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Privacy-Preserving Channel Estimation in Cell-Free
Hybrid Massive MIMO Systems
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Abstract— We consider a cell-free hybrid massive multiple-
input multiple-output (MIMO) system with K users and M
access points (APs), each with Na antennas and Nr < Na

radio frequency (RF) chains. When K � MNa , efficient uplink
channel estimation and data detection with reduced number of
pilots can be performed based on low-rank matrix completion.
However, such a scheme requires the central processing unit
(CPU) to collect received signals from all APs, which may enable
the CPU to infer the private information of user locations.
We therefore develop and analyze privacy-preserving channel
estimation schemes under the framework of differential privacy
(DP). As the key ingredient of the channel estimator, two
joint differentially private noisy matrix completion algorithms
based respectively on Frank-Wolfe iteration and singular value
decomposition are presented. We provide an analysis on the
tradeoff between the privacy and the channel estimation error.
In particular, we show that the estimation error can be mitigated
while maintaining the same privacy level by increasing the
payload size with fixed pilot size; and the scaling laws of both
the privacy-induced and privacy-independent error components
in terms of payload size are characterized. Simulation results are
provided to further demonstrate the tradeoff between privacy
and channel estimation performance.

Index Terms— Cell-free, hybrid massive MIMO, channel esti-
mation, location privacy, joint differentially private, matrix
completion, Frank-Wolfe, singular value decomposition.

I. INTRODUCTION

DUE to the high spectral and energy efficiencies, the
cell-free massive MIMO has emerged as a promising

wireless technology, where a large number of access points
(APs) are distributed over a geographical area, and collabora-
tively serve users using the same time-frequency resource [1].
To reduce the high cost associated with equipping each
antenna with a radio frequency (RF) chain that contains a
high-resolution analog-to-digital converter (ADC) [2], hybrid

Manuscript received June 3, 2020; revised October 25, 2020 and
January 7, 2021; accepted January 12, 2021. Date of publication January 29,
2021; date of current version June 10, 2021. This work was supported in
part by the National Key Research and Development Program of China under
Grant 2019YFE0113400; in part by the Natural Science Foundation of Jiangsu
Province under Grant BK20180011; and in part by the National Natural
Science Foundation of China under Grant 61871122 and Grant 61971127.
The associate editor coordinating the review of this article and approving it
for publication was J. Yang. (Corresponding author: Pengcheng Zhu.)

Jun Xu, Pengcheng Zhu, and Xiaohu You are with the National Mobile
Communications Research Laboratory, Southeast University, Nanjing 210096,
China (e-mail: xujunseu@seu.edu.cn; p.zhu@seu.edu.cn; xhyu@seu.edu.cn).

Xiaodong Wang is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: wangx@ee.columbia.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3053770.

Digital Object Identifier 10.1109/TWC.2021.3053770

analog/digital architectures are typically employed where with
analog combining based on switches or phase shifters, anten-
nas are randomly connected to a reduced number of RF chains
and ADCs [3].

To enable cell-free hybrid massive MIMO systems, it is
crucial to obtain accurate channel state information (CSI).
In [3], a semi-blind channel estimation method based on
low-rank matrix completion was proposed for hybrid massive
MIMO, with the salient feature that the number of pilots is
proportional to the number of users, instead of the number of
antennas; and the estimation error reduces with the increase
of the data payload size. In order to apply such channel
estimation scheme in a cell-free system, each AP needs to
send its observed received signal to a central processing unit
(CPU), which performs channel estimation and data detection
for all users. However, this may lead to the leakage of users’
location information to the CPU, since the large scale fading
of channels are determined by the locations of users and APs
according to the path loss law.

Nowadays, the privacy awareness of the public has been sig-
nificantly increased when using smart mobile devices and ser-
vices. From the view point of users, privacy in 5G network can
be divided into three main categories: data privacy, location
privacy and identity privacy [4]. Locations are usually regarded
as one of the most important sensitive information for most
people, the leakage of which may pose threats to other sen-
sitive information (e.g., home address, work place) and even
personal safety [5]. Hence, it is crucial to provide high-quality
services without disclosing the users’ location privacy in 5G
mobile networks. In [6], the location privacy of users is consid-
ered in the context of mobile traffic offloading system, where
a system administrator coordinates assigning each mobile user
one of multiple offloading stations. Each user sends its prefer-
ence over all available offloading stations. Since such prefer-
ence data can be used to infer the user location, it is required
to be kept private from the system administrator. In this paper,
we consider the same location privacy issue in the context of
physical layer signal processing, i.e., channel estimation.

Three popular techniques for maintaining privacy include
anonymization, data encryption and differential privacy [7].
Among them, anonymization strategies do not guarantee
complete level of protection from adversaries; cryptographic
techniques are computationally expensive; whereas differential
privacy is easy to implement and provides provable privacy
guarantee. Therefore in this paper, we aim to apply differential
privacy to achieve privacy-preserving channel estimation.
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TABLE I

TABLE OF NOTATIONS

Differential privacy (DP) is a probabilistic framework based on
the notion of indistinguishability [8]. In particular, observing
an output of a differentially private algorithm, one cannot infer
whether any specific user contributed to the data. In this frame-
work, privacy is mainly achieved by randomizing the released
statistics. DP has been accepted as a standard privacy model
and widely adopted in many fields, such as recommender
system [9], deep learning [10], distributed optimization [11],
data mining [12], ridesharing services [5], etc. In addition,
applications of DP in communication networks include data-
driven caching in information-centric networks [13], and
big data analytics in edge computing [14], [15]. However,
so far there is no work addressing DP for physical-layer
signal processing. A particular challenge is that unlike the
above-mentioned higher-layer applications, the physical-layer
is much more sensitive to the perturbation noise added to
achieve DP.

In this paper, we aims to design privacy-preserving
channel estimation algorithms for cell-free hybrid massive
MIMO systems. The major contributions are summarized as
follows:

• To the best of our knowledge, this is the first work that
integrates DP with physical-layer signal processing.

• We propose two privacy-preserving channel estimators
based on Frank-Wolfe (FW) iteration and singular value
decomposition (SVD), respectively.

• We show that both channel estimation algorithms are
joint differentially private. We also analyze the estimation
error bounds for the two algorithms, and characterize
the scaling laws of the estimation error in terms of data
payload size.

• Through extensive simulations, we illustrate the tradeoff
between privacy and channel estimation and data detec-
tion performance for the two algorithms.

The remainder of this paper is organized as follows.
Section II describes the cell-free hybrid massive MIMO system
under consideration and provides some background on DP.
Two privacy-preserving channel estimation algorithms are
proposed in Section III. Section IV presents the analysis
on the privacy and channel estimation performance of the
two algorithms. Simulation results are provided in Section V.
Finally, Section VI concludes the paper.

Notations: Boldface letters denote matrices (upper
case) or vectors (lower case). The transpose, conjugate
transpose and trace operators are denoted by (·)T, (·)H and
tr (·) respectively. ‖ · ‖F , ‖ · ‖2 and ‖ · ‖nuc denote the
Frobenius norm, spectral norm and nuclear norm of a matrix,
respectively. Assuming the singular values of a matrix A ∈
Cm×n are λ1, · · · , λmin(m,n) in descending order, then we

have ‖A‖F =
√∑m

i=1

∑n
j=1 A2 (i, j) =

√∑min(m,n)
i=1 λ2

i ;

‖A‖2 = λ1; ‖A‖nuc =
∑min(m,n)

i=1 λi. Diag (d) returns a
diagonal matrix whose diagonal elements are given by a
vector d. IM , ⊗ and E {·} respectively represent the M ×M
identity matrix, the Kronecker product and the expectation
operator. Nc(μ, σ2) and N (μ, σ2) respectively denote the
complex and real circularly symmetric Gaussian distribution
with mean μ and variance σ2. f(n) = Θ (g(n)) means f is
bounded below by g asymptotically; f(n) = O (g(n)) means
f is bounded above by g asymptotically; f(n) = ω (g(n))
means f dominates g asymptotically. The descriptions of
some notations used in this paper are summarized in Table I.

II. SYSTEM DESCRIPTIONS AND BACKGROUND

A. Signal Model

We consider a cell-free massive MIMO system, in which
M distributed APs each equipped with Na antennas collabo-
ratively serve K single-antenna users using the same time-
frequency resource, as shown in Fig. 1. We denote M =
{1, . . .M} and K = {1, . . .K} as the sets of APs and users
respectively. Each AP employs an analog structure with Nr

RF chains to combine the incoming signal in the RF band.
Each RF chain contains a high-resolution ADC and forwards
the data stream to the baseband processor that performs only
simple signal processing. All APs are connected to a CPU
through perfect backhaul links, which performs computation-
intensive signal processing.

