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Pilot Symbol Aided Channel Estimation for OCDM
Transmissions
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Abstract—Pilot-aided channel estimation allows the receiver to
acquire channel state information (CSI) for each multicarrier
block by multiplexing data and pilot symbols in the same
block, as long as they can be decoupled. This work proposes
several frequency-domain pilot multiplexing techniques to enable
independent channel estimation and detection at the receiver for
orthogonal chirp division multiplexing (OCDM) transmissions
in frequency-selective channels. Analysis shows that each of the
proposed schemes is able to achieve the mean squared error
(MSE) lower bound for channel estimation and has greater
spectral efficiency than the existing schemes for OCDM and chirp
spread orthogonal frequency division multiplexing (OFDM).

Index Terms—Orthogonal chirp division multiplexing, channel
estimation, chirp spread OFDM

I. INTRODUCTION

Orthogonal chirp division multiplexing (OCDM) modulates
data using orthogonal chirps, thus spreading them over the
entire signal bandwidth, which enables better bit error rate
(BER) performance in frequency selective channels and makes
it more robust to both time-limited and frequency-limited
interference than orthogonal frequency division multiplexing
(OFDM) [1], [2]. It also shows advantages in the class of
unitary modulations for time and frequency-selective channels
when modulation alphabet and block size are finite [3].

Wireless channels can be estimated by transmitting a se-
quence of symbols that are known at the receiver. These
known symbols can be transmitted as dedicated blocks, called
preamble training (e.g., [4], [5]), or they can be multiplexed
in the same block as the data, heretofore referred to as
pilots. A preamble-based method for OCDM in frequency-
selective channels was proposed in [4] using an unmodulated
chirp as preamble and windowing to improve estimate quality.
Similarly, a unique-word based approach was adopted in [5]
for OCDM in doubly selective channels.

A vital condition of preamble training is that the time
difference between successive preambles in a frame needs
to be smaller than the channel coherence time. Failure to
meet this criterion may result in performance loss. Pilot-based
methods, such as those used in OFDM (see e.g. [6], [7], [8])
mitigate the requirement, and simultaneously enhance spectral
efficiency.

In this letter, we design pilot-based channel estimation
methods for OCDM. More specifically, we outline various
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techniques to multiplex pilot and data symbols at the trans-
mitter and decouple channel estimation with symbol detection
at the receiver. The proposed transmitting structure also sub-
sumes our previous work on spectrum control and multi-user
transmissions [9], [10] as special cases. We show that each of
these OCDM channel estimators achieves the lower bound of
the mean squared error (MSE) while having higher spectral
efficiency than existing ones for OCDM and chirp spread (cs-
)OFDM in [4], [8], respectively.

II. SYSTEM MODEL

A. OCDM transmissions
In OCDM, a length−N block of complex symbols x(i) =

[x(iN), x(iN+1), ..., x(iN+N−1)]T , where (.)T denotes
the matrix transpose, is modulated using the inverse DFnT
(IDFnT) to result in the block given by ΦHNx(i), where the
DFnT matrix is defined as

Φ(m,n) =
1√
N
e−j π

4 ×

{
ej

π
N

(m−n)2 N ≡ 0 (mod 2)
ej

π
N

(m+ 1
2
−n)2 N ≡ 1 (mod 2),

(1)

and (.)H denotes the conjugate transpose. After appending
cyclic prefix (CP), the block passes through a parallel-to-
serial (P/S) converter, pulse-shaping filter, digital-to-analog
converter (DAC) and radio front-end pre-processors before
being transmitted. Assume that the CP duration is greater than
the maximum channel delay spread, i.e., there is no inter-block
interference (IBI). Thus, after removing the CP, the ith received
block is given by

ỹ(i) = H̃iΦ
H
Nx(i) + w̃(i), (2)

where H̃i is an N ×N column-wise circulant matrix with the
first column given by [hi(0), hi(1), ..., hi(L), 0, ..., 0]T ,
with hi(n), ∀n ∈ [0, L] being the nth channel tap for the ith

block, and w̃(i) represents the additive noise. Since there is
no IBI, each block can be processed independently. Thus, the
block index i is dropped for simplicity.

