symbols are used for downlink WPT if δ(t) = 1 or
uplink data transmission if δ(t) = 0, where

δ(t) = {0, 1}, t = 0, 1, 2, . . . (1)

indicates the transmission mode with δ̄(t) = 1 − δ(t).
Let θ (t) = [θ(t)

1 , . . . , θ
(t)
K ]T denote the sensor states in time

slot t with
∣
∣
∣θ

(t)
∣
∣
∣
1

= Ka, and θ
(t)
k ∈ {0, 1}, k ∈ K (2)

i.e., the set of active sensors is K(t)
a = {k : θ

(t)
k = 1}. The

channel between the kth sensor and the nth antenna of the lth
AP in time slot t is

g(t)
(l,n),k = √

βl,kh(t)
(l,n),k

where βl,k is the large-scale fading coefficient, which depends
on the location and is assumed known to the APs. h(t)

(l,n),k ∼
CN (0, 1) represents the small-scale fading coefficient, which
remains invariant in each time slot, but varies independently
from one slot to another. The channel between the lth AP and
the kth sensor is denoted as

g(t)
l,k =

[

g(t)
(l,1),k, . . . , g(t)

(l,N),k

]T ∈ C
N×1

while the channel between the nth antenna of lth AP and all
sensors is denoted as

g(t)
(l,n) =

[

g(t)
(l,n),1, . . . , g(t)

(l,n),K

]T ∈ C
K×1.

B. Channel Estimation Phase

At the channel estimation phase in each time slot, all Ka

active sensors simultaneously transmit their pilot sequences
to APs. Let � = [ψ1, . . . ,ψK] ∈ C

τ×K , where ψk ∼
CN (0, [1/τ ]Iτ ) denotes the pilot sequence of the kth sensor.
In the tth slot, the received pilots at the nth antenna of the lth
AP is given by

y(t)
(l,n) = √

τρp

K
∑

k=1

θ
(t)
k g(t)

(l,n),kψk + w(t)
(l,n)

= √
τρp��

(t)g(t)
(l,n) + w(t)

(l,n) ∈ C
τ×1 (3)
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where w(t)
(l,n) ∼ CN (0, σ 2Iτ ) is the additive noise at the nth

antenna of the lth AP, ρp is the pilot transmit power, and
�(t) = diag(θ (t)) is the diagonal matrix indicating the sensor
states. Using the received pilots y(t)

(l,n), the LMMSE channel

estimate ĝ(t)
(l,n) is given by

ĝ(t)
(l,n) =

[

A(t)
l

]H
y(t)
(l,n)

which implies that the kth entry of ĝ(l,n) is

ĝ(t)
(l,n),k =

[

a(t)
l,k

]H
y(t)
(l,n) (4)

where

A(t)
l = √

Ep

(

Iτ + Ep�D(t)
l �

H
)−1

�D(t)
l .

Ep = τρp/σ
2, D(t)

l = diag(βl,1, . . . , βl,K)�(t), and a(t)
l,k is the

kth column of A(t)
l . Define

Z(t)
l = Iτ + Ep�D(t)

l �
H

= Iτ +
∑

j∈K(t)
a

Epβl,jψ jψ
H
j . (5)

The mean squared value of the channel estimate ĝ(t)
(l,n),k is

given by

γ
(t)
l,k = E

[∣
∣
∣ĝ

(t)
(l,n),k

∣
∣
∣

2
]

=
[

E

(

ĝ(t)
(l,n)

[

ĝ(t)
(l,n)

]H
)]

kk

= √
τρpβl,kψ

H
k a(t)

l,k

= τρpβ
2
l,kψ

H
k

[

Z(t)
l

]−1
ψk, k ∈ K(t)

a . (6)

C. Tranmission Phase

1) Downlink WPT: If δ(t) = 1, during the remaining Tc −τ

symbols, the APs jointly perform energy beamforming to the
active sensors based on channel estimates, i.e., the transmitted
signal from the lth AP within the 
th OFDM symbol is

x(t,
)
l = √

ρd

K
∑

j=1

√

η
(t)
l,j θ

(t)
j

[

ĝ(t)
l,j

]∗
q(t,
)

j , 
 = τ + 1, . . . , Tc (7)

where q(t,
)
j ∼ CN (0, 1/(Tc − τ)) is the 
th symbol to the jth

sensor, and

η
(t)
l,j ≥ 0 ∀l, j (8)

denote the downlink power control coefficients. The transmit
power of each AP is constrained by

P(t)
l =

Tc∑


=τ+1

E

[∥
∥
∥x(t,
)

l

∥
∥
∥

2
]

≤ Nρd ∀l (9)

where Nρd is the maximum transmit power of each AP.
Substituting (6) and (7) into (9), we have

K
∑

k=1

δ(t)θ
(t)
k η

(t)
l,kγ

(t)
l,k ≤ 1 ∀l. (10)

Then, the received signal at the kth sensor is

z(t,
)
k =

L
∑

l=1

[

g(t)
l,k

]T
x(t,
)

l + v(t,
)
k , 
 = τ + 1, . . . , Tc (11)

where v(t)
k ∼ CN (0, σ 2/(Tc − τ)) is the noise. The amount

of harvested energy at the each active sensor during each time
slot can be expressed as

E (t)
k = (1 − α)�ζδ(t)θ

(t)
k (Tc − τ)E

[∣
∣
∣z

(t,
)
k

∣
∣
∣

2
]

(12)

where α = τ/Tc and ζ ∈ (0, 1) represents the energy
conversion efficiency.

2) Uplink Data Transmission: If δ(t) = 0, during the
remaining Tc − τ symbols, Ka active sensors simultaneously
deliver their data to APs. The received signal at the lth AP
within the 
th OFDM symbol is given by

r(t,
)
l = √

ρu

K
∑

j=1

√

ξ
(t)
j θ

(t)
j g(t)

l,j s(t,
)
j + n(t,
)

l

where s(t,
)
j denotes the 
th uplink symbol of the jth sensor

with E[|s(t,
)
j |2] = 1/(Tc − τ), ρu is the maximum transmit

power of each sensor, n(t,
)
l ∼ CN (0, [σ 2/(Tc − τ)]IN) is the

additive noise, and ξ
(t)
k represents the power control coefficient

of the kth sensor with

0 ≤ ξ
(t)
k ≤ 1, k ∈ K. (13)

The energy consumption of each active sensor for data trans-
mission in each time slot is

E(t)
k = (1 − α)�ρuθ

(t)
k ξ

(t)
k ≤ b(t)

k , k ∈ K (14)

where b(t)
k is the battery state of the kth sensor at the begin-

ning of time slot t. Each AP individually performs beamforing
and then sends ĝH

l,kr(t,
)
l to the CPU, which detects s(t,
)

k using
matched filtering (MF) as follows:

ŝ(t,
)
k =

L
∑

l=1

[

ĝ(t)
l,k

]H
r(t,
)

l =
√

ρuξ
(t)
k

L
∑

l=1

E

[[

ĝ(t)
l,k

]H
g(t)

l,k

]

︸ ︷︷ ︸

C1

s(t,
)
k

+
√

ρuξ
(t)
k

L
∑

l=1

([

ĝ(t)
l,k

]H
g(t)

l,k − E

[[

ĝ(t)
l,k

]H
g(t)

l,k

])

︸ ︷︷ ︸

C2

s(t,
)
k

+
∑

j 
=k,j∈K

√

ρuξ
(t)
j θ

(t)
j

L
∑

l=1

[

ĝ(t)
l,k

]H
g(t)

l,j

︸ ︷︷ ︸

C3

s(t,
)
j

+
L
∑

l=1

[

ĝ(t)
l,k

]H
n(t,
)

l

︸ ︷︷ ︸

C4

where C1 is the desired signal, and C2 +C3 +C4 is the effective
noise. Since C1, C2, C3, and C4 are uncorrelated, the achievable
rate of the kth sensor is lower bounded by [13], [14]

