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Abstract—In this article, we propose a wirelessly powered
Internet-of-Things (IoT) system based on the cell-free massive
MIMO technology. In such a system, during the downlink phase,
the sensors harvest radio-frequency (RF) energy emitted by the
distributed access points (APs). During the uplink phase, sensors
transmit data to the APs using the harvested energy. Collocated
massive MIMO and small-cell IoT can be treated as special cases
of cell-free IoT. We derive the tight closed-form lower bound on
the amount of harvested energy, and the closed-form expression
of SINR as the metrics of power transfer and data transmission,
respectively. To improve energy efficiency, we jointly optimize
the uplink and downlink power control coefficients to minimize
the total transmit energy consumption while meeting the tar-
get SINRs. Extended simulation results show that cell-free IoT
outperforms collocated massive MIMO and small-cell IoT in
terms of both downlink and uplink 95% likely performances.
Moreover, significant gains can be achieved by the proposed joint
power control in terms of both per user throughput and energy
consumption.

Index Terms—Cell-free massive MIMO, Internet of Things
(IoT), power control, wireless power transfer (WPT).

I. INTRODUCTION

THE Internet of Things (IoT) is envisioned as a promising
technology which enables massively connected intelligent

devices to share information and to coordinate decisions [1],
[2]. The concept of IoT has brought revolutionary applica-
tions in a wild range of domains, including transportation,
smart healthcare, environmental monitoring, smart home, and
so on. However, the short battery life of the devices causes a
bottleneck hampering the proliferation of IoT [3].

Wireless power transfer (WPT) has recently gained signif-
icant attention since it allows to prolong the lifetime of IoT
and it is more controllable and reliable compared with ambient
sources, such as solar, wind, etc. [4], [5]. In wirelessly powered
communication networks (WPCNs), the terminals first harvest
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radio-frequency (RF) energy from the WPT beacons and then
transmit information in the following time slots [6], [7]. This
approach can be extended to IoT networks with a large num-
ber of low-power sensors. To maximize the system throughput,
Chu et al. [3] jointly optimized the energy beamforming vec-
tor and time allocation duration for a wirelessly powered IoT
network.

The main challenge of WPT is the low efficiency due to
radio scattering and path loss [8], [9]. As effective countermea-
sures, MIMO, and especially massive MIMO techniques, have
been adopted in WPCNs [10], so that the sensors can harvest
more energy since the RF energy becomes more concentrated.
For massive MIMO-based WPCN, Wu et al. [11] investi-
gated the asymptotically optimal downlink power allocation
strategy to maximize the uplink sum rate. The massive MIMO-
powered two-way and multiway relay networks were investi-
gated in [12] and [13], respectively. However, the performance
of cell-boundary terminals is still poor due to the heavy path
loss. The distributed antenna system (DAS) is adopted to
reduce the path loss and improve the WPT efficiency. For the
distributed WPT system, Lee and Zhang [14] studied the effec-
tive channel training method for optimal energy beamforming
with and without coordination. Kim and Yoon [15] proposed
a joint time allocation and energy beamforming approach to
maximize the energy efficiency of WPCN with distributed
antennas. To maximize the average worst case SINR under
energy harvesting constraints, Zhu et al. [16] jointly optimized
the beamforming vectors and the power splitting factors for a
multiuser DAS.

Recently, cell-free massive MIMO wireless systems
attracted intensive research interests. In cell-free massive
MIMO, a large number of access points (APs) are dis-
tributed over a large area. These APs collaboratively serve
a large number of terminals using the same time–frequency
resource [17], [18]. In contrast to collocated (cellular) massive
MIMO, cell-free massive MIMO is a user-centric architec-
ture [19], since each terminal is served by the adjacent
distributed APs. Compared with collocated massive MIMO,
cell-free massive MIMO typically yields a high degree of
macro-diversity and low path loss, since the service antennas
are close to the sensors. Ngo et al. [20] derived the closed-
form expressions of spectral efficiency and energy efficiency
for the downlink cell-free massive MIMO system. To improve
the spectral efficiency or energy efficiency, the precoding and
power control are investigated in [18] and [21]. In a word,
the cell-free massive MIMO can reap all benefits from DAS
and massive MIMO. Recently, first results on cell-free IoT
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(IoT based on cell-free massive MIMO) have been obtained
in [22].

Motivation and Contribution: It is intuitively clear that in
cell-free IoT systems, the sensors can harvest more energy
during the downlink power transfer phase and reduce the
power consumption during the uplink data transmission phase.
Motivated by such double-fold benefits, we consider a cell-free
massive MIMO based IoT, in which some active sensors trans-
mit signals to APs using the harvested energy during the down-
link WPT. Our proposed framework can be widely applied in
wireless sensor networks with energy-limited devices, such as
the IoT networks for monitoring the environment pollution,
the health conditions of patients, and so on.

Our contributions in this article are twofold.
1) We propose the framework of wireless-powered IoT

based on cell-free massive MIMO. Collocated massive
MIMO and small-cell IoT can be treated as special
cases of cell-free IoT. We derive the tight closed-form
lower bound on the amount of harvested energy, and the
closed-form expression of SINR for three systems (cell-
free IoT, collocated massive MIMO, and small-cell IoT),
respectively. Numerical comparisons show that the cell-
free IoT system has the best uplink and downlink 95%
likely performances.

2) The uplink and downlink power control coefficients are
jointly optimized to minimize the total energy con-
sumption while meeting the predefined target SINR.
The problem is equivalently decomposed into a linear
optimization problem for uplink data transmission, and
a quadratic optimization problem for downlink power
transfer. Closed-form solutions to both problems are
provided.

Different from the previous works on WPCNs, we pro-
pose the wirelessly powered cell-free IoT with the user-centric
architecture and nonorthogonal random pilots. Due to the
nonorthogonal pilots, the estimates of channel vectors between
different sensors and the same AP are dependent, which leads
to challenges for deriving the closed-form expressions of the
amount of harvested energy for WPT and SINR for data
transmission.

The remainder of this article is organized as follows. In
Section II, we describe the system model and outline our
results. In Section III, we derive expressions for uplink and
downlink performances. In Section IV, we formulate and
solve the joint power control problem. The simulation results
are given in Section V. Finally, Section VI concludes this
article.

