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Abstract

Amide hydrogen-deuterium exchange (HDX) has long been used to determine regional flexibility
and binding sites in proteins, however the data are too sparse for full structural characterization.
Experiments that measure HDX rates, such as HDX-NMR, are far higher throughput compared to
structure determination via X-ray crystallography, cryo-EM, or a full suite of NMR experiments.
Data from HDX-NMR experiments encode information on protein structure, making HDX a prime
candidate to be supplemented by computational algorithms for protein structure prediction. We
have developed a methodology to incorporate HDX-NMR data into ab initio protein structure
prediction using the Rosetta software framework to predict structures based on experimental
agreement. To demonstrate the efficacy of our algorithm, we examined 38 proteins with HDX-
NMR data available, comparing the predicted model with and without the incorporation of HDX
data into scoring. The root-mean-square deviation (RSMD, a measure of average atomic distance
between superimposed models) of the predicted model improved by 1.42 A on average after
incorporating the HDX-NMR data into scoring. The average RMSD improvement for the proteins
where the selected model RMSD changed after incorporating HDX data was 3.63 A, including
one improvement of more than 11 A and seven proteins improving by greater than 4 A, with 12/15
proteins improving overall. Additionally, for independent verification, two proteins that were not
part of the original benchmark were scored including HDX data, with a dramatic improvement of
the selected model RMSD of nearly 9 A for one of the proteins. Moreover, we have developed a
confidence metric allowing us to successfully identify near-native models in the absence of native
structure. Improvement in model selection with a strong confidence measure demonstrates that
protein structure prediction with HDX-NMR is a powerful tool which can be performed with
minimal additional computational strain and expense.



Introduction

The function of a protein is dictated by its structure; thus, the understanding of biological processes
is significantly facilitated by the knowledge of protein structure.! Despite this, the gap between the
number of known sequences of proteins and their three-dimensional structures is widening by the
day.? There are many experimental approaches available for structural and dynamic
characterization of proteins. In the world of dynamic studies, one such method is the monitoring
of hydrogen-deuterium exchange rates via nuclear magnetic resonance spectroscopy (HDX-
NMR). HDX-NMR data are typically generated to elucidate regional flexibility or binding sites
after a protein’s structure has been fully characterized via other methods, such as X-ray
crystallography, cryo-EM, or a full suite of NMR structural experiments.>® The result of HDX-
NMR experiments is a residue-resolved map of exchange rates, allowing for extrapolation of
regional flexibility and solvent exposure, two factors that are generally considered to influence
HDX rate.” HDX rate determination is not exclusive to NMR, however, and can be measured using
mass spectrometry (MS) as well.» * While HDX-NMR studies yield important information on
structure and dynamics, these are still sparse data, generally insufficient for full protein structure
determination or unambiguous dynamics characterization. Computational methods that can
facilitate the structural interpretation of HDX-NMR data are required.

There have been strides to incorporate experimental techniques with computation, with efforts
spanning back to the 1980s with NMR and X-ray crystallography, and more recently EPR, MS,
and cryo-EM among others.!%* HDX experiments, originally probed in the 1970s!, have been
used to map exchange rates onto atomic-resolution structures to assign dynamic properties to
otherwise static representations.* **37 In the general case, HDX rates have also been coupled to
molecular dynamics simulations to explain variation in different regions of a protein.'# 342
Additionally, these data have been incorporated into protein-protein docking of complexes with
known tertiary structure to elucidate quaternary structure.**> However, importantly, HDX rates
have not yet been used to predict de novo tertiary structure. Previous implementations for structural
characterization rely on either homology modeling or some starting structure such as an alternative
conformation of a protein or a designed protein.**** While there are multiple software packages
with impressive results that exist for ab initio structure prediction, such as the co-evolution-
dependent neural network AlphaFold®’, the secondary structure assembling BCL’!, or iterative
threading I-TASSER>?, none have been coupled to experimental data as frequently or diversely as
the Rosetta Modeling Software. '3 20 21.27.30.53-62 R osetta ab initio structure prediction allows for
the generation of models from amino acid sequence alone, assembling fragments generated from
short segments with similar sequences using Monte Carlo sampling combined with a hybrid
classical physics and probabilistic knowledge-based scoring function in both coarse-grained and
full-atom modeling, similar to other multiscale modeling methods.®* % Due to its modular score
function, Rosetta is an ideal candidate to use HDX-NMR data for ab initio structure prediction.