R(t)
k = (1 − α)δ̄(t)θ

(t)
k log2

(

1 + �
(t)
k

)

b/s/Hz (15)
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where the effective SINR �k is

�
(t)
k = |C1|2

E
[|C2|2

]+ E
[|C3|2

]+ E
[|C4|2

] (16)

where the expectation is taken over small-scale fading.
3) Battery Model: Let bmax denote the capacity of the bat-

tery. Since b(t)
k − E(t)

k ≥ 0 from (14), the battery state of the
kth sensor b(t)

k is updated at the beginning of each time slot
according to

b(t+1)
k = min

{

b(t)
k − δ̄(t)E(t)

k + δ(t)E (t)
k , bmax

}

. (17)

From (14), in order to guarantee certain minimum data rate,
we constrain the battery state of each sensor at the beginning
of each time slot to be above a predefined threshold b0, i.e.,

b(t)
k ≥ b0, k ∈ K. (18)

D. Outline of Results

Note that the quantities γ
(t)
l,k , E (t)

k , and R(t)
k given in (6), (11),

and (15) are functions of the random pilot sequences �. In
Section III, an asymptotic analysis is performed as τ → ∞
while keeping α, κ = τ/Ka, and Ep fixed, which shows
that γl,k, Ẽk(t), and Rk(t) become independent of � in this
regime, i.e.,

γ
(t)
l,k − γ̄

(t)
l,k

a.s.−→ 0, k ∈ K, l = 1, . . . , L

Ẽ (t)
k − Ē (t)

k
a.s.−→ 0, k ∈ K

R(t)
k − R̄(t)

k
a.s.−→ 0, k ∈ K

where Ẽ (t)
k is a tight lower bound of E (t)

k . The closed-form
expressions of γ̄

(t)
l,k , Ē (t)

k , and R̄(t)
k (that are independent of �)

can be used to predict the performance of the general case
with large but finite length of pilot.

In Section IV, we consider a long-term scheduling and
power control problem to maximize the minimum time-
averaged achievable rate mink∈K limT→∞(1/T)

∑T−1
t=0 δ̄(t)R(t)

k
while meeting all the constraints detailed in Section II-A.
Specifically, given the large-scale fading coefficients {βl,k}, the
overall policy in time slot t consists of the transmission mode
δ(t), sensor states θ (t), downlink power control coefficients η(t),
and uplink power control coefficients ξ (t), i.e.,

P(t) =
{

δ(t),θ (t), η(t), ξ (t)
}

(19)

and the long-term optimization problem is formulated as

P1: max{P(t)} min
k∈K

lim
T→∞

1

T

T−1
∑

t=0

R(t)
k

s.t. (1), (2), (8), (10), (13), (14), (17), (18). (20)

In general, P1 is NP-hard due to the following reasons. First, it
is a max–min problem with an infinite horizon average objec-
tive function. Second, the constraint region is also over infinite
horizon. In addition, it is a mixed integer program due to the
0–1 constraints with respect to (w.r.t.) the sensor states.

To overcome these difficulties, in Section IV, we first
relax P1 into a maximization problem P2 with long-term

constraints. Through establishing virtual queues, P2 is then
reformulated into a maximization problem P′

2 with the con-
straints on the rate stability of virtual queues. Using Lyapunov
optimization, problem P′

2 is then decomposed into a sequence
of optimization problems of minimizing the Lyapunov drift
plus penalty for each time slot. To solve the problem for
each time slot, in Section V, we propose two low-complexity
optimization methods for the downlink WPT and the uplink
data transmission, respectively.

III. ASYMPTOTIC ANALYSIS AS τ → ∞
Based on (5), denote

Z(t)
l,k = Z(t)

l − Epβl,kψkψ
H
k

= Iτ +
∑

j∈K(t)
a /{k}

Epβl,jψ jψ
H
j

= Iτ +�l,k�
H
l,k

where �l,k = �k	
(1/2)

l,k , with �k = (, . . . ,ψ j, . . . , ), and

	l,k = diag(, . . . , Epβl,j, . . . , ) with j ∈ K(t)
a /{k}. Then, it

is straightforward to obtain the following lemma according
to [26, Th. 1 and 2].

Lemma 1: As τ → ∞, we have

tr

[(

Z(t)
l,k

)−1
]

/τ − Z(t)
l,k

a.s.−→ 0, (21)

tr

[(

Z(t)
l,k

)−2
]

/τ − Z̃(t)
l,k

a.s.−→ 0. (22)

Z(t)
l,k is given as

Z(t)
l,k =

⎡

⎢
⎣

∑

j∈K(t)
a /{k}

Epβl,j

τ
(

1 + ςj
) + 1

⎤

⎥
⎦

−1

and ς = [, . . . , ςj, . . . , ]T , j ∈ K(t)
a /{k} is the unique solution

to the following set of fixed-point equations:

ςj = Epβl,j

⎡

⎢
⎣

∑

j∈K(t)
a /{k}

Epβl,j

τ
(

1 + ςj
) + 1

⎤

⎥
⎦

−1

with initial values ςj = 1. Z̃(t)
l,k is given as

Z̃(t)
l,k =

[

1 + 1
τ

∑

j∈K(t)
a /{k}

Epβl,jς̂j

(1+ςj)
2

][

Z(t)
l,k

]−2

and ς̂ = [, . . . , ς̂j, . . . , ]T , j ∈ K(t)
a /{k} is given by

ς̂ = (

I(Ka−1) − J
)−1c

[J]j,i = E2
pβl,jβl,i

τ
(

1 + ςj
)2

[

Z(t)
l,k

]−2

[c]j = Epβl,j

[

Z(t)
l,k

]−2
.

A. Asymptotic Analysis of γ
(t)
l,k

Theorem 1: As τ → ∞, the mean-squared value of channel
estimate given in (6) almost surely converges to a deterministic
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value independent of the random pilots �, i.e.,

γ
(t)
l,k − γ̄

(t)
l,k

a.s.−→ 0, k ∈ K(t)
a (23)

where

γ̄
(t)
l,k = Epβ

2
l,kZ

(t)
l,k

1 + Epβl,kZ(t)
l,k

. (24)

Proof: See Appendix A.

B. Asymptotic Analysis of E (t)
k

To analyze E (t)
k in (12), we first introduce the following

lemma from [15] on the LMMSE channel estimation with
random pilots.

Lemma 2: For m, l ∈ {1, . . . , L} with m 
= l and k ∈ K(t)
a ,

we have

cov
[

ĝ(t)
l,k, ĝ(t)

m,k

]

= 0

and cov

[∥
∥
∥ĝ(t)

l,k

∥
∥
∥

2
,

∥
∥
∥ĝ(t)

m,k

∥
∥
∥

2
]

= 0.

Lemma 2 reveals that the channel estimates between differ-
ent APs and a sensor are uncorrelated. However, the channel
estimates between an AP and different sensors are correlated,
since ĝ(t)

(l,n),k depends on g(t)
(l,n),j and ψ j with j ∈ K(t)

a , which
can be seen from (3) and (4). Since the channel estimation
error g̃(t)

l,k = g(t)
l,k − ĝ(t)

l,k is independent of ĝ(t)
l,k, z(t,
)

k in (11) can
be rewritten as

z(t,
)
k =

L
∑

l=1

[

ĝ(t)
l,k

]T
x(t,
)

l +
L
∑

l=1

[

g̃(t)
l,k

]T
x(t,
)

l + v(t,
)
k

=
L
∑

l=1

√

ρdη
(t)
l,kθ

(t)
k

[

ĝ(t)
l,k

]T[

ĝ(t)
l,k

]∗
q(t,
)

k

︸ ︷︷ ︸

Sk1

+
L
∑

l=1

∑

j
=k

√

ρdη
(t)
l,j θ

(t)
j

[

ĝ(t)
l,k

]T[

ĝ(t)
l,j

]∗
q(t,
)

j +
L
∑

l=1

[

g̃(t)
l,k

]T
x(t,
)

l + v(t,
)
k

︸ ︷︷ ︸

Sk2

.

Since Sk1 and Sk2 are uncorrelated and zero mean, we have

E (t)
k = (1 − α)�ζδ(t)θ

(t)
k ρd(Tc − τ)

× E

[

|Sk1|2 + |Sk2|2 + 2�{Sk1Sk2}
]

≥ (1 − α)�ζδ(t)θ
(t)
k ρd(Tc − τ)E

[

|Sk1|2
]

= (1 − α)�ζδ(t)θ
(t)
k ρdE

⎡

⎣

∣
∣
∣
∣
∣

L
∑

l=1

√

η
(t)
l,k

[

ĝl,k

]T
[

ĝ(t)
l,k

]∗
∣
∣
∣
∣
∣

2
⎤

⎦

= (1 − α)�ζδ(t)θ
(t)
k ρd

× E

[
L
∑

l=1

L
∑

m=1

√

η
(t)
l,kη

(t)
m,k

[

ĝ(t)
l,k

]T[

ĝ(t)
l,k

]∗[
ĝ(t)

m,k

]T[

ĝ(t)
m,k

]∗
]

(a)= (1 − α)�ζδ(t)θ
(t)
k ρdN

⎡

⎣N

(
L
∑

l=1

√

η
(t)
l,kγ

(t)
l,k

)2

+
L
∑

l=1

η
(t)
l,k

[

γ
(t)
l,k

]2

⎤

⎦

≥ Ẽ (t)
k � (1 − α)�ζδ(t)θ

(t)
k ρdN2

(
L
∑

l=1

√

η
(t)
l,kγ

(t)
l,k

)2

(25)

where step (a) is obtained according to Lemma 2 and
E[||ĝ(t)

l,k||4] = N(N + 1)[γ (t)
l,k ]2. It is straightforward to prove

that Ẽ (t)
k → E (t)

k as N → ∞, which implies Ẽ (t)
k is a tight

lower bound on E (t)
k for large N. Substituting (23) into (25),

we have

Ẽ (t)
k − Ē (t)

k
a.s.−→ 0, as τ → ∞, k ∈ K(t)

a (26)

where

Ē (t)
k = (1 − α)�ζδ(t)θ

(t)
k ρdN2

(
L
∑

l=1

√

η
(t)
l,kγ̄

(t)
l,k

)2

.

C. Asymptotic Analysis of R(t)
k

For given pilots �, the SINR in (16) can be expressed
as [15]

�
(t)
k = D(t)

k ξ
(t)
k

U (t)
k ξ

(t)
k +∑

j∈K(t)
a /{k} I

(t)
k,jξ

(t)
j + N (t)

k

(27)

where

D(t)
k = ρuN

(
L
∑

l=1

γ
(t)
l,k

)2

, U (t)
k =

L
∑

l=1

ρuγ
(t)
l,k βl,k

N (t)
k = σ 2

L
∑

l=1

γ
(t)
l,k

and

I(t)
k,j = ρu

L
∑

l=1

βl,j

∥
∥
∥a(t)

l,k

∥
∥
∥

2 + ρuEpN

∣
∣
∣
∣
∣

L
∑

l=1

βl,jψ
H
j a(t)

l,k

∣
∣
∣
∣
∣

2

+ ρuEp

L
∑

l=1

K
∑

i=1

βl,jβl,i

∣
∣
∣ψ

H
i a(t)

l,k

∣
∣
∣

2
.

Theorem 2: As τ → ∞, the rate in (15) almost surely
converges to a deterministic value independent of the random
pilots �, i.e.,

R(t)
k − R̄(t)

k
a.s.−→ 0, k ∈ K(t)

a

where

R̄(t)
k = (1 − α)δ̄(t)θ

(t)
k log2

(

1 + �̄
(t)
k

)

, b/s/Hz

�̄
(t)
k = D̄(t)

k ξ
(t)
k

Ū(t)
k ξ

(t)
k +∑

j∈K(t)
a /{k} Ī

(t)
k,jξ

(t)
j + N̄ (t)

k

(28)

D̄(t)
k = Nρu(

∑L
l=1 γ̄

(t)
l,k )2, Ū(t)

k = ∑L
l=1 ρuγ̄

(t)
l,k βl,k,

Ī(t)
k,j = ρu

∑L
l=1 βl,j�

(t)
l,k + ρuEp

∑L
l=1 βl,jβl,kϑ

(t)
l,k , and N̄ (t)

k =
σ 2 ∑L

l=1 γ̄
(t)
l,k with

�
(t)
l,k = Epβ

2
l,kZ̃

(t)
l,k

(

1 + Epβl,kZ(t)
l,k

)2
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ϑ
(t)
l,k =

Epβ
2
l,k

[

Z(t)
l,k

]2

(

1 + Epβl,kZ(t)
l,k

)2
.

Proof: See Appendix B.

D. Impact of More Active Sensors

It is noted that γ̄
(t)
l,k , Ē (t)

k , and R̄(t)
k are functions of the large-

scale fading coefficients of active sensors. We now examine
the effect of adding more sensor to the current set K(t)

a on
each sensor k ∈ K(t)

a . In particular, let γ̄
(t)
l,k be the asymptotic

mean-squared value of channel estimate given in (24), and
[γ̄ (t)

l,k ]′ be the corresponding value when the active set becomes

[K(t)
a ]′ ⊃ K(t)

a by activating some inactive sensors in K/K(t)
s .

We have the following result.
Lemma 3:

[

γ̄
(t)
l,k

]′
< γ̄

(t)
l,k , k ∈ K(t)

a , l = 1, . . . , L. (29)

Proof: See Appendix C.
Remark 1: The mean-squared error of the channel esti-

mate is

e(t)
l,k = E

[∥
∥
∥g(t)

(l,n),k − ĝ(t)
(l,n),k

∥
∥
∥

2
]

= βl,k − γ
(t)
l,k . (30)

Lemma 3 reveals that the accuracy of channel estimation is
reduced by activating inactive sensors. The reduced γ̄

(t)
l,k fur-

ther degrades the amount of harvested energy Ē (t)
k in (26) and

the achievable rate R̄(t)
k in (28), since they are both monotoni-

cally increasing functions w.r.t. γ̄
(t)
l,k . Specifically, the influence

on the efficiency of WPT is more pronounced since it is
proportional to the square of γ̄

(t)
l,k .

IV. LONG-TERM SCHEDULING AND POWER CONTROL

In P1, we aim to achieve the max–min fairness over infinite
horizon, which is hard to tackle. Similarly, as in [27], we
first introduce a sequence of auxiliary variables r(t) bounded
between 0 and rmax, where rmax = maxk∈K R̂(t)

k , with

R̂(t)
k = (1 − α)θ

(t)
k log2

(

1 + Nρu

σ 2

L
∑

l=1

βl,k

)

i.e., R̂(t)
k is the achievable rate of the kth sensor in (28)

with full transmit power, perfect channel estimation, and no
interference. Then, we have

0 ≤ max
k∈K

R(t)
k ≤ rmax

for any t, which implies

0 ≤ min
k∈K

lim
T→∞

1

T

T−1
∑

t=0

R(t)
k ≤ rmax.

Thus, the max–min problem P1 is equivalent to maximiz-
ing limT→∞(1/T)

∑T−1
t=0 r(t) with the following two extra

constraints [19], [27]:

lim inf
T→∞

1

T

T−1
∑

t=0

[

R(t)
k − r(t)

]

≥ 0, k ∈ K (31)

0 ≤ r(t) ≤ rmax. (32)

Another challenge resides in constraint (18), which makes the
control policy P(t) over different time slots coupled due to
the dynamics of b(t)

k in (17). We therefore relax (18) to the
following long-term constraint:

lim inf
T→∞

1

T

T−1
∑

t=1

b(t)
j ≥ b0, k ∈ K (33)

which enable us to design the policy using Lyapunov
optimization. Hence, P1 is relaxed to

P2: max{P(t),r(t)} lim
T→∞

1

T

T−1
∑

t=0

r(t)

s.t. (31), (32), (33)

(1), (2), (8), (10), (13), (14), (17).

A. Problem Reformulation With Queue Stability Constraints

P2 is still hard to tackle due to the long-term constraints (31)
and (33). Similarly, as in [21] and [25], we transform the long-
term constraints into queue stability constraints.

Define {Xk(t) : k ∈ K} as the virtual queues associated with
constraint (33). In each time slot, the virtual queue Xk(t) is
updated according to

Xk(t + 1) =
[

Xk(t) + b0 − b(t+1)
k

]+
(34)

where [x]+ = max{0, x}. b0 and b(t+1)
k can be considered as

the arrival rate and the departure rate of the virtual queue Xk(t),
respectively. We say Xk(t) is rate stable if limt→∞([Xk(t)]/t) =
0 [21], [25]. To maintain the rate stability of Xk(t), the depar-
ture rate b(t+1)

k must be no less than the arrival rate b0, which
coincides with constraint (33).

Similarly, we also define {Yk(t) : k ∈ K} as the vir-
tual queues associated with constraint (31), where Yk(t) is
updated as

Yk(t + 1) =
[

Yk(t) + r(t) − R(t)
k

]+
. (35)

To reveal the relation between the long-term constraints (31)
and (33) in P2 and the rate stability of {Xk(t), Yk(t) : k ∈ K},
we have the following lemma.

Lemma 4: If {Xk(t), Yk(t) : k ∈ K} are rate stable with finite
initial values, then the long-term constraints (31) and (33) are
satisfied.

Proof: Without loss of generality, we take Xk(t) for
example. Equation (34) can be rewritten as

Xk(t + 1) = Xk(t) − b(t+1)
k + max

{

b0, b(t+1)
k − Xk(t)

}

.

Sum over t = 0, . . . , T − 1, we have

Xk(T) − Xk(0) =
T−1
∑

t=0

{

max
{

b0, b(t+1)
k − Xk(t)

}

− b(t+1)
k

}

≥ Tb0 −
T
∑

t=1

b(t)
k . (36)
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Dividing both sides of (36) by T and taking the limit, we
obtain

lim inf
T→∞

Xk(T)

T
− lim inf

T→∞
Xk(0)

T
≥ b0 − lim inf

T→∞
1

T

T
∑

t=1

b(t)
k

(a)= b0 − lim inf
T→∞

1

T

T−1
∑

t=0

b(t)
k (37)

where (a) is due to 0 ≤ b(t)
k ≤ bmax. Hence, the

rate stability of Xk(t) and the finiteness of Xk(0) imply
lim inf(1/T)

∑T−1
t=1 b(t)

k ≥ b0.
Based on Lemma 3, we then replace the long-term con-

straints (31) and (33) in P2 by rate stability constraints, leading
to the following formulation with stricter constraints:

P’2: max{P(t),r(t)} lim
T→∞

1

T

T−1
∑

t=0

r(t)

s.t. {Xk(t), Yk(t) : k ∈ K} are rate stable

(1), (2), (8), (10), (13), (14), (17), (32).

B. Lyaopunov Drift Plus Penalty Method

To investigate the rate stability of all virtual queues
{Xk(t), Yk(t) : k ∈ K}, we define the Lyapunov function [19]

L(t) =
K
∑

k=1

X2
k (t)

2
+

K
∑

k=1

Y2
k (t)

2
. (38)

The Lyaopunov drift is defined as

D(t) = L(t + 1) − L(t). (39)

Let [P(t)]∗ denote the policy that minimizes the Lyaopunov
drift in each time slot, i.e.,

[P(t)]∗ = arg min
P(t)

D(t), t = 0, 1, . . . (40)

Then, we have the following theorem.
Theorem 3: Let {X∗

k (t), Y∗
k (t) : k ∈ K} denote the vir-

tual queues corresponding to policy [P(t)]∗ defined in (40)
while {X′

k(t), Y ′
k(t) : k ∈ K} denote the virtual queues of

any other feasible policy [P(t)]′ different from [P(t)]∗. If
{X′

k(t), Y ′
k(t) : k ∈ K} are rate stable, then {X∗

k (t), Y∗
k (t) : k ∈

K} must be rate stable.
Proof: See Appendix D.

Theorem 3 reveals that the minimizer of D(t) in each
time slot is more likely to achieve the rate stability of
{Xk(t), Yk(t) : k ∈ K} compared with any other feasible poli-
cies. In P′

2, we aim to maximize limT→∞(1/T)
∑T−1

t=0 r(t)

while keeping all queues {Xk(t), Yk(t) : k ∈ K} rate stable.
To achieve this goal, we minimize the following drift plus
penalty in each time slot [19], i.e.,

min
P(t),r(t)

�(t) = D(t) − Wr(t), t = 1, 2, . . . , T (41)

where W is a positive weight to balance the two items in (41).
However, minimizing �(t) is not easy to tackle due to the
quadratic form of the Lyapunov drift D(t). Similarly, as
in [19], we will minimize the upper bound �̄(t) given in the
following theorem instead of minimizing �(t) directly.

Theorem 4: �(t) is upper bounded by the following linear
function:

�̄(t) =
K
∑

k=1

{

Xk(t)
[

b0 − b(t+1)
k

]

+ C0

+ Yk(t)
[

r(t) − R(t)
k

]

+ C̄0

}

− Wr(t)

where C0 = b2
max/2 and C̄0 = r2

max/2.
Proof: According to (34), we have

Xk(t + 1)2 − Xk(t)
2

=
([

Xk(t) + b0 − b(t+1)
k

]+)2

− Xk(t)
2

≤
[

Xk(t) + b0 − b(t+1)
k

]2 − Xk(t)
2

=
[

b0 − b(t+1)
k

]2 + 2Xk(t)
[

b0 − b(t+1)
k

]

≤ b2
max + 2Xk(t)

[

b0 − b(t+1)
k

]

. (42)

From (34), we have

Yk(t + 1)2 − Yk(t)
2 =

([

Yk(t) + r(t) − R(t)
k

]+)2

− Yk(t)
2

≤
[

Yk(t) + r(t) − R(t)
k

]2 − Yk(t)
2

=
[

r(t) − R(t)
k

]2 + 2Yk(t)
[

r(t) − R(t)
k

]

≤ r2
max + 2Yk(t)

[

r(t) − R(t)
k

]

. (43)

Substituting (42) and (43) into (41), we can conclude the
proof.

It is noted that minimizing the upper bound �̄(t) is also
helpful to strike a balance between the objective function and
the rate stability of virtual queues. For example, if Xk(t) tends
to rate unstable, then we have Xk(t) → ∞ and Xk(t) + b0 −
b(t+1)

j � 0. According to (39) and (42), we have Xk(t)[b0 −
b(t+1)

k ] → D(t), which implies minimizing φ̄(t) is equivalent
to minimizing φ(t). Since the backlogs {Xk(t), Yk(t):k ∈ K}
are known in time slot t, minimizing �̄(t) is equivalent to
maximizing

�̃(t) =
K
∑

k=1

[

Xk(t)b
(t+1)
k + Yk(t)R

(t)
k

]

+
[

W −
K
∑

k=1

Yk(t)

]

r(t).

(44)

We can interpret the maximization of �̃(t) as follows. The
violation of the constraint b(t+1)

k > b0 leads to the growth of
the backlog Xk(t). When Xk(t) is sufficiently large to domi-
nate �̃(t), maximizing �̃(t) is equivalent to maximizing b(t+1)

k ,
which tends to satisfy b(t+1)

k > b0 and further reduce Xk(t+1).
Similarly, a large backlog Yk(t) leads to maximizing R(t)

k to
reduce Yk(t + 1).

V. OPTIMIZATION METHODS FOR EACH TIME SLOT

In this section, we determine the optimal policy

P(t) =
{

δ(t),θ (t), η(t), ξ (t)
}
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for each time slot t = 0, 1, 2, . . . , T , by solving

P3: max
P(t),r(t)

�̃(t) =
K
∑

k=1

[

Xk(t)b
(t+1)
k + Yk(t)R

(t)
k

]

+ (W −
K
∑

k=1

Yk(t))r
(t)

s.t. (1), (2), (8), (10), (13), (14), (17), (32).

In P3, r(t) is independent of P(t), hence the optimal r(t)

depends only on the backlogs {Yk(t) : k ∈ K}, i.e.,

[r(t)]∗ =
{

rmax, if
∑K

k=1 Yk(t) ≤ W
0, otherwise.

(45)

Next, given δ(t), we set the value of θ (t), or equivalently the set
of active sensors K(t)

a , in a greedy way. Specifically, we choose
Ka active sensors with the largest Xk(t) for δ(t) = 1 and choose
Ka active sensors with the largest Yk(t) for δ(t) = 0. Then,
P3 is decomposed into the following two subproblems. For
δ(t) = 1, we aim to optimize the WPT through the downlink
power control coefficients η(t), i.e.,

P′
3: max

η(t)

∑

k∈K(t)
a

Xk(t)b
(t+1)
k

s.t. (8), (10), (17).

For δ(t) = 0, we aim to optimize the data transmission through
the uplink power control coefficients ξ (t), i.e.,

P′′
3: max

ξ (t)

∑

k∈K(t)
a

[

Xk(t)b
(t+1)
k + Yk(t)R

(t+1)
k

]

s.t. (13), (14), (17).

Denote Q′ and Q′′ as the optimal objective values of P′
3

and P′′
3, respectively. Then, the transmission mode δ(t) is

determined as
[

δ(t)
]∗ =

{

1, if Q′ ≥ Q′′
0, otherwise.

(46)

A. Solution to P′
3

Given δ(t) = 1, the battery state is updated according to

b(t+1)
k = min

{

b(t)
k + Ẽ (t)

k , bmax

}

.

Thus, P′
3 becomes

max
η(t)

∑

k∈K(t)
a

Xk(t) min
[

Ẽk(t), bmax − b(t)
k

]

s.t. (8), (10) (47)

which is NP-hard due to the nonconvex objective function. The
difference bmax − b(t)

k is usually much greater than Ẽk(t) since
b(t)

k always fluctuates around b0 which can be seen from the
simulation results. Thus, the objective function (47) becomes

f (μ) =
∑

k∈K(t)
a

Xk(t)Ẽk(t) (48)

where Ẽk(t) given in (25) is a function of μ
(t)
l,k =

√

η
(t)
l,kγ

(t)
l,k .

Using the sequential convex programming method [28], [29],

we can find a solution to (47) by sequentially maximizing the
first-order approximation of f (μ)

f̂ (μ) = f (μ̂) +
L
∑

l=1

∑

k∈K(t)
a

∂f (μ̂)

∂μ̂l,k

(

μl,k − μ̂l,k
)

near a feasible point μ̂ which is updated after each
iteration, i.e.,

max
μ

f̂ (μ) (49)

s.t. μ ∈ T
μ ≥ 0
∑

k∈K(t)
a

[

μ
(t)
l,k

]2
/γ

(t)
l,k ≤ 1 ∀l (50)

where T = {μ : |μ − μ̂| ≤ ρ0} is the trust region around
point μ̂, and (50) is the maximum transmit power constraint
of each AP resulting from (10). After obtaining the optimal
solution μ∗ of the convex problem (49), we update μ̂ = μ∗.
Until convergence, the WPT power control coefficients η(t) is
determined by [η(t)

l,k]∗ = ([μ(t)
l,k]∗/γ (t)

l,k )2.

B. Solution to P′′
3

Given δ(t) = 0, the battery state is updated according to

b(t+1)
k = b(t)

k − (1 − α)ρuθ
(t)
j ξ

(t)
j .

Hence, P′′
3 can be rewritten as

max
ξ (t)

∑

k∈K(t)
a

[

Yk(t)R
(t)
k − (1 − α)Xk(t)ρuξ

(t)
k

]

s.t. (13), (14) (51)

which aim to strike a balance between the weighted sum rate
and the weighted transmit power consumption. Solving (51)
is equivalent to solving a series of subproblems for fixed

∑

k∈K(t)
a

(1 − α)Xk(t)ρuξ
(t)
k = χ

with χ ∈ (0, (1 − α)
∑

k∈K(t)
a

Xk(t)ρu). According to (15)
and (27), subproblems can be written as

max
ξ (t)

∑

k∈K(t)
a

(1 − α)Yk(t) log2

(

1 + A(t)
k

B(t)
k

)

(52)

s.t.
∑

k∈K(t)
a

(1 − α)Xk(t)ρuξ
(t)
k = χ

(13), (14) (53)

where

A(t)
k = D(t)

k ξ
(t)
k

and

B(t)
k = U (t)

k ξ
(t)
k +

∑

j∈K(t)
a /{k}

I(t)
k,jξ

(t)
j + N (t)

k
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Algorithm 1 Proposed Long-Term Scheduling and Power
Control Algorithm

1: Input: The large-scale fading coefficients {βl,k, l =
1, . . . , L, k ∈ K}.

2: Initialization: Set Tmax and initialize the backlogs
{Xk(0) = Yk(0) = 0 : k ∈ K}.

3: for t = 1 : Tmax do
4: According to the current backlogs {Yk(t) : k ∈ K},

obtain the optimal auxiliary variables [r(t)]∗ according
to (45).

5: Solve problem P′
3 according to Section V-A, obtain the

optimal solution [η(t)]∗ and the corresponding objective
value Q′.

6: Solve problem P′′
3 according to Section V-B, obtain the

optimal solution [ξ (t)]∗ and the corresponding objective
value Q′′.

7: Determine the optimal transmission mode [δ(t)]∗ and the
corresponding sensor states [θ (t)]∗ according to (46).
and select the optimal corresponding power control
coefficients.

8: Update the virtual queues {Xk(t + 1), Yk(t + 1) : k ∈ K}
using the optimal [P(t)]∗ according to (34) and (35).

9: end for
10: Output: The policy for each time slot [P(t)]∗.

which implies (52) is a standard weighted sum-of-logarithms
maximization problem [30]–[32]. Introducing the auxiliary
variables {ωk, k ∈ K(t)

a }, (52) is equivalent to

max
ξ (t),{ωk}

∑

k∈K(t)
a

(1 − α)Yk(t)
[

log2(1 + ωk) − ωk
]

+
∑

k∈K(t)
a

(1 − α)Yk(t)(1 + ωk)A
(t)
k

A(t)
k + B(t)

k

s.t. (13), (14), (53) (54)

which has been proved in [32]. Then, we alternately solve
ξ (t) and {ωk} while fixing the other. For fixed ξ (t), the optimal
{ωk} is given by ω∗

k = �
(t)
k using the KKT condition. For fixed

{ωk}, (54) is reduced to a sum-of-ratios maximization problem
which can be solved using the quadratic transform-based
fractional optimization technique proposed in [31] and [32].

C. Overall Algorithm

Finally, the proposed long-term scheduling and power con-
trol algorithm for solving P1 in (20) is summarized in
Algorithm 1.

VI. SIMULATION RESULTS

In this section, simulation results are provided to verify the
accuracy of closed-form expressions and the performance of
our proposed scheduling and power control approach.

A. Simulation Setup

We consider a large square hall of 50×50 m2 with wrapped
around to avoid boundary effects. L = 100 APs are placed

TABLE I
SIMULATION PARAMETERS

on hAP = 7 m high ceiling to form a uniform square array.
K = 200 sensors with height hs = 1.65 m are randomly
distributed in this area. We model the large-scale fading βl,k

as

βl,k = Ll,k10
σshzl,k

10

where 10([σshzl,k]/10) denotes the shadow fading with σsh =
8 dB and zl,k ∼ CN (0, 1), and the path loss Ll,k (dB) is
given by

Ll,k =
⎧

⎨

⎩

−L0 − 35 log10
(

dl,k
)

, if dl,k > d1

−L0 − 15 log10(d1) − 20 log10
(

dl,k
)

, if d0 < dl,k ≤ d1

−L0 − 15 log10(d1) − 20 log10(d0), if dl,k ≤ d0

where d0 = 10 m, d1 = 50 m, and

L0 � 46.3 + 33.9 log10(f ) − 13.82 log10(hAP)

− (

1.1 log10(f ) − 0.7
)

hs + (

1.56 log10(f ) − 0.8
)

with carrier frequency f = 1900 MHz. The noise power is

σ 2 = B × kB × T0 × κ

where kB = 1.381 × 10−23 J/K, T0 = 290 K, κ = 9 dB, and
the bandwidth B = 20 MHz. The other simulation parameters
are summarized in Table I. In addition, the large-scale fading
{βl,k ∀l, k} are generated once and fixed for all simulations.

B. Accuracy of Expressions

Through a realization with Ka = 30 sensors randomly
scheduled, the accuracy of the closed-form expressions Ē (t)

k
in (26) and R̄(t)

k in (28) are verified in Figs. 2 and 3,
respectively. In Fig. 2, the closed-form expressions Ēk inde-
pendent of random pilots are compared with the simulation
results obtained through 500 realizations of random pilot
sequences with the uniform power control, i.e., η

(t)
l,kγ

(t)
l,k =

1/Ka ∀l, and k ∈ K(t)
a . The figure shows that the closed-form

expressions agree well with the mean of simulation results. In
addition, the small variances of simulation results stemming
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Fig. 2. Accuracy of the amount of harvested energy Ē(t)
k given in (26).

Fig. 3. Accuracy of the achievable rate R̄(t)
k given in (28).

from random pilots reveal that pilot optimization over random
pilots is not necessary.

In Fig. 3, the closed-form expressions R̄(t)
k independent

of random pilots are compared with the simulation results
obtained through 500 realizations of random pilot sequences
with uniform power control, i.e., ξ

(t)
k = 1, k ∈ K(t)

a . Similarly,
as in Fig. 2, it can be seen that the difference between the
closed-form expressions and the simulation results is small.

To investigate the impact of enlarging the active set K(t)
a ,

the average Ē (t)
k and R̄(t)

k obtained through 500 random sched-
ule realizations versus Ka is plotted in Fig. 4. As noted in
Remark 1, the metrics Ē (t)

k and R̄(t)
k decrease as Ka increases.

In addition, it can be seen that Ē (t)
k is more sensitive to Ka,

which implies the importance of scheduling during WPT.

C. Performance Comparison

In this section, we evaluate the performance of our proposed
long-term scheduling and power control approach. To the
best of our knowledge, there is no existing work to inves-
tigate the long-term scheduling and power control scheme
for a wirelessly powered cell-free IoT network. For compar-
ison, we consider the following simple greedy scheme as a

Fig. 4. Average amount of harvested energy and average achievable rate
versus the number of scheduled sensors K(t)

a .

benchmark. In each time slot for transmission mode, Ka sen-
sors with the largest b(t)

k are scheduled for data transmission
with ξ

(t)
k = 1, k ∈ K(t)

a . The transmission mode continues
until there exits some sensors whose battery is depleted, i.e.,
b(t)

k = 0, and then the harvesting mode is triggered. In each
time slot for harvesting, Ka sensors with the lowest b(t)

k are
scheduled for WPT with the uniform power allocation, i.e.,
η

(t)
l,kγ

(t)
l,k = 1/Ka ∀l, and k ∈ K(t)

a . Until b(t)
k ≥ b0, k ∈ K, the

transmission mode is triggered again. In our simulations, we
consider Ka = 30 and 100.

Figs. 5 and 6 plot the dynamic of the minimum time-average
rate with Ka = 30 and 100, respectively. It can be seen that the
minimum time-average rate becomes stable after about 1000
time slots. The shadowed error bar is

σ̂ (T) =

√
√
√
√

∑K
k=1

[
1
T

∑T−1
t=0 R(t)

k − R(T)
]2

K

where R(T) = {(1/T)
∑T−1

t=0
∑K

k=1 R(t)
k }/K is the mean of

time-average rates over all sensors. The small shadowed error
bar reflects the max–min fairness of our proposed approach.
Compared with the greedy benchmark, our proposed approach
can boost the minimum time-average rate significantly. The
improvement mainly results from two aspects. On the one
hand, the power consumption for data transmission is sig-
nificantly reduced since (51) strikes a balance between the
spectrum efficiency and the power consumption, instead of
focusing only on the spectrum efficiency. On the other hand,
the WPT efficiency is improved by optimizing the down-
link power control coefficients and scheduling. Moreover, it is
seen that a larger W leads to a higher minimum time-average
rate and requires more time slots to achieve the rate stabil-
ity. Comparing Figs. 5 and 6, the minimum time-average rate
becomes smaller as Ka increased from 30 to 100 although
more sensors are active in each time slot. This is because the
accuracy of channel estimation is reduced by enlarging the
active set K(t)

a , which is noted in Remark 1.
To investigate the rate stability of the virtual queues, Fig. 7

shows the sum of time-average backlogs X(t) and Y(t) versus
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Fig. 5. Minimum time average rate versus the index of time slot with
Ka = 30.

Fig. 6. Minimum time average rate versus the index of time slot with
Ka = 100.

the index of time slot with different W, where

X(t) = 1

T

T−1
∑

t=0

K
∑

k=1

Xk(t), and Y(t) = 1

T

T−1
∑

t=0

K
∑

k=1

Yk(t).

The nonincreasing X(t) and Y(t) reveal that {Xk(t), Yk(t) : k ∈
K} are rate stable, which implies the long-term constraints (31)
and (33) of problem P2 are satisfied. With the increase of W,
the time-average backlogs X(t) and Y(t) also increase. Fig. 8
plots the dynamic of the battery state {b(t)

k : k ∈ K} versus
the index of time slot. It can be seen b(t)

k always fluctuates
across the predefined b0, which implies that the batteries are
never exhausted. If b(t)

k is smaller than b0 for some continuous
time slots, the corresponding backlog Xk(t) would increase
continuously, and then trigger power transfer to increase b(t)

k
and avoid the depletion of the battery.

VII. CONCLUSION

In this article, we have considered the long-term schedul-
ing and power control in a wirelessly powered cell-free IoT
network. We first derived closed-form expressions for the har-
vested energy and the achievable rates, and then formulated a

Fig. 7. Backlogs versus the index of time slot with different W.

Fig. 8. Dynamic of {b(t)
k :k ∈ K} with W = 10.

long-term scheduling and power control problem to maximize
the minimum time-average achievable rate. Following the
Lyapunov optimization approach, the transmission mode, the
sensor state, and the uplink and downlink power control
coefficients are jointly determined for each time slot. The
simulation results reveal that the proposed long-term schedul-
ing and power control approach can boost the max–min
time-average achievable rate significantly.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we first introduce the following two
lemmas.

Lemma 5 [26]: Let A ∈ C
τ×τ is a Hermitian invertible

matrix. Then, for any vector x ∈ C
τ and any scalar a ∈ C

such that A + axxH is invertible

xH(A + axxH)−1 = xHA−1

1 + axHA−1x
. (55)

Lemma 6 [26]: Let A ∈ C
τ×τ , and x, y ∼ CN (0, [1/τ ]Iτ ).

Assume that A has uniformly bounded spectral norm (w.r.t. τ )
and that x and y are mutually independent and independent of
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A, we have

xHAx − trA/τ
a.s.−−−−−−−→

τ→∞ 0 (56)

xHAy
a.s.−−−−−−−→

τ→∞ 0. (57)

Substituting Z(t)
l,k = Z(t)

l − Epβl,kψkψ
H
k into (6), and

using (55), we obtain

γ
(t)
l,k = Epβ

2
l,kψ

H
k

(

Z(t)
l,k + Epβl,kψkψ

H
k

)−1
ψk

=
Epβ

2
l,kψ

H
k

(

Z(t)
l,k

)−1
ψk

1 + Epβl,kψ
H
k

(

Z(t)
l,k

)−1
ψk

.

Since ψk ∼ CN (0, [1/τ ]I) is independent of [Z(t)
l,k]−1,

using (56), we have

γ
(t)
l,k −

Epβ
2
l,ktr

[(

Z(t)
l,k

)−1
]

/τ

1 + Epβl,ktr

[(

Z(t)
l,k

)−1
]

/τ

a.s.−→ 0 (58)

Substituting (21) into (58), we conclude the proof.

APPENDIX B
PROOF OF THEOREM 2

Since a(t)
l,k = √

Epβl,k[Z(t)
l ]−1ψk, using (55)–(57), we obtain

∥
∥
∥a(t)

l,k

∥
∥
∥

2 −
Epβ

2
l,ktr

{[

Z(t)
l,k

]−2
}

/τ

(

1 + Epβl,ktr

{[

Z(t)
l,k

]−1
}

/τ

)2
a.s.−→ 0 (59)

ψH
k a(t)

l,k −
√

Epβl,ktr

{[

Z(t)
l,k

]−1
}

/τ

1 + Epβl,ktr

{[

Z(t)
l,k

]−1
}

/τ

a.s.−→ 0 (60)

and

ψH
i a(t)

l,k
a.s.−→ 0, (i 
= k). (61)

Substituting (21)–(23) and (59)–(61) into (27), we can con-
clude the proof.

APPENDIX C
PROOF OF LEMMA 3

According to (30) and (58), we have

ē(t)
l,k − βl,k

1 + Epβl,ktr

[(

Z(t)
l,k

)−1
]

/τ

a.s.−→ 0 (62)

[

ē(t)
l,k

]′ − βl,k

1 + Epβl,ktr

{[(

Z(t)
l,k

)′]−1
}

/τ

a.s.−→ 0. (63)

Without loss of generality, we assume
[

Z(t)
l,k

]′ = Z(t)
l,k + Epβjψ l,jψ

H
j , j ∈

[

K(t)
a

]′
, j /∈ K(t)

a .

Using (55), we have

tr

{[(

Z(t)
l,k

)′]−1
}

= tr

{[

Z(t)
l,k

]−1
}

−
Epβl,jψ

H
j

[

Z(t)
l,k

]−2
ψ j

1 + Epβl,jψ
H
j

[

Z(t)
l,k

]−1
ψ j

a.s.−→ tr

{[

Z(t)
l,k

]−1
}

−
Epβl,jtr

{[

Z(t)
l,k

]−2
}

1 + Epβl,jtr

{[

Z(t)
l,k

]−1
}

< tr

{[

Z(t)
l,k

]−1
}

(64)

where the second step follows from (56) due to the indepen-
dence of ψ j and [Z(t)

l,k]−1. Substituting (64) into (62) and (63),
we can conclude the proof.

APPENDIX D
PROOF OF THEOREM 3

According to the definition [P(t)]∗ in (40), we have

D∗(t) ≤ D′(t) (65)

in each time slot t = 0, 1, . . . From the identical initial
point X∗

k (0) = X′
k(0) = Xk(0), Y∗

k (0) = Y ′
k(0) = Yk(0), k =

1, . . . , K, using (39) and (65), we can obtain

L′(1) = D′(0) +
K
∑

k=1

{[

X′
k(0)

]2 + [

Y ′
k(0)

]2
}

≥ D∗(0) +
K
∑

k=1

{

[Xk(0)]2 + [Yk(0)]2
}

= L∗(1) (66)

where L′(t) = ∑K
k=1{[X′

k(t)]
2 + [Y ′

k(t)]
2} and L∗(t) =

∑K
k=1{[X∗

k (t)]2 + [Y∗
k (t)]2}. For any given time slot t with

L∗(t) ≤ L′(t), using (39) and (65), we have

L∗(t + 1) − L∗(t) ≤ L′(t + 1) − L′(t)

=
K
∑

k=1

{[

X′
k(t + 1)

]2 + [

Y ′
k(t + 1)

]2
}

−
K
∑

k=1

{[

X′
k(t)

]2 + [

Y ′
k(t)

]2
}

≤ L′(t + 1) − L∗(t)
which implies

L∗(t + 1) ≤ L′(t + 1). (67)

From (66) and (67), we can conclude that
K
∑

k=1

{[

X∗
k (T)

]2 + [

Y∗
k (T)

]2
}

≤
K
∑

k=1

{[

X′
k(T)

]2 + [

Y ′
k(T)

]2
}

(68)

for any given T . When {X′
k(t), Y ′

k(t) : k = 1, . . . , K, } are rate
stable, (68) is equivalent to

lim
T→∞

1

T

K
∑

k=1

{[

X∗
k (T)

]2 + [

Y∗
k (T)

]2
}

≤ 0 (69)

which implies {X∗
k (t), Y∗

k (t) : k = 1, . . . , K, } are rate stable.
Then, we conclude the proof.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:01:22 UTC from IEEE Xplore.  Restrictions apply. 



344 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 1, JANUARY 1, 2021

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A survey on enabling technologies, pro-
tocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 4th Quart., 2015.

[2] F. Javed, M. K. Afzal, M. Sharif, and B. Kim, “Internet of Things
(IoT) operating systems support, networking technologies, applications,
and challenges: A comparative review,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 3, pp. 2062–2100, 3rd Quart., 2018.

[3] Z. Chu, F. Zhou, Z. Zhu, R. Q. Hu, and P. Xiao, “Wireless powered sen-
sor networks for Internet of Things: Maximum throughput and optimal
power allocation,” IEEE Internet Things J., vol. 5, no. 1, pp. 310–321,
Feb. 2018.

[4] Y. Xiao, M. Krunz, and T. Shu, “Multi-operator network sharing
for massive IoT,” IEEE Commun. Mag., vol. 57, no. 4, pp. 96–101,
Apr. 2019.

[5] K. Mikhaylov et al., “Energy efficiency of multi-radio massive machine-
type communication (MR-MMTC): Applications, challenges, and solu-
tions,” IEEE Commun. Mag., vol. 57, no. 6, pp. 100–106, Jun. 2019.

[6] L. Liu, R. Zhang, and K.-C. Chua, “Multi-antenna wireless pow-
ered communication with energy beamforming,” IEEE Trans. Commun.,
vol. 62, no. 12, pp. 4349–4361, Dec. 2014.

[7] S. Kashyap, E. Björnson, and E. G. Larsson, “On the feasibility of
wireless energy transfer using massive antenna arrays,” IEEE Trans.
Wireless Commun., vol. 15, no. 5, pp. 3466–3480, May 2016.

[8] T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma,
S. Chatzinotas, and J. Li, “Simultaneous wireless information and
power transfer (SWIPT): Recent advances and future challenges,” IEEE
Commun. Surveys Tuts., vol. 20, no. 1, pp. 264–302, 1st Quart., 2018.

[9] J. Huang, C. Xing, and C. Wang, “Simultaneous wireless information
and power transfer: Technologies, applications, and research challenges,”
IEEE Commun. Mag., vol. 55, no. 11, pp. 26–32, Nov. 2017.

[10] S. Bi and R. Zhang, “Placement optimization of energy and information
access points in wireless powered communication networks,” IEEE
Trans. Wireless Commun., vol. 15, no. 3, pp. 2351–2364, Mar. 2016.

[11] J. Chen, L. Zhang, Y. Liang, X. Kang, and R. Zhang, “Resource allo-
cation for wireless-powered IoT networks with short packet communi-
cation,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1447–1461,
Feb. 2019.

[12] T. A. Khan, A. Yazdan, and R. W. Heath, “Optimization of power
transfer efficiency and energy efficiency for wireless-powered systems
with massive MIMO,” IEEE Trans. Wireless Commun., vol. 17, no. 11,
pp. 7159–7172, Nov. 2018.

[13] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.

[14] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and
B. D. Rao, “Precoding and power optimization in cell-free mas-
sive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 7,
pp. 4445–4459, Jul. 2017.

[15] X. Wang, A. Ashikhmin, and X. Wang, “Wirelessly powered cell-free
IoT: Analysis and optimization,” IEEE Internet Things J., early access,
Apr. 27, 2020, doi: 10.1109/JIOT.2020.2990378.

[16] S. Rao, A. Ashikhmin, and H. Yang, “Internet of Things based on
cell-free massive MIMO,” in Proc. 53rd Asilomar Conf. Signals Syst.
Comput., Pacific Grove, CA, USA, 2019, pp. 1946–1950.

[17] M. Mollanoori and M. Ghaderi, “Uplink scheduling in wireless networks
with successive interference cancellation,” IEEE Trans. Mobile Comput.,
vol. 13, no. 5, pp. 1132–1144, May 2014.

[18] X. Wang and L. Cai, “Proportional fair scheduling in hierarchical modu-
lation aided wireless networks,” IEEE Trans. Wireless Commun., vol. 12,
no. 4, pp. 1584–1593, Apr. 2013.

[19] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” in Synthesis Lectures on
Communication Networks, vol. 3. San Rafael, CA, USA: Morgan &
Claypool, 2010, pp. 1–211.

[20] S. Pan and Y. Chen, “Energy-optimal scheduling of mobile cloud com-
puting based on a modified Lyapunov optimization method,” IEEE
Trans. Green Commun. Netw., vol. 3, no. 1, pp. 227–235, Mar. 2019.

[21] D. Zhai, R. Zhang, L. Cai, B. Li, and Y. Jiang, “Energy-efficient user
scheduling and power allocation for NOMA-based wireless networks
with massive IoT devices,” IEEE Internet Things J., vol. 5, no. 3,
pp. 1857–1868, Jun. 2018.

[22] K. Choi and D. Kim, “Stochastic optimal control for wireless pow-
ered communication networks,” IEEE Trans. Wireless Commun., vol. 15,
no. 1, pp. 686–698, Jan. 2016.

[23] W. Ma, W. Wang, and T. Jiang, “Energy beamforming for wireless
information and power transfer in backscatter multiuser networks,” in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA,
2019, pp. 1–6.

[24] G. Song, W. Wang, D. Chen, and T. Jiang, “KPI/KQI-driven coordinated
multipoint in 5G: Measurements, field trials, and technical solutions,”
IEEE Wireless Commun., vol. 25, no. 5, pp. 23–29, Oct. 2018.

[25] M. Peng, Y. Yu, H. Xiang, and H. V. Poor, “Energy-efficient resource
allocation optimization for multimedia heterogeneous cloud radio
access networks,” IEEE Trans. Multimedia, vol. 18, no. 5, pp. 879–892,
May 2016.

[26] J. Hoydis, S. Ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of cellular networks: How many antennas do we need?” IEEE J. Sel.
Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[27] Z. Jing, Q. Yang, M. Qin, and K. S. Kwak, “Long term max–min fairness
guarantee mechanism: Adaptive task splitting and resource allocation in
MEC-enabled networks,” in Proc. IEEE 30th Int. Symp. Pers. Indoor
Mobile Radio Commun. (PIMRC Workshop), Istanbul, Turkey, 2019,
pp. 1–6.

[28] T. Lipp and S. Boyd, “Variations and extension of the convex–concave
procedure,” Optim. Eng., vol. 17, no. 2, pp. 263–287, 2016.

[29] S. K. Joshi, K. B. S. Manosha, M. Codreanu, and M. Latva-Aho,
“Dynamic inter-operator spectrum sharing via Lyapunov optimization,”
IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6365–6381,
Oct. 2017.

[30] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted
sum-rate maximization for reconfigurable intelligent surface aided
wireless networks,” IEEE Trans. Wireless Commun., vol. 19, no. 5,
pp. 3064–3076, May 2020.

[31] K. Shen and W. Yu, “Fractional programming for communication
systems—Part I: Power control and beamforming,” IEEE Trans. Signal
Process., vol. 66, no. 10, pp. 2616–2630, May 2018.

[32] K. Shen and W. Yu, “Fractional programming for communication
systems—Part II: Uplink scheduling via matching,” IEEE Trans. Signal
Process., vol. 66, no. 10, pp. 2631–2644, May 2018.

Xinhua Wang (Member, IEEE) received the Ph.D.
degree in communication and information system
from Shandong University, Jinan, China, in 2016.

In June 2016, he joined the College of Electrical
Engineering, Qingdao University, Qingdao, China,
as a Lecturer. His research interests include mas-
sive MIMO, cell-free massive MIMO, compressed
sensing, and random matrix theory.

Xiaodong Wang (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Princeton
University, Princeton, NJ, USA, in 1998.

He is a Professor of electrical engineering with
Columbia University, New York, NY, USA. His
research interests fall in the general areas of com-
puting, signal processing, and communications, and
has published extensively in these areas. Among his
publications is a book titled Wireless Communication
Systems: Advanced Techniques for Signal Reception
(Prentice-Hall, 2003). His current research interests

include wireless communications, statistical signal processing, and genomic
signal processing.

Prof. Wang received the 1999 NSF CAREER Award, the 2001 IEEE
Communications Society and Information Theory Society Joint Paper Award,
and the 2011 IEEE Communication Society Award for Outstanding Paper on
New Communication Topics. He has served as an Associate Editor for the
IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON SIGNAL
PROCESSING, and the IEEE TRANSACTIONS ON INFORMATION THEORY.
He is listed as an ISI Highly Cited Author.

Alexei Ashikhmin (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from the
Institute of Information Transmission Problems,
Russian Academy of Science, Moscow, Russia, in
1994.

He is a Distinguished Member of Technical
Staff with the Mathematics and Algorithms of
Communications Department, Nokia Bell Labs,
Murray Hill, NJ, USA. He is also an Adjunct
Professor with Columbia University, New York, NY,
USA, where he teaches courses on quantum com-

puting and error correction, digital communications, and error correcting
codes. His research interests include communications theory, massive MIMO
systems, theory of error correcting codes and its modern applications, as well
as classical and quantum information theory.

Dr. Ashikhmin was a recipient of the 2017 SPS Donald G. Fink Overview
Paper Award for the article “An Overview of Massive MIMO: Benefits
and Challenges” published in the IEEE JOURNAL OF SELECTED TOPICS
IN SIGNAL PROCESSING. In 2014, he received the Thomas Edison Patent
Award in the Telecommunications for a Patent on Massive MIMO System
with Decentralized Service Antennas. In 2004, he received the IEEE
Communications Society Stephen O. Rice Prize for the best paper published
in IEEE TRANSACTIONS ON COMMUNICATIONS. In 2002, 2010, and 2011,
he was a recipient of the Bell Laboratories President Award for breakthrough
research in wired and wireless communication projects.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:01:22 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/JIOT.2020.2990378

