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Abstract—We leverage the supervised and semi-supervised
Volterra nonlinear equalizers (VNLE) to mitigate the system non-
linearity. Two methods are employed to estimate the coefficients:
ordinary least square (OLS) estimator and the least absolute
shrinkage and selection operator (Lasso). Due to the additional cou-
pling loss and higher propagation loss in bad weather conditions,
FSO-fiber link requires a more stringent power budget. Higher
modulation depth and transmitter output power can improve the
link budget but need to make nonlinearity correction. Thus, we
comprehensively perform a proof-of-concept demonstration in a
fiber-FSO converged link with pulse amplitude modulation (PAM).
Compared with conventional supervised VNLE using OLS, the
coefficients estimated from Lasso require a smaller training sym-
bol overhead. In both the 50-Gbaud PAM4 (at the 1.22 × 10−2

threshold) and 35-Gbaud PAM8 (at the 2 × 10−2 threshold) cases,
when the labeled data proportion is 5%, supervised VNLE using
Lasso exhibits a received optical power (ROP) improvement up to
3 dB, compared to supervised VNLE using OLS. Moreover, the
semi-supervised method can utilize the unlabeled data and further
improve the performance without adding signal overhead to the
system. In our 50-Gbaud PAM4 experiment, with 60% unlabeled
data, the semi-supervised VNLE based on the soft decision (SD) and
Lasso demonstrates up to 3-dB sensitivity gain at the BER threshold
of 4.5 × 10−3 compared with the supervised VNLE using Lasso.
The semi-supervised VNLE using SD and Lasso also demonstrates
a line rate improvement >100% at the 4.5 × 10−3 Pre-FEC BER
threshold over the conventional supervised VLNE using OLS.

Index Terms—Fiber optical communication, fiber-wireless
integration, free space optics, lasso nonlinearity correction.

I. INTRODUCTION

W ITH the growth of the data traffic from emerging ser-
vices, fiber-wireless integration is slated to become an

enabler of realizing diverse user-specific applications while
maximizing the capacity of the physical layer infrastructure [1].
With abundant un-licensed spectrum resources and simplicity
of installation, free-space optics (FSO)-fiber convergence be-
comes a promising candidate for providing a flexible, ultra-high
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speed wireless delivery when fibers are unavailable or difficult
to deploy, which solves the last-mile bottleneck and spectrum
congestion issues [1], [2]. Recently, FSO-fiber convergence has
been investigated with coherent detection and intensity modu-
lation and direct detection (IM-DD) [2], [3]. IM-DD scheme is
more cost-effective compared to coherent detection, but it needs
a higher power budget. Compared with fiber link, the hybrid
fiber-FSO suffers from additional coupling loss and link loss
that depends on the weather conditions. Therefore, high receiver
sensitivity is crucial to Fiber-FSO systems. Typically, deeper
modulation depth, larger signal amplitude, as well as higher am-
plifier gain could improve the receiver sensitivity performance
at the expense of introducing nonlinearities from modulators
and amplifiers [4], [5]. Moreover, high-order modulation for-
mat further improves the spectral efficiency but is less tolerant
to nonlinearities. Thus, nonlinearity correction techniques are
adopted to tackle with these nonlinear impairments.