In this work, we have developed methods to account for residual solvent exposure, through amide
neighbor count and residual relative solvent accessible surface area, and flexibility, through
hydrogen-bonding energies and order score, all within the Rosetta framework. While the Rosetta
ab initio sampling approach does not allow for the determination of realistic folding assembly



pathways, the ability to quantify the flexibility and exposure of residues in a native-state model
means that correlations between HDX of residues within the protein and the protein structure can
be explored. Using HDX-NMR data for 38 proteins from the Start2Fold database®®, we have
developed a score term for the Rosetta energy function based upon agreement with experimental
data, while also accounting for local sequence context. Using this new scoring term, we have
scored structures generated using Rosetta’s ab initio prediction application, improving the root-
mean-square deviation (RSMD, a measure of average atomic distance between superimposed
models) from native of the best scoring predicted model with negligible additional computational
expense; in several predictions, RMSD improved by more than 5 A, including one prediction
improving by over 11 A.

Materials and Methods

Benchmark Dataset

We assembled a benchmark dataset of proteins with HDX-NMR data from the Start2Fold
database, a curated database for experimental HDX-NMR determinations of folding pathways and
regional stability.%® The available data were provided in the form of per-residue classification for
stability experiments. The experimental stability was classified as either Strong for residues that
were highly protected from exchange, Weak for residues which exchanged quickly, or Medium for
residues in between ranges. Each category was defined by the database in accordance with the
measured experimental data, such as protection factor (a measure inversely proportional to the
exchange rate constant) or change in peak intensity over time. For example, a strong residue has a
higher protection factor compared to a medium or weak residue. Due to more strict restrictions on
the class, only data for the strong residues were used in our analysis, as these were often residues
which did not exchange at all, whereas a weak residue could transiently move and be exchanged,
which would not be relevant to the static model. Of the 57 proteins available (at time of searching)
in the Start2Fold database, 38 were chosen for the scoring benchmark because they contained
residues classified into the strong category, were monomeric in solution, had an experimentally
determined structure in the Protein Data Bank (PDB), and models with less than 10 A RMSD from
native were sampled with Rosetta (protocol described below). Separately, two proteins were
selected from the Start2Fold database to serve as an independent verification set, to test the scoring
protocol outside of the benchmark set. Protein lengths ranged from 56-179. A summary of the
benchmark set is shown in Table S1.

Model Generation

For each of the 38 proteins in the benchmark set, 10,000 decoy models were generated using
Rosetta’s standard AbinitioRelax protocol.®”! For this, files containing 3-mer and 9-mer residual
fragments were generated using the Robetta Web server.”? These fragments were used as input in
a Monte Carlo assembly, where structures were scored using coarse-grain energy functions,
followed by all-atom relaxation and use of the Ref2015 scoring function in the final full-atom
refinement.> Ca-RMSD from native was calculated for each of the generated decoys for use in
benchmarking. The RMSD of only ordered secondary structured elements (SSEs) was calculated
using a custom PyMOL script which aligned a truncated PDB of the native structure containing



only the ordered SSEs to the generated models.” The number of 10,000 decoy models was chosen
because the AbinitioRelax protocol generally requires the generation of a large number of models
to adequately sample conformational space. The structure with the lowest (most favorable) Rosetta
Score was identified as the predicted structure.