We assume a block flat-fading channel between each user-
AP pair. The channel coefficients remain constant during a
coherence interval with τc time slots. Let Tc = {1, · · · , τc}
denote the set of time slots within a coherence. Throughout
the paper, we assume that MNa > τc, which can be satis-
fied in massive MIMO. The first τp time slots denoted by
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Fig. 1. The cell-free multiuser massive MIMO uplink system. Left: K single-antenna users. Right: M APs each with a hybrid structure consisting of Na

antennas and Nr RF chains. Each AP has a baseband processor with limited computational capability and all APs are connected to a CPU via perfect backhual
links.

Tp = {1, · · · , τp} are used for uplink channel estimation,
and the remaining τd = τc − τp time slots denoted by
Td = {τp+1, · · · , τc} are used for uplink data transmission.
The channel vector from user k to AP m can be modeled as

hk,m =
√

βk,mgk,m ∈ C
Na×1, (1)

where βk,m and gk,m ∈ Nc (0, INa) respectively represent the
large-scale and small-scale fading.

Let s [t] ∼ Nc (0, IK) denote the transmitted signal from
K users at time slot t, i.e., s [t] corresponds to pilots for
t ∈ Tp and data symbols for t ∈ Td. The received signal
rm [t] ∈ CNa×1 across Na antennas at AP m is given by

rm [t] = Hms [t] + nm [t] , ∀t ∈ Tc, ∀m ∈ M, (2)

where Hm = [h1,m, · · · ,hK,m] ∈ CNa×K denotes the
channel matrix between AP m and all users. nm [t] ∼
Nc

(
0, σ2INa

)
is the received noise sample at AP m at time

slot t. Denote Rm
Δ= [rm [1] , · · · , rm [τc]] ∈ CNa×τc , Nm

Δ=
[nm [1] , · · · ,nm [τc]] ∈ CNa×τc , P Δ= [s [1] , · · · , s [τp]] ∈
CK×τp , D Δ= [s [τp + 1] , · · · , s [τc]] ∈ CK×τd , S = [P,D] ∈
CK×τc . Then (2) can be rewritten as

Rm = HmS + Nm, ∀m ∈ M. (3)

By stacking the signals from all APs and denoting R =[
RT

1 , · · · ,RT
M

]T ∈ CMNa×τc , H =
[
HT

1 , · · · ,HT
M

]T ∈
CMNa×K and N =

[
NT

1 , · · · ,NT
M

]T ∈ CMNa×τc , we then
have

R = HS + N. (4)

Note that rank (HS) ≤ K and we assume that MNa � K
and τc � K , hence R is a noisy version of a low-rank matrix.

Then rm [t] will pass through analog structures and be
combined in the RF band. In this paper, we consider the
analog combining based on switches, where each RF chain is
randomly connected to one of Na antennas through a switch

at each time slot [3].1 Such antenna selection can capture
many advantages of massive MIMO and has low power
consumption [19]. Denote Ωm as the set of indices (n, t) such
that the n-th element of rm [t], Rm(n, t) is observed. Denote
Ym = (Rm)Ωm ∈ CNa×τc as the sampled version of Rm

such that

Ym (n, t) =

{
Rm (n, t) , if (n, t) ∈ Ωm,

0, if (n, t) /∈ Ωm.
(5)

Note that each column of Ym has exactly Nr non-zero
elements.

Traditionally when there is no privacy concern, to fully
exploit the low-rank structure of R in (4) and the com-
puting power of CPU, each AP m will send its received
signal Ym to the CPU. The CPU will then estimate the
channels {Hm, m ∈ M} and the user data payload D, based
on {Ym, m ∈ M} and the pilots P. However, note that the
large-scale fading coefficient βk,m in (1) contains the path
loss information which is in turn determined by the distance
between the user-AP pair. Since the locations of APs are fixed,
the location of user k can be accurately estimated if its dis-
tances from more than three APs are known. Hence if each AP
m directly sends Ym to the CPU, then the location information
of users might be compromised once the CPU obtains accurate
estimates of the channels {Hm, m ∈ M}. Hence, in order to
protect the location privacy of users, each AP m cannot send
its Ym directly to the CPU. Instead, the APs and the CPU
should collaborate in a privacy-preserving way such that the
estimate of channel Hm is only available to AP m but not to
the CPU or other APs.

1Such frequent antenna switching requires time-limited pulse shaping, which
may lead to lower bandwidth efficiency than time-orthogonal pulse shaping.
Note that the spatial modulation (SM) MIMO systems adopt the similar
antenna switching mechanism [16]–[18]. It was shown in [16], [17] that
the single-RF SM MIMO exhibits higher bandwidth efficiency than the
conventional full-RF MIMO when the number of antennas is large, which
is typical in massive MIMO.
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This paper focuses on the design and analysis of such
privacy-preserving channel estimation schemes. In the next
subsection, we provide a general overview of the notion of
differential privacy (DP) and basic approaches to achieving DP.

B. Background on Differential Privacy (DP)

Recall that Ym and Hm denote the received signal and
the channel at AP m, respectively. Denote Ĥm as an esti-
mate of Hm, Y =

[
YT

1 , · · · ,YT
M

]T ∈ CMNa×τc and

Ĥ =
[
ĤT

1 , · · · , ĤT
M

]T
∈ CMNa×K . Let A : CMNa×τc →

CMNa×K be a randomized channel estimation algorithm
which takes Y as input, and outputs Ĥ. In addition, A−m :
CMNa×τc → C(M−1)Na×K outputs Ĥ−m, which denotes the
estimated channels for all APs other than AP m. Similarly
denote Y−m ∈ C(M−1)Na×τc as Y with Ym removed. Recall
that our goal is to devise the channel estimation algorithm
A such that Ĥm is available only to AP m, but not to the
CPU or other APs.

Definition 1 (Standard DP [20] and Joint DP [21]): Given
ε, δ > 0, A is (ε, δ)-differentially private if for any AP m, any
two possible values Ym,Y′

m of the received signal at AP m,
any value Y−m of the received signal at all other APs, and
any subset S ∈ CMNa×K , we have

P [A ([Ym,Y−m]) ∈ S]
≤ eεP [A ([Y′

m,Y−m]) ∈ S] + δ, (6)

where the probability P [·] is over the randomness of A.
Moreover, A is (ε, δ)-joint differentially private if for any
subset S ∈ C(M−1)Na×K , we have

P [A−m ([Ym,Y−m]) ∈ S]
≤ eεP [A−m ([Y′

m,Y−m]) ∈ S] + δ. (7)

The meaning of the above standard DP is that a change of
the received signal Ym at any AP m has a negligible impact
on the estimated channel Ĥ. Hence, one cannot infer much
about the private data Ym from the output Ĥ and the data
Y−m, which however, implies that the estimated Ĥm of AP m
should not depend strongly on Ym. Obviously such channel
estimator will not be of practical value. On the other hand,
joint DP means that the estimate Ĥm for any particular AP
m can depend strongly on its data Ym; but the output of all
other APs Ĥ−m and Y−m do not reveal much about Ym,
which is a meaningful notion of privacy in the context of
channel estimation and will be adopted hereafter. Here, ε and
δ represent the worst-case privacy loss and smaller values of
them imply stronger privacy guarantee.

Next we review two important properties of DP, which hold
for both standard DP and joint DP.

Lemma 1 (Post-Processing [22]): Let A : T → S and
B : S → Q be randomized algorithms. Define an algorithm
A′ : T → Q by A′ = B (A). If A satisfies (ε, δ)-(joint) DP,
then A′ also satisfies (ε, δ)-(joint) DP.

Hence any operation performed on the output of a (joint)
differentially private algorithm, without accessing the raw data,
remains (joint) differentially private with the same level of
privacy.

Lemma 2 (T -Fold Composition [8], [22]): We assume that
there are T independent randomized algorithms A1, · · · ,AT ,
where each algorithm At : D → Rt is (ε, δ)-(joint) differen-
tially private. For all ε, δ, δ′ > 0, an algorithm A defined as
A (D) = (A1 (D) , · · · ,AT (D)) satisfies (ε′, T δ + δ′)-(joint)
DP with

ε′ = ε
√

2T ln (1/δ′) + T ε (eε − 1) . (8)

In particular, given target privacy parameters 0 < ε′ < 1 and
δ′ > 0, A satisfies (ε′, T δ + δ′)-(joint) DP if each algorithm

is
(
ε′/
√

8T ln (1/δ′), δ
)

-(joint) differentially private.