Volterra nonlinear equalizer (VNLE) is one of the com-
mon digital signal processing (DSP) techniques used in optical
communication systems to mitigate modulation and amplifier
nonlinearities [6]. It employs a polynomial regression and re-
stores the signal by fitting and applying the inverse nonlinear
transfer function incurred by both the linear and the nonlinear
inter-symbol interferences (ISI) [7]. A simplified VNLE is in-
troduced to reduce the computational complexity by removing
the interaction terms and only keeping the memory polynomial
terms [5], [8]. Furthermore, there are many research works that
theoretically or experimentally investigate sparse Volterra [9], as
well as supervised VNLE using Lasso and coefficient pruning
[10]–[12]. The added l0 or l1 regularization term in VNLE using
Lasso enforces the insignificant tap coefficients to be zero. It
has demonstrated significant reductions in complexity using
regularization in both the passive optical network and optical
interconnect systems. On the other hand, supervised and semi-
supervised neural network (NN) based nonlinear equalizers have
been widely investigated for self-interference cancellation and
system nonlinear compensation [13], [14]. However, NN typi-
cally exhibits slower convergence rates and higher complexity
compared to VNLE, as the later can be solved through con-
vex optimization. The nonlinearity in a fiber-FSO access link
mainly comes from modulation and amplifiers, which can be
well approximated by polynomial regression. Thus, VNLE is a
sufficiently enough. However, the Volterra nonlinear equalizer
requires a large amount of training data, especially when the
memory length is long. Large training overhead will decrease
the transmission efficiency in the case of burst frame, multi-user
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links, or dynamic channel conditions [15], [16], where the taps
need to be updated within several μs or ms intervals.

To further improve the VNLE performance and reduce the
requirement on training data size, in this paper, we investigate
both the semi-supervised and supervised VNLEs and perform
an experimental validation in a fiber-FSO converged transport
system. We leverage Lasso and ordinary least square (OLS) in
the VNLEs and propose to use either the hard decision (HD)
or soft decision (SD) in the semi-supervised VNLEs. Note that
one benefit of Lasso is to reduce tap coefficients, which has
been comprehensively investigated in supervised VNLEs and
can help to reduce the implementation complexity [10], [11].
Another benefit of Lasso is that it can reduce the training symbol
size requirement, especially when the ambient dimension of
data vectors is much larger than the number of observations,
which relaxes the latency and reduces training complexity. The
supervised VNLE utilizes only the pilot symbols (labeled data).
The semi-supervised VNLE utilizes both the labeled data and
part of the unlabeled data to do polynomial regression based
on pseudo-label [17], [18]. Experimental results have demon-
strated that the semi-supervised VNLEs and the supervised
VNLEs using Lasso achieve superior performances than the
conventional supervised VNLE using OLS. In our previous
work, the performance of supervised VNLE using Lasso and the
semi-supervised VNLE using SD and Lasso are compared with
the conventional supervised VNLE using OLS [19]. This paper
extends the previous work by investigating additional types of
VNLEs and conducting a more in-depth analysis of algorithm
setting tuning and performance benchmarks.

The paper is organized as follows. Section II recaps the
conventional supervised VNLE using OLS and introduces the
principle of Lasso and semi-supervised VNLEs. Section III de-
picts the experimental setup. Section IV shows the experimental
results with different settings and labeled and unlabeled data
ratios and compares different algorithms. Section V gives a
concluding remark.

II. PRINCIPLE OF OPERATION

To mitigate the nonlinearities in the system, the full VNLE fits
the nonlinear transfer curve can be represented by the following
class of polynomials [7]:

z (n) = f
(n)
full (h, s) =

(K−1)/2∑
k=−(K−1)/2

hk · s (n− k)

+

NP∑
p=2

(L−1)/2∑
i1=−(L−1)/2

. . .

(L−1)/2∑
ip=−(L−1)/2

hi1,...ip ·
∏
ip

s (n− ip),

(1)

where s is the input data, z is the output data, and h are the tap
coefficients. Np determines the polynomial orders in the VNLE.
High Np can fit the nonlinear model better but requires higher
computational complexity. For a given sequence s , the notation
f(h, s) stands for the output sequence of VNLE parametrized
with h applied to s. We use f (i)(h, s) to denote the i-th element
of such sequence. Also, a simplified VNLE (sVNLE) is widely
deployed to reduce the computational complexity. It only keeps

the power terms and is presented as [5], [8]:

z (n) = f (n) (h, s)

=

(K−1)/2∑
k=−(K−1)/2

hk · s (n− k)+

NP∑
p=2

(L−1)/2∑
i=−(L−1)/2

hi,p · sp (n− i).

(2)

With known input samples and known labels, the estimator
chooses the tap coefficients that minimize the least square er-
ror between the estimated output samples and the labels. This
method is the conventional VNLE using OLS, which utilizes
the labeled data as the training data (i.e., pilot symbols). In
the following analysis, our methods generalize it by using the
unlabeled data and sparsity-inducing regularization.

Let X denote the labels at the transmitter side and let X̂denote
the received labeled data. The objective function for the su-
pervised mode with Lasso consists of two terms, the mean-
squared error on the training symbols ‖f(h, X̂)−X‖22, and an
�1 regularization term. The supervised method objective is thus
formulated as a convex optimization program:

h = argmin

(∥∥∥f (
h, X̂

)
−X

∥∥∥2
2
+ λ · ‖h‖1

)
. (3)

When λ = 0, it degenerates into the supervised VNLE using
OLS estimator. The added regularization term can exploit the
sparsity structure in the optimal coefficients. Even if the ambient
dimension of data vectors is much larger than the number of
observations, the Lasso estimator can still recover the optimal
coefficients, provided that it is (approximately) sparse [20],
[21]. Therefore, it can reduce the requirement on training data
size. In addition, the lasso estimator automatically performs
model selection: when superfluous high-order coefficients are
included, its weight will typically become zero. The regular-
ization parameter λ can be chosen through cross validation or
the theoretical formula [20]. In this paper, we choose λ using
10-fold cross validation. Precisely, the algorithm partitions the
training data into 10 folds, and use 10% of the training data as
a validation dataset to choose λ. This methodology is known
to be able to select the optimal value of λ in Lasso [22]. For
each value of λ, we perform cross-validation separately, yielding
the optimal λ in each case. The Lasso program can be solved
via Alternating direction method of multipliers (ADMM). The
OLS problems are solved via method of steepest descent in our
paper. In each iteration of ADMM for Lasso, the complexity is
a matrix-vector product, which is the same as the per-iteration
cost of steepest descent for OLS. The ADMM algorithm used
in this paper belongs to the class of gradient-based methods.
When applied to Lasso with high-dimensional problems, the
convergence rates of such methods typically depend on the
Restricted Strong Convexity condition of the problem [23]. This
is also comparable to steepest descent, for which the conver-
gence rates of gradient-based methods depend on the condition
number of the data matrix [24]. In each iteration of both Lasso
and OLS, the number of multiplication operations needed is
2n · (K + L · (NP − 1)), wheren is number of data points, and
K + L · (NP − 1) is the tap number. Moreover, a total number
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Fig. 1. Semi-supervised VNLE with Lasso using SD and HD.

of n · (Np − 1) multiplication operations are needed prior to the
iterates, to compute the polynomial terms.

Moreover, we propose to use semi-supervised methods us-
ing self-training (also known as pseudo-label) in polynomial
regression [17], [18]. It exploits the unlabeled data and further
reduces the amount of labeled data needed. This type of methods
may get stuck in some cases as the decision error made by the
algorithm can reinforce itself, instead of being corrected. Other
approaches, such as MixMatch [25] and temporal ensembling
[26] may be used to improve the semi-supervised algorithms,
albeit costing higher computational complexity. In this work we
will focus on the simple self-training method. We use an iterative
algorithm, which alternates between estimating the labels and
estimating the coefficients. The algorithm takes the labeled data
X , received labeled data X̂ and received unlabeled data Ŷ as
inputs. We will consider and investigate both the HD and SD
in the decision step. HD is performing maximum likelihood
detection on each symbol independently (i.e., based on mini-
mum Euclidean distance). The SD probabilities are computed
through the posterior distribution of the input labels given the
observed value, where the noise is assumed to be Gaussian.
For each iteration, the following computations are performed
sequentially as shown in Fig. 1. First, the algorithm recovers the
received data using the current Volterra series. Second, perform
SD or HD. The SD output is a probability matrix that denotes
the probability of the symbols belong to each alphabet. The
HD output is the symbol sequence after decision. Let N be the
number of the unlabeled symbols and M be the alphabet size
(e.g., M = 8 for pulse amplitude modulation (PAM) 8), the
VNLE tap coefficients at the t-th iteration using SD and HD
are estimated as

ht = argmin
h

⎛
⎜⎜⎝

N∑
i=1

M∑
β=1

P (t)(β, i) ·
(
f (i)(h, Ŷ )− β

)2

+α ·
∥∥∥f (

h, X̂
)
−X

∥∥∥2
2
+ λ‖h‖1

⎞
⎟⎟⎠ ,

(4)
and

ht = argmin
h

⎛
⎜⎝

∥∥∥f (
h, Ŷ

)
− Zd

∥∥∥2
2

+α ·
∥∥∥f (

h, X̂
)
−X

∥∥∥2
2
+ λ‖h‖1

⎞
⎟⎠ , (5)

respectively. In Eq (4), P(t)(β,i) is the soft-decision probability
of the i-th unlabeled symbol being symbol β in the alphabet at
the t-th iteration. In Eq (5), Zd ∈ RN is the symbol sequence
generated by HD. Compared to Eq. (3), the objective function
Eq. (4) and (5) contain an additional term, which is the weighted
mean-squared error on the unlabeled data. This additional term
aims at minimizing the difference between the signals after
and before the decision. We add a coefficient α to tune the
weight between the labeled and unlabeled data. Whenα= 0, the
estimator becomes un-supervised mode, which only utilizes the
unlabeled data and does not need training symbol or introduce
overhead. When λ = 0, they degenerate into semi-supervised
VNLEs using OLS, which are presented as:

ht = argmin
h

⎛
⎜⎜⎝

N∑
i=1

M∑
β=1

P (t)(β, i) ·
(
f (i)(h, Ŷ )− β

)2

+α ·
∥∥∥f (

h, X̂
)
−X

∥∥∥2
2

⎞
⎟⎟⎠ ,

(6)

and

ht = argmin
h

(∥∥∥f(h, Ŷ )− Zd
∥∥∥2
2
+ α ·

∥∥∥f(h, X̂)−X
∥∥∥2
2

)
.

(7)
The semi-supervised sVNE involves additional unlabeled

data in multiplications and needs several times of decision-
direct iterations, which shows higher complexity than supervised
sVNLE. In each iteration, SD needs M +K + L · (NP − 1)
multiplications, M exponential operations, and a logarithmic
operation to compute the probability matrix, while HD only
needs K + L · (NP − 1) multiplication. Moreover, to compute
tap coefficients in SD, additional M · n · (K + L · (NP − 1))
multiplication operations are needed to compute the product
with SD probabilities as shown in Eq (4) and (6).

Proper initial tap coefficients reduce the iteration times of
the semi-supervised VNLE using OLS and help to avoid bad
local minima. We tried two tap initializations. One approach is
a simple initialization that has been used for linear equalizer:
the initial tap coefficients in Eq (2) are set to h0 = 1, while
the rest of the coefficients are set to zero. The other is called
supervised initialization, where the output of supervised VNLE
using Lasso serves as the initial tap. The initial BER of supervise
initialization is the BER of supervised VNLE using Lasso. The
algorithm terminates under certain stopping criteria. In the fol-
lowing experimental evaluation, the algorithm terminates when
the Euclidean distances between tap coefficients obtained by 3
consecutive iterates are less than a certain threshold ε (i.e., 0.001)
or the iteration times exceed 50. We use normalized values of
symbol energy in our algorithms.

III. EXPERIMENTAL SETUP

Fig. 2 shows the experimental setup of the fiber-FSO link.
At the transmitter side, the PRBS sequence is mapped to
PAM signal and then pulse shaped using a root-raised-cosine
filter with roll off factor equals to 0.01 in offline DSP. The
symbol number is 105, which includes both the labeled data
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Fig. 2. Experiment setup of the fiber-FSO converged link. PAM mod: PAM modulation. Insets: an instance of the data frame with 5% labeled data.

Fig. 3. BER versus weight α with different initialization settings for 50-Gbaud PAM4 and 35-Gbuad PAM8 (5% labeled data and 60% unlabeled data).

and the unlabeled data. The offline generated signal is loaded
into digital-to-analogue converter (DAC) and then amplified
by a 25-dB power amplifier (PA). The DAC resolution is 8
bits, and its bandwidth is 25 GHz. The transmitter laser diode
(LD) operates at the wavelength of 1550 nm and its power
is set to be 12 dBm. The electrical signal is then modulated
by a 40-GHz Mach–Zehnder Modulator (MZM) with the Vπof
5.2 V. The optical signal propagates through a 5-km standard
single-mode fiber (SMF) with 1-dB loss and then amplified by
an Erbium-doped fiber amplifier (EDFA). The EDFA output
power is 18.32 dBm. A pair of collimators transmit the signal
through a 2-m free-space optical link with 5.32-dB loss. At the
receiver side, an attenuator (ATT) adjusts the received signal
power for conducting the sensitivity evaluation. A 50-GHz PIN
photodiode (PD) detects the optical signal, which is followed
by an 80-GSa/s analog-to-digital converter (ADC) and offline
DSP. The ADC resolution is 8 bits, and its bandwidth is 25
GHz. The VNLEs recover the received signal and then signal
decision and decoding are performed to count the bit error rate
(BER) for performance evaluation. Several equalizer schemes
are investigated in the next section. Linear equalizer only keeps
the linear (first order) ISI. Thus, it does not compensate for the
nonlinear impairments that result in higher order polynomial
terms. For the nonlinear equalizer, the sVNLE in Eq (2) will be
investigated with supervised and semi-supervised methods using
Lasso or OLS. The insets of Fig. 2 illustrate an instance of the
transmitter data frame and receiver data frame with 5% labeled
data. We will sweep labeled data ratio and unlabeled data ratio in
the next section. The labeled data ratio is pilot symbol ratio. As
for unlabeled data ratio, it means the ratio of the received data
that need to be recovered in the semi-supervised methods. For
instance, in our experiment, there are 105 symbols in each frame.
The 5% labeled data means 0.05 × 105 = 5 × 103 symbols. The
20% unlabeled data means 0.2 × 105 = 2 × 104 symbols. For

BER evaluation, we use 9 × 104 unlabeled symbols considering
the highest portion of labeled data is 10% in the investigation.

IV. EXPERIMENTAL RESULTS

First, we sweep and optimize the semi-supervised VNLE
settings including the tap initialization, unlabeled data ratio,
memory lengths, as well as the weight (α in Eq. (4) to (7))
between the labeled data and unlabeled data. The peak-to-peak
voltage (Vpp) is set as 4.2 V for 50-Gbaud PAM4 and 35-Gbaud
PAM8. The ROP is 6.6 dBm. The memory lengths are set as
K= 128, L= 15, Np = 5. Fig. 3 presents the BER versusα under
two different initialization methods for semi-supervised VNLEs
described in Section II. The optimal BER and α can be obtained
in the “dip” of each curve. Larger α gives more weight to the
labeled data. Using simple initialization, the number of iterations
required by the algorithm using OLS (from 15 to 35 typically)
is much higher than that using Lasso (<10). On the other hand,
when combined with Lasso, it is harder for the semi-supervised
algorithm to converge to a good local minimum. The Lasso
program needs enough amount of weight on true labels, so that
the support of the sparse vector can be approximately recovered
in the initial iterations. This situation is aggravated with PAM8,
where the structure of non-linearity is more complicated. As
shown in Fig. 3(c), the optimal BER of OLS is better than
Lasso in PAM8 signal under simple initialization. Supervised
initialization utilizes the output of supervised VNLE using Lasso
and help the algorithms to get rid of the bad local optimal. As
shown in Fig. 3(b) and (d), Lasso shows better or comparable
performance than OLS, and the optimal BER of OLS is also
improved compared with the simple initialization. The optimal
alpha of supervised initialization (<5) becomes smaller than
that under simple initialization, which means the algorithm puts
more weight on the unlabeled data due to better initial decision
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Fig. 4. (a) and (b): Optimal BER versus unlabeled data ratio with 5% labeled data for 50-Gbuad PAM4 and 35-Gbaud PAM8. (c) and (d): optimal α and λ versus
unlabeled data ratio with 5% labeled data for PAM8.

Fig. 5. BER of 50-Gbaud PAM4 versus memory lengths in sVNLE using 3%
labeled data and 60% unlabeled data.

errors. Moreover, both semi-supervised methods require smaller
iterations (3∼7) to converge, under the supervised initialization.
In the following analysis, we will use the supervised initializa-
tion to get better results.

Then by sweeping the weight α, we obtain the optimal α
and BER for different unlabeled data ratios as shown in Fig. 4.
Fig. 4(a) and (b) show the optimal BER obtained from the opti-
mal α with different unlabeled data ratios and 5% labeled data
for PAM4 and PAM8, respectively. Overall, the performances
improve with the increasing of the unlabeled data ratio. When
the unlabeled data ratio is small (i.e., ≤ 20%), Lasso estimator
shows better BER performance than OLS. When the unlabeled
data ratio is large (i.e., >20%), the performances of OLS are
similar to that of Lasso. Fig. 4(c) present the optimal α with
respect to different unlabeled data ratios using 5% labeled data
for 35-Gbaud PAM8. When the unlabeled data ratio is small (i.e.,
10%), Lasso uses large value of α (i.e., 90) to put more weight
on labeled data due to insufficient unlabeled data. When the
unlabeled data ratio is larger than 10%, the optimal α becomes
smaller (<10). The optimal weights of OLS remain unchanged
and the optimalα is 1. As mentioned in Section II, we use 10-fold
cross validation to select the optimal value of λ in lasso. Fig. 4(d)
shows the optimal λ with different unlabeled data ratios. The
value of λ decreases as the unlabeled data size increases. It is
due to that the increasing of the observation number can relax
the regularization term.

After sweeping the weight and unlabeled data ratios, we
sweep different memory lengths as presented in Fig. 5. The
unlabeled data ratio is 60% and the labeled data ratio is 3%. With

the decreasing of the linear and power term memory lengths,
the BER becomes worse. Note that using even larger memory
lengths (i.e., K= 256, L= 21) cannot further improve the system
performance but brings more complexity. Thus the best BER
value is attained by setting K = 128 and L = 15. As shown
in Fig. 3 to Fig. 5, the four semi-supervised algorithms show
comparable or similar BER performances in most cases. In
some cases, the semi-supervised sVNLE using SD and Lasso
shows slightly better performances over other semi-supervised
algorithms. Intuitively, this is because SD makes use of the
log-likelihood information, instead of only the binary decision.
Also, Lasso can reduce the number of tap coefficients and
implementation complexity in semi-supervised methods. Thus,
in the following analysis, for simplification, we will use SD
and Lasso for semi-supervised sVNLE. In practice, HD could
be considered due to its lower computational complexity and
similar BER performances to SD in most cases. Also, we set
K = 128, L = 15 to have the best BER performance according
to the previous results. The unlabeled data ratio is set as 60%.

Fig. 6 compares the performances of supervised VNLE using
Lasso and semi-supervised VNLE using Lasso and SD with
different peak-to-peak voltages (Vpp) into the modulator. The
insets show the eye diagrams after nonlinear compensation under
different Vpp. Fig. 6(a) and (b) present the results of 50-Gbaud
PAM4 signal and 35-Gbaud PAM8, respectively. With 60%
unlabeled data, the semi-supervised VNLE using Lasso and SD
can improve the BER value by one order of magnitude. As shown
in the eye diagrams, lower Vpp yields a lower signal to noise ratio
(SNR) and lower modulation extinction ratio. Thus, increasing
the Vpp can improve the signal SNR and BER. However, when
Vpp exceeds the linear operation region, nonlinearity degrades
the signal quality. When Vpp is approaching Vπ and the nonlin-
earity become significantly high, the signal performance would
still degrade even if the VNLE is used. One can observe that in
insets (vi), the eye diagram still gets compressed after nonlinear
correction. Based on these results, in the following analysis, we
choose the Vpp of the PAM4 and PAM8 as 4.2 V and 3.75 V,
respectively.

Fig. 7(a) and (b) show the BER versus labeled data ratios using
different VNLEs for both the 50-Gbaud PAM4 (Vpp = 4.2 V)
and 35-Gbaud PAM8 (Vpp = 3.75 V). The ROP is 6.6 dBm.
Three forward error correction codes (FEC) are considered and
the corresponding pre-FEC BER thresholds are plotted as refer-
ence lines (dashed, horizontal). The thresholds are 4.5 × 10−3,
1.22 × 10−2 and 2 × 10−2, which are staircase FEC with 6.69%
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Fig. 6. BER versus Vpp of (a) 50-Gbaud PAM4 using 5% labeled data, (b) 35-Gbaud PAM8 using 5% labeled data. (i) to (vi): signal eye diagrams.

Fig. 7. BER versus labeled data ratio of (a) 50-Gbaud PAM4 and (b) 35-Gbaud PAM8 using 60% unlabeled data. BER versus ROP of (c) 50-Gbaud PAM4 and
(d) 35-Gbaud PAM8 using 5% labeled data in FSO transmission. Required ROP versus line rate using 5% labeled data at the 1.22 × 10−2 threshold of (e) PAM4
and (f) PAM8. BER versus line rate of (g) PAM4 and (h) PAM8 using 5% labeled data. (e) to (h): Dashed lines are fiber-FSO transmission, solid curves are pure
FSO.

overhead (OH), concatenated FEC (cFEC) with 14.8% OH,
openFEC (oFEC) with 15.3% OH, respectively. In both figures,
the supervised sVNLE outperforms supervised sVNLE using
OLS for the unlabeled data ratio ranging from 3% to 10%.
The semi-supervised VNLE using SD and lasso can always
achieve a lower BER value than the 4.5 × 10−3 threshold and
show a relative flat curve when the labeled data ratio varies.
Thanks to the unlabeled data, the semi-supervised VNLE show
little degradation when the labeled data ratio is decreased.
Moreover, for 35-Gbaud PAM8, linear equalizer fails to achieve
the 2 × 10−2 FEC threshold while supervised sVNLE using
OLS fails to attain 4.5 × 10−3 threshold. Moreover, at the
2 × 10−2 threshold, the supervised sVNLE using lasso needs
3% labeled data while OLS needs 7% labeled data. Fig. 7(c) and
(d) show the sensitivity performance of 50-Gbaud PAM4 and
35-Gbaud PAM8 using 5% labeled data in FSO transmission.
At the threshold of 4.5 × 10−3 in PAM4 transmission, the
semi-supervised sVNLE using SD and Lasso demonstrates 3-dB
sensitivity improvement in comparing with supervised sVNLE
using Lasso. The supervised sVNLE using OLS fails to achieve
the 4.5 × 10−3 threshold. At the 1.22 × 10−2 threshold in PAM4
transmission, the semi-supervised and supervised VNLE using
lasso show 4-dB and 3-dB ROP improvement when compared

with the supervised sVNLE using OLS, respectively. As for
PAM8, the semi-supervised algorithm shows 2-dB gain over
the supervised sVNLE using lasso at the 1.22 × 10−2 threshold.
The supervised sVNLE using lasso achieves 3-dB sensitivity
gain when compared with supervised sVNLE using OLS at the
2 × 10−2 FEC threshold. Moreover, the tap number reduction
percentage was analyzed in both cases to show the benefit of
tap coefficients reduction. In 50-Gbaud PAM4 transmission, the
supervised sVNLE using Lasso achieves 15% tap coefficients
reduction while the semi-supervised sVNLE achieves 9% re-
duction. As for 35-Gbaud PAM8 transmission, the supervised
sVNLE using Lasso and the semi-supervised sVNLE achieves
47% and 36% tap number reduction, respectively.

Fig. 7(e) and (f) show the BER with different line rates using
PAM4 and PAM8 with FSO and FSO plus fiber, respectively.
Fig. 7(e) shows the results of PAM4 using 5% labeled data,
where the ROP of FSO is 4.6 dBm and ROP of FSO-fiber is
8 dBm. In FSO transmission, the semi-supervised method can
always support BER lower than the 2 × 10−2 or 1.22 × 10−2

threshold while other methods cannot support 110 Gbps at all
three thresholds. In FSO-fiber transmission, semi-supervised
sVNLEs can achieve 4.5 × 10−3 threshold at 90 Gbps while
the supervised sVNLE using Lasso and OLS are at 80 Gbps
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and 75 Gbps. Fig. 7(f) shares the same legend as Fig. 7(e),
which shows the PAM8 results. At the 4.5 × 10−3 threshold,
the supervised sVNLE using OLS can only support 45 Gbps
in FSO transmission while the supervised sVNLE using Lasso
and semi-supervised sVNLEs can support 95 Gbps and >110
Gbps, respectively. Thus, the proposed methods show a line
rate improvement higher than 100% in this case. In FSO-fiber
transmission (ROP= 7 dBm), sVNLE using OLS can support 65
Gbps at the 2 × 10−2 threshold but fails to achieve 1.22 × 10−2.
The sVNLE using Lasso and semi-supervised sVNLEs can
attain the 1.22 × 10−2 threshold at 75 Gbps and 100 Gbps.

Fig. 7(g) and (h) present the required ROP (rROP) at
1.22 × 10−2 thresholds of PAM4 and PAM8 using 5% labeled
data, respectively. Higher gains could be achieved using Lasso or
semi-supervised method when the line rate is higher. This is due
to that the system has fixed swing so the SNR will be lower when
the line rate is higher. Lower SNR requires larger amount of data,
rendering the data size in our experiments insufficient. In such
case, the regularization effect by Lasso and semi-supervised
methods can alleviate this issue and achieve better performance.
In Fig. 7(g), semi-supervised sVNLE show up to 4-dB and 3-dB
sensitivity gain over the supervised sVNLE using OLS and the
supervised sVNLE using Lasso, respectively. In Fig. 7(h), the
supervised sVNLE using Lasso is better than the conventional
method by up to 2.8 dB. Also, the semi-supervised sVNLE
shows up to 3.5-dB and 2-dB ROP gain over the supervised
sVNLE using OLS and using Lasso.

V. CONCLUSION

We leveraged and investigated semi-supervised methods and
Lasso to carry out VNLE, which can mitigate the nonlinearity
in optical communication systems. Experimental results in a
fiber-FSO link validate that Lasso can reduce the required pilot
symbol number by exploiting the sparsity of the tap coefficients.
Among the supervised VNLEs, Lasso yields better performance.
Experimental results showed that the supervised sVNLE using
Lasso outperforms the supervised sVNLE using OLS by up to
3-dB sensitivity gain in 50-Gbaud PAM4 transmission (at the
1.22 × 10−2 threshold) and 35-Gbaud PAM8 transmission (at
the 2 × 10−2 threshold). Moreover, the semi-supervised VNLE
further improved the BER performance, while maintaining the
minimum frame overhead. Among the semi-supervised VNLEs,
VNLE using SD and Lasso achieves the best performance.
With sufficient unlabeled data, our experimental results have
shown that, in both the 50-Gbaud PAM4 transmission (at the
1.22 × 10−2 threshold) and 35-Gbaud PAM8 transmission (at
the 2 × 10−2 threshold), the semi-supervised sVNLE using SD
and Lasso demonstrates ROP gains up to 4-dB and 3-dB over the
supervised sVNLE using OLS and the supervised sVNLE using
Lasso, respectively. Furthermore, the proposed methods show
significant line rate improvements over existing techniques at
certain BER thresholds.
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