Calculation of Flexibility and Exposure Metrics

There is a general consensus in the HDX community that HDX rates are dependent on the local
flexibility and solvent exposure at the amide hydrogen position.” Thus, we have calculated
parameters which quantify these features on a per-residue basis for use in the scoring of Rosetta
decoy models based on HDX-NMR data. All calculations were performed using Rosetta
applications. Four parameters were chosen to quantitatively represent flexibility (hydrogen-bond
energy and order score) and exposure (neighbor count and relative solvent accessible surface area).

To quantify flexibility, the backbone hydrogen-bond energy (H-Bond) was extracted from the
Rosetta Energy Function via the residue energy breakdown application, using the following
hydrogen-bond energy terms: short-range (in sequence) backbone-backbone interactions
(hbond sr bb), long-range (in sequence) backbone-backbone interactions (hbond Ir bb), and
backbone-side chain interactions (hbond bb sc).®* The term involving hydrogen-bonding
interactions between side chains (hbond sc) was discarded for calculations performed herein due
to the transient nature of these interactions caused by side chain flexibility and for the lack of
involvement of the amide proton in these interactions. The hydrogen-bonding energies were
extracted such that the only energy contribution was from the backbone amide group rather than a
sum of backbone amide and carbonyl oxygen contributions. To do so, a Rosetta application
(ragul_find all hbonds) was used to determine the donor/acceptor pair for each residue. Using the
determined pairing, the energy was extracted only if the amide hydrogen was involved in the
interaction, rather than the carbonyl oxygen. The energies of the terms were summed to generate
the final residual hydrogen-bonding energy, though typically, only one energy term was non-zero.
The expected trend of this hydrogen-bonding energy is that a lower HDX rate would correlate with
a higher magnitude of the energy (i.e. more negative). As a second measure of flexibility, order
score (OS, a measure of residue-resolved disorder) was calculated using the Rosetta
ResidueDisorder application that calculates a window-averaged Rosetta Score to map per-residue
disorder.”* 7> We used the Ref2015 scoring function and a window size of 11 to quantify disorder
of residue i, based on a score average spanning from residue i-5 to residue i+5. Similarly to
hydrogen-bonding, as the HDX rate decreases, the order score is expected to become more
negative.

With respect to exposure, relative per-residue solvent accessible surface area (ReISASA) was
calculated using Rosetta scoring classes (SasaCalc). Since RelSASA decreases as exposure
decreases, the expected correlation between HDX rate and ReISASA is that as HDX rate decreases,
the ReISASA is expected to trend towards zero. For neighbor count (NC) calculations, the Rosetta
neighbor count application (per_residue solvent exposure) was modified in order to calculate
conical NC based on the oxygen atoms neighboring the amide proton, as the oxygen atoms can
both sterically and electronically alter the amide proton environment.!® The angle cutoffs were
chosen such that no atoms behind the amide were counted as neighbors, with the angle contribution



midpoint set at % radians. The distance contribution midpoint was set to 9 A, as optimized

previously.?* Neighbor count increases as exposure decreases, thus as HDX rate decreases, the NC
should increase, as the amide becomes less accessible to deuterated solvent.