Notation: Throughout this article, scalars and vectors are
denoted by lowercase letters and boldface lowercase letters,
respectively. Diag(a) denotes a diagonal matrix with diagonal
entries are equal to the components of a. |·| and ‖·‖ repre-
sent the absolute value and the �2 norm, respectively. (·)H

and (·)−1 denote the conjugate transpose and the inverse oper-
ation, respectively. [A]mm returns the mth diagonal element
of A. CN (m, R) denotes the circularly symmetric complex
Gaussian (CSCG) distribution with mean m and covariance
matrix R. E[·] and var{·} stand for the expectation and variance
operations, respectively.

Fig. 1. Cell-free massive MIMO with distributed APs serving active sensors.

Fig. 2. Frame structure.

II. SYSTEM MODEL AND OUTLINE OF RESULTS

As shown in Fig. 1, L distributed APs and a large number of
sensors are randomly located in an area. Among them, there
are K active sensors indexed as 1, . . . , K in a given period. We
consider a wirelessly powered IoT based on cell-free massive
MIMO which can be deemed as a sufficient large network
wrapped around by this area. All APs connect to a central
processing unit (CPU) via a perfect backhaul network, which
implies that there is no handover when a user moves. Different
from DAS, the cell-free IoT is user centric, that is, each sensor
is served by the closest L APs. Each AP is equipped with
N antennas and each user has a single antenna. The channel
coefficient between the kth sensor and the nth antenna of the
lth AP is denoted as

g(l,n),k = √βl,kh(l,n),k

where βl,k represents the large-scale fading and is assumed
known, and h(l,n),k ∼ CN (0, 1) is the small-scale fading.
Denote g(l,n) as the channel vector between the nth antenna of
the lth AP and active sensors, and gl,j as the channel vector
between the lth AP and the jth sensor, i.e.,

g(l,n) = [g(l,n),1, . . . , g(l,n),K
]T ∈ C

K×1

and

gl,j = [g(l,1),j, . . . , g(l,N),j
]T ∈ C

N×1.

As shown in Fig. 2, we partition communication into peri-
ods, and each period includes (λ+1)Q consecutive coherence
time blocks. In each period, the K active users first harvest
RF energy emitted by APs over λQ time blocks, and next
transmit data to APs in the remaining time blocks using the
harvested energy. Each coherence time Tc block contains T
OFDM symbols, in which τ symbols are used for channel
estimation, while the remaining symbols are used for WPT or
data transmission.
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A. System Model

1) Downlink WPT: During the τ symbols in each time
slot, all K active sensors simultaneously transmit their pilot
sequences to all APs for channel estimation. Let ψk ∈ C

τ

with ‖ψk‖2 = 1 be the pilot sequence of the kth sensor. Denote
� = [ψ1, . . . ,ψK] ∈ C

τ×K , the received pilots y(l,n) ∈ C
τ at

the nth antenna of the lth AP are given by

y(l,n) = √
τρp

K∑

k=1

g(l,n),kϕk + w(l,n)

= √
τρp�g(l,n) + w(l,n) (1)

where w(l,n) ∼ CN (0, I) is the additive noise, and ρp is
the normalized pilot transmit power. Given y(l,n), the chan-
nel estimate ĝ(l,n) is obtained by using the linear minimum
mean-square-error (LMMSE) method.

During the remaining symbols in each time slot, the APs
use the estimated channels to conduct conjugate beamforming
and simultaneously transmit signals to all sensors. Denote by
ηl,j the power control coefficients of the lth AP for the jth
sensor, and by qj ∼ CN (0, 1) the symbol intended for this
sensor. The received signal at the kth sensor is

zk =
L∑

l=1

gT
l,kxl + vk (2)

where vk ∼ CN (0, 1) is the additive noise at the kth sensor,
and xl = √

ρd
∑K

j=1
√

ηl,jĝ
∗
l,jqj is the transmitted signal from

the lth AP with

�l = E

[
‖xl‖2

]
≤ Nρd (3)

where Nρd is the maximum transmit power of each AP. Thus,
the total energy consumption during the λQ downlink WPT
time blocks is

�tr =
(

1 − τ

T

)
λQ

L∑

l=1

�l (4)

while the harvested energy of the kth sensor during the λQ
WPT time blocks can be expressed as

Ek =
(

1 − τ

T

)
λQζE

[
|zk|2

]
(5)

where ζ ∈ [0, 1] is the energy conversion efficiency.
2) Uplink Data Transmission: During the τ symbols in

each time slot, channel estimation is performed in the same
way as the downlink WPT case. During the remaining symbols
in each time slot, K users simultaneously transmit their data to
all APs. Let ρu be the maximum normalized transmit power of
each sensor. Let ξj ∈ [0, 1] be the power control coefficient,
and sj be the data symbol of the jth user with E[|sj|2] = 1.
Then, the received signal rl ∈ C

N at the lth AP is

rl = √
ρu

K∑

j=1

√
ξjgl,jsj + nl (6)

where nl ∼ CN (0, IN) is the additive noise. To detect symbol
sk, the lth AP computes ĝH

l,krl and sends it to the CPU. The

CPU employs the equal gain combining (EGC) to detect sk as
follows:

ŝk =
L∑

l=1

ĝH
l,krl

= √
ρuξk

L∑

l=1

E

[
ĝH

l,kgl,k

]

︸ ︷︷ ︸
A1

sk

+ √
ρuξk

L∑

l=1

(
ĝH

l,kgl,k − E

[
ĝH

l,kgl,k

])

︸ ︷︷ ︸
A2

sk

+
K∑

j 	=k

√
ρuξj

L∑

l=1

ĝH
l,kgl,j

︸ ︷︷ ︸
A3

sj +
L∑

l=1

ĝH
l,knl

︸ ︷︷ ︸
A4

(7)

where A1 is the desired signal, and A2, A3, and A4 are
the beamforming uncertainty, interuser interference due to the
nonorthogonality of the pilots, and noise, respectively. It is not
difficult to show that A1, A2, A3, and A4 are uncorrelated.
Hence, according to [23], the worst case is the AWGN chan-
nel with the effective noise A2 + A3 + A4. Thus, similar as
in [17], the capacity of the kth sensor is lower bounded by

Ck = log2(1 + �k) b/s/Hz (8)

with the effective SINR

�k = |A1|2
E
[|A2|2

]+ E
[|A3|2

]+ E
[|A4|2

] (9)

where the expectation is with respect to the small-scale fading.
In addition, the energy consumption of the kth sensor during
successive Q time blocks for data transmission is

Ek(ξk) =
(

1 − τ

T

)
Qρuξk. (10)

B. Outline of Results

To evaluate the performance of the cell-free IoT, a col-
located massive MIMO system and a small-cell system are
also considered as benchmarks for comparison. The collocated
massive MIMO can be treated as a special case of cell-free IoT,
where all L APs are collocated, which implies βl,k = βk ∀l.
For the small-cell system, we assume that user k is served by
only one AP that has the largest βl,k coefficient. We define the
following binary association coefficient:

δl,j =
{

1, jth sensor is associated with the lth AP
0, otherwise.

