
DART: Adaptive Accept Reject Algorithm for Non-Linear Combinatorial Bandits

Mridul Agarwal1, Vaneet Aggarwal 1, Abhishek Kumar Umrawal1, Chris Quinn 2

1 Purdue University
2 Iowa State University

agarw180@purdue.edu, vaneet@purdue.edu, aumrawal@purdue.edu, cjquinn@iastate.edu

Abstract
We consider the bandit problem of selecting K out of N arms
at each time step. The reward can be a non-linear function of
the rewards of the selected individual arms. The direct use
of a multi-armed bandit algorithm requires choosing among(︁
N
K

)︁
options, making the action space large. To simplify the

problem, existing works on combinatorial bandits typically
assume feedback as a linear function of individual rewards. In
this paper, we prove the lower bound for top-K subset selec-
tion with bandit feedback with possibly correlated rewards.
We present a novel algorithm for the combinatorial setting
without using individual arm feedback or requiring linearity
of the reward function. Additionally, our algorithm works on
correlated rewards of individual arms. Our algorithm, aDap-
tive Accept RejecT (DART), sequentially finds good arms
and eliminates bad arms based on confidence bounds. DART
is computationally efficient and uses storage linear in N . Fur-
ther, DART achieves a regret bound of Õ(K

√
KNT) for

a time horizon T , which matches the lower bound in ban-
dit feedback up to a factor of

√
log 2NT . When applied to

the problem of cross selling optimization and maximizing
the mean of individual rewards, the performance of the pro-
posed algorithm surpasses that of state-of-the-art algorithms.
We also show that DART significantly outperforms existing
methods for both linear and non-linear joint reward environ-
ments.

Introduction
The problem of finding the best K out of N items to opti-
mize a possibly non-linear function of reward of each item
arises in a number of settings. For example, in the prob-
lem of erasure-coded storage (Xiang et al. 2016), the agent
chooses K out of N servers to obtain the content for each
request; the final reward is the negative of the time taken
by the slowest server. A recommendation system agent may
present a list of K items out of N items to user for a non-
zero reward only if the user selects an item (Kveton et al.
2015a) from the list. Similarly, in cross-selling item selec-
tion, a retailer creates a bundle with K items, and the joint
reward is a quadratic function of the selected items’ individ-
ual rewards (Raymond Chi-Wing Wong, Ada Wai-Chee Fu,
and Wang 2003). The problem of a daily advertising cam-
paign is characterized by a set of sub-campaigns where the

Copyright c⃝ 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

aggregate reward is the sum of the rewards of sub-campaigns
(Zhang et al. 2012; Nuara et al. 2018). Combinatorial Multi-
Armed Bandit (CMAB) algorithms can solve these problems
in an online manner. For many CMAB algorithms, we can
bound the regret, that is the loss incurred from accidentally
selecting sub-optimal sets some of the time. We aim to find
a space and time efficient CMAB algorithm that minimizes
cumulative regret.

Existing algorithms for K = 1 that use Upper Confi-
dence Bound (UCB) or Bayesian resampling methods (Auer
2002; Auer, Cesa-Bianchi, and Fischer 2002; Auer and
Ortner 2010; Thompson 1933; Agrawal and Goyal 2012;
Gopalan, Mannor, and Mansour 2014) can bound the regret
by Õ(

√
NT).These methods can be naturally extended to

the combinatorial setting where K arms are chosen, treat-
ing each of the

(︁
N
K

)︁
possible actions as a distinct ‘arm’.

Unfortunately, this approach has two significant drawbacks.
First, the regret increases exponentially in K as the num-
ber of total actions to explore has grown from N to

(︁
N
K

)︁
.

Second, the time and space complexities increase exponen-
tially in K, requiring storage of values for all actions to find
the action with highest UCB (Auer and Ortner 2010; Auer,
Cesa-Bianchi, and Fischer 2002) or highest sampled rewards
(Agrawal and Goyal 2012).

This paper addresses the said issues by proposing a novel
algorithm called aDaptive Accept RejecT (DART). To es-
timate the “goodness” of an arm, we use the mean of the re-
wards obtained by playing actions containing that arm. In an
adaptive manner, DART moves arms to “accept” or “reject”
sets based on those estimates, reducing the number of arms
that require further exploration. We assume that the expected
joint reward of an arm i and other possible K − 1 arms is
better than the expected joint reward of arm j and other pos-
sible K − 1 arms if arm i is better than arm j. This assump-
tion is naturally satisfied in many reward setups such as click
bandits (Kveton et al. 2015a). We then use Lipschitz conti-
nuity of the joint reward function to relate orderings between
pairs of arms i and j to orderings between pairs of actions
containing those arms. We construct a martingale sequence
to analyze the regret bound of DART. Furthermore, DART
achieves a space complexity of O(N) and a per-round time
complexity of Õ(N).

The main contributions of this paper can be summarized

as follows:
(1). We propose DART - a time and space efficient algo-
rithm for the non-linear CMAB problem with only the joint
reward as feedback. We show that DART has per-step time
complexity of Õ(N) and space complexity of O(N).
(2). We prove a lower bound of Ω(K

√
NKT) for top-K

subset identification problem in linear setup where the joint
rewards are possibly correlated.
(3). We prove that DART achieves a regret of Õ(K

√
NKT)

over a time horizon T and under certain assumptions. The
regret bound matches the lower bound for the bandit setting
where individual arm rewards are possibly correlated.

We also empirically evaluate the proposed algorithm
DART, comparing it to other, state-of-the-art full-bandit
feedback CMAB algorithms. We first consider a linear set-
ting, where the joint reward as simply the mean of individual
arm rewards. We also examine the setting where the joint
reward is a quadratic function of individual arm rewards,
based on the problem of cross-selling item selection (Ray-
mond Chi-Wing Wong, Ada Wai-Chee Fu, and Wang 2003).
Our algorithm significantly outperforms existing state of the
art algorithms, while only using polynomial space and time
complexity.