HDX Score

For each of the four calculated parameters, the mean and standard deviations for each strength
category for the 38 native crystal structures were determined to verify expected trends between the
parameters and protection strength categories. In order to score decoys based on agreement with
HDX data, a scoring function for each calculated metric was developed to reward or penalize
residues of ab initio models. This was done by scoring residues in the strong category based on
the deviation of calculated metrics from the distribution observed in the crystal structures. The
strategy was to reward residues that strongly matched hypothesized features of strong residues and
penalize residues that did not.
If a calculated metric was within a range around the average, as defined in Equation 1 (where u 1s
the mean of the native distribution of the parameter, o is the standard deviation of the native
distribution of the parameter, and f'is a scaling factor of the standard deviation), the residue was
scored as zero. Figure 1 (solid black vertical lines) shows an example (for H-Bond energy) of the
range where zero score was applied (average shown as dotted black vertical line).
(The value of f'changed depending on the range of the native structure distribution. For example,
the neighbor count distribution ranged from ~2 to 18 and the standard deviation of the distribution
was 2.25; due to the size of the range compared to the standard deviation, the value of f was set to
1.0 for NC, resulting in a zero-score region of size 4.5, or approximately 28% of the total range.
Conversely, RelSASA’s distribution ranged from 0 to 1, with a standard deviation of 0.26; if the
value was set to 1.0 for ReISASA, the zero-score region would include all values in a range from
0 to 0.52, which contains approximately 80% of strong residues. To prevent this, the f/ value was
set to 0.25 for RelSASA, resulting in only 13% of the distribution being a zero-score and allowing
for residues with very low RelSASA to be scored. For similar reasons, the f values for H-Bond
energies and OS were set to 0.25 and 0.5, respectively.)

Range = utox*f (Eq. 1)
However, outside of this range, residues of a decoy model were rewarded or penalized based on
the level of (dis)agreement with the distribution of the calculated parameters of the native structure
and our structural hypotheses. (The specific function will be described in more detail at the end of
this section). For example, following the hypothesis that a residue within the strong category
should be less flexible, if a strong residue in a generated model had a high H-Bond energy (outside
of the zero-score region), it resulted in a penalty for that model which increases as the H-Bond
energy increases. This penalty function is shown in Figure 1 (at high H-bond energies).
Conversely, a strong residue with a low (more negative) H-Bond energy (outside of the zero-score
region) would be rewarded. Figure 1 (at low H-bond energies) shows the function used for reward.

HDX has been shown experimentally to be sequence dependent as well, where the level of
exchange depends on the identity of side chains adjacent to the amide in sequence.’® Thus, another
feature, coined “‘side chain amide protection (SAP)”, was used to influence scoring, altering the
scoring range based on sequence context. To generate the SAP factor, the relative literature
exchange rates in an acid catalyzed environment, which were derived from residue identity, were
added together for the i and i-/ residues, as the side chains for the those residues affect HDX rate.”®
For example, the 28" residue of 1BDD, a strong residue, is an arginine with a SAP value of -0.59,



and the 27" residue is glutamine with a SAP value of -0.27; thus, the SAP factor for R28 in 1BDD
was -0.86. This sequence-specific score range adaptation allowed us to account for the intrinsic
HDX protection or catalysis from local sequence when scoring individual residues. All residual
SAP values are provided in a separate supplemental file. With the implementation of the SAP
factor, the scoring range was defined by Equation 2, where SAP is the residual SAP value, P is the
SAP scaling factor (P = 0.2 for ReISASA, 3.0 for H-Bond, and not applied to OS and NC), and
other terms follow the naming conventions vide supra.

Range = pyto* f + SAP x P (Eq.2)

The scoring function outside of the zero-score region was implemented as a set of two fade
functions as qualitatively described previously (function shown in Eq. 3), graphically depicted in
Figure 1 for H-Bond with examples of HDX-catalyzing SAP (top) and HDX-inhibiting SAP
(bottom, where V' is the calculated parameter value (NC, OS, RelSASA, or H-Bond energies), C
is the nearest range cutoff value (u + o * f + SAP), and M is the nearest extreme value of the
distribution. If the SAP factor indicated that neighboring side chains were HDX-catalyzing groups,
the non-zero scoring cutoffs would shift such that the penalty region expanded (Figure 1, top,
vertical blue lines), while HDX-inhibiting groups would result the reward region expanding
(Figure 1, bottom, vertical red lines).