In the context of channel estimation, if Y is accessed
by CPU T times, each denoted by At (Y) , t = 1, · · · , T ,
then the information released to CPU is A (Y) =
(A1 (Y) , · · · ,AT (Y)). To make A (Y) joint differentially
private, we need to guarantee that each access At (Y) is
joint differentially private. In addition, the difference in the
privacy level between A (Y) and At (Y) stated in this lemma
will be useful in the design of the privacy-preserving channel
estimator.

The following important lemma provides us a way to
achieve joint DP by standard DP.

Lemma 3 (Billboard Lemma [23]): Suppose A : D =
(D1, · · · ,DM ) → R is (ε, δ)-differentially private, where Dm

denotes the data of AP m. If a randomized algorithm B has
M components with the m-th component Bm (Dm,A (D)),
where Bm : Dm ×R → Qm, ∀m ∈ M, then B is (ε, δ)-joint
differentially private.

Next we review the definition of 	2-sensitivity and a
well-known approach to achieving standard DP.

Definition 2 (	2-Sensitivity [22]): Let f (Y) be an arbitrary
function on the received signal Y =

[
YT

1 , · · · ,YT
M

]T
. Then

its 	2-sensitivity is defined as the maximum difference in the
function values when the received signals differ only at one
AP, i.e.,

Δf
Δ= max

1≤m≤M
max

Ym �=Y′
m

Yi=Y′
i
,∀i�=m

‖f (Y) − f (Y′)‖F . (9)

Lemma 4 (Gaussian Mechanism [22]): Assuming that the
information released to CPU during channel estimation is

A (Y) = f (Y) + G, (10)

where f (Y) has the 	2-sensitivity Δf and

G(i, j) i.i.d.∼ Nc

(
0,

Δ2
f2 ln(1.25/δ)

ε2

)
. (11)

Then the released A (Y) satisfies (ε, δ)-DP.
The above lemma helps us to calibrate the Gaussian per-

turbation noise to achieve (ε, δ)-DP. It can be seen that larger
perturbation noise is required to achieve stronger privacy level,
i.e., smaller ε and/or δ, which is intuitive because larger
noise variance increases the uncertainty about the released
information and hence improves privacy.
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Fig. 2. The global-local computation model of the proposed privacy-preserving noisy matrix completion algorithm.

III. PRIVACY PRESERVING CHANNEL ESTIMATION

In this section, we first show that the key component of
the privacy-preserving channel estimator is privacy-preserving
matrix completion. We then outline two such matrix comple-
tion algorithms.

A. Channel Estimation Based on Matrix Completion

Recall that in (4), X = HS ∈ CMNa×τc is low-rank,
i.e., rank (X) ≤ K , and Y is an incomplete observation of
X corrupted by channel noise N. We first design a privacy-
preserving algorithm A to solve a noisy matrix completion
problem, which takes Y as input and outputs a low-rank

matrix X̂ =
[(

X̂1

)T

, · · · ,
(
X̂M

)T
]T

∈ CMNa×τc as an

estimate of X =
[
XT

1 , · · · ,XT
M

]T
, where Xm = HmS. Then,

the estimation of channel Hm can be performed locally at AP
m based on X̂m.

To satisfy (ε, δ)-joint DP, the matrix completion algorithm
A consists of a global component AG at the CPU and M
local components AL

m =
(
AL,1

m ,AL,2
m

)
, m = 1, · · · , M at M

APs. The local component at AP m first performs a privacy-
preserving computation AL,1

m on private Ym to get AL,1
m (Ym),

and then transmits it to the CPU through backhaul links. The
global component AG aggregates the received information

Z =
M∑

m=1
AL,1

m (Ym), and computes AG (Z), which is then

broadcast to all APs through backhaul links. Based on the
public AG (Z) and private Ym, the local component at AP m
then performs a computation AL,2

m to get a complete matrix
X̂m = AL,2

m

(
AG (Z) ,Ym

)
. Such a global-local computa-

tion model for privacy-preserving noisy matrix completion is
depicted in Fig. 2.

With X̂m, each AP m can proceed to estimate its channel
Hm as follows. Recall that X̂m ≡

[
X̂m,p, X̂m,d

]
, where

X̂m,p ∈ CNa×τp and X̂m,d ∈ CNa×τd denote the estimates
of Xm,p = HmP and Xm,d = HmD respectively. Then the
estimate of Hm is given by

Ĥm = X̂m,pP†, ∀m ∈ M, (12)

where P† denotes the pseudo-inverse of P which is pre-stored
in each AP. Finally, for data detection, the optimal scheme is to
compute D̂ = Ĥ†X̂d at the CPU. However, since the privacy
constraint prevents the CPU from having access to {Ĥm},
we let each AP compute the local statistic

D̂m = Ĥ†
mX̂m,d, ∀m ∈ M. (13)

Then
{
D̂m

}
are sent to the CPU which performs data

detection based on the combined statistic

D̂ =
1
M

M∑
m=1

D̂m. (14)

Next we provide two privacy-preserving noisy matrix com-
pletion algorithms based on the FW algorithm and SVD
algorithm, respectively, both of which are in the form of the
global-local computation model.

B. FW-Based Privacy-Preserving Matrix Completion

Recall that in the absence of noise, we have Y = (X)Ω and
rank (X) ≤ K . However, the rank constraint is nonconvex.
A popular approach to noisy matrix completion is based on
the following least-squares formulation with the nuclear norm
constraint [24]–[27]

X̂ = arg min
‖X‖nuc≤K

‖(X)Ω − Y‖2
F , (15)

which is a convex problem. The Frank-Wolfe (FW) algorithm
is an iterative procedure to solve (15), given by

X(n) =
(
1 − η(n)

)
X(n−1) − η(n)K

λ(n)
J(n−1)v(n)

(
v(n)

)H

,

(16)

where η(n) is the step size at the n-th iteration; X(0) =
0MNa×τc ; J(n−1) =

(
X(n−1)

)
Ω
−Y. λ(n) and v(n) ∈ Cτc×1

are respectively the largest singular value and right-singular
vector of J(n−1). Hence each FW update is in terms of a rank-
one matrix with nuclear norm at most K . After T iterations,
the rank of X(T ) is at most T . In addition, it is known that
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X(T ) can approach the optimal solution to (15) when T is
large [25].

Recall that MNa > τc, thus
(
λ(n)

)2
and v(n) are the

largest eigenvalue and eigenvector of
(
J(n−1)

)H
J(n−1) =

M∑
m=1

(
J(n−1)

m

)H

J(n−1)
m , respectively, where

J(n−1)
m =

(
X(n−1)

m

)
Ωm

− Ym, (17)

which can be computed at AP m. Hence, (16) can be rewritten
into a global-local structure as

X(n)
m =

(
1 − η(n)

)
X(n−1)

m

− η(n)K

λ(n)
J(n−1)

m v(n)
(
v(n)

)H

, ∀m ∈ M. (18)

At the (n − 1)th iteration, each AP m computes

J
(n−1)
m =

(
J(n−1)

m

)H

J(n−1)
m , (19)

and sends it to the CPU. Then the CPU computes the
largest eigenvalue λ(n) and corresponding eigenvector v(n)

of W(n−1) =
M∑

m=1
J
(n−1)
m . At the n-th iteration, λ(n) and

v(n) are broadcast to all APs and then each AP m computes
X(n)

m according to (18). However, because J
(n−1)
m contains the

private data Ym, it should not be sent directly from AP m to
the CPU.

To preserve the privacy, we add Gaussian noise with cal-
ibrated variance to perturb J

(n−1)
m . Each AP m sends the

perturbed matrix Ĵ
(n−1)
m = J

(n−1)
m + G(n−1)

m to the CPU,
where G(n−1)

m is a τc × τc Hermitian noise matrix, whose
upper triangular and diagonal elements are respectively i.i.d.
Nc

(
0, μ2

)
and N

(
0, μ2

)
samples, and the lower triangular

elements are complex conjugates of the upper triangular
counterparts. To calibrate the perturbation noise variance μ,
we need an upper bound on ‖Ym‖F , ∀m ∈ M, which can
be obtained as follows. Note that ‖Ym‖F ≤ ‖Rm‖F ≤
‖HmS‖F + ‖Nm‖F ≤ ‖Hm‖F ‖S‖F + ‖Nm‖F . In the
massive MIMO regime, due to channel hardening, we have

‖Hm‖2
F → E

{
‖Hm‖2

F
}

= Na

∑K

k=1
βk,m. (20)

Moreover, since each data symbol in S has unit power and
each noise sample in Nm has variance σ2, by the law of large
numbers, we have

‖S‖2
F → Kτc, (21a)

‖Nm‖2
F → Naτcσ

2. (21b)

Hence, when Kτc and Naτc are sufficiently large, we can
bound ‖Ym‖F , ∀m ∈ M by

L = max
m∈M

√
KτcNa

∑K

k=1
βk,m +

√
Naτcσ2. (22)

Note that each AP m sends a perturbed matrix which con-
tains the private signal Ym to the CPU, for a total of T
iterations. Hence, the information released to the CPU can be
regarded as a T -fold composition. Then by Lemma 2 and 4,
in order to achieve (ε, δ)-joint DP, the perturbation noise is
calibrated as

μ = 16L2

√
T

M
ln
(

2.5T

δ

)
ln
(

2
δ

)
/ε. (23)

Next the CPU computes the largest eigenvalue
(
λ̂(n)

)2

and

eigenvector v̂(n) of Ŵ(n−1) =
M∑

m=1
Ĵ
(n−1)
m . To control the

error introduced by the perturbation noise, λ̂(n) is replaced
by [25]

λ̃(n) = λ̂(n) +
√

μ (Mτc)
1/4

. (24)

Finally, the privacy-preserving implementation of (18) can
be written as (25) shown at the bottom of the page, where

the operator ΞL,Ωm (M) = min
{

L

‖(M)Ωm‖F
, 1
}

M ensures∥∥∥∥(X(n)
m

)
Ωm

∥∥∥∥
F
≤ L.