Related Works
(Dani, Hayes, and Kakade 2008; Dani, Kakade, and Hayes
2008; Cesa-Bianchi and Lugosi 2012; Audibert, Bubeck,
and Lugosi 2014a; Abbasi-Yadkori, Pal, and Szepesvari
2011; Li et al. 2010) consider a linear bandit setup where
at time t, the agent selects a vector xt from the decision
set Dt ⊂ RN and observes a reward θTxt for an unknown
constant vector θ ∈ RN . The algorithms proposed in these
works use the linearity of the reward function to estimate re-
wards of individual arms and achieve a regret of O(

√
NT).

(Filippi et al. 2010; Jun et al. 2017; Li, Lu, and Zhou 2017)
studied the problem of generalized linear models (GLM)
where the reward rt is a function (f(z) : R → R) of z =
θTxt plus additive, arm-independent and iid noise. gener-
alized linear model algorithms also obtain a regret bound
of O(

√
NT). The proposed algorithms can be naturally ex-

tended to our setup for linear joint reward functions. How-
ever, the space and time complexity remains exponential in
K to store all possible

(︁
N
K

)︁
actions.

When K = 1, Liau et al. (2018) reduces the space com-
plexity for extremely large N from O(N) to O(1) at the cost
of worse regret bounds. When extended to the combinato-
rial setting, treating each set of K arms as a distinct ‘arm,’
the regret bound becomes exponential in K. Recently, (Re-
jwan and Mansour 2020) bounded the regret by O(K

√
NT)

for identifying the best K subset, in the case when the
joint reward is the sum of rewards of independent arms, us-
ing O(N) space and per-round time complexity. (Lin et al.
2014) considered the combinatorial bandit problem with a
non-linear reward function and additional feedback, where
the feedback is a linear combination of the rewards of the K
arms. Such feedback allows for the recovery of individual re-
wards. (Agarwal and Aggarwal 2018) proposed a divide and
conquer based algorithm for the best K subset problem with

a non-linear joint reward. (Agarwal and Aggarwal 2018) is
the most related work as the setup is similar to ours. Al-
gorithms by (Lin et al. 2014; Agarwal and Aggarwal 2018)
achieve O(T 2/3) regret while the proposed algorithm in this
paper achieves O(T 1/2) regret. We achieve a better regret
bound compared to (Agarwal and Aggarwal 2018) or (Lin
et al. 2014) which use additional feedback.

Many works have studied the semi-bandit setting, where
individual arm rewards are also available as feedback (Kve-
ton et al. 2014; Chen, Wang, and Yuan 2013; Kveton et al.
2014; Lattimore et al. 2018; Gai, Krishnamachari, and Jain
2012, 2010). (Kveton et al. 2014) provides a UCB-type algo-
rithm for matroid bandits, where the agent selects a maximal
independent set of rank K to maximize the sum of individ-
ual arm rewards. (Chen, Wang, and Yuan 2013) considered
the combinatorial semi-bandit problem with non-linear re-
wards using a UCB-type analysis. In contrast to these prior
works, we consider the full-bandit setting where individual
arm rewards are not available. (Kveton et al. 2015b; Lat-
timore et al. 2018) proved a lower bound of Ω(

√
NKT)

for semi-bandit problems where the joint reward is simply
the sum of individual arm rewards. (Kalyanakrishnan et al.
2012) also provides a lower bound for the best K subset
problem of Ω

(︁
N
ϵ2 log

(︁
K
δ

)︁)︁
for any (ϵ, δ)-PAC algorithm

playing single arm at each time. (Audibert, Bubeck, and
Lugosi 2014b) obtained a lower bound of Ω(K

√
NT) for

bandit feedback and provide an algorithm with regret bound
of Ω(K

√
NKT) for linear bandits without assuming inde-

pendence between arms. (Cohen, Hazan, and Koren 2017)
obtain a tighter lower bound of Ω(K

√
KNT) for a ban-

dit setup where the rewards of individual arms are possibly
correlated. In this paper we achieve the tighter lower bound
(ignoring log terms) for bandit feedback with possibly cor-
related rewards.

Problem Formulation
We consider N “arms” labeled as i ∈ [N] = {1, 2, · · · , N}.
On playing arm i at time step t, it generates a reward Xi,t ∈
[0, 1] which is a random variable. We assume that Xi,t are
independent across time, and for any arm the distribution is
identical at all times. For simplicity, we will use Xi instead
of Xi,t for analysis that holds for any t. The distribution for
each arm i’s rewards {Xi,t}Tt=1 could be discrete, continu-
ous, or mixed.

The agent can only play an action a ∈ N where N =
{a ∈ [N]K

⃓⃓
a(i) ̸= a(j) ∀ i, j : 1 ≤ i < j ≤ K}

is the set of all K sized tuples created using arms in [N].
Thus, the cardinality of N is

(︁
N
K

)︁
. For an action a, let

da,t = (Xa(1),t, Xa(2),t, · · · , Xa(K),t) be the column re-
ward vector of individual arm rewards at time t from arms
in action a. The reward ra(t) of an action a at time t is a
bounded function f : [0, 1]K → [0, 1] of the individual arm
rewards

ra(t) = f(da,t). (1)

As Xi,t are i.i.d. across time t, da,t are also i.i.d. across time
t for all a ∈ N . Later in the text we will skip index t, for

brevity, where it is unambiguous. We denote the expected
reward of any action a ∈ N as µa = E[ra]. We assume that
there is a unique “optimal” action a∗ for which the expected
reward µa∗ is highest among all actions,

a∗ = argmax
a∈N

µa. (2)

At time t, the agent plays an action at randomly sampled
from an arbitrary distribution over N dependent on the his-
tory of played actions and observed rewards till time t − 1.
The agent aims to reduce the cumulative regret R over time
horizon T , defined as the expected difference between the
rewards of the best action in hindsight and the actions se-
lected by the agent.