Then, the received signal at the kth sensor during the downlink
WPT phase [corresponding to (2) of cell-free IoT] is

zsc
k =

L∑

l=1

δl,kgT
l,kxsc

l + vk

where xsc
l = √

ρd
∑K

j=1

√
δl,jηl,jĝ

∗
l,jqj is the transmitted sig-

nal at the lth AP. Similar as cell-free IoT, during uplink data
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transmission, the estimate of sk is

ŝsc
k =

L∑

l=1

δl,kĝH
l,krl.

Hence, the small-cell system can also be treated as a special
case of cell-free IoT with ĝl,k = δl,kĝl,k.

In Section III, we derive the tight closed-form lower bound
of Ek in (5) and the closed-form expression of �k in (9) as
the metrics of WPT and data transmission, respectively, for
the three systems. The numerical results reveal that cell-free
massive MIMO achieves higher Ek and �k given the same
power control coefficients. This is because, compared with
collocated massive MIMO, the cell-free massive MIMO can
achieve more macrodiversity since the sensors are closer to
APs; and compared with small cells, the cooperation between
different APs leads to higher array gain.

Then, in Section IV, we jointly optimize the downlink and
uplink power control coefficients η and ξ , and the WPT dura-
tion λ to further improve the efficiency of the cell-free IoT.
We aim to minimize the energy consumption of APs �tr in (4)
while meeting a given target SINR during data transmission
supported by the harvested energy.

III. PERFORMANCE ANALYSIS

In this section, we derive tight closed-form lower bounds
on Ek in (5), and the closed-form expressions of �k in (9)
for cell-free massive MIMO, collocated massive MIMO, and
small-cell systems.

A. LMMSE Channel Estimation

According to (1), we have

E

[
y(l,n)y

H
(l,n)

]
= E

[(√
τρp�g(l,n) + w(l,n)

)

×
(√

τρpgH
(l,n)�

H + wH
(l,n)

)]

= τρp�Dl�
H + I

and

E

[
g(l,n)y

H
(l,n)

]
= E

[
g(l,n)

(√
τρpgH

(l,n)�
H + wH

(l,n)

)]

= E

[√
τρpg(l,n)g

H
(l,n)�

H + g(l,n)w
H
(l,n)

]

= √
τρpDl�

H

where Dl = E[g(l,n)g
H
(l,n)] = diag(βl,1, . . . , βl,k). Thus, the

LMMSE channel estimate of g(l,n) is

ĝ(l,n) = E

[
g(l,n)y

H
(l,n)

](
E

[
y(l,n)y

H
(l,n)

])−1
y(l,n)

= √
τρpDl�

H(τρp�Dl�
H + I

)−1
y(l,n)

= AH
l y(l,n) (11)

where

Al = √
τρp
(
τρp�Dl�

H + I
)−1

�Dl.

Thus, we have

E

[
ĝ(l,n)ĝ

H
(l,n)

]
= √

τρpDl�
HAl. (12)

The estimated channel ĝ(l,n) includes K Gaussian distributed
variables with

γl,k = E

[∣∣ĝ(l,n),k
∣∣2
]

=
[
E

(
ĝ(l,n)ĝ

H
(l,n)

)]

kk

= √
τρpβl,kψ

H
k al,k = τρpβ

2
l,kψ

H
k Z−1

l ψk (13)

where

Zl = τρp�Dl�
H + I (14)

and

al,k = √
τρpβl,kZ−1

l ψk (15)

is the kth column of Al. It is also useful to write explicitly
that

ĝ(l,n),k = aH
l,k

(
√

τρp

K∑

i=1

g(l,n),iϕi + w(l,n)

)

. (16)

From (16), the channel estimate ĝ(l,n),k depends on all the
channel coefficients {g(l,n),i, i = 1, . . . , K} which is due to the
nonorthogonal random pilots. Hence, the estimates of chan-
nel vectors between different sensors and the same AP are
dependent, i.e.,

cov
[
ĝl,k, ĝl,i

] 	= 0, k, i = 1, . . . , K.

The dependence between ĝl,k and ĝl,i leads to chal-
lenges for deriving the closed-form expressions of Ek

in (5) and �k in (9). To derive the closed-form expres-
sions of Ek and �k, we first introduce the following
lemma.

Lemma 1: The estimates of channel vectors between differ-
ent APs and the same sensor are uncorrelated, i.e.,

cov
[
ĝl,k, ĝm,k

] = 0, m, l ∈ {1, . . . , L}, m 	= l

k = 1, . . . , K.

Moreover, the corresponding norms are also uncorrelated, i.e.,

cov
[∥∥ĝl,k

∥∥2
,
∥∥ĝm,k

∥∥2
]

= 0.

Proof: See Appendix A.

B. Results for Cell-Free IoT

1) Downlink Power Transfer: Let g̃l,k = gl,k − ĝl,k be the
channel estimation error. The received signal at the kth user
in (2) can be rewritten as

zk = Sk1 + Sk2 + Sk3 (17)

where

Sk1 = √
ρd

L∑

l=1

√
ηl,kĝT

l,kĝ∗
l,kqk

Sk2 = √
ρd

L∑

l=1

√
ηl,kg̃T

l,kĝ∗
l,kqk

and

Sk3 = √
ρd

L∑

l=1

K∑

j 	=k

√
ηl,jgT

l,kĝ∗
l,jqj + vk.
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The amount of energy harvested by the kth user during λQ
successive time blocks can be expressed as

Ek =
(

1 − τ

T

)
λQζE

[
|Sk1 + Sk2 + Sk3|2

]

=
(

1 − τ

T

)
λQζE

[
|Sk1|2 + |Sk2 + Sk3|2

+ 2�{Sk1(Sk2 + Sk3)}
]
.