The proposed FW-based privacy-preserving matrix comple-
tion algorithm is summarized in Algorithm 1.

Algorithm 1 FW-Based Privacy-Preserving Matrix
Completion Algorithm

Input: Privacy parameters (ε, δ), number of users K ,
sampled matrix Ym in each AP m, bound L on
‖Ym‖F , number of APs M , number of time slots
τc, number of iterations T

Output: X̂m, ∀m ∈ M
1 Set X(0) = 0MNa×τc , η(1) = 1, η(n) = 1

T , n = 2, · · · , T
and μ given by (23)

2 for n = 1 : T do
3 AL,1

m : Each AP m computes J
(n−1)
m according to (19)

and (17) and sends Ĵ
(n−1)
m = J

(n−1)
m + G(n−1)

m to CPU
4 AG: CPU receives Ĵ

(n−1)
m from each AP m and

computes Ŵ(n−1) =
M∑

m=1
Ĵ
(n−1)
m , then

• computes the largest eigenvalue
(
λ̂(n)

)2

and

eigenvector v̂(n) of Ŵ(n−1)

• computes λ̃(n) according to (24)

5 CPU sends
(
v̂(n), λ̃(n)

)
to all APs

6 AL,2
m : Each AP m computes X(n)

m according to (25)
7 end

X(n)
m = ΞL,Ωm

((
1 − η(n)

)
X(n−1)

m − η(n)K

λ̃(n)
J(n−1)

m v̂(n)
(
v̂(n)

)H
)

, ∀m ∈ M (25)
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C. SVD-Based Privacy-Preserving Matrix
Completion Algorithm

Here we consider another approach to low-rank matrix
completion based on singular value decomposition (SVD) that
yields a solution with bounded error [28]. It first trims Y to
obtain Ỹ by setting to zero all rows with more than 2Nrτc/Na

non-zero entries, where recall that Nr is the number of RF
chains at each AP, i.e., the number of non-zero elements in
each column of Y. Then it performs SVD on Ỹ and denotes
VK ∈ Cτc×K as the matrix consisting of the right singular
vectors corresponding to the K largest singular values. Finally,
the completed matrix is given by

X̂ =
Na

Nr
ỸVKVH

K . (26)

It is clear that rank
(
X̂
)

= K .
Note that VK can also be obtained as the eigenvectors

corresponding to the K largest eigenvalues of ỸHỸ =
M∑

m=1
ỸH

mỸm, where ỸH
mỸm is computed at AP m and then

sent to the CPU. However, because Jm = ỸH
mỸm contains

the private data Ym, it should not be sent directly from AP
m to the CPU. Similarly, we also add Gaussian noise to
perturb it. Hence, the released data from each AP m to the
CPU is Ĵm = Jm + Gm, where Gm is a τc × τc Hermitian
noise matrix, whose upper triangular and diagonal elements
are respectively i.i.d. Nc

(
0, ν2

)
and N

(
0, ν2

)
samples, and

the lower triangular elements are complex conjugates of the
upper triangular counterparts. Hence, the variance of total
perturbation noise at the CPU is Mν2. By Lemma 4, in order
to achieve (ε, δ)-joint DP, ν is calibrated as

ν = L2

√
2
M

ln
(

1.25
δ

)
/ε. (27)

Then the CPU computes the K largest eigenvectors of V̂K of

the matrix Ŵ =
M∑

m=1
Ĵm and broadcasts it to all APs. Hence,

(26) can be implemented in a privacy-preserving form as

X̂m =
Na

Nr
ỸmV̂KV̂H

K , ∀m ∈ M. (28)

The proposed SVD-based privacy-preserving matrix com-
pletion algorithm is summarized in Algorithm 2.

D. Computational Complexity and Communication Overhead

For both Algorithm 1 and Algorithm 2, the computations
AL,1

m and AL,2
m at each AP m involve only additions and mul-

tiplications. The computation AG at the CPU in Algorithm 1
involves computing the largest eigen component of an τc × τc

matrix in each iteration, for a total of T iterations; whereas
in Algorithm 2, AG involves computing the K largest eigen
components of an τc × τc matrix only once. The complexities
of both Algorithm 1 and Algorithm 2 mainly depend on the
computation of eigen components in AG. If we adopt the
traditional eigen-decomposition methods to obtain all eigen
components, then the complexity of Algorithm 1 is almost T

Algorithm 2 SVD-Based Privacy-Preserving Matrix
Completion Algorithm

Input: Privacy parameters (ε, δ), number of users K ,
sampled matrix Ym in each AP m, bound L on
‖Ym‖F , number of APs M , number of time slots
τc

Output: X̂m, ∀m ∈ M
1 Set ν given by (27)
2 AL,1

m : AP m trims Ym to obtain Ỹm, then computes
Jm = ỸH

mỸm and sends Ĵm = Jm + Gm to the CPU
3 AG: CPU receives Ĵm from each AP m and computes

the K largest eigenvectors V̂K of Ŵ =
M∑

m=1
Ĵm. Then

V̂K is broadcast to all APs
4 AL,2

m : AP m computes X̂m according to (28)

times than that of Algorithm 2. Furthermore, the complexity
of Algorithm 1 can be improved by adopting other methods to
compute the largest eigen component, such as classical power
method and novel Oja’s algorithm [29], which also achieve
good performance.

We next compare the communication overheads of the two
algorithms. For Algorithm 1, in each iteration, each AP sends
the τc × τc matrix Ĵ

(n)
m to the CPU; and the CPU broadcasts

the scalar λ̃(n) and the τc × 1 vector v̂(n) to all APs, for a total
of T iterations. For Algorithm 2, each AP sends the τc × τc

matrix Ĵm to the CPU only once; and the CPU broadcasts
the τc × K matrix V̂K to all APs only once. Hence the ratio
of the broadcast overhead from the CPU to all APs between
Algorithms 1 and 2 is T : K; and the ratio of the unicast
overhead from each AP to the CPU is T : 1.

IV. PRIVACY AND ESTIMATION ERROR

TRADEOFF ANALYSIS

In this section, we first show that both Algorithms 1 and 2
are (ε, δ)-joint differentially private. We then provide their
channel estimation error bounds in terms of the privacy
parameters.

A. Privacy Analysis

Theorem 1: Algorithm 1 is (ε, δ)-joint differentially private.
Proof: First, we prove that in each iteration, the informa-

tion released to the CPU is differentially private. Specifically,
the received signal by the CPU at the n-th iteration is∑M

m=1
Ĵ
(n−1)
m =

∑M

m=1
J
(n−1)
m +

∑M

m=1
G(n−1)

m , (29)

where
∑M

m=1 G(n−1)
m is the total perturbation noise from

the APs, which is a Hermitian matrix. Its upper triangular
and diagonal elements are respectively i.i.d. Nc

(
0, Mμ2

)
and

N
(
0, Mμ2

)
samples, and the lower triangular elements are

complex conjugates of the upper triangular counterparts, where

Mμ2 =

(
4L2

)2
2 ln

(
1.25/ δ

2T

)(
ε/
√

8T ln (2/δ)
)2 . (30)
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Recall that
∑M

m=1 J
(n−1)
m =

∑M
m=1

(
J(n−1)

m

)H

J(n−1)
m with

J(n−1)
m =

(
X(n−1)

m

)
Ωm

− Ym; and for each AP m ∈

M, we have ‖Ym‖F ≤ L and

∥∥∥∥(X(n−1)
m

)
Ωm

∥∥∥∥
F

≤ L.

Hence, the 	2-sensitivity of the signal
∑M

m=1 J
(n−1)
m

is 4L2. Then according to Lemma 4, the information
released to the CPU at the n-th iteration,

∑M
m=1 Ĵ

(n)
m ,

is
(
ε/
√

8T ln (2/δ), δ/2T
)

-differentially private. The CPU
computes the dominant eigen components of the differentially
private

∑M
m=1 Ĵ

(n)
m and by Lemma 1, the obtained λ̃(n) and

v̂(n) are also
(
ε/
√

8T ln (2/δ), δ/2T
)

-differentially private.

From Line 6 in Algorithm 1, each AP m computes X(n)
m

using differentially private λ̃(n) and v̂(n) and its local signal as
input. By Lemma 3, X(n)

m is then
(
ε/
√

8T ln (2/δ), δ/2T
)

-
joint differentially private.

Finally, because X̂m = X(T )
m is the result of a T -fold

composition of
(
ε/
√

8T ln (2/δ), δ/2T
)

-joint differentially

private algorithms, by Lemma 2, X̂m, ∀m ∈ M satisfy
(ε, δ)-joint DP. �

Similar privacy analysis can be carried out for Algorithm 2
and we arrive at the following result.

Theorem 2: Algorithm 2 is (ε, δ)-joint differentially private.
Hence in both matrix completion algorithms, by adding

Gaussian noise with calibrated variance to perturb the released
information from the APs to the CPU, joint differential privacy
can be achieved. However, the perturbation noise inevitably
increases the matrix completion error and therefore the channel
estimation error. Next, we will provide an analysis on the
estimation error bounds for Algorithms 1 and 2. In particular,
for both algorithms, we will show that the estimation error
decreases with the increase of the data payload size τd.

B. Error Bounds and Scaling Laws for Channel Estimation

The error bounds for the FW and SVD-based noisy matrix
completions are provided in [24] and [28] respectively, both of
which do not consider privacy. [25] gives the error bounds for
both FW and SVD-based differentiately private matrix com-
pletions, but the matrix is noise-free. Here we analyze the error
bounds for differentiately private noisy matrix completions.

1) Error Bound and Scaling Law of Algorithm 1: The key
step of Algorithm 1 in (25) can be rewritten in terms of
the whole matrix as (31) shown at the bottom of this page.
Following Lemma D.5 in [25], the projection operator ΞL,Ω

does not introduce additional error. Hence, we will ignore it
in the following analysis. Comparing (31) and (16), we can
see that the privacy-preserving FW algorithm replaces O(n) =
− K

λ(n) J(n−1)v(n)
(
v(n)

)H
in the original FW algorithm with

Q(n) = − K�λ(n) J
(n−1)v̂(n)

(
v̂(n)

)H
. To quantify the additional

error caused by this replacement, we first provide the following

two lemmas, which are generalizations of Lemma D.4 in [25]
and Theorem 1 in [30] to the case of noisy matrix completion.

Lemma 5: The following bound holds with high
probability2

〈
Q(n),

1
|Ω|J

(n−1)

〉
F
−
〈
O(n),

1
|Ω|J

(n−1)

〉
F

≤ O

(
K

|Ω|
√

μ (Mτc)
1/4

)
, ∀n. (32)

Proof: See Appendix A.
Lemma 6: If the update of X(n) in (16) is modified as

X(n) =
(
1 − η(n)

)
X(n−1) + η(n)W(n), (33)

where W(n) satisfies
∥∥W(n)

∥∥
nuc

≤ K, ∀n and

〈
W(n),

1
|Ω|J

(n−1)

〉
F
−
〈
O(n),

1
|Ω|J

(n−1)

〉
F
≤ γ, ∀n,

(34)

where 〈A,B〉F = tr
(
AHB

)
is the Frobenius inner product.

Then for n = T , we have

1
|Ω|

∥∥∥(X(T )
)

Ω
− Y

∥∥∥2

F
≤ 4γ +

K2

|Ω| +
K2

|Ω|T + σ2. (35)

Proof: See Appendix B.
Using Lemmas 6 and 5, we can then obtain the error bound

for Algorithm 1 as follows.
Theorem 3: Denote X̂ = X(T ) as the output of

Algorithm 1. Then the following error bound on the observed
entries in Ω holds with high probability

1
|Ω|

∥∥∥(X̂)
Ω
− (X)Ω

∥∥∥2

F

= O

(
4K

|Ω|
√

μ (Mτc)
1/4 +

K2

|Ω| +
K2

|Ω|T + 2σ2

)
. (36)

Furthermore, the generalization error E
(
X̂
)

=

1
MNaτc

∥∥∥X̂ − X
∥∥∥2

F
is bounded as (37) shown at the

bottom of next page with high probability, where Õ (·) hides
poly-logarithmic terms in MNa and τc. When the number of
iterations is chosen as T = O

(
K4/3

(|Ω|(MNa+τc))
1/3

)
, we can

obtain the generalization error bound as (38) shown at the
bottom of the next page.

2“with high probability” means with probability 1 − 1/τcΘ(1) .

X(n) = ΞL,Ω

((
1 − η(n)

)
X(n−1) − η(n)K

λ̃(n)
J(n−1)v̂(n)

(
v̂(n)

)H
)

(31)
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Proof: Since Q(n) = − K�λ(n) J
(n−1)v̂(n)

(
v̂(n)

)H
is rank-

one, we have
∥∥Q(n)

∥∥
nuc

=
∥∥Q(n)

∥∥
F , and∥∥∥Q(n)

∥∥∥2

F

= tr
((

Q(n)
)H

Q(n)

)
=

K2(
λ̃(n)

)2 tr
(
v̂(n)

(
v̂(n)

)
HJ(n−1)HJ(n−1)v̂(n)

(
v̂(n)

)H
)

= K2

(
v̂(n)

)H
J(n−1)HJ(n−1)v̂(n)(

λ̃(n)
)2

(
v̂(n)

)H

v̂(n)

= K2

∥∥J(n−1)v̂(n)
∥∥2

F(
λ̃(n)

)2 . (39)

According to Lemma D.2 in [25], the following holds with
high probability∥∥∥J(n−1)v̂(n)

∥∥∥
F
≤ λ̂ + O

(√
μ (Mτc)

1/4
)

. (40)

Hence, according to the definition of λ̃(n) in (24), with high
probability, we have

∥∥Q(n)
∥∥

nuc
≤ K, ∀n. Then by Lemma 5

and Lemma 6, the following holds with high probability

1
|Ω|

∥∥∥(X̂)
Ω
− Y

∥∥∥2

F

= O

(
4K

|Ω|
√

μ (Mτc)
1/4 +

K2

|Ω| +
K2

|Ω|T + σ2

)
. (41)

Due to the triangular inequality property, we have∥∥∥(X̂)
Ω
− (X)Ω

∥∥∥2

F

≤
(∥∥∥(X̂)

Ω
− Y

∥∥∥
F

+ ‖Y − (X)Ω‖F
)2

≤ 2
∥∥∥(X̂)

Ω
− Y

∥∥∥2

F
+ 2 ‖Y − (X)Ω‖

2
F . (42)

Note that ‖Y − (X)Ω‖
2
F = ‖(N)Ω‖

2
F → |Ω|σ2 when |Ω| =

MNrτc is large. Hence, with high probability (36) holds.
Note that (36) gives the error bound on observed entries in

Ω. Using Theorem 1 in [31], we can then generalize the error
bound to the entire matrix X̂ given by (37). It can be seen that
the third term in (37) decreases with T , while the last term
increases with T . By setting these two terms as the same order,

we obtain T = O
(

K4/3

(|Ω|(MNa+τc))
1/3

)
, and the corresponding

generalization error bound in (38). �
Remark 1: To achieve stronger privacy level, i.e., smaller ε

and/or δ, the perturbation noise variance μ in (23) will

increase, which in turn increases the matrix completion error
according to (37).

Note that the matrix completion error in (38) has two
sources: the first term is due to the perturbation noise added to
achieve DP, and the other terms are the error inherent to the
FW algorithm. Both error sources contribute to the channel
estimation error through (12). The following result shows that
the channel estimation errors caused by both sources decreases
with the increase of the payload size τd, at different speed, for
fixed pilot size τp.

Corollary 1: For fixed privacy parameters ε and δ, and fixed
pilot length τp, the estimation error of the proposed privacy-
preserving channel estimator that employs Algorithm 1 scales
with the data payload size τd as∥∥∥Ĥm − Hm

∥∥∥2

F
= O

(
τ
−1/3
d

)
. (43)

Moreover, the portion of the estimation error due to the pertur-
bation noise added to preserve privacy scales as O

(
τ
−5/12
d

)
.

Proof: Note that from (12), for a given pilot matrix P,
the channel estimation error at AP m satisfies∥∥∥Ĥm − Hm

∥∥∥2

F
=
∥∥∥(X̂m,p − Xm,p

)
P†
∥∥∥2

F

≤
∥∥∥X̂m,p − Xm,p

∥∥∥2

F

∥∥P†∥∥2

F . (44)

Now assuming that the matrix completion error is uniform
among the entries of X, then we have∥∥∥X̂m,p − Xm,p

∥∥∥2

F
=

1
M

τp

τp + τd

∥∥∥X̂ − X
∥∥∥2

F
. (45)

For fixed privacy parameters ε and δ, and fixed pilot length

τp, when T = O
(

K4/3

(|Ω|(MNa+τc))
1/3

)
, we have L = O

(√
τd

)
and μ = O

(
τ

2/3
d

)
hiding all other parameters and the

logarithmic term

√
ln
(
τ
−2/3
d

)
according to (22) and (23),

respectively. The term in (38) that has μ is due to the pertur-
bation noise, and scales as O

(
τ
−5/12
d

)
since |Ω| = MNrτc.

In addition, the last term in (38) scales as O
(
τ
−1/3
d

)
, which

dominates the matrix completion error. Then by (44) and (45),
the statements of the corollary hold. �

2) Error Bound and Scaling Law of Algorithm 2: The key
step of Algorithm 2 in (28) can be rewritten in terms of the
whole matrix as

X̂ =
Na

Nr
ỸV̂KV̂H

K . (46)

Compared to the original SVD-based matrix completion in
(26), (46) uses Π̂K = V̂KV̂H

K instead of ΠK = VKVH
K .

E
(
X̂
)

= Õ

(
4K

|Ω|
√

μ (Mτc)
1/4 +

K2

|Ω| +
K2

|Ω|T + 2σ2 +

√
T (MNa + τc)

|Ω|

)
(37)

E
(
X̂
)

= Õ

(
4K

|Ω|
√

μ (Mτc)
1/4 +

K2

|Ω| + 2σ2 +
2K2/3 (MNa + τc)

1/3

|Ω|2/3

)
(38)
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Denote the K-th and (K + 1)-th singular values of Ỹ as λK

and λK+1, respectively. When there is a large gap between λ2
K

and λ2
K+1, the space spanned by the K largest eigenvectors

of the noise-perturbed version of ỸHỸ, i.e., Ŵ is very close
to the space spanned by the K largest right singular vectors
of Ỹ [32]. In massive MIMO with sufficiently large MNa,
such a large gap holds and then we have the following matrix
completion error bound for Algorithm 2.

Theorem 4: If λ2
K −λ2

K+1 = ω
(
ν
√

Mτc

)
, then the follow-

ing error bound on the output X̂ of Algorithm 2 shown in (47),
shown at the bottom of the page, holds with high probability.

Proof: Denoting Ψ = Na

Nr
Ỹ, we can write∥∥∥X̂ − X

∥∥∥
F

=
∥∥∥ΨΠ̂K − X

∥∥∥
F

≤ ‖ΨΠK − X‖F +
∥∥∥ΨΠ̂K − ΨΠK

∥∥∥
F

≤ ‖ΨΠK − X‖F + ‖Ψ‖F
∥∥∥Π̂K − ΠK

∥∥∥
F

.

(48)

First, according to Theorem 7 of [32], if λ2
K − λ2

K+1 =
ω
(
ν
√

Mτc

)
, then with high probability∥∥∥Π̂K − ΠK

∥∥∥
2

= O

(
ν
√

Mτc

ω
(
ν
√

Mτc

)) , (49)

and hence∥∥∥Π̂K − ΠK

∥∥∥
F

= O

(
ν
√

KMτc

ω
(
ν
√

Mτc

)) . (50)

Furthermore, we have

‖Ψ‖F =
Na

Nr

∥∥∥Ỹ∥∥∥
F
≤ Na

Nr
‖Y‖F ≤ Na

Nr

√
ML. (51)

Next, using Theorem 1.1 in [28], with high probability, there
exist constants c0 and c1 such that

1√
MNaτc

‖ΨΠK − X‖F

≤ c0xmax

(
K2MN3

a

Nr
2τ3

c

)1/4

+c1

√
KNa

Nr

√
Mτc

∥∥∥(Ñ)
Ω

∥∥∥
2
, (52)

where xmax = max(i,j) |X (i, j)| and
(
Ñ
)

Ω
denotes the

matrix obtained from (N)Ω after the trimming step. By using
the Theorem 1.3 in [28], with high probability, there exists a
constant c2 such that∥∥∥(Ñ)

Ω

∥∥∥
2
≤ c2σ (MNr log τc)

1/2
. (53)

Plugging (50)-(53) and xmax ≤ L into (48), we obtain (47).
�

Remark 2: Since L = O
(√

τd

)
and ν = O (τd), the sum

of the first two terms in (47) scales with τd as O(τ−1/4
d ),

and the third term in (47) represents the completion error

caused by the perturbation noise, that scales as O

(
τ
3/2
d

ω
�

τ
3/2
d

�
)

,

which dominates the matrix completion error. Hence using
(44) and (45), we arrive at the following corollary regarding
the scaling of the channel estimation error by Algorithm 2 at
AP m with respect to the data payload size τd.

Corollary 2: For fixed privacy parameters ε and δ, and fixed
pilot length τp, the estimation error of the proposed privacy-
preserving channel estimator that employs Algorithm 2 scales
with the data payload size τd as

∥∥∥Ĥm − Hm

∥∥∥
F

= O

⎛⎝ τ
3/2
d

ω
(
τ

3/2
d

)
⎞⎠ . (54)

In summary, we see that for both Algorithms 1 and 2,
the channel estimator error consists of a privacy independent
component, that is due to the channel noise and matrix
completion error, and a privacy-induced component, that is
due to the perturbation noise. A higher privacy level leads to
a higher privacy-induced channel estimation error, and vice
versa. As the payload size increases, both error components
decrease. However, for Algorithm 1, the channel estimation
error is dominated by the privacy-independent component;
whereas for Algorithm 2, it is dominated by the privacy-
induced component.

V. SIMULATION RESULTS

A. Simulation Setup

We consider a cell-free massive MIMO system covering a
hexagonal region with radius R = 1km, where APs and users
are randomly and uniformly distributed. The channel model
in (1) is adopted to generate channel matrices Hm with the
large-scale fading βk,m modeled as

βk,m = 10−
PL(dk,m)+σshzk,m

10 , (55)

where PL (dk,m) (dB) is the path loss between AP m and
user k with distance dk,m; σsh (dB) is the standard deviation
of shadow fading and zk,m ∼ Nc (0, 1). τp = K orthonormal
pilot sequences are used, resulting in an orthonormal pilot
matrix P. Data symbols are independently drawn from the
QPSK constellation with unit average power. We consider
two settings of the number of users: K = 5 and K = 25.
All simulation parameters are shown in Table II. All meth-
ods are implemented by MATLAB R2020a on a MacBook
Pro with 2.6 GHz 6-Core Intel Core i7 and 16GB RAM.
The channel estimation performance is evaluated by the nor-
malized mean squared error (NMSE) defined as NMSE =

E

{∥∥∥Ĥ − H
∥∥∥2

F
/‖H‖2

F

}
. The data detection performance is

evaluated by symbol error rate (SER). Both NMSE and
SER are obtained through Monte-Carlo simulations with fixed

1√
MNaτc

∥∥∥X̂− X
∥∥∥
F

= O

((
L4K2MN3

a

N2
r τ3

c

)1/4

+
√

KNaNrln τcσ2

Nr
√

τc
+

√
NaLν

√
KMτc

Nr
√

τcω
(
ν
√

Mτc

)) (47)
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TABLE II

BASIC SIMULATION PARAMETERS

large-scale fadings {βk,m} and a minimum of 500 independent
fast channel realizations {gk,m}.