3 2
V—C—(M C)> _3*<_V c—(M C)) 1 E0.3

S(V):2*<_ M—C M—C



Figure 1. (Top) Score function S(¥) for the H-Bond parameter with (blue) and without (black) an
HDX-catalyzing SAP factor incorporated into score range definition. (Bottom) Score function S(V)
for the H-Bond parameter with (red) and without (black) an HDX-inhibiting SAP factor
incorporated into score range definition. Solid vertical lines mark the borders of the non-zero scoring
range for their respective colors. Dotted lines indicate the mean (black) and mean + SAP factor
(blue/red).
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Hydrogen Bonding Energy

The HDX Score was defined as a weighted sum of the Rosetta Score and the score components
for solvent accessibility (NC, RelISASA) and flexibility (OS, H-Bond) as shown in Equation 4,
where RS is the Rosetta Score, S(V) is the score derived from each category, and all other variables
follow naming conventions from above. The results of this scoring were relatively stable with
respect to different combinations of weights.

HDX Score = RS+ 1*S(NC) + 5 * S(RelSASA) + 5 x S(0S) + 30 * S(H-bond) (Eq.4)

Prear (2 measurement of how funnel-like a score vs RMSD distribution is) was calculated for each
of the distributions using the Rosetta Score without HDX data incorporated and using the HDX
Score (Equation 4).”” Pnear values can range from 0 (indicating a poor funnel with several low-
energy models at a range of RSMDs from native) to 1 (a perfect funnel with a unique low-energy



conformation in the near-native state). For the calculation of Pnear, A was set equal to 2.0 and KsT
was set equal to 1.0.

Confidence Metric

To determine confidence in model selection, a confidence metric was developed based upon
knowledge independent of native structure. The confidence metric was defined as the average
RMSD of the top 100 scoring models to the top scoring model. This was chosen because a low
average RMSD indicated high structural similarity for the top scoring models. We hypothesized
that this would suggest a favorable energy landscape and thus better scoring of native-like
structures. Therefore, if the confidence metric was less than 5 A, predictions were identified as
high confidence, and if the metric was above 5 A, predictions were identified as low confidence.

Results and Discussion

Experimental Data from Native Structures follow Hypothesized Exposure and Flexibility
Trends

Given the consensus in the HDX community of the influence of both exposure and flexibility on
HDX rates, the parameters to quantify these residual properties were calculated from the native
crystal structures for each of the 38 benchmark proteins to determine if the relationship between
strength categories matched our hypotheses.” Figure 2 depicts the distributions of all calculated
parameters (NC, RelSASA, OS, H-Bond) as a function of residual HDX protection. Each of the
averages of the distributions followed the hypothesized trends, where the strong category
corresponded to the lowest exposure and flexibility. The averages for the strong category for the
parameters were 11.41 (NC), 0.23 (RelSASA), -2.39 (OS), and -1.36 (H-Bond).

Scoring using HDX was performed solely using residues within the strong category for three
reasons. First, the size of the dataset for the strong category was significantly larger than other
strength categories, with 678 residues in the strong category compared to 165 and 267 residues in
the weak and medium categories, respectively. Additionally, while a weak residue could be in a
highly dynamic region where the residue could change from exposed to buried via random motion,
a strong residue must be resistant to exchange for the majority of the experiment, resulting in a
more reliable metric to generate HDX restraints for modeling. Finally, we observed minimal
overlap between the strong category and the weaker categories, especially in the extremes of the
distribution, which were used in the scoring algorithm; this provided a higher confidence that the
distribution that the scoring is based upon is unique to the strong category rather than one where a
value of a parameter could be weak or strong.



Figure 2. Distributions of calculated parameters for native structures with widths proportional to dataset size.
Horizontal line in center of each distribution marks the mean of the dataset.
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Initial Rosetta Model Generation Yielded a Large Distribution of High and Low RMSD
Models

For each of the 38 proteins selected from the Start2Fold database,®® 10,000 models were generated
using Rosetta’s standard AbinitioRelax protocol.®¢"° While near-native structures (RMSD < 3 A)
were predicted using the Rosetta Score without HDX data incorporated for 11 proteins, the average
RMSD of the predicted structure was 6.68 A (Table S1). The RMSD of the predicted structure was
greater than 5 A for 18 benchmark proteins, and greater than 10 A for 8 proteins. However, for 32
of the 38 proteins, at least one model with RMSD less than 5 A was sampled with Rosetta ab initio,
and for 22/38 at least one model with RMSD less than 3 A was sampled. This indicated that near-
native structure selection was possible for a majority of the benchmark set if an additional score
was used. Pnear (2 measurement of how funnel-like a score vs RMSD distribution is) values were



generally low, indicating that models of high and low RMSD had similar energies, with an average
Phear of 0.136.