Note that Sk1, Sk2, and Sk3 are uncorrelated since we assume
that downlink symbols for different users are uncorrelated.
Thus, we have E[2�{Sk1(Sk2 +Sk3)}] = 0, and this allows us
to get the following lower bound for Ek as shown in (18), at
the bottom of the page, where step (a) is obtained according
to Lemma 1 and η̃l,k = ηl,kγl,k should satisfy:

K∑

k=1

η̃l,k ≤ 1, for any AP l = 1, . . . , L

according to (3) and (13), where the constant γl,k is given
in (13), which essentially is the estimate of βl,k.

2) Uplink Data Transmission: Using the method in [22], we
get the following closed-form expression of the SINR given
in (9), which is a function of the large-scale fading coefficients
and the pilot sequences.

Theorem 1: The effective SINR of the kth sensor in cell-
free massive MIMO with the LMMSE channel estimation and
the EGC receiver is

�k = Dkξk

Ukξk +∑j 	=k Ikjξj + Nk
(19)

where

Dk = ρuN

(
L∑

l=1

γl,k

)2

, Uk =
L∑

l=1

ρuγl,kβl,k

Nk =
L∑

l=1

γl,k

and

Ikj = ρu

L∑

l=1

βl,j
∥∥al,k

∥∥2 + τρuρpN

(
L∑

l=1

βl,jψ
H
j al,k

)2

+ τρuρp

L∑

l=1

K∑

i=1

βl,jβl,i
(
ψH

i al,k
)2

.

Proof: See Appendix B.
Note that �k in (19) depends on not only the uplink power

control coefficients {ξk} but also the random pilots {ψk}. So,
the channel estimation plays a more important role than the
cases with orthogonal pilots.

C. Results for Collocated Massive MIMO and Small-Cell IoT

The collocated massive MIMO is a special case with
βl,k = βk, γl,k = γk, and η̃l,k = η̃k. So, we have the following
corollary.

Corollary 1: For collocated massive MIMO, the amount of
energy harvested by the kth user in λQ successive time blocks
is lower bounded as

Ecm
k ≥ Ẽcm

k =
(

1 − τ

T

)
λQζρdLN(LN + 1)η̃kγk.

The effective SINR of the kth sensor during the data transmis-
sion phase is given by

�cm
k = Dcm

k ξk

Ucm
k ξk +∑j 	=k Icm

kj ξj + N cm
k

where Dcm
k = ρuLN(γk)

2, Ucm
k = ρuγkβk, N cm

k =
γk, and Icm

kj = ρuβj‖ak‖2 + τρuρp
∑K

i=1 βjβi(ψ
H
i ak)

2 +
τρuρpLN(βjψ

H
j ak)

2.
Moreover, the small-cell IoT is also a special case with

ĝl,k = δl,kĝl,k and γl,k = δl,kγl,k. Substituting them into (18)
and (19), we have the following corollary.

Corollary 2: For small-cell IoT, the amount of energy har-
vested by the kth user in λQ successive time blocks is lower
bounded as

E sc
k ≥ Ẽ sc

k =
(

1 − τ

T

)
λQζρdN(N + 1)

L∑

l=1

δlkη̃lkγlk. (20)

The effective SINR of the kth sensor during the data transmis-
sion phase is given by

�sc
k = Dsc

k ξk

U sc
k ξk +∑j 	=k Isc

kj ξj + N sc
k

Ek ≥ Ẽk =
(

1 − τ

T

)
λQζE

[
|Sk1|2

]
=
(

1 − τ

T

)
λQζρd

L∑

l=1

L∑

m=1

E

[√
ηl,kηm,kĝT

l,kĝ∗
l,kĝT

m,kĝ∗
m,k

]

=
(

1 − τ

T

)
λQζρd

L∑

l=1

E

[
ηl,k
∥∥ĝl,k

∥∥4
]

+
(

1 − τ

T

)
λQζρd

L∑

l=1

L∑

m	=l

E

[√
ηl,kηm,k

∥∥ĝl,k

∥∥2∥∥ĝm,k

∥∥2
]

(a)=
(

1 − τ

T

)
λQζN(N + 1)ρd

L∑

l=1

(
ηl,kγ

2
l,k

)
+
(

1 − τ

T

)
λQζN2ρd

L∑

l=1

L∑

m	=l

(√
ηl,kηm,kγl,kγm,k

)

=
(

1 − τ

T

)
λQζN2ρd

(
L∑

l=1

√
ηl,kγl,k

)2

+
(

1 − τ

T

)
λQζNρd

L∑

l=1

(√
ηl,kγl,k

)2

=
(

1 − τ

T

)
λQζNρd

⎡

⎣N

(
L∑

l=1

√
η̃l,kγl,k

)2

+
L∑

l=1

η̃l,kγl,k

⎤

⎦ (18)
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where

Dsc
k = ρuN

L∑

l=1

δl,kγ
2
l,k, U sc

k =
L∑

l=1

ρuδl,kγl,kβl,k

N sc
k =

L∑

l=1

δl,kγl,k

and

Isc
kj = ρu

⎡

⎣τρp

L∑

l=1

K∑

i=1

δl,kβl,jβl,i
(
ψH

i al,k
)2 +

L∑

l=1

δl,kβl,j
∥∥al,k

∥∥2

+ τρpN

(
L∑

l=1

δl,kβl,jψ
H
j al,k

)2
⎤

⎦.

IV. JOINT DOWNLINK–UPLINK POWER CONTROL

To improve the energy efficiency of cell-free IoT, we aim
to minimize the total energy consumption of APs �tr in (4)
while meeting a given target SINR by jointly optimizing the
uplink power control coefficients ξ and the downlink energy
allocation μ = λη̃ with μl,k = λη̃l,k. Then, we determine
the normalized downlink power control coefficients η̃ through
minimizing the WPT duration λ. Specifically, the amount
of harvested energy in each period of each sensor should
satisfy

Ẽk ≥ Ek(ξk) + E0 ∀k (21)

where Ek(ξk) is the energy consumption for data transmission,
and E0 is the energy consumption for the pilot transmission
and circuit operation.

Substituting μl,k = λη̃l,k into (18), Ẽk can be further
simplified into

Ẽk(μ) =
(

1 − τ

T

)
QζNρd

⎡

⎣N

(
L∑

l=1

√
μl,kγl,k

)2

+
L∑

l=1

μl,kγl,k

⎤

⎦.

(22)

According to (3) and (4) and the definition of xl, the total
energy consumption of APs can be rewritten as

�tr = Q
(

1 − τ

T

)
ρdN

L∑

l=1

K∑

k=1

μl,k. (23)

The joint optimization problem is then

P0 : min
ξ ,μ

�tr

s.t. Ẽk(μ) ≥ Ek(ξk) + E0 ∀k

�k(ξ) ≥ �k ∀k (24)

0 ≤ ξk ≤ 1 ∀k (25)

μ ≥ 0 (26)

where �k is a given target SINR value during the data
transmission. Next, we show that P0 can be equivalently

decomposed into the following two problems:

P1 : min
ξ

K∑

k=1

Ek(ξk)

s.t. �k(ξ) = Dkξk

Uk2ξk +∑j 	=k Ikjξj + Nk
≥ �k ∀k

0 ≤ ξk ≤ 1 ∀k

and

P2 : min
μ

�tr

s.t. Ẽk(μ) ≥ Ek(ξk) + E0 ∀k

μ ≥ 0. (27)

P1 is minimization of the total energy consumption∑K
k=1 Ek(ξk) subject to the target SINR constraint �k for

the uplink data transmission, and P2 is minimization of the
total energy consumption given the target harvested energy
constraints for the downlink WPT.

Theorem 2: Solving P0 is equivalent to solving P1 and P2
in sequence.

Proof: From Theorem 3, the optimal solution ξ∗ to P1
is the point that can simultaneously minimize Ek(ξk) for all k
under the constraints of (24) and (25). That is, for any point
ξ ∈ P with P being the feasibility region defined by (24)
and (25), we have

Ek(ξk) ≥ Ek
(
ξ∗

k

)
, k = 1, . . . , K. (28)

Denote the optimal solution to P0 as (ξ#,μ#). It is noted that
�tr and Ẽk(μ) are monotonically increasing functions with
respect to μl,k ∀l, k. Thus, for ξ# 	= ξ∗, we can further
reduce μl,k ∀l when Ek(ξ

#
k ) > Ek(ξ

∗
k ), and get a new solu-

tion (ξ∗,μ∗) with μ∗ 
 μ# which can further minimize the
objective function �tr. Hence, the optimal solution to P0 can
be achieved only when ξ = ξ∗, which implies that solving P0
is equivalent to solving P1 and P2 in sequence.

In what follows, we discuss methods for solving P1 and P2,
respectively.

A. Closed-Form Optimal Solution to P1

Define the following K × K matrix:

W =

⎡

⎢⎢⎢
⎣

D1 − �1U1 −�1I12 . . . −�1I1K

−�2I21 D2 − �2U2 . . . −�2I2K
...

...
. . .

...

−�KIK1 −�KIK2 . . . DK − �KUK

⎤

⎥⎥⎥
⎦

.

We have the following result.
Theorem 3: If P1 is feasible with P 	= ∅, and W is inver-

tiable, then the optimal solution ξ∗ = (ξ∗
1 , . . . , ξ∗

K) of P1 is
given by

ξ∗ = W−1b (29)

where b = [�1N1,�2N2, . . . ,�KNK]T. In addition, ξ∗
simultaneously minimizes the energy consumption for each
sensor subject to the target SINR constraints, i.e.,

Ek
(
ξ∗

k

) ≤ Ek(ξk) ∀k, with ξ = (ξ1, . . . , ξK) ∈ P. (30)
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Proof: We partition the feasible region P into

P1a = {ξ : �1(ξ) > �1 and �j(ξ) ≥ �j, j 	= 1
}

and

P1b = {ξ : �1(ξ) = �1 and �j(ξ) ≥ �j, j 	= 1
}
.

For any ξ̄ ∈ P1a, there exists a sufficiently small positive value
ν and ξ̃ = (ξ̄1 −ν, ξ̄2, . . . , ξ̄K) ∈ P1b such that

∑K
k=1 Ek(ξ̃k) ≤∑K

k=1 Ek(ξ̄k). Hence, the optimal solution ξ∗ ∈ P1b. Using
similar arguments, we can show that ξ∗ ∈ Pkb for any k,
where

Pkb = {ξ : �k(ξ) = �1 and �j(ξ) ≥ �j, j 	= k
}
.

Thus, ξ∗ ∈ P1b ∩ · · · ∩ PKb, i.e.,

�k
(
ξ∗) = �k, k = 1, . . . , K. (31)

Equation (31) can be rewritten as

Wξ∗ = b.

Next, we prove (30) which is equivalent to

ξ∗
k ≤ ξk ∀k, with ξ ∈ P (32)

since Ek(ξk) is a monotonically increasing function of ξk,
where P is the feasibility region defined by (24) and (25).
Next, we prove (32) by contradiction. Assume there exists

ξ ′ = (
ξ ′

1, . . . , ξ
′
K

) = (c1ξ
∗
1 , . . . , cKξ∗

K

) ∈ P

with some elements ξ ′
k = ckξ

∗
k < ξ∗

k , which is equivalent to
the existence of some ck < 1. Since (29) and ξ ′ ∈ P, we have
�k(ξ

∗) = �k and �k(ξ
′) ≥ �k for k = 1, . . . , K. Without loss

of generality, we assume c1 < 1 and ck > 0, k 	= 1. Using
�1(ξ

∗) = �1 and �1(ξ
′) ≥ �1, we have

�1
(
ξ∗) = D1ξ

∗
1

U1ξ
∗
1 +∑j 	=1 I1jξ

∗
j + N1

= �1 (33)

and

�1
(
ξ ′) = D1c1ξ

∗
1

U1c1ξ
∗
1 +∑j 	=1 I1jξ

′
j + N1

≥ �1. (34)