In Algorithm 1, we approximate the rank constraint
rank (X) ≤ K with the nuclear norm constraint ‖X‖nuc ≤ K .
However, the true ‖X‖nuc is far smaller than K due to the
large-scale fading. Hence, in our implementation, we replace
the rank bound K in (25) with an appropriate nuclear norm
bound r. According to (20) and (21a), for massive MIMO,
we have

‖X‖F = ‖HS‖F ≤ ‖H‖F ‖S‖F

=

√
KτcNa

∑M

m=1

∑K

k=1
βk,m. (56)

Since ‖X‖nuc ≤
√

rank (X) ‖X‖F [33], we can bound
‖X‖nuc by

r =

√
K2τcNa

∑M

m=1

∑K

k=1
βk,m. (57)

For K = 5, we choose r ∈ [0.001, 0.01] by cross-validation,
e.g., we uniformly choose 10 values of r and run Algorithm 1
using them. The r value that has the lowest NMSE is then cho-
sen for the simulations. For K = 25, we choose r ∈ [0.01, 0.1]
by cross-validation. Moreover, for the number of iterations T ,
we choose T ∈ {K, 2K, · · · , 5K} by cross-validation.

For comparison, we consider the following three channel
estimators:

(1) Non-private FW (NPFW): To show the performance
upper bound of Algorithm 1 when privacy is not considered,
we set μ = 0 and T = 200.

(2) Non-private SVD (NPSVD): To show the performance
upper bound of Algorithm 2 when privacy is not considered,
we set ν = 0.

(3) Pilot-only (PO): We also consider the pilot-only method,
where each AP m estimates its channel matrix Hm locally
based on its received pilots {Ym(:, t), t ∈ Tp} only. Specif-
ically, each AP m first computes its least squares (LS)
estimate as Ĥm = Ym(:, 1 : τp)PH. Then the local linear
minimum mean-squared error (LMMSE) estimate of data
symbols Dm is computed as follows. Denoting ym[t] as
the Nr-dimensional vector consisting of the non-zero ele-
ments of Ym (:, t). Then from (5) we can write ym [t] =
Cm [t] rm [t], where Cm [t] ∈ CNr×Na and Cm [t] (i, j) = 1
if the j-th antenna is connected to the i-th RF chain,
and it is 0 otherwise. Then LMMSE estimate is given by
D̂m [t] =

(
FH

mFm + σ2IK

)−1
FH

mym [t] , τp + 1 ≤ t ≤ τc

with Fm = Cm [t] Ĥm. At last,
{
D̂m

}
are sent to the CPU

which performs data detection based on the combined statistic
according to (14). Since the PO method does not send any
private signal to the CPU, it is perfectly privacy-preserving.

B. Results

Fig. 3(a) and Fig. 3(b) respectively show the NMSE perfor-
mance of channel estimation and the corresponding SER per-
formance of data detection versus the privacy parameter ε with
K = 5, τc = 100, and δ = 0.1 for different methods. It can be
seen that the performance of both Algorithm 1 and 2 improve
as ε increases, which means the privacy level degrades.
Algorithm 1 significantly outperforms Algorithm 2 under both
private and non-private cases. Moreover, despite of the added
perturbation noise to achieve privacy, both algorithms outper-
form the PO method, by exploiting the received data payload
signal.

Fig. 4(a) and Fig. 4(b) respectively show the NMSE per-
formance of channel estimation and the corresponding SER
performance of data detection versus the payload size τd with
K = 5, fixed privacy parameter ε = 1 and δ = 0.1 for different
methods. Since the PO method makes use of the received pilot
signal only for channel estimation, its performance remains
the same as τd increases. On the contrary, the performances
of Algorithm 1 and 2 improve as τd increases. Hence, the pro-
posed methods can utilize the received data payload signal to
improve the accuracy of channel estimation and data detection,
while maintaining the same privacy level at the same time.
Algorithm 1 significantly outperforms Algorithm 2 under both
private and non-private cases for all payload size.

We also show the performances of five methods with a
larger number of users. For K = 25, Fig.5 and Fig. 6
respectively show the performances of five methods versus
privacy parameter ε and payload size τd. It can be seen
that both the channel estimation and data detection perfor-
mances of both Algorithm 1 and Algorithm 2 still improve as
ε or τd increases. Algorithm 1 still significantly outperforms
Algorithm 2 and the PO method for all considered ε and τd.
However, Algorithm 2 is less effective when the number of
users is high. In addition, by comparing Fig. 3 and Fig. 5,
as well as Fig. 4 and Fig. 6, it can be seen that both the
channel estimation and data detection performance get worse
with a larger number of users.

The SERs in the above figures are in the range of 0.05-0.1,
which mainly because the Nr = 1

2Na, i.e., missing data is
50%. Note that for many applications, such SER is satisfactory
since by employing powerful error correction codes, such
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Fig. 3. The performance versus ε with K = 5, τc = 100 and δ = 0.1. (a) NMSE of channel estimation. (b) SER of data detection.

Fig. 4. The performance versus payload size τd with K = 5, ε = 1 and δ = 0.1. (a) NMSE of channel estimation. (b) SER of data detection.

Fig. 5. The performance versus ε with K = 25, τc = 100 and δ = 0.1. (a) NMSE of channel estimation. (b) SER of data detection.

as low-density parity-check (LDPC) code, or concatenated
codes, a information bit error rate (BER) of, i.e., 10−4 can be
achieved [34], [35]. Considering a reduced number of missing
entries with Nr = 3, Fig.7(a) and Fig. 7(b) show the SER
performance of data detection versus the privacy parameter
ε with K = 5, τc = 100, δ = 0.1; and the payload size
τd with K = 5, ε = 1, δ = 0.1, respectively. It can be
seen that the SER performances of both Algorithm 1 and

Algorithm 2 still improve as ε or τd increases. In addition,
by comparing Fig. 7(a) and Fig. 3(b), as well as Fig. 7(b) and
Fig. 4(b), it can be seen that the data detection performances
are greatly improved with a reduced number of missing entries.

Finally, we compare the time complexity of
Algorithm 1 and 2 for different number of users in Table III.
For both Algorithm 1 and 2, we adopt traditional eigen-
decomposition methods to obtain all eigen components.
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Fig. 6. The performance versus payload size τd with K = 25, ε = 1 and δ = 0.1. (a) NMSE of channel estimation. (b) SER of data detection.

Fig. 7. The SER of data detection versus (a) ε with K = 5, τc = 100, δ = 0.1 and Nr = 3. (b) payload size τd with K = 5, ε = 1, δ = 0.1 and Nr = 3.

TABLE III

THE CONSUMED TIME OF ALGORITHM 1 AND 2

It can be seen that Algorithm 1 consumes more time with the
larger number of users, which is because a larger number of
iterations is required to converge. In contrast, the consumed
time of Algorithm 2 remains constant with the increase of
the number of users.

VI. CONCLUSION

This paper considers a cell-free hybrid massive MIMO
system, where the number of users is typically much smaller
than the total number of antennas. Efficient uplink channel
estimation and data detection with reduced number of pilots
can be performed based on low-rank matrix completion.
However, such a scheme requires the CPU to collect received
signals from all APs, which may enable the CPU to infer the
private information of user locations. To solve this problem,
we develop and analyze privacy-preserving channel estimation
schemes under the framework of differential privacy. The key

ingredient of such a channel estimator is a joint differentially
private noisy matrix completion algorithm, which consists
of a global component implemented at the CPU and local
components implemented at APs. Two joint differentially
private channel estimators based respectively on FW and SVD
are proposed and analyzed. In particular, we have shown that
for both algorithms the estimation error can be mitigated while
maintaining the same privacy level by increasing the payload
size with fixed pilot size; and the scaling laws of both the
privacy-induced and privacy-independent error components in
terms of payload size are characterized. Simulation results
corroborate the theoretical analysis and clearly demonstrate the
tradeoff between privacy and channel estimation performance.
Finally, we note that frequent antenna switching is required
for uniformly sampling the received signal, so that the channel
estimation accuracy can be guaranteed. It is important to inves-
tigate the effect of antenna switching on other performance
metrics in our future work, such as bandwidth efficiency
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and energy efficiency. Another future direction is to apply
alternative matrix completion algorithms that do not require
uniform sampling to allow for less frequent antenna switching,
so that bandwidth-efficient time-orthogonal shaping filters can
be employed.

APPENDIX A
PROOF OF LEMMA 6

Define a function ΓΩ (X) = 1
2|Ω| ‖(X)Ω − Y‖2

F on the
feasible set D : ‖X‖nuc ≤ K . The curvature parameter CΓ

of the above function can be defined as

CΓ = max
Xa,S∈D

2
κ2

(ΓΩ (Xb) − ΓΩ (Xa)

− 〈Xb − Xa,∇ΓΩ (Xa)〉F ), (58)

where κ ∈ [0, 1]; Xb = Xa + κ (S − Xa); ∇ΓΩ (Xa) =
1
|Ω| ((Xa)Ω − Y) is the gradient of ΓΩ (X) at Xa. It then
follows from the definition in (58) that for any Xa and S

ΓΩ (Xb) ≤ ΓΩ (Xa) + 〈Xb − Xa,∇ΓΩ (Xa)〉F +
CΓκ2

2
.

(59)

According to (33), we have

X(n) = X(n−1) + η(n)
(
W(n) − X(n−1)

)
. (60)

Recall that
∥∥W(n)

∥∥
nuc

≤ K, ∀n, η(1) = 1 and η(n) = 1
T , n =

2, · · · , T , thus we have
∥∥X(n)

∥∥
nuc

≤ K, ∀n. By letting
Xb = X(n), Xa = X(n−1), S = W(n) and κ = η(n) in
(59), we have

ΓΩ

(
X(n)

)
≤ ΓΩ

(
X(n−1)

)
+ η(n)

〈
W(n) − X(n−1),∇ΓΩ

(
X(n−1)

)〉
F

+
CΓ

(
η(n)

)2
2

. (61)

Note that ∇ΓΩ

(
X(n−1)

)
= 1

|Ω|J
(n−1). If W(n) satisfies

(34), we have〈
W(n) − X(n−1),∇ΓΩ

(
X(n−1)

)〉
F

≤
〈
O(n) − X(n−1),∇ΓΩ

(
X(n−1)

)〉
F

+ γ. (62)

Note that O(n) = arg min‖O‖nuc≤K

〈
O,∇ΓΩ

(
X(n−1)

)〉
F

according to [25]. Therefore, we have O(n) =
arg max‖O‖nuc≤K

〈
X(n−1) − O,∇ΓΩ

(
X(n−1)

)〉
F . We def-

ine Υ (Θ) = ΓΩ (Θ) − ΓΩ

(
X̂
)

, where X̂ is given by (15).

The convexity of ΓΩ (X) implies [30]〈
X(n−1) − O(n),∇ΓΩ

(
X(n−1)

)〉
F
≥ Υ

(
X(n−1)

)
. (63)

Plugging (62) and (63) into (61), we have

ΓΩ

(
X(n)

)
≤ ΓΩ

(
X(n−1)

)
− η(n)Υ

(
X(n−1)

)
+ η(n)

(
γ +

CΓη(n)

2

)
. (64)

Letting n = T and subtracting ΓΩ

(
X̂
)

from both sides,
we have

Υ
(
X(T )

)
≤ Υ

(
X(T−1)

)
− η(T )Υ

(
X(T−1)

)
+η(T )

(
γ +

CΓη(T )

2

)
=
(
1 − η(T )

)
Υ
(
X(T−1)

)
+ η(T )

(
γ +

CΓη(T )

2

)

=
1∑

n=T

⎛⎝ T∏
j=n+1

(
1 − η(j)

)⎞⎠ η(n)

(
γ +

CΓη(n)

2

)

+
T∏

n=1

(
1 − η(n)

)
Υ
(
X(0)

)
. (65)

Recall that η(1) = 1 and η(n) = 1
T , n = 2, · · · , T , thus we

have
∏T

n=1

(
1 − η(n)

)
= 0 and 0 ≤

∏T
j=n+1

(
1 − η(j)

)
≤

1, n = 1, · · · , T . Then (65) can be written as

Υ
(
X(T )

)
≤

T∑
n=1

η(n)

(
γ +

CΓη(n)

2

)
. (66)

Recall that Υ
(
X(T )

)
= ΓΩ

(
X(T )

)
− ΓΩ

(
X̂
)

, we have

ΓΩ

(
X(T )

)
≤ γ +

CΓ

2
+

T − 1
T

(
γ +

CΓ

2T

)
+ ΓΩ

(
X̂
)

≤ 2γ +
CΓ

2
+

CΓ

2T
+ ΓΩ

(
X̂
)

. (67)

Note that

ΓΩ

(
X̂
)

=
1

2 |Ω|

∥∥∥(X̂)
Ω
− Y

∥∥∥2

F
(a)

≤ 1
2 |Ω| ‖(X)Ω − Y‖2

F

(b)
=

1
2 |Ω| ‖(N)Ω‖

2
F

(c)→ σ2

2
, (68)

where (a) is due to (15); (b) is because Y = (X)Ω + (N)Ω;
(c) is satisfied when |Ω| = MNrτc is large, which holds in
massive MIMO. Plugging (68) into (67), we have

ΓΩ

(
X(T )

)
≤ 2γ +

CΓ

2
+

CΓ

2T
+

σ2

2
. (69)

Note that CΓ is upper bounded by K2

|Ω| [36]. Hence, we
obtain (35).

APPENDIX B
PROOF OF LEMMA 5

First, we introduce the following lemma.
Lemma 7 (Theorem 4 of [32]): Let v ∈ Cn×1 be the

largest right singular vector of matrix A ∈ Cm×n (m > n)
and let v̂ be the largest eigenvector of matrix B = AHA+C,
where C ∈ Cn×n is a Hermitian matrix whose upper trian-
gular and diagonal elements are i.i.d samples from Nc

(
0, σ2

)
and N

(
0, σ2

)
respectively. Then with high probability

‖Av̂‖2
F ≥ ‖Av‖2

F − O
(
σ
√

n
)
. (70)
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Recall that v(n) and v̂(n) are respectively the largest right
singular vector and eigenvector of J(n−1) and Ŵ(n−1) =
M∑

m=1
Ĵ
(n−1)
m =

(
J(n−1)

)H
J(n−1) +

M∑
m=1

G(n−1)
m , where

M∑
m=1

G(n)
m is a Hermitian matrix whose upper triangular and

diagonal elements are i.i.d samples from Nc

(
0, Mμ2

)
and

N
(
0, Mμ2

)
respectively. According to Lemma 7, with high

probability, we have∥∥∥J(n−1)v̂(n)
∥∥∥2

F
≥
∥∥∥J(n−1)v(n)

∥∥∥2

F
− O

(
μ
√

Mτc

)
. (71)

We define α =
〈
O(n), 1

|Ω|J
(n−1)

〉
F

and α̂ =〈
Q(n), 1

|Ω|J
(n−1)

〉
F

. Then with high probability, the follow-
ing holds

α̂ =
〈
Q(n),

1
|Ω|J

(n−1)

〉
F

(a)
= −

K
∥∥J(n−1)v̂(n)

∥∥2

F
λ̃(n)|Ω|

≤ −
K
(∥∥J(n−1)v(n)

∥∥2

F − O
(
μ
√

Mτc

))
λ̃(n)|Ω|

(b)
=

K
(

λ(n)|Ω|
K α + O

(
μ
√

Mτc

))
λ̃(n)|Ω|

, (72)

where (a) follows from the Frobenius inner product; (b)
follows from the definition of α. Then we have

α̂ − α

≤
(

λ(n)

λ̃(n)
− 1

)
α + O

(
Kμ

√
Mτc

λ̃(n)|Ω|

)
(a)
=

(
λ̂(n) − λ(n) +

√
μ(Mτc)

1/4

λ̂(n) +
√

μ(Mτc)
1/4

)
λ(n)K

|Ω|

+ O

⎛⎝ Kμ
√

Mτc(
λ̂(n) +

√
μ(Mτc)

1/4
)
|Ω|

⎞⎠
=
(
λ̂(n) − λ(n) +

√
μ(Mτc)

1/4
) λ(n)

λ̂(n) +
√

μ(Mτc)
1/4

K

|Ω|

+ O

⎛⎝ Kμ
√

Mτc(
λ̂(n) +

√
μ(Mτc)

1/4
)
|Ω|

⎞⎠ , (73)

where (a) follows from the definition of λ̃(n) in (24) and
α = −λ(n)K/|Ω|.

By Corollary 2.3.6 from [37], we have∥∥∥Ŵ(n−1) −
(
J(n−1)

)H
J(n−1)

∥∥∥
2

= O
(
μ
√

Mτc

)
with

high probability. Recall that λ̂(n) and λ(n) are respectively
the largest eigenvalues of Ŵ(n−1) and

(
J(n−1)

)H
J(n−1).

Then we have
∣∣∣λ̂(n) − λ(n)

∣∣∣ = O
(√

μ (Mτc)
1/4
)

according
to Weyl’s inequality [32], which implies that

λ̂(n) − λ(n) +
√

μ(Mτc)
1/4 = O

(√
μ (Mτc)

1/4
)

, (74)

and therefore

λ(n)

λ̂(n) +
√

μ(Mτc)
1/4

= O (1) . (75)

Hence, the first term in (73) is O
(

K
|Ω|

√
μ (Mτc)

1/4
)

. Since

λ̂(n) ≥ 0, the second term in (73) is O
(

K
|Ω|

√
μ (Mτc)

1/4
)

.

In conclusion, we have α̂ − α ≤ O
(

K
|Ω|

√
μ (Mτc)

1/4
)

with
high probability.
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