Individual HDX Parameter-Based Scoring Improved Model Selection Accuracy

We developed the HDX scoring function as a linear combination between the Rosetta Ref2015
scoring function and our newly developed terms that quantify the agreement with HDX data based
on exposure and flexibility parameters. If, in a generated model, the exposure or flexibility
parameters of residue agreed with the distribution of the parameters in the X-ray crystal structures,
the residue was rewarded, with those opposite penalized. The score was dependent upon the level
of (dis)agreement to the distribution. Additionally, the non-zero scoring range was modulated by
the side chain amide protection (SAP) factor, which accounted for sequence context by biasing
scoring towards reward or penalty depending on the side chains immediately neighboring the
amide proton. Before incorporation into the linear combination, each of the individual parameters
was used to score based on HDX rate agreement. In doing so, each of the parameters was analyzed
to determine whether scores based on the hypothesized trends could be used to improve model
selection alone, as well as give insight into which, if any, of the parameters were the most
beneficial. Moreover, the parameters needed to be tested to determine which would benefit from
the inclusion of the SAP factor.

Results of each scoring method are listed in Table 1. Scoring using a static scoring range cutoff
based solely upon the mean and standard deviation of the distribution of the parameters in the
native structures (without the SAP factor) were somewhat unimpressive. We hypothesized this to
be due to the lack of sequence context, where an amide neighboring two glycine side chains would
be treated the same as one surrounded by a phenylalanine and tyrosine, neglecting the differences
in steric and electronic environment between side chains. Thus, the SAP factor was introduced to
create a sequence dependent scoring range that would account for a residue with minimal
neighbors being sterically or electronically hindered from HDX due to its neighboring side chains
in sequence rather than the full environment measured by the parameters.

Each parameter was tested with (Equation 2) and without (Equation 1) including sequence context
to modify the scoring range cutoffs, as shown in Table 1. Model selection was improved when
SAP was included in the ReISASA and H-Bond-based scoring. Conversely, NC and OS methods
did not benefit from including the SAP factor.

The ineffectiveness of the SAP factor for NC- and OS-based scoring was initially surprising and
contrary to our hypothesis that a sequence dependent scoring range would improve model
selection. However, this effect can be explained by elements that determine NC and OS compared
to H-Bond and RelISASA. NC is dependent on the location of oxygen atoms within a hemisphere
surrounding the amide proton, with the contribution to the neighbor count degrading with respect
to distance and angle to the amide NH vector. Similarly, OS is calculated by a window-averaged
Rosetta per-residue score, dependent on the five residues on the N- and C-terminal sides of the
scored amide and each of their local environments. However, SAP is based solely on the i and i-/
side chains, far closer in both space and sequence than the NC and OS determinants. Thus, the
inclusion of SAP to these terms did not benefit scoring. Conversely, H-Bond and RelISASA are



inherently dependent on the local environment in the location of i and i-/ residues. This is
supported by the improvement in the ReISASA- and H-Bond-based scoring when the SAP factor
was included, as these parameters are determined by the scored residue alone and the amide
proton’s H-Bond partner, respectively. Thus, for all HDX scoring methods, the SAP factor was
excluded from OS- and NC-based scoring methods, while it was included in H-Bond- and
RelSASA-based scoring, as indicated in Table 1. Further comparison of the results of SAP
inclusion can be found in the supplemental information.

Figure 3 shows the results of scoring using the individual parameter-based score compared to using
the Rosetta Score without HDX data incorporated. In general, model selection improved for each
of the scoring methods, with an average improvement of 0.71 A. Importantly, while some
parameter-based scoring resulted in an increase in selected model RMSD, this deficiency was not
shared by other parameters. For example, if the RMSD of the selected model was higher when the

Table 1. Summary of results following scoring for the neighbor count- (NC) , relative solvent accessible surface area- (RelISASA), order
score- (OS), and hydrogen bond energy (H-Bond)-based HDX scoring, with and without the inclusion of the SAP factor in the definition of
the score range (Eq. 1,2). A change in RMSD is defined by the magnitude of selected model RMSD changing by greater than 0.5 A. Parameters
used in further analysis are highlighted in gold.

Without SAP
Weight Applied | Average ARMSD Average ARMSD of Number of Proteins | Number of Proteins with
to Rosetta Score | of All Proteins (A) | Proteins with Changes in with RMSD RMSD Increased
RMSD (A) Improved
NC 10 -0.73 -2.90 10 0
RelSASA 5 -0.74 -1.41 8 5
(O8] 6 -0.22 -1.92 4 0
H-Bond 10 -0.02 -0.11 6 3
With SAP
Weight Applied | Average ARMSD Average ARMSD of Number of Proteins | Number of Proteins with
to Rosetta Score | of All Proteins (A) | Proteins with Changes in with RMSD RMSD Increased
RMSD (A) Improved
NC 10 -0.63 -2.22 9 2
RelSASA 5 -0.93 -1.61 9 4
(O8] 6 -0.20 -1.39 5 0
H-Bond 10 -0.94 -4.00 9 0

neighbor count scoring term was used, the selected model had the same or better RMSD when
scored based on another parameter. The individual parameters were categorized based on whether
they quantified flexibility (OS and H-bond) or solvent exposure (NC or ReISASA). The scoring
results of the combination of these terms are discussed in the supplemental material, Figure S1,
and Table S2. In general, these paired terms performed slightly better than the terms separately.



Figure 3. The selected model RMSD for the Rosetta prediction and scoring that incorporated HDX data, using
NC (neighbor count) (top, left), ReISASA (relative solvent accessible surface area) (top, right), OS (order score)
(bottom, left), or H-Bond (amide hydrogen bonding energy) (bottom, right) as the parameter used to determine
agreement. The SAP factor was included in only the ReISASA and H-Bond scoring (right). Markers below the
y=x line indicate a protein with an improvement in selected model RMSD, with those above worsening.
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The Combination of All Four Score Terms Produced the Largest Improvement in Model
Selection

The final HDX Score (Equation 4) was composed of a weighted sum of the individual terms that
measure exposure and flexibility. The weighting of the terms skewed highly towards the hydrogen
bonding component, one of the measurements of residual flexibility. This is to be expected due to
the mechanism of HDX; if the amide proton is engaged in an energetically favorable hydrogen
bond, it is less likely to undergo reactions requiring electron transfer. Thus, the presence of a highly
stabilizing hydrogen bond is known to correlate strongly to the exchange rate and thus the
experimental HDX category.”®



Figure 4A shows the selected model RMSD when using the Rosetta Score compared to the HDX
Score. The average improvement of the RMSD of the best scoring model was 1.42 A, with seven
proteins improving by over 4 A. The selected models for four of these proteins using the Rosetta
Score and using the HDX Score are overlaid with the native structure in Figure 4B. When using
the HDX Score, for proteins with greater than 0.5 A RMSD difference between selected model
with and without HDX data, 12/15 improved, with an average improvement of 3.63 A. For two
proteins, the top scoring model using the HDX Score was the best possible model from the decoy
pool (lowest RMSD), including one case where the RMSD of the predicted structure improved
from 14.93 A to 3.77 A (Table S1) when HDX data was included. