
CommanderGabble: A Universal Attack
Against ASR Systems Leveraging Fast Speech

Zhaohe Zhang
University of Oklahoma

Norman, OK, USA
zxz003@ou.edu

Edwin Yang
University of Oklahoma

Norman, OK, USA
edwiny@ou.edu

Song Fang
University of Oklahoma

Norman, OK, USA
songf@ou.edu

ABSTRACT
Automatic Speech Recognition (ASR) systems are widely used in
various online transcription services and personal digital assistants.
Emerging lines of research have demonstrated that ASR systems
are vulnerable to hidden voice commands, i.e., audio that can be
recognized by ASRs but not by humans. Such attacks, however,
often either highly depend on white-box knowledge of a specific
machine learning model or require special hardware to construct
the adversarial audio. This paper proposes a new model-agnostic
and easily-constructed attack, called CommanderGabble, which uses
fast speech to camouflage voice commands. Both humans and ASR
systems often misinterpret fast speech, and such misinterpreta-
tion can be exploited to launch hidden voice command attacks.
Specifically, by carefully manipulating the phonetic structure of
a target voice command, ASRs can be caused to derive a hidden
meaning from the manipulated, high-speed version. We implement
the discovered attacks both over-the-wire and over-the-air, and
conduct a suite of experiments to demonstrate their efficacy against
7 practical ASR systems. Our experimental results show that the
over-the-wire attacks can disguise as many as 96 out of 100 tested
voice commands into adversarial ones, and that the over-the-air
attacks are consistently successful for all 18 chosen commands in
multiple real-world scenarios.

CCS CONCEPTS
• Security andprivacy; •Human-centered computing→Ubiq-
uitous and mobile computing;

KEYWORDS
ASR misinterpretation, syllabification, adversarial audio

ACM Reference Format:
Zhaohe Zhang, Edwin Yang, and Song Fang. 2021. CommanderGabble: A
Universal Attack Against ASR Systems Leveraging Fast Speech. In Annual
Computer Security Applications Conference (ACSAC ’21), December 6–10, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3485832.3485892

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485892

1 INTRODUCTION
Automatic Speech Recognition (ASR) systems have proliferated,
so also have adversarial attacks (e.g., [4, 13, 15, 32, 47, 55, 57])
against them. Deep neural networks and efficient training methods
have greatly improved the accuracy of ASR systems over time,
including Google’s Speech recognition technology, whose word
error rate fell to 4.9% in 2017 from 23% in 2013 [44]. However, ASR
misinterpretations are non-negligible and still happen frequently
in practice. Recent research efforts have demonstrated that dialects
or accents variations [57], words that have the same or similar
pronunciation but different spellings (homophones) [32, 56], and
even nonsensical sounds [13] may lead to speechmisinterpretations.
Such systematic errors can be utilized to develop malicious attacks,
such as vApp squatting attacks [32].

Rate of speech (i.e., speed at which a user speaks) is a well-
known factor that may cause both ASR and human misinterpreta-
tions [11, 12, 39, 49], but little effort has been made to exploit it for
constructing adversary audio attacks. In particular, due in part to
the limitations of the articulatory machinery, timing and acoustic
realization of syllables are affected. Pronunciation may be thus
altered in several ways, such as phoneme reduction, time compres-
sion or expansion, and changes in the temporal patterns [11, 12].
In this context, a syllable is regarded as a pronunciation unit, i.e., a
single, unbroken sound of a spoken or written word; and a phoneme,
as the core spoken language component, is a unit of sound.

If a person hyperarticulates and makes significantly long pauses
among syllables, ASR misinterpretations could occur, but overall,
slow rate of speech usually does not hinder human understanding
nor the performance of ASR speech recognition. In this paper, we
thus focus on exploiting the misinterpretation errors brought by
fast speech rate as well as investigating their security implications.

A fast speech rate usually results in distorted pronunciation
that humans cannot distinguish and meanwhile ASR systems fail
to correctly interpret [39]. We observe that ASR experiences the
following three phoneme misinterpretation patterns while parsing
rapidly spoken commands: (1) reduction: some phonemes are di-
rectly omitted; (2) replacement: a specific phoneme is replaced
with another phonetically similar phoneme; (3) coalescence: the
ASR cannot accurately discriminate between inter-word silence and
intra-word silence, and phonemes in neighboring syllables merge
together to form a new syllable. If an attacker wants the ASR to exe-
cute a malicious command, she can manipulate that command such
that the resulting sped-up audio will become incomprehensible to
humans while still being interpreted in the same way.

All three phoneme misinterpretations are illustrated in Figure 1a,
where a user quickly speaks the command, “Open the door”, which is
erroneously parsed by the Google assistant as “Oh panda our”. The

720

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485832.3485892
https://doi.org/10.1145/3485832.3485892
https://doi.org/10.1145/3485832.3485892

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Zhaohe Zhang, Edwin Yang, and Song Fang

(a) Normal Scenario

(b) Adversarial Scenario

Fast Speech

Fast Speech

“Old pan do our”
Interpreted: Open door

Interpreted: Oh panda our“Open the door”

Figure 1: An example to show impact of fast speech on per-
formance of ASR speech recognition.

original phonetic representations of the three words can be denoted
as [OW P AH N], [DH AH], and [D AO R], respectively. For the
interpreted phrase, the corresponding phonetic representations
become [OW], [P AE N D AH], [AW ER]. We have the following
observations. First, the phoneme reduction effect is visible in the
phoneme D disappearing from the third word. Second, the phoneme
replacement effect is evident in phonemes AO and R being replaced
by AW and ER, respectively. Third, the original word “open” is
disassembled while other phonemes merge to form new words
such as “panda”, demonstrating the phoneme coalescence effect.

Now consider the scenario in Figure 1b: the attacker aims to
stealthily make ASR execute the command “open door". To this
end, the attacker carefully crafts a meaningless phrase “Old pan
do our" by manipulating the phonemic structure of the original
command “Open door", and broadcasts it at high speed. Since the
phonemic structure has been significantly changed and the fast
speech further alters the pronunciation, the legitimate user usually
cannot realize that somebody is executing a command (i.e., the
injected command is incomprehensible to humans). However, due to
the aforementioned three distortion effects induced by fast speech,
the ASR then misinterprets the spoken words into the command
of “Open door" and then executes that command. Consequently,
the attacker successfully injects a command into the ASR system.
Though the concept of the attack is straightforward, it relies on
addressing two main technical challenges.

First, before constructing adversarial commands, we need to
understand the distortion effect of fast speech on different syllables.
To address this, we compare the phonetic structure of the 5,000
most frequently used words [19] and 100 commonly used voice
commands in Amazon Alexa or Google Assistant [36, 43] with that
of corresponding misinterpretations induced by fast speech. As a
result, we can identify the syllable structures that can be stably
captured by ASRs regardless of the playback speed, which are
suitable for use in constructing adversarial commands.

Second, after identifying these stable syllable structures, we then
need to account for the unstable structures in the malicious com-
mands that we wish to produce.We develop a method to manipulate
the syllables in the original phonetic structure so that after we feed
the sped-up, adversarial audio into the ASR, the original command

is executed. Meanwhile, to avoid arousing suspicion, the created
adversarial audio should not be intelligible to humans. For each
extracted phonetic structure, we find an adversarial word to map to
it. If no such a word is found, we utilize a customized phoneme mor-
phing technique to change phonemes in the syllable until finding a
matching word. The combination of those adversarial words forms
an adversarial command candidate, which will be synthesized into
fast speech. Once the resultant audio can be recognized by the ASR
but not by humans, it can be then used to conduct the actual attack.

We conduct a real-world evaluation by launching the discov-
ered attack over-the-wire and over-the-air against 7 practical ASR
systems (including 4 online transcription services and 3 voice-
controllable digital assistants). Our experimental results show that
the over-the-wire attacks can transform 96 of 100 selected widely
used voice commands into adversarial ones. We performed the
over-the-air attacks in three different typical scenarios, including
household, teleconference, and in-vehicle. We find that such attacks
are viable in practice. The average success rates for Amazon Alexa,
Google Assistant, and Microsoft Cortana can reach as high as 95%,
97%, and 93%, respectively.

Our contributions are summarized as follows.

• We systematically explore the misinterpretations introduced
by fast speech of voice commands for popular ASRs, and
analyze the phonetic structure variation between the original
command and the one that ASRs recognize.
• We discover that manipulating the phonetic structure of a
command and increasing its speed can cause it to be incom-
prehensible to humans but recognized as desired by the ASR.
We thus create a universal attack of crafting adversarial voice
commands against ASRs.
• We implement the proposed technique and conduct exten-
sive real-world experiments to verify its feasibility, robust-
ness, and suspiciousness.
• We describe, implement, and test a defense mechanism for
this attack.

Roadmap: The rest of the paper is organized as follows. We
introduce the background knowledge about ASR and linguistics in
Section 2. Section 3 discusses the adversary model. The detailed
attack design and countermeasures are then presented in Section 4
and 5, respectively. Section 6 shows experimental results. Section 7
summarizes related work. At last, Section 8 concludes the paper.

2 BACKGROUND
2.1 ASR Principle
ASR is a technique that allows machines to translate audio streams
of speech into written text. A typical ASR system has two ma-
jor components, feature extraction and decoding [54]. The former
distills the raw speech signal into acoustic features with relevant
information only [47], which include Mel-Frequency Cepstral Co-
efficients (MFCC) [40], Perceptual Linear Prediction (PLP) [29],
etc. The extracted acoustic features are then decoded using a pre-
trained acoustic model to predict the probability of each phoneme
being spoken, as well as a pre-trained language model to predict
the probability of which word comes next.

721

CommanderGabble: A Universal Attack Against ASR Systems Leveraging Fast Speech ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Execution
Check

ASR

Normal
Command

Intelligibility
Check

No

No

Adversarial
Audio

Yes

Yes

Phonemes-to-
Word Translation

Successful

Failed

Word-to-Phonemes
Translation

Phoneme
Syllabification

Phoneme
Morpher

Syllabification
Modifier

Text-to-
Speech (TTS)

Winnowing
and Refining

Phonetic
Reconstruction

Speech
Synthesis

Figure 2: Flowchart of constructing adversarial audio.

2.2 Syllable Structure and Phonemes
In phonology, the phonetic pattern is referred to as syllable structure,
consisting of three elements: the onset, the nucleus, and the coda
[23]. According to the Sonority Sequencing Principle [18], which
stipulates that onsets rise in sonority towards the nucleus while
codas fall in sonority, the nucleus is usually (but not always) a vowel,
as vowels are high in sonority. In general, the rankings in sonority
for these three elements are middle, high, and low, respectively.
The onset-nucleus-coda combination often can be abstracted as a
consonant-vowel-consonant (abbreviated CVC) syllable. Each CVC-
structured syllable is prominent as the vowel in such a syllable is
always different in quality from neighboring consonants.

As mentioned earlier, phoneme is the unit of sound distinguish-
ing one word from another. Advanced Research Projects Agency
(ARPA) developed a set of phonetic transcription codes (called
“ARPABET") in the 1970s, which represents phonemes of General
American English with distinct sequences of ASCII characters.
There are 39 phonemes in ARPABET in total. A modified form
of the ARPABET system is employed by the CMU Pronouncing Dic-
tionary, a widely used open-source pronunciation dictionary that
contains over 134,000 English words and their pronunciations [1].
This work utilizes the CMU pronunciation dictionary to convert
words into phonemes.

3 ADVERSARY MODEL
We consider a black-box attack, where the attacker does not know
the ASR mechanism of the attacked system. Our adversary model
aligns with existing black-box adversarial audio attacks (e.g., [4, 5,
13, 31, 52]). The goal of the attacker is to generate adversarial audio
that can be executed by the victim ASR and is incomprehensible to
human listeners. Towards this goal, she manipulates the phonetic
structure of the original command and synthesizes the manipulated
command into fast speech.

We assume that the attacker generates malicious audio samples
offline before the actual attack takes place. Also, unlike some exist-
ing adversarial audio attacks, where the audio needs to be directly
fed to ASR systems (e.g., [15, 47]) or the effectiveness of over-the-
air attacks highly depends on the utilized speakers and recording
devices (e.g., [54]), we consider both over-the-wire and over-the-air

attacks, and make no specific constraint for the type of the speaker
or victim microphone.

For an over-the-wire attack, we assume that the adversary is
able to directly feed the adversarial audio into the victim ASR,
which accepts an input file with the format such as WAV or FLAC.
An adversary can launch an over-the-air attack remotely or with
an attacking speaker in the vicinity of the target ASR device. For
example, an attacker can embed the generated adversarial audio
into a video and tempt the victim to play it (e.g. through YouTube),
or secretly play the adversarial audio during an online meeting
(e.g., by inserting it into a shared presentation slide as sound ef-
fect). Alternatively, she may stealthily leave a remotely controllable
speaker around the victim ASR device in the victim’s office, vehicle,
or home.

4 ADVERSARIAL ATTACK DESIGN
We propose a generic technique to make any command inconspic-
uous to human ears, meanwhile allow it to be executed by ASR
systems. Unlike previous adversarial attacks against ASRs, which
require adding artificial noise to the audio (e.g., [6]), the proposed
attack does not need to craft any noise.

4.1 Design Overview
We utilize four important phases to generate audio adversarial
examples, including phoneme reconstruction, speech synthesis,
audio transmission, and finally, winnowing and refining. Figure 2
plots the flowchart of the proposed attack.

The attacker first selects a target command, and inputs it into
the phase of phonetic reconstruction (Figure 2, step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

), which aims
to convert the command into a different text for a potential audio
adversarial example. This phase translates the command into its
phonemic representation and then extracts the syllables according
to a pre-defined syllabification rule. Next, each separate syllable will
be re-mapped into a word. If no such matching word is found, the
phoneme morpher will alter the phonemes within the syllable until
the modified syllable has a suitable match. The sequence of trans-
lated words generated in the first phase composes an adversarial
command candidate.

The attacker then performs speech synthesis (step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

) to convert
it into adversarial audio candidates in fast speech with a speech
synthesizer (e.g., Google TTS [27]). After that, each audio candidate
is sent to an ASR. The ASR response then inputs to the last module,
winnowing and updating (step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

), to remove ineffective adversarial
audio candidates, those which cannot be interpreted as the original
command or can be discerned as the command by humans. If all
candidates fail, the attacker employs the syllabification modifier
to update the pre-defined syllabification rule, and provides it to
the first phase (step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

) to re-generate the adversarial command
candidate. If a candidate passes both effectiveness checks, it can be
regarded (step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

) as an adversarial audio to attack the target ASR.

4.2 Phonetic Reconstruction
The phase of phonetic reconstruction first extracts the syllables
with pre-defined structures in the phonetic representation of a
target command, and then maps each of them to a new word to
generate a potential adversarial command.

722

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Zhaohe Zhang, Edwin Yang, and Song Fang

0.0
0.2
0.4
0.6
0.8
1.0

1.0 1.5 2.0 2.5 3.0Pa
ss

 R
at

e
(%

)

Playback Speed

CVC-Contained CVC-free

(a) Amazon Alexa

0.0
0.2
0.4
0.6
0.8
1.0

1.0 1.5 2.0 2.5 3.0Pa
ss

 R
at

e
(%

)

Playback Speed

CVC-Contained CVC-free

(b) Google STT

Figure 3: Pass rates for CVC-contained and CVC-free words.

W2P Translation: This process translates each word in a se-
lected command into its phonetic representation. It can be achieved
by the CMU pronunciation dictionary, which covers most words
used in commands of various ASRs. Also, for words not in the dic-
tionary, we employ the LOGIOS Lexicon Tool [3] to convert them
into phonemes.

Phoneme Syllabification: The goal of this step is to divide the
obtained phoneme sequence into syllables based on the specified
rules, which the attacker can use to build an adversarial command.
We begin by selecting a syllable structure suitable for generating a
successful adversarial command and then develop two syllabifica-
tion rules.

Selection of CVC: After phoneme syllabification, we should be
able to convert each of the resultant syllables into a word to include
in the adversarial command. The most frequent syllable type in
English is CVC with three segments [21], which consists of a vowel
flanked by exactly one consonant on each side. We thus expect that
more words have that structure than any other. We empirically ver-
ify that CVC words take the highest percentage (599/5,000=11.98%)
in the 5,000 most frequently used words [19]. We also expect that
words with this structure will be the most consistently recognized
by the ASR.

To verify that hypothesis, we collect and analyze the latest list of
AmazonAlexa commands (consisting of 281 commands) [43] as well
as the latest list of voice commands for Google Assistant (consisting
of 275 commands) [36]. These two lists have 456 and 441 unique
words, respectively. Among each group of unique words, we find
that CVC words are the most frequent in both groups (23.68% and
26.08%, respectively). We also count the number of words whose
syllables contain CVC. If the phoneme representation of a word
contains at least a CVC sub-syllable, we refer to such a word as
a CVC-contained word, otherwise, we call it as a CVC-free word.
For Amazon Alexa and Google Assistant, 83.80% and 82.10% of the
unique words are CVC-contained.

Furthermore, we explore the distribution of recognized syllables
for the ASR under different speech rates. Specifically, we randomly
select 100 words (with half CVC-contained and half CVC-free) from
the unique words used for constructing Amazon Alexa commands
and input each to Google TTS to generate audio files with different
playback speeds. We then transmit audio files over-the-wire to the
Alexa ASR API [7] for transcription. We vary the playback speed
from 1.0× to 3.0× in increments of 0.5×, where 1.0× denotes the
normal playback speed. When the ASR fails, it generates empty
output, so for each speed, we compute the pass rate as the ratio of

Algorithm 1 Default Syllabification Rule
Require: A sequence of syllables, i.e.,
[p1,1, · · · , p1,l1], · · · , [pm,1, · · · , pm,lm]; a function
State(p), which returns C if the phoneme p is consonant,
otherwise V.

Ensure: A sequence of sub-syllables, i.e., [S1, · · · , Sk]
1: k ← 1
2: for i = 1 to m do
3: for j = 1 to (li − 2) do
4: Stemp = [State(pi, j), State(pi, j+1), State(pi, j+2)]
5: if Stemp = [CVC] then
6: Sk ← Stemp {CVC is found}
7: k ← j + 1
8: j ← i + 1
9: end if
10: end for
11: end for

the non-empty ASR recognition results to the total number of tested
words. Figure 3a plots corresponding pass rates of CVC-contained
and CVC-free words. We can see that under different fast speech
rates, the pass rates of CVC-contained words are consistently larger
than that of CVC-free ones. We repeat the above experiments with
Google Assistant, and obtain similar results shown in Figure 3b.
These results demonstrate convincingly that the ASRs tend to better
recognize CVC-contained than CVC-free words.

As there are more words to match a CVC-structured syllable
and CVC-contained words are easier to be recognized by ASRs, we
select CVC as a foremost feature to syllabify the initial phoneme
sequence of the command.

Syllabification Rules: We develop the following two syllabifica-
tion rules:

(1) CVC-based Rule: We extract sub-sequences of phonemes
with the pattern of CVC in the phoneme representation of each
word. We assume that the command has m words. After W2P,
we obtain pronunciation for each word. Let [pi,1,pi,2, · · · ,pi,li]
denote the ith (i ∈ {1, 2, · · · ,m}) pronunciation, where li is the
total number of phonemes in this pronunciation, and pi, j is the
jth (j ∈ {1, 2, · · · , li }) phoneme in this pronunciation. Correspond-
ingly, we can extract li − 2 syllables, each with three consecu-
tive phonemes. We then check each syllable in turn to determine
whether its phonetic structure is CVC. Pseudocode for this rule
is shown in Algorithm 1. For example, the word “broadcast" has
a sequence of 8 phonemes – [B R AO D K AE S T] with pattern
“CCVCCVCC". Accordingly, we obtain CVC-structured syllables
[R AO D] and [K AE S].

(2) CVC-absent Rule: The phoneme sequences of some words
may not contain CVC, so an alternative rule is needed to handle such
cases. Specifically, for each vowel in the phoneme sequence of a
word, if there is a consonant before it, we extract this CV-structured
phoneme sub-sequence. Otherwise, if there is a consonant after
it, we extract the VC-structured phoneme sub-sequence. When
the previous two checks both fail, we simply extract this single
vowel. The reasoning for the CVC-absent rule design is twofold:
(i) each word’s syllable structure must contain one of the three

723

CommanderGabble: A Universal Attack Against ASR Systems Leveraging Fast Speech ACSAC ’21, December 6–10, 2021, Virtual Event, USA

AO

UW

OW

Close

Open

Open-mid

Close-mid

IY

EY

Front Central Back

AHER

AA

UH

EH
(AW)(AY)AE

IH

(OY)

Near-close

Mid

Near-open

Near-front Near-back

Figure 4: ARPABET vowels in IPA: (1) the vertical axis is
mapped by vowel height; (2) the horizontal axis determines
vowel backness; (3) where a dot appears, the ones to the right
and left represent rounded and unrounded (spread) vowels.

patterns, i.e., CV, VC, and V, so this rule retains much important
information about the original phoneme sequence; (ii) if we only
search for a phonetic pattern longer than CVC, and extract phoneme
sequences based on such patterns, we may lose much information
in the command level. For example, the phonetic pattern of the
word “answer” ([AE N S ER]) is VCCV, so the CVC-based rule does
not work. The CVC-absent rule is therefore initiated, enabling us
to extract two syllables, [AE N] (with VC) and [S ER] (with CV).

Finally, the phoneme syllabification phase can take an input to
modify the default syllabification rules in the event they cannot
generate an adversarial audio. We discuss this feedback/refinement
loop in Section 4.4.

P2WTranslation: P2W, the inverse ofW2P, converts each qual-
ified syllable into a word. The criteria for a qualified syllable include:
(1) it matches with a word’s syllable; (2) it is different from the syl-
lable of the original command word, from which it is extracted. The
first requirement makes sure that we can construct an adversarial
command, and the second aims to increase the difference between
the generated adversarial command and the original so that the
synthesized audio file is less identifiable. If neither of the two re-
quirements is satisfied, this syllable is then inputted to the module
of phoneme morpher.

Phoneme Morpher: Vowels are the most sonorous sounds, as
discussed earlier. They have been shown to contribute more to-
ward intelligibility than consonants for humans [22, 30]. Thus, in
order to reduce human perception of the synthesized command, the
phoneme morpher displaces the vowel in the syllable with another
vowel, similar enough that the ASR recognizes the adversarial audio
as the original command. American English contains 12 spoken
vowels (15 including diphthongs). In the following, we discuss how
to measure the similarity of two vowels, and develop methods to
perform vowel displacement.

Vowel Similarity: Different vowels have different features, and
we thus obtain the similarity of vowels by comparing their features.
We explore the features of vowels using the International Phonetic
Alphabet (IPA) vowel quadrilateral [10], which roughly describes
tongue position and lip roundness when we use the mouth to pro-
nounce vowels, as shown in Figure 4. Each diphthong, as a gliding
vowel, is a combination of two adjacent vowel sounds within the
same syllable. The IPA vowel quadrilateral describes each vowel’s
articulatory feature in three dimensions, tongue height, tongue
backness, and lip rounding. We use an additional feature, tense-
ness, that is also widely used to classify vowels [20] and which

Close

Open

Open-mid

Close-mid

IY

Front Central Back

AH
ER

AA

UH

EH

AE

IH
EY

AO

UW

OW

Tense vowels
Lax vowels

Figure 5: Tenseness of vowels (monophthongs).

describes the muscle effort or constriction during the pronunci-
ation of a vowel [37]. Tenseness divides vowels (monophthongs)
into categories of tense and lax vowels, as shown in Figure 5.

Thus, each vowel has a feature set of these four articulatory
features. We employ the Jaccard index, which is commonly used to
measure the similarity of two finite data sets [9], to measure the
similarity between the articulatory feature sets for a pair of vowels.
We compute the Jaccard index J (V1,V2) between the two vowelsV1
and V2 as

J (V1,V2) =
|FV1 ∩ FV2 |

|FV1 ∪ FV2 |
=

|FV1 ∩ FV2 |

|FV1 | + |FV2 | − |FV1 ∩ FV2 |
, (1)

where FVi is the feature set of vowel Vi (i ∈ {1, 2}), and |A| repre-
sents the number of elements in set A. The Jaccard index ranges
from 0 to 1, with 0 denoting that both vowels have the exactly same
features and 1 indicating that the two vowels do not share any fea-
ture. Computing the Jaccard index for every pair of vowels among
the 15 different vowels with Equation 1, we obtain a symmetric
15× 15 similarity matrix. Each diagonal entry of the matrix denotes
the Jaccard index of the corresponding vowel with itself.

Vowel Displacement Strategy: After determining vowel similari-
ties, we can then select a substitution for a given vowel phoneme to
finish phoneme morphing. Specifically, we try all the other vowels
from smallest to largest Jaccard index until the resultant syllable is
qualified and can be successfully converted into a word.

4.3 Adversarial Audio Synthesis
A speech synthesizer turns normal language text into speech, and
enables users to define the playback rate. Such text-to-speech (TTS)
systems have been widely used in various scenarios, including au-
tomotive, voice assistants, audio books, etc. We utilize Google TTS
with WaveNet voices [41] to convert the adversarial command can-
didate into adversarial audio candidates with different fast playback
rates. Next, the synthesized adversarial audios are transmitted to
the testing ASR to identify the effective one, which can be used to
launch attacks against the target ASR.

Audio Transmission: Each generated audio can be transmitted
over-the-wire or over-the-air into the target ASR. In an over-the-wire
adversarial attack, the audio with a format such as WAV or FLAC
is directly passed to the ASR. Such attacks focus on making online
transcription services (e.g., Google STT [26]) to generate target
texts. Conversely, an over-the-air adversarial attack requires the
audio to be played via a speaker towards the target voice-controlled
platform (e.g., Amazon Alexa).

724

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Zhaohe Zhang, Edwin Yang, and Song Fang

Playback Speed Set Up:We can adjust the parameter of speak-
ing rate in the range [0.25×, 4.0×] with Google Cloud TTS [25],
where 1.0× denotes the normal native speed, 2.0× is twice as fast,
and 0.5× is half as fast. In this work, we select the range [2.0×, 3.0×]
of the playback speed to investigate generating adversarial com-
mands. In particular, we take advantage of the unintelligibility of
fast speech and also utilize phonetic structure manipulation to
compensate for the distortion effect of fast speed rate. Generally,
if the playback speed rate is too close to 1.0× (e.g., in the range
of [1.0×, 2.0×]), the resultant audio may be easily understood by
humans, while if it is too fast (e.g., above 3.0×), the introduced dis-
tortion effect of the audio would be too dramatic to be compensated
for, causing the failure of ASR recognization.

4.4 Winnowing and Updating
The phase has two goals: (1) winnowing out adversarial audio can-
didates that either cannot be correctly executed by the target ASR
or can be understood by humans; (2) updating the syllabification
rule (applied in the phase of phonetic reconstruction) if there is no
adversarial audio candidate left after winnowing.

Execution Check: We test the machine recognizability of each
adversarial audio candidate based on audio transmission methods:
(1) for the over-the-wire mode, the maliciously crafted audio passes
the execution check if the target ASR completely transcribes the
desired text, and it fails the check when the ASR transcribes one
or more words incorrectly; (2) for the over-the-air mode, if the
audio successfully triggers the ASR to perform a desired action
(e.g., setting an alarm or sending a message) as specified by the
adversarial voice command, it then passes the execution check.

Intelligibility Check: Once the adversarial audio candidate
can be recognized by the ASR, the following question is whether
the audio can also be recognized by humans - an adversarial audio
attack is not practical if so.

As mentioned earlier, fast speech and phonetic structure ma-
nipulation can both hinder human intelligibility of the audio. To
verify this intelligibility degradation effect, we compare human
with ASR intelligibility using word error rate (WER), the ratio of in-
correctly recognized words (including substitutions, deletions, and
insertions) to the total number of words, quantifying the similarity
between the selected command and the recognized one [35, 51]. Let
N denote the total number of words in the command. WER can be
then computed by

WER =
S + D + I

N
, (2)

where S ,D, and I represent the respective numbers of word substitu-
tions, deletions, and insertions. A higher WER indicates a command
less comprehensible to humans. For example, in the case that the
command “enable toll” is interpreted as “in a bot”, we have N = 2,
S = 2, D = 0, I = 1, and thus WER = 3/2 = 1.5.

WER provides word-level similarity between the recognized com-
mand and the target one. To complement the intelligibility test, we
also calculate the phoneme error rate (PER) as the ratio of phonolog-
ical distance between the recognized and target commands to the
length of the phoneme sequence of the target command. The phono-
logical distance can be denoted with the Levenshtein distance [33],
which is defined as the sum of phoneme substitutions, deletions, and

insertions between the phoneme sequence of the recognized com-
mand and that of the target command. Unlike WER, PER quantifies
the phoneme-level similarity between two commands.

We observe bothWER and PER between the target command and
the one recognized by listeners. If both are larger than a predefined
threshold, γ0, the intelligibility check is passed and the candidate
can be used to conduct the actual attack, otherwise, this check fails.
Empirically, we set γ0 = 0.5.

Syllabification Modifier: If the adversarial audio candidate
fails either check, the adversary modifies the syllabification rules
correspondingly.

When Execution Check Fails: We compare failed transcription
with corresponding target commands to identify the reason of exe-
cution failure. Empirically, we find the leading phoneme of a word
is often ignored when performing the initial phoneme syllabifica-
tion. For example, the phonetic representation of the word “open”
is [OW P AH N], and after phoneme syllabification, we extract the
subsequence [P AH N] with pattern CVC; consequently, the ASR
often translates the generated adversarial audio candidate into “pen”
rather than “open". Accordingly, we modify the syllabification rules
based on whether the leading phoneme of a misinterpreted word is
a vowel or consonant,
• If a word’s syllable begins with pattern “VCVC", we extract
the sub-syllable consisting of the first two phonemes, and
then begin the CVC-based rule;
• If a word’s syllable begins with pattern “CCV” or “CCCV”,
we first remove all consonant phonemes between the first
consonant and the first vowel, and then initiate the CVC-
based or CVC-absent rule.

When Intelligibility Check Fails: To increase the pronunciation
difference, we propose to expand the phonetic structure of the orig-
inal command before phoneme syllabification. Specifically, within
a phoneme sequence of a word, we change each single vowel (those
with no neighboring vowels) into two of the same vowel, and leave
any instances of two or more consecutive vowels unchanged. The
CVC-absent rule is then applied. The newly generated adversarial
command candidate is longer (i.e., has more words), and its pronun-
ciation is expected to be further deviated from that of the original
command.

4.5 Discussions
4.5.1 Extension to Other Languages. We emphasize that the pro-
posed attack in this paper targets ASRs recognizing American Eng-
lish. Considering the similarity between American English and
other western languages (e.g., Spanish and German) which also
utilize vowel and consonant sounds, as long as the speed-induced
ASR misinterpretation can be identified, the discovered attack can
be customized for those languages.

4.5.2 Algorithm Scalability. To guarantee the unintelligibility of
the generated audio, we employ manual human evaluation, as do
some other hidden voice command generation techniques (e.g., [14]).
The attacker can use crowdsourced evaluation of intelligibility. For
example, we can use Amazon Mechanical Turk (Turk) [2], which
pays human workers to complete online tasks. This approach has
been adopted by extensive existing work (e.g., [14, 17, 45]) to in-
crease the efficiency of intelligibility evaluation. We can generate a

725

CommanderGabble: A Universal Attack Against ASR Systems Leveraging Fast Speech ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Reference
Services 𝑅!

Target
Transcription

Service 𝑇 Adversarial Audio	𝑎T-Req

T-Req

From 𝟏	to 𝒏 check:
if 𝑅" 𝑎 ≠ 𝐶𝑚𝑑:

Attack!

𝑅! 𝑎

𝑇 𝑎 = 𝐶𝑚𝑑

Reference
Services 𝑅#

𝑅# 𝑎

… Reference
Services 𝑅"

𝑅" 𝑎T-Req
T-Req

*T-Req: Transcription
Request

Figure 6: Flow chart of xRef.

batch of adversarial audio candidates and post all tasks simultane-
ously, speeding up the process and ensuring its scalability.

5 COUNTERMEASURES
The proposed adversarial voice attack crafts adversarial voice com-
mands by exploiting the misinterpretation made by ASR systems
when translating fast speech. Intuitively, to defend against such an
attack, we can increase the ASR’s robustness against fast speech
by training with more fast speech audio samples. However, this
approach is impractical, because it is difficult to obtain sufficient
fast speech samples, considering that a wide range of factors (e.g.,
speech rate, pitch, and tone) may affect the fast speech. We here
introduce two more practical defense methods.

5.1 Cross-reference Transcription
Empirically, we find that most commercial ASR systems can rec-
ognize voice commands at regular speeds (i.e., 1.0× - 1.9×) with
high accuracy, while once the playback speed exceeds 1.9×, their
recognition both degrades and diverges from each other. These dif-
ferences in high-speed audio transcriptions appear due to variances
in architecture and training datasets among ASR systems. Based
on this observation, we propose cross-reference transcription (xRef)
to detect the proposed adversarial voice attack.

Figure 6 presents the flow chart of xRef. Suppose that an attacker
constructs an adversarial audio a. When the ASR receives the ad-
versarial audio (Figure 6, step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

), it sends the transcription request
to its ASR server R. The audio is interpreted as a voice command,
i.e., T (a). If the ASR figures out that T (a) is equal to a valid com-
mand Cmd (step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

), xRef is initiated: the adversarial audio is then
sent to another one or multiple ASR transcription services R1, · · · ,
Rn ; each reference service transcribes the adversarial audio and
returns the result to the local ASR device (step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

); the ASR can then
compare the transcription R1(a), · · · , Rn (a) from n reference ser-
vices with Cmd to detect the adversarial audio (step

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

realized with RACER’s non-pipelined mode. All three operations
take advantage of RACER’s low-latency, low-overhead shift abilities.
By employing bit striping across tiles, we can implement shift
operations in programs simply by using inter-tile data transfers
through the buffers. This avoids the need for any dedicated circuitry
for shift operations, which a number of prior PUM architectures
require (as they typically store all bits of a number in a single array).
RACER’s LSHIFT and RSHIFT operations perform bulk shifting, as
they are applied to entire columns, and can be performed in parallel
by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],
and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows a four-bit example of multiplication with A=0101;
B=1110. First, RACER uses LSHIFT and RSHIFT operations to create
shifted copies of A and B (❶ in the figure; B not shown for clarity).
We refer to A’s left-shifted-by-i copy on line i as Ai . Second, RACER
ANDs all bits of Ai with the ith bit of B to generate four partial
products (❷). Third, RACER performs column-wise adds based on
the Wallace tree reduction algorithm (❸). The addition reduces the
number of partial product lines to 3 (❹). Next, the carry bits are
left-shifted by one (❺). Wallace tree reduction (❸–❺) repeats until
only two partial products remain (❻). A final RCA (❼) generates
the product C (❽).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Shift-based multiplication in RACER (buffers not
shown for simplicity).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can flexibly adapt to other types of tree-
based multiplication, such as the Dadda multiplier [19], without

needing to physically rewire the circuit, which cannot be done in
CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – σi2–iy[i] (1)

y[i + 1] = y[i] + σi2–ix[i] (2)

z[i + 1] = z[i] + σitan–1(2–i) (3)

The value σi is the sign of zi (i.e., either 1 or 0). In RACER, we
precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of σi . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and
subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

Integer Division. The integer division algorithm compares the di-
visor with the dividend/remainder to determine whether to (1) shift
in another bit from the dividend or (2) subtract the divisor from the
remainder, using a predetermined sequence of MUX, RSHIFT, and
SUB operations. Because RACER supports only predicated branch
execution, both RSHIFT and SUB are performed in parallel, and a
subsequent MUX operation chooses the correct predicate by com-
paring the value of the divisor to the remainder. This comparison
is done by examining the output sign bit of another SUB operation
with the divisor/remainder values.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available in each byte set for computation. For
each character in a file, we store the results of a bitwise comparison
with the search pattern. Hence, 28 vectors store the file words,
while 28 other vectors store the comparison results. We add the

). When the
transcription from any reference service does not match with that
recognized by the target transcription service, i.e., Ri (a) , Cmd
(i ∈ {1, · · · ,n}), the received audio a is regarded as malicious and
would not be executed.

Usually, when two reference services are introduced, xRef can
achieve a success rate of nearly 100% for detecting the adversar-
ial audios, as verified in Section 6.4. However, it requires extra

time to obtain reference transcription, and more reference services
may cause a longer delay for the ASR to execute a benign voice
command.

5.2 Silence Detection
Another defense technique is to build a machine learning model to
recognize fast speech through its intrinsic property of containing
less silence (both intra- and inter-word) for each command than
normal speech. We can take advantage of this observation to build
a CNN (Convolutional Neural network) to detect such differences
in silence and then filter out dangerous fast speech. If the detected
silence in a voice command is below a certain threshold, the ASR
would alert the user first and ask for the command to be repeated
at a slower speed.

6 EXPERIMENTAL RESULTS
We implement CommanderGabble to generate adversarial audios
for arbitrary selected commands in American English. We evaluate
both over-the-wire and over-the-air attacks against different off-
the-shelf ASR platforms. To test the human comprehensibility of
generated adversarial audios, we conduct a survey asking partici-
pants to listen to adversarial audios and indicate the meaning they
hear. We also implement the proposed countermeasure - xRef and
test its effectiveness.

6.1 Evaluation Setup
We randomly select 100 commands from a pool of commonly used
voice commands in Amazon Alexa or Google Assistant [36, 43].
To understand the impact of command length on the attack per-
formance, these commands have varying lengths. Specifically, we
consider short (one word), medium (two or three words), and long
(more than three words) commands.

We test four popular online transcription services, Amazon Tran-
scribe, Google STT, IBM Watson STT, and MS Azure STT for over-
the-wire attacks, as well as three widely used voice-controlled
digital assistants, Amazon Alexa, Google Assistant, and Microsoft
Cortana for over-the-air attacks. In our experiments, we use an
Amazon Echo Dot (3rd Gen) for Amazon Alexa, a Google Pixel 4
phone for Google Assistant, and a Lenovo ThinkPad X1 Carbon
laptop for MS Cortana. For over-the-wire attacks, we generate ad-
versarial audio files for the selected 100 commands; for over-the-air
attacks, we test under three different practical environments:
• Household: The victim ASR is on the table, and nearby is the
speaker (Logitech Z200) playing adversarial audio (with a
noise level between 15-20 dB).
• Teleconference: The adversarial audio is embedded in a Power-
Point slide, played by the presenter during an online meeting
(via Zoom [58]), and broadcasted to all attendees. The victim
ASR is beside one attendee (with a desktop) and can hear
the meeting audio via the computer speaker (Logitech Z200).
The noise level is similar with that in the household scenario.
• In-vehicle: The victim ASR is put near the car center con-
sole, and the adversarial audio is played via the car speaker
(Kenwood KFC-1666S), when the vehicle engine starts with
a noise level of around 60 dB. Specifically, we use Android
Auto [24] which integrates Google Assistant, and Amazon

726

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Zhaohe Zhang, Edwin Yang, and Song Fang

Table 1: Tested commands for over-the-air attacks.

Environment ID Command
C1 Stop
C2 Continue
C3 Unlock the door
C4 Call my phone
C5 Show me the back door camera

Household

C6 Turn off the light in living room
C7 Bluetooth
C8 Location
C9 Call my phone
C10 Recent messages
C11 Turn on the light

Teleconference

C12 Set the alarm at 3am
C13 News
C14 Home
C15 Enable Tollway
C16 Cancel Route
C17 How long will it take to drive to library

In-vehicle

C18 What is my current location

Alexa with Alexa Auto [8] mode. Microsoft currently has
no specified design for this scenario so we continue to use
regular MS Cortana.

We test 6 commands (including two short, two medium, and two
long commands) under each environment, as shown in Table 1. Note
that adversaries may have different goals in each environment and
thus utilize different commands. We choose and test approximate
commands to make the attacks practical.

6.2 Attack Effectiveness
6.2.1 Over-the-wire (OTW) Attack. We first utilize examples to
demonstrate the effectiveness. Specifically, we randomly select 3
commands from each of the three groups (short, medium, and
long). Next, we generate adversarial audio for each command. For
comparison, we also utilize Google TTS to directly convert each
original command into a normal audio file with the same playback
speed as the corresponding adversarial audio uses.

Table 2 presents the number of successful transcriptions in all
three trials of each group for different ASRs. We have the follow-
ing observations. First, CommanderGabble is successful for all nine
commands against different ASR systems, convincingly demon-
strating the attack effectiveness. Second, most normal audio files
fail to generate correct translation (especially for long commands)
when they are played at high speed, verifying the speed-induced
distortion effect. Also, different ASR systems may have different
performance of recognizing fast speech.

Large-scale Tests: To examine the overall impact of the OTW
attacks, we use CommanderGabble to generate adversarial audio
files for the selected 100 commands. By checking whether each
transcription by the tested ASR is correct or not, we compute the
translation accuracy as the ratio of successful transcriptions to the
total number of transcription attempts.

Figure 7 shows the translation accuracy of adversarial audio
and normal audio files for each group of commands, as well as

Table 2: OTW case studies (N and A refer to normal and ad-
versarial audio).

Short Medium Long
ASR N A N A N A

Amazon Transcribe 0/3 3/3 0/3 3/3 0/3 3/3
Google STT 1/3 3/3 1/3 3/3 0/3 3/3

IBM Watson STT 0/3 3/3 0/3 3/3 0/3 3/3
MS Azure STT 2/3 3/3 1/3 3/3 0/3 3/3

0

0.2

0.4

0.6

0.8

1

Adv-S Nor-S Adv-M Nor-M Adv-L Nor-L Adv-T Nor-T
Tr

an
sl

at
io

n
 A

cc
ur

ac
y

Tested Audio

Google STT Amazon Transcribe
MS Azure STT IBM Watson STT

Figure 7: Translation accuracy for adversarial audio (Adv)
and normal audio (Nor) files generatedwith different groups
of commands (S, M, L denote short, medium, and long com-
mands respectively, and T represents all commands).

Table 3: Wake-up words and their adversarial commands.

Wake-up
Word

Adversarial
Command Speed Successful?

Okay Google kaye go oh 2.0× -
2.1× ✓

Alexa A leh sa 2.0× -
2.2× ✓

Hey Cortana hye core ta 2.0× -
2.5× ✓

that for the total commands. We can observe two major tendencies.
First, compared with normal audio, the crafted adversarial audio
always achieves much higher translation accuracy. The average
translation accuracy of the adversarial audio across four different
ASRs for all commands is as high as 90%, while that of the normal
audio is just 28%. Second, CommanderGabble achieves the best
attack performance overall for medium commands with an average
translation accuracy of 95%, while for short and long commands, the
attack performance slightly decreases to 85% and 87%, respectively.

6.2.2 Over-the-air (OTA) Attack. A voice-controllable digital as-
sistant can be activated by either the wake-up word or pressing a
special button. An adversary thus has to cause the ASR to recognize
the corresponding wake-up word before injecting any voice com-
mands. With the proposed technique, we successfully construct
adversarial audio files for different wake-up words, as demonstrated

727

CommanderGabble: A Universal Attack Against ASR Systems Leveraging Fast Speech ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 4: Example of over-the-air evaluation.

Successful?Scenario Adversarial Command Speed Alexa Google Cortana

Household (C5) sho me bad ack dawe orr
cam murr 2.0× ✓ ✓ ✓

Teleconferencing
(C7) Lu Two 2.0× - 2.5× ✓ ✓ ✓

Vehicle (C15) eh en a abe bah ul tow ole 2.0× - 2.3× ✓ ✓ ✓

Table 5: Overall performance for OTA attacks.

Command Success Rate

ID Amazon
Alexa

Google
Assistant

Microsoft
Cortana

C1 10/10 10/10 10/10
C2 10/10 10/10 10/10
C3 7/10 8/10 8/10
C4 10/10 10/10 9/10
C5 10/10 10/10 9/10
C6 10/10 10/10 10/10
C7 8/10 9/10 7/10
C8 9/10 8/10 8/10
C9 10/10 10/10 10/10
C10 8/10 9/10 9/10
C11 10/10 10/10 10/10
C12 10/10 10/10 10/10
C13 5/10 6/10 5/10
C14 6/10 6/10 5/10
C15 6/10 8/10 4/10
C16 8/10 8/10 -*
C17 8/10 8/10 6/10
C18 9/10 9/10 7/10

* C16 is not supported by Cortana and thus triggers no action.

in Table 3. Also, Table 4 presents three over-the-air attack exam-
ples under three different scenarios. Each attack can successfully
trigger the intended action against different voice-controllable sys-
tems. Note that an adversarial command may generate multiple
adversarial audio files with different playback speeds.

Overall Attack Impact: We repeat the above experiments for all
18 commands against the three voice-controllable systems. To test
attack stability, we perform 10 trials of attacks with the adversarial
audio for each command. Thus, we have 18 × 3 × 10 = 540 tests
in total. We define success rate as the ratio of attack attempts that
successfully trigger the ASR to perform a desired action to the total
number of attack trials. Table 5 presents the success rates of all
commands, prompting three key observations.

First of all, all commands with different lengths in different
scenarios can be converted into successful adversarial commands to
stealthily trigger an ASR to execute corresponding functions, except
C16 (“Cancel Route”) with MS Cortana, which does not support that
command (despite successfully interpreting it). These results verify
the effectiveness of the proposed attack under different command
lengths, scenarios, and ASR platforms.

Table 6: Percentage of adversarial audios that xRef success-
fully detects when one reference service is introduced (we
use Amazon, Google, MS, and IBM to refer to Amazon Tran-
scribe, Google STT, Microsoft Azure STT, and IBM Watson
STT, respectively).

Amazon Google MS IBM
Amazon N/A 99% 98% 98%
Google 99% N/A 100% 100%
MS 98% 100% N/A 95%
IBM 98% 100% 95% N/A

Second, in both household and teleconference environments,
the achieved success rates are consistently high. For household
(C1-C6), the average success rates against Amazon Alexa, Google
Assistant, and MS Cortana are 95%, 97%, and 93%, respectively, and
92%, 93%, and 90%, respectively, for teleconference (C7-C12). The
success rates for in-vehicle (C13-C18) are decent but comparably
lower, because there is much higher environmental noise (coming
from the running engine and outside the car) here than in the other
scenarios.

Lastly, a longer command achieves a slightly higher success rate
in most cases. For example, for teleconference, both Amazon Alexa
and Google Assistant achieve average success rates of 85%, 95%, and
100% for short (C7 and C8), medium (C9 and C10), and long (C11
and C12) commands, respectively. This is caused by the fact that
longer commands provide richer context information, facilitating
ASRs to recognize them with the pre-trained language models.

6.3 Human Comprehensibility Tests
In this section, we test the human comprehensibility of adversarial
audios, which can successfully trigger target actions by the ASRs.
We recruited 28 volunteers (aged 25-40 years old; fluent in English;
11 self-identified as females and 17 as males), including 18 native
American-English speakers. 1 To mitigate any subjective effects
(such as priming effects [38]) that may potentially influence the
participants’ understanding of the adversarial audio files, no voice
command was disclosed to the participants before the tests.

We prepared an adversarial audio file for each command and
each of the three wake-up words. Meanwhile, to demonstrate the
impact of phonetic manipulation on command intelligibility, we
also synthesized each original wake-up word or command with the
same playback speed that the corresponding adversarial version
used for comparison. Thus, we had 21 adversarial audio files and 21
1The survey does not cause any potential risks to the participants, such as psychological,
physical, etc. The study has been reviewed and approved by our institution’s IRB.

728

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Zhaohe Zhang, Edwin Yang, and Song Fang

Table 7: Average detection rate for adversarial and normal
audios when the number of reference services varies.

Number of
references One Two Three

Adversarial 98.3% 100% 100%
Normal 100% 100% 100%

normal audio files in total. The subjects were asked to listen to 18
audio files (3 and 6 adversarial audio files for wake-up words and
scenario-associated voice commands, plus 9 corresponding normal
audio files) under different scenarios (i.e., household, teleconference,
and in-vehicle). The order in which audio files were presented
to the participants was randomized. Each participant was asked
to indicate whether she or he had identified any meaning in the
audio. If the listener had identified any meaning, she/he was also
asked to indicate what meaning she/he heard. We recorded each
interpretation and calculated the WER and PER for each audio file.

The results demonstrate that none could comprehend any ad-
versarial audio file. The corresponding WERs and PERs are con-
sistently above 0.5, and more than half are greater than or equal
to 1, which means that the corresponding adversarial audio files
are completely unrecognizable. Also, the WER and PER for each
adversarial audio are larger than that for the corresponding normal
audio file, demonstrating that the phonetic manipulation degrades
the comprehensibility of the audio.

6.4 Evaluation of xRef
We demonstrate the performance of xRef to defend against the
proposed adversarial attack. We test all 100 adversarial audio files
generated in Section 6.2.2.

One Reference Service:We first set one reference service for
xRef. Thus, the ASR would send the transcription request to two
transcription services. By comparing the results from both, the ASR
can then determine whether the input audio is malicious or not.
Table 6 presents the detection results. We see that xRef can always
achieve a high detection rate of no less than 95%.

More Reference Services: To further increase the detection
rate of adversarial audios, we can increase the number of refer-
ence services, denoted with T . We choose T (T ∈ {2, 3, 4}) ref-
erences from the selected four transcription services, and have(4
T
)
= 24

T !(4−T)! possibilities. We calculate the detection rate for ev-
ery possibility, and then compute the average detection rate for
all possibilities. To verify that xRef does not misrecognize a voice
command spoken at a normal speed as an adversarial one, we gen-
erate normal audio files of all 100 commands spoken at a normal
speed, which varies from 1.0× to 1.9×, with increments of 0.1×.
We then send generated normal audios to different transcription
services and compare the corresponding results. If recognition re-
sults of different transcription services for a same normal audio file
are consistent, we consider that the normal audio is successfully
detected.

Table 7 compares the average detection rates from adversarial
and normal audios when xRef utilizes different numbers of refer-
ence services. We observe that for normal audios, the detection rate
is always 100% regardless of the number of utilized transcription

services, and for adversarial audio, when xRef employs two or three
reference services, the detection rate reaches 100%.

7 RELATEDWORK
Due to their increased affordability and convenience, ASR systems
are becoming integral components of our smart home/vehicle/office
environment. Meanwhile, there are emerging adversarial attacks
aiming to compromise ASRs, mainly including audio attacks and
misinterpretation-based attacks.

Audio Attacks: In general, existing adversarial audio attacks
can be divided into the following types:

White-box Audio Attacks: Attacks in this category require com-
plete white-box knowledge (i.e., internal structures or workings)
of the target attack system (e.g., [15, 16, 34, 47, 54]). For example,
by exploiting the characteristics of DNN-based ASR systems, [47]
proposes an adversarial attack with psychoacoustic modeling to
reduce the perceptible noise. Those attacks usually adopt an open-
source speech-to-text engine such as DeepSpeech [28], Kaldi [42],
or Lingvo [48], as a concrete attack target, and embed hidden voice
commands inside audio samples such as adversarial noise [15, 47]
or music [54]. The audio adversarial examples in initial studies
(e.g., [15, 47]) only work over-the-wire and do not remain adversar-
ial being played over-the-air, and a recent study [16] successfully
generates audio adversarial examples that are effective over-the-air,
but as commercial ASRs are proprietary, it is unlike in practice for
an adversary to know all details of the attacked system. Such white-
box attacks are thus limited to practical systems such as Amazon
Alexa or Google Assistant.

Black-box Audio Attacks: The adversary does not need to know
the specifics about the victim system under a black-box setting
(e.g., [4, 5, 13, 31, 52]). Instead, the adversary just knows that the
target system employs a transcription model of certain language
(e.g., American English) and such other information that is gener-
ally available for any public ASRs [5]. For example, [31] proposes a
framework to perform black-box attacks leveraging evolutionary
multi-objective optimization, while it only tests the framework on
two ASRs (Deepspeech and Kaldi-ASR); [13] proposes adversarial
audio attacks against Google Assistant using nonsensical word se-
quences which have some phonetic similarity with a relevant target
command; [4] exploits knowledge of the signal processing algo-
rithms commonly used by ASRs and attacks the feature extraction
module to generate audio samples, which are correctly transcribed
by various practical ASRs while sounding like unintelligible noise.
Besides, [52] focuses on the security of speaker recognition systems
and designs adversarial audio examples to obtain access to ASR,
while the generated audio is not necessary to be imperceptible.
Different from existing black-box audio attacks, our work combines
phoneme manipulation with fast speech in an innovative manner,
and crafts adversarial audio that is incomprehensible to humans
but can be recognized by off-the-shelf ASRs.

Hardware-assisted Attacks: With the help of a dedicated sig-
nal generator and ultrasound speaker hardware, recent studies
(e.g., [46, 50, 55]) demonstrate success in generating inaudible at-
tack by leveraging the nonlinearity of the microphone circuits,
which makes high frequency signals arriving at a microphone get
shifted to lower frequencies. Another work [53] creates inaudible

729

CommanderGabble: A Universal Attack Against ASR Systems Leveraging Fast Speech ACSAC ’21, December 6–10, 2021, Virtual Event, USA

attack against ASRs, while it requires a waveform generator and
a Piezoelectric (PZT) transducer designed for exciting ultrasonic
guided wave. Hardware dependence on launching these inaudible
attacks, however, incurs the extra hardware requirement. Mean-
while, as injected ultrasonic audio is not within the range of human
hearing, it can easily filtered out. Also, by finding indelible traces
of non-linearity in recorded voice signals, the inaudible ultrasonic
attack can be detected [46]. Our work, on the contrary, is easily-
constructed and has no extra hardware requirement.

Misinterpretation-based Attacks: [32, 57] also exploit ASR
misinterpretations to construct adversarial black-box attacks, which
can surreptitiously cause users to trigger malicious applications.
Except for the attack goals, the misinterpretation sources of these
attacks also differ from our attack. [32, 57] both utilize empirical
speech errors, and thus the effectiveness of attacks built on such
misinterpretations highly depends on the size of utilized training
datasets. [57] also leverages other types of linguistic issues (such
as regional vocabulary) to craft vApp (voice assistant applicaton)
squatting attacks. Our work, on the contrary, is the first to explore
themisinterpretations introduced by fast speech, and to successfully
create adversarial audio attacks with manipulated fast speech.

8 CONCLUSION
We propose CommanderGabble for a model-agnostic and easily-
constructed adversarial attack against off-the-shelf ASR systems. It
is the first to point out the vulnerability of current ASR systems in
dealing with fast speech, and it successfully crafts adversarial audio
by combining phoneme manipulation with fast speech. Comman-
derGabble is able to manipulate the phonetic structure of a voice
command and synthesize it into a sped-up, human-unintelligible, ad-
versarial audio version that ASR interprets as the original. Extensive
experiments show the effectiveness and robustness of Comman-
derGabble under different practical scenarios. We further suggest
realistic options for manufacturers to defend against this attack.

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
under Grant No.1948547.

REFERENCES
[1] 2014. The CMU Pronunciation Dictionary (version 0.7b)[Online. http://www.

speech.cs.cmu.edu/
[2] 2021. Amazon Mechanical Turk. https://www.mturk.com
[3] 2021. LOGIOS Lexicon Tool. http://www.speech.cs.cmu.edu/tools/lextool.html
[4] Hadi Abdullah,Washington Garcia, Christian Peeters, Patrick Traynor, Kevin R. B.

Butler, and Joseph Wilson. 2019. Practical Hidden Voice Attacks against Speech
and Speaker Recognition Systems. In Proceedings 2019 Network and Distributed
System Security Symposium (NDSS). Internet Society.

[5] Hadi Abdullah, Kevin Warren, Vincent Bindschaedler, Nicolas Papernot, and
Patrick Traynor. 2020. SoK: The Faults in our ASRs: An Overview of Attacks
against Automatic Speech Recognition and Speaker Identification Systems. arXiv
e-prints (2020), arXiv–2007.

[6] Moustafa Alzantot, Bharathan Balaji, and Mani Srivastava. 2017. Did you hear
that? Adversarial examples against automatic speech recognition. In 31st Confer-
ence on Neural Information Processing Systems (NIPS 2017).

[7] Amazon. 2020. About the Automatic Speech Recognition (ASR) Evaluation tool.
https://developer.amazon.com/en-US/docs/alexa/asr/about-asr.html

[8] Amazon. 2020. New Alexa Features for the Vehicle. https://www.amazon.com/
b?ie=UTF8&node=21439303011

[9] Karm Veer Arya and Robin Singh Bhadoria. 2019. The Biometric Computing:
Recognition and Registration. CRC Press.

[10] International Phonetic Association. 2020. IPA charts and subcharts in four fonts.
https://www.internationalphoneticassociation.org/

[11] Mohamed Benzeghiba, Renato DeMori, Olivier Deroo, Stephane Dupont, Teodora
Erbes, Denis Jouvet, Luciano Fissore, Pietro Laface, Alfred Mertins, Christophe
Ris, et al. 2007. Automatic speech recognition and speech variability: A review.
Speech communication 49, 10-11 (2007), 763–786.

[12] Mohamed Benzeghiba, Renato De Mori, Olivier Deroo, Stephane Dupont, Denis
Jouvet, Luciano Fissore, Pietro Laface, Alfred Mertins, Christophe Ris, Richard
Rose, et al. 2006. Impact of variabilities on speech recognition. In Proceedings of
the 11th International Conference on Speech and Computer (SPECOM). 3–16.

[13] Mary K. Bispham, Ioannis Agrafiotis, and Michael Goldsmith. 2019. Nonsense
Attacks on Google Assistant and Missense Attacks on Amazon Alexa. In Pro-
ceedings of the 5th International Conference on Information Systems Security and
Privacy - Volume 1: ICISSP,. INSTICC, SciTePress, 75–87.

[14] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,
Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden Voice Commands.
In 25th USENIX Security Symposium (USENIX Security 16). USENIX Association,
Austin, TX, 513–530.

[15] N. Carlini and D. Wagner. 2018. Audio Adversarial Examples: Targeted Attacks
on Speech-to-Text. In 2018 IEEE Security and Privacy Workshops (SPW). 1–7.

[16] Tao Chen, Longfei Shangguan, Zhenjiang Li, and Kyle Jamieson. 2020. Meta-
morph: Injecting inaudible commands into over-the-air voice controlled systems.
In Proceedings 2020 Network and Distributed System Security Symposium (NDSS).

[17] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue Zhao, Shengzhi Zhang, Kai
Chen, and XiaoFengWang. 2020. Devil’s whisper: A general approach for physical
adversarial attacks against commercial black-box speech recognition devices. In
29th {USENIX} Security Symposium ({USENIX} Security 20). 2667–2684.

[18] Robert Daland, Bruce Hayes, James White, Marc Garellek, Andrea Davis, and
Ingrid Norrmann. 2011. Explaining sonority projection effects. Phonology (2011).

[19] Mark Davies and Dee Gardner. 2009. A Frequency Dictionary of Contemporary
American English. Taylor & Francis.

[20] Hope Dawson, Michael Phelan, et al. 2016. Language files: Materials for an
introduction to language and linguistics. The Ohio State University Press.

[21] Pierre Delattre and Carroll Olsen. 1969. Syllabic features and phonic impression
in English, German, French and Spanish. Lingua 22 (1969), 160–175.

[22] Daniel Fogerty and Diane Kewley-Port. 2009. Perceptual contributions of the
consonant-vowel boundary to sentence intelligibility. The Journal of the Acoustical
Society of America 126, 2 (2009), 847–857.

[23] E. C. Fudge. 1969. Syllables. Journal of Linguistics 5, 2 (1969).
[24] Google. 2020. Android Auto. https://www.android.com/auto/
[25] Google Cloud. 2020. Method: text.synthesize. https://cloud.google.com/text-to-

speech/docs/reference/rest/v1/text/synthesize
[26] Google Cloud. 2020. Speech-to-Text. https://cloud.google.com/speech-to-text
[27] Google Cloud. 2020. Text-to-Speech. https://cloud.google.com/text-to-speech/
[28] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich

Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al.
2014. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567 (2014).

[29] Florian Hönig, Georg Stemmer, Christian Hacker, and Fabio Brugnara. 2005.
Revising perceptual linear prediction (PLP). In Ninth European Conference on
Speech Communication and Technology.

[30] Diane Kewley-Port, T Zachary Burkle, and Jae Hee Lee. 2007. Contribution of
consonant versus vowel information to sentence intelligibility for young normal-
hearing and elderly hearing-impaired listeners. The Journal of the Acoustical
Society of America 122, 4 (2007), 2365–2375.

[31] Shreya Khare, Rahul Aralikatte, and Senthil Mani. 2018. Adversarial black-box
attacks on automatic speech recognition systems using multi-objective evolu-
tionary optimization. arXiv preprint arXiv:1811.01312 (2018).

[32] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua
Mason, Adam Bates, and Michael Bailey. 2018. Skill Squatting Attacks on Amazon
Alexa. In Proceedings of the 27th USENIX Conference on Security Symposium
(Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 33–47.

[33] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[34] Zhuohang Li, Yi Wu, Jian Liu, Yingying Chen, and Bo Yuan. 2020. AdvPulse:
Universal, Synchronization-Free, and Targeted Audio Adversarial Attacks via
Subsecond Perturbations. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (Virtual Event, USA) (CCS ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 1121–1134.

[35] Richard P Lippmann. 1997. Speech recognition by machines and humans. Speech
communication 22, 1 (1997), 1–15.

[36] Taylor Martin, David Priest, Dale Smith, and Andrew Gebhart. 2020. Every Google
Assistant command for your Nest speaker or display. https://www.cnet.com/how-
to/every-google-assistant-command-for-your-nest-speaker-or-display/

[37] Peter Hugoe Matthews and Peter Hugoe Matthews. 2014. The concise Oxford
dictionary of linguistics. Oxford University Press.

[38] David E Meyer and Roger W Schvaneveldt. 1971. Facilitation in recognizing
pairs of words: evidence of a dependence between retrieval operations. Journal

730

http://www.speech.cs.cmu.edu/
http://www.speech.cs.cmu.edu/
https://www.mturk.com
http://www.speech.cs.cmu.edu/tools/lextool.html
https://developer.amazon.com/en-US/docs/alexa/asr/about-asr.html
https://www.amazon.com/b?ie=UTF8&node=21439303011
https://www.amazon.com/b?ie=UTF8&node=21439303011
https://www.internationalphoneticassociation.org/
https://www.android.com/auto/
https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize
https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize
https://cloud.google.com/speech-to-text
https://cloud.google.com/text-to-speech/
https://www.cnet.com/how-to/every-google-assistant-command-for-your-nest-speaker-or-display/
https://www.cnet.com/how-to/every-google-assistant-command-for-your-nest-speaker-or-display/

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Zhaohe Zhang, Edwin Yang, and Song Fang

of experimental psychology 90, 2 (1971), 227.
[39] N. Mirghafori, E. Fosler, and N. Morgan. 1996. Towards robustness to fast speech

in ASR. In 1996 IEEE International Conference on Acoustics, Speech, and Signal
Processing Conference Proceedings, Vol. 1. 335–338.

[40] Lindasalwa Muda, Mumtaj Begam, and I Elamvazuthi. 2010. Voice Recognition
Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time
Warping (DTW) Techniques. Journal of Computing 2, 3 (2010), 138–143.

[41] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[42] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
et al. 2011. The Kaldi speech recognition toolkit. In IEEE 2011 workshop on
automatic speech recognition and understanding. IEEE Signal Processing Society.

[43] David Priest, Tauren Dyson, and Taylor Martin. 2020. Every Alexa command you
can give your Amazon Echo smart speaker. https://www.cnet.com/how-to/every-
alexa-command-you-can-give-your-amazon-echo-smart-speaker/

[44] Emil Protalinski. 2019. ProBeat: Has Google’s word error rate progress
stalled? https://venturebeat.com/2019/05/10/probeat-has-googles-word-error-
rate-progress-stalled/

[45] Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, and Colin Raffel.
2019. Imperceptible, robust, and targeted adversarial examples for automatic
speech recognition. In International conference on machine learning. PMLR, 5231–
5240.

[46] Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy Choudhury.
2018. Inaudible voice commands: The long-range attack and defense. In 15th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
18). 547–560.

[47] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and Dorothea
Kolossa. 2019. Adversarial Attacks Against Automatic Speech Recognition Sys-
tems via Psychoacoustic Hiding. In Proceedings 2019 Network and Distributed
System Security Symposium (NDSS). Internet Society.

[48] Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X Chen, Ye Jia,
Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, et al. 2019. Lingvo:
a modular and scalable framework for sequence-to-sequence modeling. arXiv

preprint arXiv:1902.08295 (2019).
[49] M. A. Siegler and R. M. Stern. 1995. On the effects of speech rate in large vocabu-

lary speech recognition systems. In 1995 International Conference on Acoustics,
Speech, and Signal Processing, Vol. 1. 612–615 vol.1.

[50] Liwei Song and Prateek Mittal. 2017. POSTER: Inaudible voice commands. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2583–2585.

[51] Constantin Spille, Birger Kollmeier, and Bernd T Meyer. 2018. Comparing hu-
man and automatic speech recognition in simple and complex acoustic scenes.
Computer Speech & Language 52 (2018), 123–140.

[52] Henry Turner, Giulio Lovisotto, and Ivan Martinovic. 2019. Attacking Speaker
Recognition Systems with Phoneme Morphing. In European Symposium on Re-
search in Computer Security. Springer, 471–492.

[53] Qiben Yan, Kehai Liu, Qin Zhou, Hanqing Guo, and Ning Zhang. 2020. Surfingat-
tack: Interactive hidden attack on voice assistants using ultrasonic guided waves.
In Network and Distributed Systems Security (NDSS) Symposium.

[54] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai Chen,
Shengzhi Zhang, Heqing Huang, XiaoFengWang, and Carl A. Gunter. 2018. Com-
manderSong: A Systematic Approach for Practical Adversarial Voice Recognition.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 49–64.

[55] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. 2017. DolphinAttack: Inaudible Voice Commands. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,
NY, USA, 103–117.

[56] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian. 2019. Dangerous Skills:
Understanding and Mitigating Security Risks of Voice-Controlled Third-Party
Functions on Virtual Personal Assistant Systems. In 2019 IEEE Symposium on
Security and Privacy (SP). 1381–1396.

[57] Yangyong Zhang, Lei Xu, AbnerMendoza, Guangliang Yang, PhakpoomChinprut-
thiwong, and Guofei Gu. 2019. Life after Speech Recognition: Fuzzing Semantic
Misinterpretation for Voice Assistant Applications. In Proceedings 2019 Network
and Distributed System Security Symposium (NDSS). Internet Society.

[58] Zoom. 2021. Video Conferencing, Web Conferencing, Webinars, Screen Sharing -
Zoom. https://zoom.us/

731

https://www.cnet.com/how-to/every-alexa-command-you-can-give-your-amazon-echo-smart-speaker/
https://www.cnet.com/how-to/every-alexa-command-you-can-give-your-amazon-echo-smart-speaker/
https://venturebeat.com/2019/05/10/probeat-has-googles-word-error-rate-progress-stalled/
https://venturebeat.com/2019/05/10/probeat-has-googles-word-error-rate-progress-stalled/
https://zoom.us/

	Abstract
	1 Introduction
	2 Background
	2.1 ASR Principle
	2.2 Syllable Structure and Phonemes

	3 Adversary Model
	4 Adversarial Attack Design
	4.1 Design Overview
	4.2 Phonetic Reconstruction
	4.3 Adversarial Audio Synthesis
	4.4 Winnowing and Updating
	4.5 Discussions

	5 Countermeasures
	5.1 Cross-reference Transcription
	5.2 Silence Detection

	6 Experimental Results
	6.1 Evaluation Setup
	6.2 Attack Effectiveness
	6.3 Human Comprehensibility Tests
	6.4 Evaluation of xRef

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