Comparing (33) and (34), we obtain
∑

j 	=1

I1jξ
′
j < c1

∑

j 	=1

I1jξ
∗
j

which implies at least one ck < c1, k = 2, . . . , K. Without
loss of generality, we assume c2 < c1. Using �2(ξ

∗) = �2 and
�2(ξ

′) ≥ �2, one can show that at least one ck < c2 < c1, k =
3, . . . , K. Continuing in this way to satisfy �k(ξ

∗) = �k and
�k(ξ

′) ≥ �k with k = 1, . . . , K − 1, we conclude that

c1 > c2 >, . . . , > cK > 0. (35)

Using �K(ξ∗) = �K and (35), we have

�K
(
ξ ′) = DKcKξ∗

K

UKcKξ∗
K +∑j 	=1 IKjcjξ

∗
j + NK

< �K
(
ξ∗) = �K (36)

and ξ ′ /∈ P, which contradicts with our assumption. Then, we
conclude the proof.

Fig. 3. Feasible region of P1 (shadow area).

To understand Theorem 3, consider the case K = 2. Then,
the feasible region P is

ξ1 ≥ �1I12

D1 − �1U1
ξ2 + �1

D1 − �1U1
N1

and

ξ2 ≥ �2I21

D2 − �2U2
ξ1 + �2

D2 − �2U2
N2.

Thus, P is the shaded area as shown in Fig. 3. It is straight-
forward to see that ξ∗ is the optimal solution which can
simultaneously minimize the energy consumption of both
sensors, since the feasible region is a cone.

B. Closed-Form Asymptotically Optimal Solution to P2

According to (21)–(23), P2 can be rewritten as

min
μ

Q
(

1 − τ

T

)
ρdN

L∑

l=1

K∑

k=1

μl,k (37)

s.t.

⎡

⎣N

(
L∑

l=1

√
μl,kγl,k

)2

+
L∑

l=1

μl,kγl,k

⎤

⎦ ≥ Ck ∀k

μl,k ≥ 0 ∀l, k (38)

where

Ck = Ek(ξk) + E0(
1 − τ

T

)
QζρdN

.

Then, P2 is nonconvex due to the nonlinear constraints
in (38). Since

∑L
l=1 μl,kγl,k ≤ (

∑L
l=1

√
μl,kγl,k)

2, we drop the
term

∑L
l=1 μl,kγl,k in (38), to obtain a relaxed problem P2′.

Note that for massive MIMO, i.e., when N is large, P2′ well
approximates P2. It is not difficult to prove that the optimal
solution to P2′ is obtained only when

N

(
L∑

l=1

√
μl,kγl,k

)2

= Ck ∀k. (39)

Let ϑl,k = √
μl,k, then P2′ becomes

min
ϑ

Q
(

1 − τ

T

)
ρdN

L∑

l=1

K∑

k=1

ϑ2
l,k

s.t.
L∑

l=1

√
γl,kϑl,k = √Ck/N ∀k

ϑl,k ≥ 0 ∀l, k. (40)
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Algorithm 1 Joint Downlink–Uplink Power Control
Algorithm

1: Input: The large-scale fading coefficients {βl,k}, the pilot
sequence �,and the target SINRs {�k}.

2: Step 1: Calculate the optimal uplink power control
coefficients ξ∗ according to (29).

3: Step 2: Calculate the optimal downlink power control
coefficients η∗ according to (42), (43), and (44).

4: Output: ξ∗ and η∗.

It is easily seen that P2′ can be decomposed into the following
K independent minimization problems for k = 1, . . . , K:

min
ϑk

Q
(

1 − τ

T

)
ρdN

L∑

l=1

ϑ2
l,k

s.t.
L∑

l=1

√
γl,kϑl,k = √Ck/N

ϑl,k ≥ 0, l = 1, . . . , L. (41)

Using the method of the Lagrange multipliers, the closed-form
optimal solution to (41) is

ϑ∗
l,k =

√
γl,kCk/N
∑L

l=1 γl,k
, l = 1, . . . , L. (42)

It is noted that the optimal solution to (40) is a feasible solu-
tion to (37), and approaching the optimal solution to (37)
as N grows large. After finding ϑ∗, we get μ∗

l,k = (ϑ∗
l,k)

2.
Furthermore, we use μ∗ = λη̃ to find λ and η̃. To guarantee
the power constraints

K∑

k=1

η̃l,k ≤ 1, l = 1, . . . , L

we have

K∑

k=1

μ∗
l,k ≤ λ, l = 1, . . . , L.

Thus, the minimum charging duration is

λ∗ = max
l=1,...,L

K∑

k=1

μ∗
l,k. (43)

Next, we find

η̃∗
l,k = μ∗

l,k

λ∗ and η∗
l,k = η̃∗

l,k

γl,k
. (44)

The overall algorithm for solving P0 is summarized
in Algorithm 1. In addition, it is easy to extend our
proposed algorithm into the nonlinear energy harvesting
model [24], [25], since the amount of harvested energy of the
kth sensor can be simplified as a monotonically increasing
function of Ek/ζ [26].

V. NUMERICAL RESULTS

In this section, simulation results are provided to corrobo-
rate our theoretical analysis and to illustrate the gain due to
our proposed system optimization. We consider a large square
hall of 50 × 50 m2 with wrapped around to avoid boundary
effects. L = 144 APs are placed on the ceiling to form a
square array with 12 APs in each column and row. K = 20
active sensors are randomly distributed in this area. The pilot
sequences ψk, k = 1, . . . , K, are randomly generated and
fixed for all simulations. The channel fading coefficients for
all scenarios are modeled similar as in [22]. The large-scale
fading coefficient βl,k is modeled as

βl,k = Ll,k10
σshzl,k

10

where Ll,k(dB) is the path loss and 10[(σshzlk)/10] is the
shadow fading with standard deviation σsh = 8 dB and
zl,k ∼ CN (0, 1). Similar to [17], we use the three-slope
path-loss model

Ll,k =
⎧
⎨

⎩

−L0 − 35 log10(dlk), if dlk > d1

−L0 − 15 log10(d1) − 20 log10(dlk), if d0 < dlk ≤ d1

−L0 − 15 log10(d1) − 20 log10(d0), if dlk ≤ d0

(45)

with d0 = 10 m, d1 = 50 m, and

L0 � 46.3 + 33.9 log10(f ) − 13.82 log10(hAP)

− (
1.1 log10(f ) − 0.7

)
hs + (1.56 log10(f ) − 0.8

)
(46)

where f = 1900 MHz is the carrier frequency, and hAP = 7 m
and hs = 1.65 m denote the antenna height of APs and sensors,
respectively. The transmit power is normalized by the noise
power, which is given by

σ 2 = B × kB × T0 × κ

where kB = 1.381 × 10−23 J/K is the Boltzmann constant and
B is the bandwidth. T0 = 290 K and κ = 9 dB denote the
noise temperature and the noise figure, respectively.

To evaluate the spectrum efficiency, we use the per user
throughput defined as

Rk = 1 − τ/T

(1 + λ)
B log2(1 + �k) b/s. (47)

To account for the energy consumption due to pilots and
circuits, E0 in (21) is set as

E0 = (1 + λ0)
τ

T
Qρp + (1 + λ0)Qρ0 (48)

where ρ0 = 0.1 mW is the circuit power consumption of each
sensor, and λ0 = 50 is the maximum WPT duration allowed to
guarantee the spectrum efficiency. In all examples, we choose
the system parameters listed in Table I.

In addition, we fixed the time of data transmission in each
period is 1 s, which implies that Q = 1/Tc = 5.

We first verify the accuracy of the closed-form expressions
Ẽk in (18) and �k in (19) for cell-free IoT systems for one
realization of large-scale fading {βl,k}. In Fig. 4, the lower
bounds Ẽk, k = 1, . . . , K in (18), are compared with the sim-
ulation results obtained by (5) using 500 small-scale fading

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 25,2021 at 23:49:35 UTC from IEEE Xplore.  Restrictions apply. 



8392 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

TABLE I
SIMULATION PARAMETERS

Fig. 4. Tightness of the lower bound Ẽk in (18).

channel realizations, under the uniform power control, i.e.,
η̃l,k = 1/K ∀l, k. It is seen that the gap between the lower
bound Ẽk and the simulation result is less than 10%. This is
because E[|Sk1|2] � E[|Sk2 + Sk3|2] in (17) as N is large. In
Fig. 5, the closed-form �k in (19) is compared with the sim-
ulation results obtained by (9) using 500 small-scale fading
channel realizations with full transmit power, i.e., ξk = 1 ∀k.
It is seen that the closed-form expressions match well with the
simulation results.

Next, we compare the uplink and downlink performances
of three systems which are cell-free IoT, collocated massive
MIMO, and small-cell IoT for 200 realizations of large-scale
fading {βl,k}. Fig. 6 shows the cumulative distribution func-
tion (CDF) of the amount of energy harvested per second, i.e.,
Ẽk/(λQ), for three systems. For cell-free IoT and collocated
massive MIMO systems, the uniform power control scheme is
adopted. For small-cell IoT, the kth sensor is powered by its
associated AP, i.e., η̃l,k = 1 if δl,k = 1. It can be seen that
the harvested energy of small-cell IoT is smaller than that of

Fig. 5. Accuratcy of the SINR expression in (19).

Fig. 6. Downlink performance comparison in terms of Ẽk/(λQ) (mW).

the other two systems due to the lower array gain. For col-
located massive MIMO, the amount of harvested energy of
the cell-boundary sensors is typically small, while that of the
sensors adjacent to the AP is very high. Compared with the
collocated massive MIMO, the distribution of the harvested
energy in cell-free IoT is more concentrated, which results in
the substantial improvement of the 95% likely performance.
From Fig. 6, it can be seen that the 95% likely performance
of cell-free IoT is about five times higher than the collocated
massive MIMO. Fig. 7 plots the CDF of the effective SINR
for three scenarios with full transmit power, i.e., ξk = 1 ∀k.
Similar as the amount of energy harvested, the distribution
of effective SINR is more concentrated, and the 95% likely
performance is significantly higher than that of the collocated
massive MIMO and small-cell IoT. 95% likely performance
means the worst performance among 95% of the best sensors
which has been widely used in related networks [17], [22].
According to the 95% likely performance, we claim the cell-
free network outperforms the collocated massive MIMO and
the small-cell IoT, since it can support more networks with
higher requirements. It can be seen that about 20% of sen-
sors close to the collocated base station perform better than
the cell-free networks. That is, the collocated massive MIMO
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Fig. 7. Uplink performance comparison in terms of SINR.

Fig. 8. Performance gain due to joint power control in terms of total energy
consumption �tr to support data transmission with given target SINR �k =
30, k = 1, . . . , K, in each period.

outperforms the cell-free network according to the 20% likely
performance. However, it is impractical to only support 20%
sensors of the whole network.

Finally, the performance of our joint downlink and uplink
power control method is investigated. For comparison, we take
the no power control scheme with ξk = 1 ∀k and η̃l,k = 1/K
as the benchmark. The result is taken over 200 realizations of
large-scale fading {βl,k}. Fig. 8 shows the total energy con-
sumption �tr given in (23) to support data transmission with
given target SINR �k = 30 ∀k. It can be seen that the total
energy consumption �tr can be reduced by about 30% using
the joint downlink and uplink power control. On the one hand,
the energy consumption of each sensor can be reduced greatly
to support the given target SINR using the uplink power con-
trol. On the other hand, the total energy consumption can be
further reduced through the downlink power control. The CDF
of the per user throughput is plotted in Fig. 9. It can be seen
that the per user throughput can be improved by 100%, com-
pared with the benchmark. In a word, the energy efficiency can
be greatly improved through our joint power control method,
in terms of both per user throughput and energy consumption.

Fig. 9. Performance gain due to joint power control in terms of per user
throughput with �k = 30 ∀k.

VI. CONCLUSION

In this article, we have proposed a wirelessly powered cell-
free IoT system and obtained the closed-form expressions of
the downlink and uplink performance metrics, i.e., the amount
of harvested energy for downlink, and the SINR for uplink.
To minimize the total transmit power consumption under the
given SINR constraints, we proposed the joint downlink and
uplink power control and provided closed-form solutions. The
numerical results indicate that the proposed cell-free massive
IoT system significantly outperforms its collocated massive
MIMO and small-cell counterparts in terms of both downlink
and uplink 95% likely performances. The proposed joint power
control further boosts the system performance.

APPENDIX A
PROOF OF LEMMA 1

Proof: Using (16), the element of the correlation matrix
cov[ĝl,k, ĝm,k] in the nth row and the n̄th column is

cov
[
ĝ(l,n),k, ĝ(m,n̄),k

]

= E

[
ĝ(l,n),kĝH

(m,n̄),k

]
− E

[
ĝ(l,n),k

]
E

[
ĝH
(m,n̄),k

]

= E

⎡

⎣τρp

K∑

i=1

K∑

j=1

g(l,n),ig(m,n̄),jaH
l,kϕiϕ

H
j am,k + aH

l,k

× w(l,n)wH
(m,n̄)am,k + √

τρp

K∑

i=1

g(l,n),iaH
l,kϕiw

H
(m,n̄)am,k

+ √
τρp

K∑

j=1

g(m,n̄),jaH
m,kϕjw

H
(l,n)al,k

⎤

⎦

(a)= E

[
aH

l,kw(l,n)wH
(m,n̄)am,k

]

= tr
[
E

(
w(l,n)wH

(m,n̄)am,kaH
l,k

)]

(b)= 0

where step (a) is obtained according to the independence of
g(l,n),i and g(m,n̄),j, while step (b) is obtained according to the
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independence of w(l,n) and w(m,n̄). Since each element is zero,
the correlation matrix is zero matrix, i.e.,

cov
[
ĝl,k, ĝm,k

] = 0. (49)

Using (16), we can obtain

E

[
ĝ2
(l,n),k, ĝ2

(m,n̄),k

]

= E

⎡

⎢
⎣

(

aH
l,k

[
√

τρp

K∑

i=1

g(l,n),iϕi + w(l,n)

])2

×
⎛

⎝aH
m,k

⎡

⎣√
τρp

K∑

j=1

g(m,n̄),jϕj + w(m,n̄)
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H
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H
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)

×
⎛

⎝τρp

K∑

j=1

g2
(m,n̄),ja

H
m,kϕja

H
m,kϕj + aH

m,kw(m,n̄)aH
m,kw(m,n̄)

⎞

⎠

⎤

⎦

= E

[
ĝ2
(l,n),k

]
E

[
ĝ2
(m,n̄),k

]
. (50)

Thus, we have

cov
[
ĝ2
(l,n),k, ĝ2

(m,n̄),k

]
= E

[
ĝ2
(l,n),kĝ2

(m,n̄),k

]

− E

[
ĝ2
(l,n),k

]
E

[
ĝ2
(m,n̄),k

]
= 0. (51)

By the definition of the �2 norm, we have

E

[∥∥ĝl,k

∥∥2∥∥ĝm,k

∥∥2
]

= E

[(
N∑

n=1

ĝ2
(l,n),k

)(
N∑

n̄=1

ĝ2
(m,n̄),k

)]

=
N∑

n=1

N∑

n̄=1

E

[
ĝ2
(l,n),kĝ2

(m,n̄),k

]

(a)=
N∑

n=1

N∑

n̄=1

E

[
ĝ2
(l,n),k

]
E

[
ĝ2
(m,n̄),k

]

= E

[
N∑

n=1

ĝ2
(l,n),k

]

E

[
N∑

n̄=1

ĝ2
(m,n̄),k

]

= E

[∥∥ĝl,k

∥∥2
]
E

[∥∥ĝm,k

∥∥2
]

where step (a) is obtained by (51). Thus, we have

cov
[∥∥ĝl,k

∥∥2
,
∥∥ĝm,k

∥∥2
]

= 0. (52)

APPENDIX B
PROOF OF THEOREM 1

Proof: First, we compute the power of A1. Since ĝl,k and
g̃l,k are independent, we have

|A1|2 = ξkρu

∣∣∣∣∣

L∑

l=1

E

[
ĝH

l,k

(
ĝl,k + g̃l,k

)]
∣∣∣∣∣

2

= ξkρuN2

∣∣∣∣∣

L∑

l=1

γl,k

∣∣∣∣∣

2

. (53)

Next, we compute the power of A2. Since ĝl,k and g̃l,k are
independent, and

E

[∥∥ĝl,k

∥∥4
]

= E

[∥∥ĝl,k

∥∥2
]2 + D

[∥∥ĝl,k

∥∥2
]

= N(N + 1)γ 2
l,k

the power of A2 can be expressed as (54), shown at the bottom
of the page, where step (a) is obtained by using Lemma 1.

Then, the power of A3 can be expressed as

E

[
|A3|2

]
=
∑

j 	=k

ρuξjE

⎡

⎣

∣∣∣∣∣

L∑

l=1

ĝH
l,kgl,j

∣∣∣∣∣

2
⎤

⎦ (55)

where E[|∑L
l=1 ĝH

l,kgl,j|2] can be calculated as (56), shown at
the top of the next page, with step (a) being obtained by (57),
shown at the top of the next page. Substituting (56) into (55),
we obtain (58), shown at the top of the next page.

E

[
|A2|2

]
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L∑
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ĝH
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ĝH
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⎡
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[∥∥ĝl,k

∥∥4
]

+ E

[∣∣∣ĝH
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∣∣∣
2
]

+
∑
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E
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]
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E
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l,kg̃l,kĝH
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]
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{
E
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∥∥2ĝH
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− ρξkN2
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(a)= ρξk

L∑

l=1

⎡

⎣N(N + 1)γ 2
l,k + Nγl,k

(
βl,k − γl,k

)+ N2
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L∑
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γl,kβl,k (54)
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E

[∣∣∣gH
l,jgl,i

∣∣∣
2
]

= Nβl,jβl,i, l̄ = l, ī = i 	= j

E
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Finally, we compute the power of A4. Due to the indepen-
dence of ĝl,k and g̃l,k, we have

E

[
|A4|2

]
= E

⎡

⎣

∣∣∣∣∣

L∑

l=1

ĝH
l,knl

∣∣∣∣∣

2
⎤

⎦ = N
L∑

l=1

γl,k. (59)

Plugging (53), (54), (58), and (59) into (9), we obtain (19).
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