R = Ea1,ra1 (1),··· ,aT ,raT
(T)

[︄
T∑︂

t=1

ra∗(t)− rat(t)

]︄
(3)

= Tµa∗ − Ea1,··· ,aT ,

[︄
T∑︂

t=1

µat

]︄
. (4)

We define the gap ∆i,j between two arms i and j as the
difference between the expected rewards of arm i and arm j,

∆i,j = E [Xi]− E [Xj] . (5)

We now mention the assumptions for this paper. We first
assume that the joint reward function f is permutation in-
variant. Let Π denote the set of all permutation functions of
a length K vector.
Assumption 1 (Symmetry). For any permutation π ∈ Π of
the vector d of individual arm rewards,

f (d) = f (π(d)) (6)

We also assume that the expected reward of an action with
a good arm is higher than the expected reward of action with
a bad arm for all possible combinations of the remaining
K − 1 arms. Further, if two arms are equally good, they are
indistinguishable in every action and will not contribute to
regret. This assumption is similar to Assumption 4 of (Latti-
more et al. 2018).
Assumption 2 (Good arms generate good actions). We as-
sume that if the expected reward of arm i is higher than the
expected reward of arm j (for any given i ̸= j), then for
any subset S of size K − 1 arms chosen from the remaining
N − 2 arms (arms excluding i and j), the expected reward
of S ∪ {i} is higher than the expected reward of S ∪ {j}.
More precisely, if E[Xi] ≥ E[Xj] then

EXi,Xj ,dS
[f (h (Xi,dS))− f (h (Xj ,dS))] ≥ 0 (7)

for all S, where h : R × RK−1 → RK is an appending
function1 and dS ∈ [0, 1]K−1 is a random vector of the
rewards from arms in S. Further the equality holds only if
E[Xi] = E[Xj].

We note that the analysis also holds if (7) holds in the op-
posite direction for all S, i, and j such that E[Xi] ≥ E[Xj],
by transforming the reward function as f̃(d) = 1− f(d).

We also assume that f(·) is Bi-Lipschitz continuous (in
an expected sense).

1h(x,z) = (x, z1, · · · , zK−1) where z = (z1, · · · , zK−1).

Assumption 3 (Continuity of expected rewards). The ex-
pected value of f(·) is Bi-Lipschitz continuous with respect
to the expected value of the rewards obtained by the individ-
ual arms, meaning

1

U

⃓⃓⃓⃓
E[da1

]− π(E[da2
])
⃓⃓⃓⃓
1
≤

⃓⃓
µa1

− µa2

⃓⃓
=

⃓⃓
E [f(da1)]− E [f(da2)]

⃓⃓
≤ U

⃓⃓⃓⃓
E[da1]− π(E[da2])

⃓⃓⃓⃓
1

(8)

for any pair of actions a1,a2 ∈ N and for any permutation
π of d and for some U ∈ [1,∞).

Corollary 1. The expected value of f(·) is inverse-Lipschitz
continuous with respect to expected rewards Xi and Xj for
all i, j ∈ [K].⃓⃓

E[Xi]− E[Xj]
⃓⃓

≤ U
⃓⃓
(E [f(h (Xi,dS))]− E [f(h (Xj ,dS))])

⃓⃓
(9)

for random vectors dS of reward of subset S of size K − 1
from N − 2 arms.

Proof. We obtain the result by choosing da1
= h(Xi,dS)

and da2
= h(Xj ,dS).

Assumptions 1-3 are satisfied for many problem setups,
such as in cascade model for clicks (Kveton et al. 2015a)
where a user interacting with a list of documents clicks
on the first documents the user likes. The joint reward is
r(t) = maxi(X1,t, · · · , XK,t) for independent arm re-
wards and the corresponding form of Equation (7) is 1 −
(Πk(1− E[Xk])) (1−E[Xi]) ≥ 1− (Πk(1− E[Xk])) (1−
E[Xj]) which holds when E[Xi] > E[Xj], and the Bi-
Lipschitz property in individual expected rewards holds too.
The assumptions are also satisfied in cross-selling optimiza-
tion (Raymond Chi-Wing Wong, Ada Wai-Chee Fu, and
Wang 2003), where the reward is a quadratic function of the
individual items sold in a bundle K. The assumption are also
satisfied for joint rewards as sum or mean of individual re-
wards (Rejwan and Mansour 2020; Chen, Wang, and Yuan
2013).

Lower bound on Top-K Subset Identification
Given the formulation, we now prove a tight lower bound
on the subset identification problem in linear setup with cor-
related rewards. For the linear setup, we define the reward
function as f(d) =

∑︁K
i d(i), where d(i) is the ith en-

try of d. Further we consider a setup where the best subset
a∗ = {1, 2, · · · ,K} and the reward distribution of individ-
ual arm is X ′

i,t = 1/2 + ϵ1{i∈a∗} + Zt, where Zt follows
Gaussian distribution with mean 0 and variance σ2.

Theorem 1. Any deterministic player must suffer expected
regret of at least Ω(σK

√
KNT) against an environment

with rewards X ′
i,t for t = 1, 2, · · · , T for each arm i ∈ [N].

Proof. (Outline:) We note that if the algorithm plays against
a setup where all the arms are identical, then the expected
number of times it selects an arm i ∈ a∗ is KT/N as the
arms are not distinguishable. Using this and the proof of

Lemma 4 from (Cohen, Hazan, and Koren 2017) we obtain
the required result. A detailed proof is reconstructed in our
technical report (Agarwal et al. 2020).

Proposed DART Algorithm
We first state a relevant lemma to motivate the proposed al-
gorithm. We note that Assumption 2 allows us to order arms
without observing their individual expected rewards.
Lemma 1. Let N (i) and N (j) be the set of all actions that
contains arms i and j respectively (|N (i)| = |N (j)| =(︁
N−1
K−1

)︁
). If the actions are uniformly randomly selected from

the sets N (i) and N (j), then the following holds.

E [Xi] ≤ E [Xj]

⇔ Eai∼U(N (i)) [µai
] ≤ Eaj∼U(N (j))

[︁
µaj

]︁
(10)

where U(·) is the uniform distribution.

Proof Sketch:. We take expectation on all the actions over
set N (i) in the left and over set N (j) in the right hand side
of the Equation (7) from Assumption 2 to obtain the required
result. A detailed proof is presented in (Agarwal et al. 2020).

From Lemma 1, we note that if we create uniformly ran-
dom partitions, the expected reward of action containing arm
i will be higher than the expected reward of the action con-
taining arm j if arm i is better than arm j. We use this idea
to create the proposed DART algorithm in Algorithm 1.

The algorithm initializes µ̂i as the estimated mean for ac-
tions that contain arm i and ni as the number of times an
action containing arm i is played. The algorithm proceeds in
epochs, indexed by e, and maintains three different sets at
each epoch. The first set, Ae, contains “good” arms which
belong to the top-K arms found till epoch e. The second set,
Ne, contains the arms which the algorithm is still exploring
at epoch e. The third set, Re, contains the arms that are “re-
jected” and do not belong in the top-K arms. We let Ke be
the variable that contains the number of spots to fill in the
top-K subset at epoch e. The algorithm maintains a deci-
sion variable ∆ as the concentration bound and a parameter
variable n as the minimum number of samples required for
achieving the concentration bound ∆. Lastly, the algorithm
maintains a hyper parameter λ tuned for the value of T,N ,
and K. λ is the minimum gap between any two arms the
algorithm can resolve within time horizon T .

In Line 5, the algorithm selects a permutation of Ne uni-
formly at random and partitions it into sets of size Ke. If
Ke does not divide |Ne|, we repeat arms in the last group
(cyclically, so that the last group has Ke distinct arms). To
simplify the bookkeeping, µ̂i and ni are not updated if arm
i is repeated in the last group. The algorithm then creates
an action at from the partitioned groups and the arms in
the good set and plays it to obtain a reward rat

(t) at time t
(Line 8-9). DART then updates the estimated mean for all
arms played in at with the observed reward and increments
the number of counts for the arms played (Line 10-12).

In lines 15-16, the algorithm moves an arm i ∈ Ne to
Ae if estimated mean of actions that contain arm i, µ̂i, is ∆

Algorithm 1 DART(T , N , K)

1: Initialize µ̂i = 0, ni = 0 for i ∈ {1, 2, · · · , N}; t =

0; e = 0, λ =
√︂

720NK log 2NT
T

2: Ae = ϕ,Re = ϕ,Ne = [N] ▷ Initialize parameters for
rounds

3: ∆ = 1, n = 288 log(NT)
∆2 ,Ke = K − |Ae|

4: while t < T do
5: Choose a permutation of Ne uniformly at

random and partition it into sets of size Ke:
Ne,1,Ne,2, · · · ,Ne,|Ne|/Ke

6: e = e+ 1; ℓ = 1
7: while ℓ ≤ |Ne|/Ke and t < T do
8: at = Ae ∪Ne,ℓ ▷ Create action from arms in

Ae ∪Ne,ℓ

9: Play action at and obtain reward rat(t)
10: for all arm i ∈ Ne,ℓ do
11: µ̂i =

niµ̂i+rat (t)

ni+1 ;ni = ni + 1

12: t = t+ 1; ℓ = ℓ+ 1

13: Sort Ae∪Ne∪Re according to µ̂(1) ≥ µ̂(2) ≥ · · · ≥
µ̂(N)

14: Ā = {i ∈ Ne|µ̂i > µ̂(K+1) + ∆}; R̄ = {i ∈
Ne|µ̂i < µ̂(K) −∆}

15: Ae+1 = Ae ∪ Ā; Re+1 = Re ∪ R̄; Ne+1 = Ne \(︁
Ā ∪ R̄

)︁
; Ke+1 = K − |Ae+1|

16: if e ≥ n then
17: ∆ = ∆

2 , n = 288 log(NT)
∆2

18: if ∆ < λ or |Ae ∪Ne| == K then
19: break while loop
20: Sort Ae ∪ Ne ∪ Re according to µ̂(1) ≥ µ̂(2) ≥ · · · ≥

µ̂(N)

21: a = Ae ∪ {i ∈ Ne|µ̂i > µ̂(K+1)}
22: while t < T do
23: Play action a; t = t+ 1

more than the estimated mean of actions that contain arm at
(K + 1)th rank, µ̂K+1. Similarly, the algorithm moves an
arm i ∈ Ne to Re if estimated mean of actions that contain
arm i, µ̂i, is ∆ less than the estimated mean of actions that
contain arm at Kth rank, µ̂K .

The proposed DART algorithm uses a random permuta-
tion of Ne. The random permutation can be generated in
O(N) steps. Also after each round, the algorithm finds the
Kth and (K + 1)th ranked arms. This operation can be
completed in Õ(N) time complexity using sorting {µ̂i}Ni=1.
Also going over each arm in Ne is of linear time complexity.
Hence, the per-step time complexity of the algorithm comes
out to be Õ(N). Also, the proposed DART algorithm only
stores the estimates µ̂i for each arm i ∈ [N]. The resulting
storage complexity is O(N) for maintaining the estimates.
To find the top-K and the top-(K +1) means, the algorithm
may use additional space of O(N) to maintain a heap. Thus,
the overall space complexity of the algorithm is only O(N).

Regret Analysis
We now analyse the sample complexity and regret of the pro-
posed DART algorithm. To bound the regret, we first bound
the number of samples required to move an arm in Ne to
either of Ae or Re. Then, we bound the regret from includ-
ing a sub-optimal arm in the played actions. For the analy-
sis, without loss of generality, we assume that the expected
rewards of arms are ranked as E[X1] > E[X2] > · · · >
E[XN]. If the arms are not in the said order, we relabel the
arms to obtain the required order. From Assumption 2, we
have a∗ = {1, 2, · · · ,K}. We refer to arms 1, · · · ,K as
optimal arms and arms K + 1, · · · , N as sub-optimal arms.

Number of samples to move an arm in Ne to either
of Ae or Re

We call two arms i, j ∈ Ne, i < j separated if the algorithm
has high confidence that E[Xi] > E[Xj]. We first analyze
the general conditions to separate any two arms i, j ∈ Ne

such that E[Xi] > E[Xj]. Let the epoch where arm i and
arm j are separated and the epoch of Algorithm 1 be e. We
define a filtration Fe as the history observed by the algorithm
till epoch e.

For any u ∈ Ne, let Ne(u) = {a ∈ [N]
K

: u ∈ a,Ae ⊆
a,Re ∩ a = ϕ,a(i) ̸= a(j)∀i, j : 1 ≤ i < j ≤ K}.

We now define a random variable Zi,j(e) for i, j ∈ Ne,
which denotes the difference between the reward observed
from playing an uniform random action from Ne(i) and an
uniform random action from Ne(j). In other words,

Zi,j(e) = rai
(e)− raj

(e), (11)

where ai ∼ U(Ne(i)), aj ∼ U(Ne(j)) and U(·) denotes the
uniform distribution. Also, rai

(e) is the reward observed by
playing ai and raj

(e) is the reward obtained by playing aj

at epoch e. Hence, the randomness of Zi,j(e) comes from
both the random selection of ai and aj , and from the re-
ward generated by playing ai and aj . Let PZi,j(e) denote
the probability distribution of Zi,j(e). We now mention a
lemma for bounding the expected value of Zi,j(e) for all
epochs e.

Lemma 2. Let i, j ∈ [N] be two arms such that E[Xi] >
E[Xj]. Let Zi,j(e) be a random variable denoting the differ-
ence between the reward obtained on playing a uniform ran-
dom action ai∼ U(Ne(i)) containing arm i and a randomly
selected action aj∼ U(Ne(j)) containing arm j. Then the
expected value of Zi,j(e) is upper bounded by U∆i,j , and
lower bounded by 0, or,

∆i,j

KU
≤ E[Zi,j(e)] ≤ U∆i,j (12)

Proof Sketch. We first show the upper bound. The cardinal-
ity of both Ne(i) and Ne(j) is

(︁|Ne|−1
Ke−1

)︁
as we have fixed one

of the Ke places for arm i and now we can fill only Ke − 1
places from the available |Ne| − 1 arms. Algorithm 1 parti-
tions a random, uniformly distributed permutation over Ne,
so all actions a ∈ Ne(i) are equally likely, and likewise
for a ∈ Ne(j). Taking the expectation over the actions

played and the reward obtained, we get the expected value
of Zi,j(e) as

E [Zi,j(e)] = E
[︁
rai

(e)− raj
(e)

]︁
(13)

=
1(︁|Ne|−1

Ke−1

)︁
⎛⎝ ∑︂

a∈Ne(i)

µa −
∑︂

a∈Ne(j)

µa

⎞⎠ (14)

≤ 1(︁|Ne|−1
Ke−1

)︁(︃|Ne| − 2

Ke − 1

)︃
U∆i,j (15)

=
|Ne| −Ke

|Ne| − 1
U∆i,j ≤ U∆i,j . (16)

Equation (14) is obtained by linearity of expectation and tak-
ing the expectation over rewards of uniformly distributed ac-
tions ai and aj . Equation (15) is obtained by noting that
there exist exactly

(︁|Ne|−2
Ke−1

)︁
actions where arm i is replaced

by arm j. From Assumption 3 of Lipschitz continuity, the
difference between the expected reward of those actions is
bounded by U∆i,j . The remaining actions contain both arms
i and j, thus are in both Ne(i) and Ne(j), and so cancel out.
Equation (16) comes from simplifying the fraction with bi-
nomial and noticing that Ke ≥ 1. This proves the upper
bound.

Similarly we obtain the lower bound using Assumption 1

E [Zi,j(e)] = E
[︁
rai

(e)− raj
(e)

]︁
(17)

=
1(︁|Ne|−1

Ke−1

)︁
⎛⎝ ∑︂

a∈Ne(i)

µa −
∑︂

a∈Ne(j)

µa

⎞⎠ (18)

≥ ∆i,j

U

1(︁|Ne|−1
Ke−1

)︁(︃|Ne| − 2

Ke − 1

)︃
(19)

=
∆i,j

U

|Ne| −Ke

|Ne| − 1
≥ ∆i,j

KeU
≥ ∆i,j

KU
. (20)

Equation (15) is obtained from Assumption 1. The dif-
ference between the expected reward of the actions are
lower bounded by ∆i,j

U . Equation (20) comes from noting
that Ke(|Ne| − Ke) ≥ |Ne| − 1. This proves the lower
bound.

The sequence of random variables Zi,j(e), e = 1, 2, · · ·
are not independent as the sets Ai(e) and Aj(e) are up-
dated as the algorithm proceeds. Hence, we cannot apply
Hoeffding’s concentration inequality (Hoeffding 1994, The-
orem 2) for analysis. To use Azuma-Hoeffding’s inequality
(Bercu, Delyon, and Rio 2015, Chapter 3), we need to con-
struct a martingale. For each pair of arms i, j ∈ [N] with
E[Xi] > E[Xj], we define Yi,j as a martingale with respect
to filtration Fe,

Yi,j(e) =

e∑︂
e′=1

(Zi,j(e
′)− Ee′−1 [Zi,j(e

′)]) (21)

where Ee′−1[·] = E[·|Fe′−1]. Yi,j(e) is a martingale with
zero-mean, and |Yi,j(e) − Yi,j(e − 1)| ≤ 2, and hence we
can apply Azuma-Hoeffding’s inequality to Yi,j(e) for all
i, j ∈ [N].

After obtaining the concentration of Yi,j(e) with respect
to the eth iteration of sample of action with arm i and arm j,
we now obtain the value of e for which we can consider arm
i and j to be separated with probability 1− δ.
Lemma 3. Let arms i, j ∈ [N] be two arms such that
E[Xi] > E[Xj]. Let ∆ be such that ∆ < µ̂i − µ̂j ≤
2∆. Then, with probability at least 1 − δ, arm i and
arm j are separable at epoch e and 32 log 2/δ

∆2 ≤ e ≤
O
(︂

288K2U2 log 2/δ
∆2

i,j

)︂
.2

Proof Sketch:. At epoch e, µ̂i − µ̂j =
∑︁e

e′=1 Zi,j(e
′)/e.

Using this relation and Azuma-Hoeffding’s inequality on
Yi,j(e), we get the required result. A detailed proof is pro-
vided in (Agarwal et al. 2020).

We can now bound the number of samples required to
move each arm from Ne to either the “accept” set Ae or
the “reject” set Re. In the algorithm, arm i will be moved to
the accept set Ae when its empirical mean µ̂i is sufficiently
larger than that of the K + 1 ranked arm. Consider an arm i
in the optimal action a∗ = {1, . . . ,K}. By Lemma 3, with
probability 1 − δ, arms i and K + 1 will be separable by
epoch

e ≤ 288U2K2 log (2/δ)

∆2
i,K+1

. (22)

Similarly, arm i will be moved to the reject set Re when
its empirical mean µ̂i is sufficiently less than that of the
Kth ranked arm. Consider an arm i ∈ {K + 1, . . . , N}.
By Lemma 3, with probability 1 − δ, arms i and K will be
separable by epoch

288U2K2 log (2/δ)

∆2
K,i

. (23)

Regret from sampling sub-optimal arms
We first bound the regret of playing any action a ∈ N using
Assumption 3.
Lemma 4. Let a = (a1, a2, · · · , aK) be any action. The
expected regret suffered from playing action a instead of ac-
tion a∗ = (1, 2, · · · ,K) is bounded as

⃓⃓
µa − µa∗

⃓⃓
≤ U

K∑︂
i=1

⃓⃓
E[Xai

]− E[Xπ(i)]
⃓⃓
, (24)

for any permutation π of {1, · · · ,K} for which π(i) = ai if
ai ≤ K.

Proof Sketch:. From Assumption 3, we first find a tight up-
per bound. We finish the proof by using the fact that As-
sumption 3 selects the permutation which minimizes the
bound, hence any other permutation also gives a valid up-
per bound. A detailed proof is provided in (Agarwal et al.
2020).

2For the particular case of K = 1, the upper bound reduces to

O
(︃

288 log 2/δ

∆2
i,j

)︃

We now bound the regret incurred by playing an action at

at time t containing sub-optimal arm i ∈ {K + 1, · · · , N}
replacing an optimal arm j ∈ {1, · · · ,K} in Lemma 5.

Lemma 5. For any sub-optimal action, the regret it can ac-
cumulate by replacing an optimal arm j ∈ {1, · · · ,K} by
an arm i ∈ K + 1, · · · , N is bounded by

1440K2U3 log (2/δ)

∆K,i
(25)

Proof Sketch. The agent suffers from regret if it an action
that contains at least one sub-optimal arm. To bound the re-
gret from a sub-optimal action, we use the proof technique
of (Rejwan and Mansour 2020) to divide the optimal arms
j ∈ {1, · · · ,K} into two groups: first group with ∆j,K+1 >
∆K,i and second group with ∆j,K+1 ≤ ∆K,i. We show that

regret from both groups is bounded by O
(︂

1
∆K,i

)︂
The de-

tailed proof is provided in (Agarwal et al. 2020).

After calculating the regret from individual arms, we now
calculate the total regret of the DART algorithm in the fol-
lowing theorem

Theorem 2. For λ = U
√︂

720NK log 2NKT
T , the distribution

free regret incurred by DART algorithm is bounded by

R ≤ O
(︂
U2K

√︁
NKT log 2NT

)︂
(26)

Proof Sketch. We use the standard proof technique of
bounding regret accumulated while eliminating arms to re-
ject set of a confidence bound based algorithm to tune λ and
calculate the regret. A detailed proof is provided in (Agarwal
et al. 2020).

We note that the regret bound of DART matches matches
the lower bound in Theorem 1 upto the factor of log (2NT)
for bandits with joint reward as sum of rewards of individual
arms in an action.

We note that there may be scenarios where an agent
does not know the value of U and cannot tune λ accord-
ingly. In such a case, the agent increases its regret because
of not knowing the joint reward function. For a value of

λ =
√︂

720NK log 2NT
T , which does not use U , the regret of

the algorithm is bounded as

O
(︂(︁

U3 + U
)︁
K
√︁

NKT log 2NT
)︂
. (27)

Additionally, we note that we can convert DART to an
anytime algorithm using doubling trick of restarting algo-
rithm at Tl = 2l l = 1, 2, · · · until the unknown time horizon
T is reached (Auer and Ortner 2010). Using analysis from
(Besson and Kaufmann 2018, Theorem 4), we show that
DART for unknown T achieves a regret bound of Õ(

√
T).

We present the complete proof in (Agarwal et al. 2020).

Experiments
We now present comparison results of DART with CSAR
(Rejwan and Mansour 2020) and CMAB-SM (Agarwal and

(a) K = 2 (b) K = 4 (c) K = 8

Figure 1: Regret plots for joint rewards as mean of individual arm rewards

(a) K = 2 (b) K = 4 (c) K = 8

Figure 2: Regret plots for joint rewards as quadratic function of individual arm rewards

Aggarwal 2018) and UCB (Auer and Ortner 2010) algo-
rithms. We used N = 45 and T = 106 for simulations.
We chose K = 2, 4, 8 for easy construction of Hadamard
matrices for CSAR algorithm. We compare for two different
reward setups. First setup has joint reward as linear func-
tion of individual rewards. Second setup has joint reward as
a quadratic function of individual rewards. In each setup,
individual arm rewards follows Bernoulli distribution with
means sampled from U([0, 1]). We run 25 independent iter-
ations to plot average regret and the maximum and minimum
values of the regret of each algorithm.

In the first setup, we have the joint reward of the form
r(t) = θTdat

, where θ ∈ RK is a vector with all entries as
1/K. From Figure 1, we note that the performance of DART
is significantly better than both CSAR and CMAB-SM for
joint reward as the mean of the individual arm rewards. For
CSAR algorithm in (Rejwan and Mansour 2020), this is be-
cause after updating ∆, it generates fresh K2

∆2 samples in-
stead of using previous samples to improve estimates. We
only compare with UCB (Auer and Ortner 2010) for K = 2
as the action space became too large for K = 4, 8. Also,
we note that LinUCB algorithm (Li et al. 2010) for linear
bandits runs extremely slow even for K = 2 and we show
comparison for N = 15,K = 2 in (Agarwal et al. 2020).

We also simulate the joint reward of the form r(t) =
dT
at
Adat

, where A ∈ RK×K is an upper triangular ma-
trix with all entries as 2/K(K + 1). A quadratic reward
function is used in cross-selling optimization to quantify
the total profit from selling a bundle of items compared to

the profit from selling the items in the bundle separately
(Raymond Chi-Wing Wong, Ada Wai-Chee Fu, and Wang
2003). From Figure 2, we note that DART significantly
outperforms CSAR and CMAB-SM algorithm for quadratic
function of individual rewards as well. We note that CSAR,
though designed for linear setup, is able to model the rank-
ing of the arms from quadratic rewards and beat CMAB-SM
algorithm. However, we note that CSAR is not able to out-
perform when the joint reward is max of individual rewards
as noted in (Agarwal et al. 2020).

Conclusion
We considered the problem of combinatorial multi-armed
bandits with non-linear rewards, where the agent chooses K
out of N arms in each time-step and receives an aggregate
reward. We obtained a lower bound of Ω(K

√
NKT) for the

linear case with possibly correlated rewards. We proposed a
novel algorithm, called DART, which is computationally ef-
ficient and has a space complexity which is linear in number
of base arms. We analyzed the algorithm in terms of regret
bound, and show that it is upper bounded by Õ(K

√
NKT),

which matches the lower bound of Ω(K
√
NKT) for ban-

dit setup with correlated rewards. DART works efficiently
for large N and K and outperforms existing methods em-
pirically. Based on the contributions, finding lower bound
for Bi-Lipschitz reward function bandits and extending the
proposed algorithm to a more general class of functions are
some of the potential future works.

References
Abbasi-Yadkori, Y.; Pal, D.; and Szepesvari, C. 2011. Im-
proved Algorithms for Linear Stochastic Bandits. In Ad-
vances in Neural Information Processing Systems 24, 2312–
2320.

Agarwal, M.; and Aggarwal, V. 2018. Regret bounds for
stochastic combinatorial multi-armed bandits with linear
space complexity. arXiv preprint arXiv:1811.11925 .

Agarwal, M.; Aggarwal, V.; Quinn, C. J.; and Umrawal, A.
2020. DART: aDaptive Accept RejecT for non-linear top-K
subset identification. arXiv preprint arXiv:2011.07687 .

Agrawal, S.; and Goyal, N. 2012. Analysis of Thompson
sampling for the multi-armed bandit problem. In Conference
on Learning Theory, 39–1.

Audibert, J.-Y.; Bubeck, S.; and Lugosi, G. 2014a. Regret in
Online Combinatorial Optimization. Math. Oper. Res. 39(1):
31–45. ISSN 0364-765X. doi:10.1287/moor.2013.0598.
URL http://dx.doi.org/10.1287/moor.2013.0598.

Audibert, J.-Y.; Bubeck, S.; and Lugosi, G. 2014b. Regret
in Online Combinatorial Optimization. Mathematics of Op-
erations Research 39(1): 31–45.

Auer, P. 2002. Using Confidence Bounds for Exploitation-
Exploration Trade-offs. Journal of Machine Learning Re-
search 3: 397–422.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine Learn-
ing 47(2-3): 235–256.

Auer, P.; and Ortner, R. 2010. UCB revisited: Improved re-
gret bounds for the stochastic multi-armed bandit problem.
Periodica Mathematica Hungarica 61(1-2): 55–65.

Bercu, B.; Delyon, B.; and Rio, E. 2015. Concentration in-
equalities for sums and martingales. Springer.

Besson, L.; and Kaufmann, E. 2018. What Doubling Tricks
Can and Can’t Do for Multi-Armed Bandits .

Cesa-Bianchi, N.; and Lugosi, G. 2012. Combinatorial Ban-
dits. J. Comput. Syst. Sci. 78(5): 1404–1422. ISSN 0022-
0000. doi:10.1016/j.jcss.2012.01.001. URL http://dx.doi.
org/10.1016/j.jcss.2012.01.001.

Chen, W.; Wang, Y.; and Yuan, Y. 2013. Combinatorial
Multi-Armed Bandit: General Framework and Applications.
In Dasgupta, S.; and McAllester, D., eds., Proceedings of the
30th International Conference on Machine Learning, vol-
ume 28 of Proceedings of Machine Learning Research, 151–
159. Atlanta, Georgia, USA: PMLR.

Cohen, A.; Hazan, T.; and Koren, T. 2017. Tight Bounds
for Bandit Combinatorial Optimization. In Conference on
Learning Theory, 629–642.

Dani, V.; Hayes, T.; and Kakade, S. 2008. Stochastic Linear
Optimization under Bandit Feedback. In Proceedings of the
21st Annual Conference on Learning Theory, 355–366.

Dani, V.; Kakade, S. M.; and Hayes, T. P. 2008. The Price of
Bandit Information for Online Optimization. In Platt, J. C.;
Koller, D.; Singer, Y.; and Roweis, S. T., eds., Advances in

Neural Information Processing Systems 20, 345–352. Cur-
ran Associates, Inc.

Filippi, S.; Cappe, O.; Garivier, A.; and Szepesvari, C. 2010.
Parametric Bandits: The Generalized Linear Case. In Ad-
vances in Neural Information Processing Systems 23, 586–
594.

Gai, Y.; Krishnamachari, B.; and Jain, R. 2010. Learning
multiuser channel allocations in cognitive radio networks:
A combinatorial multi-armed bandit formulation. In New
Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on,
1–9. IEEE.

Gai, Y.; Krishnamachari, B.; and Jain, R. 2012. Combina-
torial network optimization with unknown variables: Multi-
armed bandits with linear rewards and individual observa-
tions. IEEE/ACM Transactions on Networking 20(5): 1466–
1478.

Gopalan, A.; Mannor, S.; and Mansour, Y. 2014. Thompson
Sampling for Complex Online Problems. In Proceedings
of the 31st International Conference on Machine Learning,
100–108.

Hoeffding, W. 1994. Probability inequalities for sums of
bounded random variables. In The Collected Works of Wass-
ily Hoeffding, 409–426. Springer.

Jun, K.-S.; Bhargava, A.; Nowak, R.; and Willett, R. 2017.
Scalable Generalized Linear Bandits: Online Computation
and Hashing. In Advances in Neural Information Processing
Systems 30, 98–108.

Kalyanakrishnan, S.; Tewari, A.; Auer, P.; and Stone, P.
2012. PAC Subset Selection in Stochastic Multi-armed Ban-
dits. In Proceedings of the 29th International Conference
on Machine Learning, ICML 2012, Edinburgh, Scotland,
UK, June 26 - July 1, 2012. icml.cc / Omnipress. URL
http://icml.cc/2012/papers/359.pdf.

Kveton, B.; Szepesvari, C.; Wen, Z.; and Ashkan, A. 2015a.
Cascading bandits: Learning to rank in the cascade model.
In International Conference on Machine Learning, 767–
776.

Kveton, B.; Wen, Z.; Ashkan, A.; Eydgahi, H.; and Eriksson,
B. 2014. Matroid bandits: Fast combinatorial optimization
with learning. arXiv preprint arXiv:1403.5045 .

Kveton, B.; Wen, Z.; Ashkan, A.; and Szepesvari, C.
2015b. Tight regret bounds for stochastic combinatorial
semi-bandits. In Artificial Intelligence and Statistics, 535–
543.

Lattimore, T.; Kveton, B.; Li, S.; and Szepesvari, C. 2018.
Toprank: A practical algorithm for online stochastic rank-
ing. In Advances in Neural Information Processing Systems,
3945–3954.

Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
contextual-bandit approach to personalized news article rec-
ommendation. In Proceedings of the 19th international con-
ference on World wide web, 661–670.

Li, L.; Lu, Y.; and Zhou, D. 2017. Provably Optimal Algo-
rithms for Generalized Linear Contextual Bandits. In Pro-

http://dx.doi.org/10.1287/moor.2013.0598
http://dx.doi.org/10.1016/j.jcss.2012.01.001
http://dx.doi.org/10.1016/j.jcss.2012.01.001
http://icml.cc/2012/papers/359.pdf

ceedings of the 34th International Conference on Machine
Learning, 2071–2080.
Liau, D.; Song, Z.; Price, E.; and Yang, G. 2018. Stochastic
Multi-armed Bandits in Constant Space. In Storkey, A.; and
Perez-Cruz, F., eds., Proceedings of the Twenty-First Inter-
national Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research,
386–394. Playa Blanca, Lanzarote, Canary Islands: PMLR.
URL http://proceedings.mlr.press/v84/liau18a.html.
Lin, T.; Abrahao, B.; Kleinberg, R.; Lui, J.; and Chen, W.
2014. Combinatorial Partial Monitoring Game with Linear
Feedback and Its Applications. In Xing, E. P.; and Jebara,
T., eds., Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine
Learning Research, 901–909. Bejing, China: PMLR.
Nuara, A.; Trovo, F.; Gatti, N.; Restelli, M.; et al.
2018. A Combinatorial-Bandit Algorithm for the Online
Joint Bid/Budget Optimization of Pay-per-Click Advertising
Campaigns. In Thirty-Second AAAI Conference on Artificial
Intelligence, 1840–1846.
Raymond Chi-Wing Wong; Ada Wai-Chee Fu; and Wang,
K. 2003. MPIS: maximal-profit item selection with cross-
selling considerations. In Third IEEE International Confer-
ence on Data Mining, 371–378.
Rejwan, I.; and Mansour, Y. 2020. Top-k Combinatorial
Bandits with Full-Bandit Feedback. In Algorithmic Learn-
ing Theory, 752–776.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25(3/4): 285–294.
Xiang, Y.; Lan, T.; Aggarwal, V.; and Chen, Y.-F. R. 2016.
Joint latency and cost optimization for erasure-coded data
center storage. IEEE/ACM Transactions on Networking
(TON) 24(4): 2443–2457.
Zhang, W.; Zhang, Y.; Gao, B.; Yu, Y.; Yuan, X.; and Liu,
T.-Y. 2012. Joint optimization of bid and budget alloca-
tion in sponsored search. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 1177–1185. ACM.

http://proceedings.mlr.press/v84/liau18a.html

	Introduction
	Related Works

	Problem Formulation
	Lower bound on Top-K Subset Identification
	Proposed DART Algorithm
	Regret Analysis
	Number of samples to move an arm in Ne to either of Ae or Re
	Regret from sampling sub-optimal arms

	Experiments
	Conclusion