Due to its lower complexity, we consider only frequency do-
main equalization in this work. The frequency-domain block,
after phase correction, is given by

ΓNFN ỹ = DhFNx + ΓNFNw̃, (3)

where Dh = diag([H(0), ..., H(N − 1)]) is an N × N
diagonal matrix containing the channel frequency response
(CFR) on its main diagonal, given by H(k), ∀k ∈ [0, N − 1],
ΓN = FNΦNFHN is a diagonal matrix containing the eigen-
values of Φ, which have been defined in [1, Eq. (30)], and FN

is an N ×N normalized DFT matrix. The resulting symbols
are equalized and converted back to the time domain prior to
detection.
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B. Affine data and pilot transmission
Consider general block transmissions with CP in a wireless

multipath channel, where each length−N block contains Np
pilots and Nd data symbols such that N = Np +Nd. Define
u = [u(0), u(1), ..., u(Nd − 1)]T as the data sub-block and
b = [b(0), b(1), ..., b(Np − 1)]T as the pilot sub-block. In
order to multiplex pilot and data symbols in the same block,
we define the transmitted block as

x = Adu + Apb, (4)

where Ad and Ap are general transmitter matrices with dimen-
sion N ×Nd and N ×Np for the data and pilot sub-blocks,
respectively. These matrices subsume the modulation and
multiplexing operations for each sub-block. After removing
the CP, the received block is given by

ỹ = H̃x + w̃ = H̃Adu + H̃Apb + w̃. (5)

Noting that H̃ = FHNDhFN , it is easy to see that mul-
tiplexing pilots in the frequency domain decouples channel
estimation and data detection at the receiver. Let us define
Ãd = FNAd and Ãp = FNAp as the frequency-domain
transmitter matrices for the data and pilot sub-blocks, respec-
tively. Hence, Eq. (5) becomes

ỹ = FHNDhÃdu + FHNDhÃpb + w̃. (6)

Performing the DFT, we get

FN ỹ = DhÃdu + DhÃpb + FNw̃. (7)

Let us define matrices Ã†d and Ã†p such that the received
pilot and data sub-blocks are given by Ã†pFN ỹ and Ã†dFN ỹ,
respectively. Thus, it is easy to see that decoupled channel
estimation and detection is only possible when Ã†dDhÃp =
Ã†pDhÃd = 0.

Thus far, we have introduced a general multiplexing method
that is applicable to any form of precoded OFDM as seen in
Eq. (6). However, the definitions of the transceiver matrices
depend on the type of precoding being used. We will define
the matrices for OCDM in subsequent sections.

III. PILOT MULTIPLEXING

Let us introduce some definitions that will be used in the
remainder of this section. Let I = {n : 0 ≤ n < N and ni >
nt ∀i > t} be the ordered set of indices of a vector y. Let
Il = {nk : ∀k ∈ [0, |Il|−1] and ni > nt ∀i > t} ⊆ I, where
|Il| is the set cardinality, such that ∪lIl = I and Il ∩ Ik =
∅, ∀k 6= l. Now, we can define the |A|×N multiplexing matrix
TA for a general ordered set A as TA(a, b) = 1 if b = A(a)
and 0, otherwise. We use the shorthand A(a) = na to denote
the ath element of the set A for convenience. Thus, for L sub-
blocks, the multiplexed vector is given by y =

∑L−1
l=0 TT

Ilxl.

A. Multicarrier (mc-)OCDM
Inspired by Eq. (6), one way to decouple the sub-blocks

is to move the OCDM modulator into the frequency domain
and modulate a subset of the sub-carriers. Defining Ip as the
pilot subcarrier indices and Id = I \ Ip as the data subcarrier
indices, the resulting received block is given by

ỹ = H̃FHNTT
IdΦ

H
Ndu + H̃FHNTT

Ipb + w̃. (8)

We call this waveform multicarrier (mc-)OCDM. Comparing
with Eq. (6), we see that Ãd = TT

IdΦ
H
Nd

and Ãp = TT
Ip .

The receiver matrices can subsequently be defined as Ã†d =
ΦHNdGTId , where G denotes the equalizer, and Ã†p = TIp .
Since Ip ∩ Id = ∅ by definition, it follows that Ã†dDhÃp =
Ã†pDhÃd = 0 thus, satisfying the decoupling condition.

Mc-OCDM spreads the data symbols over a smaller set
of subcarriers, using the remaining for pilots. This can be
extended by dividing a length−N block into M blocks of
length K such that N = MK, and spreading over each sub-
block. Along this line, we define Im = {m + Mn : n ∈
[0, K − 1] and ni > nt ∀i > t} as the subcarrier indices
for the mth group, where 0 ≤ m ≤ M − 1. Without loss of
generality (WLOG), we set Ip = I0. The resultant waveform,
called grouped (g-)OCDM, is given by

ỹ = H̃

M−1∑
m=1

FHNTT
ImΦHKum + H̃FHNTT

IpΦ
H
Kb + w̃. (9)

Using the definition Ã
(m)
d = TT

ImΦHK , we define Ãd =

[Ã
(1)
d , Ã

(2)
d , ..., Ã

(M−1)
d ] and Ãp = TT

IpΦ
H
K . Hence,

the receiver matrix for the mth data sub-block is given by
Ã

(m)†
d = ΦKGmTIm , where Gm is the equalizer matrix for

the mth sub-block, and the one for the pilot sub-block is given
by Ã†p = ΦKTIp . Noting that Ip∩Im = ∅, ∀m ∈ [1, M−1],
it follows that the decoupling condition is satisfied.

B. Frequency shift precoded (fsp-)OCDM
The fsp-OCDM design was proposed in [9] for multi-

user OCDM transmissions and is subsumed by the affine
transmission model in Eq. (5) by setting A

(m)
d = ΦHN∆mP,

where ∆m and P are defined in [9, Eq. (9)]. Based on
the properties of the precoder and IDFnT matrices, and the
definition of Im from the previous subsection, the received
block is given by

ỹ = FHNDhΓHN

(
M−1∑
m=1

TT
ImFKum + TT

I0FKb

)
+ w̃, (10)

where we have dedicated one sub-block to pilots and the
rest to data. Thus, the transmitter matrices are given for
the mth data sub-block and pilot sub-block are given by
Ã

(m)
d = ΓHNTT

ImFK and Ãp = ΓHNTT
I0FK , respectively.

The corresponding receiver matrices are given by Ã
(m)†
d =

FHKGmTImΓN , and Ã†p = FHKTI0ΓN . Comparing Eq. (10)
and Eq. (9), we can see that the two are very similar, with
the only difference being the spreading matrices. Therefore,
due to reasoning similar to g-OCDM, fsp-OCDM satisfies the
decoupling condition.

C. Constrained (c-)OCDM
C-OCDM [10] was designed for spectrum control. In or-

der to enable pilot multiplexing, we partition the available
bandwidth into M sub-bands with K subcarriers, where each
sub-band corresponds to one sub-block. In each sub-band, we
utilize only J = K−1 subcarriers for spreading data, leaving
M subcarriers for pilots. Thus, in this case, Np = M and
the pilot subcarrier indices are given by Ip = {nK : ∀n ∈
[0, M − 1] and ni < nt, ∀i < t}. The data subcarriers in
the mth sub-band are given by Im = {mK + 1 + n : ∀n ∈
[0, J−1] and ni < nt, ∀i < t}. The resultant received block
is then given by (c.f. [10, Eq. (7)])

ỹ = FHNDh

(
M−1∑
m=0

TT
ImΓHJ FJum + TT

Ipb

)
+ w̃. (11)
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Eq. (11) and the definition of Im shows that c-OCDM sub-
blocks are multiplexed in the frequency domain with spread-
ing taking place over a localized group of subcarriers. The
transmitter matrices for the mth data sub-block and pilot sub-
block are given by Ã

(m)
d = TT

ImΓHJ FJ and Ãp = TT
Ip .

The corresponding receiver matrices are given by Ã
(m)†
d =

FHJ GmΓJTIm , and Ã†p = TIp . Since Im ∩ Ip = ∅, ∀m ∈
[0, M − 1], the decoupling condition is satisfied.

Instead of spreading over contiguous subcarriers, interleaved
(i)c-OCDM is designed to spread data over an interleaved
subset of subcarriers for each sub-block. In this case, the mth

sub-block index set is defined as Im = {m + Mn : n ∈
[0, K − 1] and ni > nt ∀i > t} and Ip = I0. Thus, the
received block is given by

ỹ = FHNDh

(
M−1∑
m=1

TT
ImΓHKFKum + TT

IpΓ
H
KFKb

)
+ w̃. (12)

It can be seen that the block given in Eq. (12) is very similar
to the one in Eq. (11), with the difference primarily being in
the subcarrier indices used to multiplex the data sub-blocks.
Hence, the data sub-block transmitter and receiver matrices
are the same as in c-OCDM. The pilot matrices are given by
Ãp = TT

IpΓ
H
KFK and Ã†p = FHKΓKTIp .

IV. CHANNEL ESTIMATORS

The transmitter matrices for each of the schemes in the
previous section can be generalized as Ãp = TT

IpB, where B
depends on the scheme being used and will already be known
by the receiver. Thus, isolating the pilots results in

b̂ = TIpFN ỹ = TIpFNDhTT
IpBb + TIpFNw̃,

= DbTIpV︸ ︷︷ ︸
W

h + TIpFNw̃, (13)

where V is an N×(L+1) matrix containing the leading L+1
columns of

√
NFN , and Db = diag(Bb).

Define the channel estimate, estimation error and the MSE
as ĥ, e = h − ĥ, and σ2 = tr{E[eeH]}, respectively, where
E[.] is the expectation and tr(.) is the matrix trace. From [7],
we know that the minimum MSE (MMSE) estimate, for white
noise, is given by

ĥ =
1

N0

(
R−1

h +
1

N0
WHW

)−1

WHb̂, (14)

where Rh = E[hhH], N0 denotes the noise variance, and
the matrix W depends on the scheme being used. When
channel and noise statistics are not available at the receiver,
least squares (LS) estimation can be used. The LS estimate is
given by ĥ = (WHW)−1WHb̂.

The MSE of the estimate defined in Eq. (14) is given by

σ2 = tr
[(

R−1
h +

1

N0
WHW

)−1]
≥

L∑
l=0

σ2
hl
N0

N0 + Pbσ2
hl

, (15)

where Pb = ‖b‖2 is the pilot sub-block power, with ‖.‖ being
the L2 norm, and σ2

hl
, the channel tap variance. From Eq.

(15), it can be seen that the lower bound is achieved when
Rh and WHW are diagonal. From Eq. (13), we know that
W = DbTIpV, where Db and TIp are Np×Np and Np×N
matrices, respectively. Defining Vp = TIpV as the rows of
V indexed by Ip, we observe that WHW = VHp DHb DbVp.
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Fig. 1: Channel estimation MSE and the MSE lower bound in
Eq. (15). Results for [4], [8] are only presented for (M1).

If the pilots are equi-powered, WHW = (Pb/Np)V
H
p Vp. If

the pilots are equi-spaced and Np ≥ L + 1, VHp Vp = NpI.
Note that this is possible for all of the considered schemes
by defining Ip appropriately. Thus, WHW = PbI and the
lower bound is achieved for each of the proposed schemes
as long as channel taps are uncorrelated, i.e., Rh is diagonal.
The following remark compares the spectral efficiency of the
proposed estimators with existing ones in [4], [8].

Remark on spectral efficiency: For simplicity, let us assume
that the channel remains static for two multicarrier blocks.
In [4], a length−P preamble is used to estimate the channel,
where P = N + NCP. At most, it can employ N symbols
for data. Thus, the spectral efficiency is η = N/2P . In [8], a
single pilot and 2L reserved subcarriers are used for channel
estimation. Thus, its spectral efficiency is given by η = (2N−
2L−1)/2P . We have already shown that the proposed methods
require only L + 1 pilots. Hence, spectral efficiency is given
by η = (2N − L − 1)/2P . Since L � N for most wireless
channels, it is easy to see that the proposed methods offer
better spectral efficiency. This is easily extended to channels
that remain static for more than two block periods.

V. ANALYSIS

We employ simulations to verify the performance of the
proposed schemes and compare it to the schemed in [4], [8].
We fix N = 1, 024 and Np = L + 1 = 64 and employ
4-QAM and binary phase shift keying (BPSK) modulation,
with the same average energy per symbol, for the data and
pilots, respectively. We assume the channel is quasi-static with
complex Gaussian channel taps and consider three variations
of this model. (M1) Independent taps with an exponential
power delay profile (PDP) given by σ2

hl
= 0.9l/λ, ∀l ∈ [0, L],

where λ is a normalization constant such that
∑

l σ
2
hl

= 1.
(M2) Correlated taps with correlation matrix Rh given by
E[hnh?m] = 1/(L + 1), ∀m = n; E[hnh?m] = ρ/(L +
1), ∀m = n + 1; E[hnh?m] = ρ2/(L + 1), ∀m = n + 2;
and 0 otherwise, where ρ = 0.6. (M3) Independent taps with
uniform PDP, i.e., σ2

hl
= 1/(L+ 1), ∀l.

Fig. 1 compares the channel estimation performance of the
proposed schemes (x-OCDM) and shows that the lower bound
is indeed achieved when the channel taps are uncorrelated
(M1). The schemes in [4], [8] perform worse in low SNR and
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Fig. 2: BER comparison with perfect CSI and estimated CSI
for channel (M1) and (M2).
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Fig. 3: BER comparison for c-OCDM with Np = 64 and
variable L with (left) ideal CSI and (right) estimated CSI for
uniform PDP (M3).

similar to x-OCDM at high SNR. Tap correlation (M2) leads
to higher MSE at lower SNR, but as the MSE increases, the
contribution of Rh in Eq. (15) decreases and thus, the MSE
converges to the lower bound.

The average BER of the considered schemes for (M1) are
presented in Fig. 2. Results show that all of the proposed
schemes show the same performance as OCDM with channel
estimation errors accounting for the 3 dB gap between the
estimated and perfect CSI cases. However, c-OCDM performs
the worst of all the considered schemes due to frequency-
localized spreading of the data. This occurs because adjacent
frequencies experience correlated fading when N > L + 1.
Thus, a deep fade may affect an entire sub-band, limiting
the average performance. This is not the case for the other
proposed schemes as data is spread over uncorrelated frequen-
cies which mitigates deep fades. Channel correlations (M2)
affect the proposed schemes similarly. Fig. 2 shows that c-
OCDM and mc-OCDM suffer from similar deterioration as
more subcarriers are likely to experience deep fades, creating
a performance bottleneck.

Fig. 3 shows that c-OCDM transmissions show better
performance with ideal CSI as the channel delay spread
increases, while the sub-block size is kept constant, i.e.,
J = 15. Typically, N � L, and thus, c-OCDM spreads data
over a subset of neighboring, correlated subcarriers. Smaller
L corresponds to stronger correlations among neighboring

subcarriers so deep fades have a greater impact on the sub-
block detection performance. The difference in performance
is apparent for high SNR as noise becomes negligible. On the
other hand, when perfect CSI is not available, Fig. 3 shows
similar performance. This occurs because larger L increases
the MSE of channel estimation, which can be inferred from
Eq. (15). Thus, larger channel estimation errors counteract the
performance gains seen due to larger delay spreads.

Thus far, results show that channel estimation performance
is exactly the same for the proposed schemes. However, we
have already seen that c-OCDM suffers performance deteri-
oration in terms of BER due to constrained spreading. Fur-
thermore, the sub-block sizes are restricted in the interleaved
schemes, i.e., ic/g/fsp-OCDM. Let K denote the sub-block
size and N , the block size. By construction it follows that
N/K ∈ Z+, where Z+ is the set of positive integers, and that
N/K > 1. Now, recall that K ≥ L+1 for channel estimation
with maximum spectral efficiency when K = L+1. However,
it is not necessary that N/(L+1) is an integer, in which case
K > L + 1. This leads to some loss in spectral efficiency.
Thus, for these reasons mc-OCDM has a distinct advantage
since it shows the best BER performance and allows for the
greatest flexibility in terms of the pilot sub-block size.

VI. CONCLUSIONS

In this letter, we proposed various schemes to enable pilot-
based channel estimation for OCDM. The proposed schemes
show the same performance in terms of estimation quality and
can achieve the MSE lower bound for uncorrelated channel
taps despite having higher spectral efficiency than other pro-
posed methods. Moreover, all schemes, except c-OCDM, show
the same BER as conventional OCDM. In the future, we will
extend this work to doubly-selective channels.
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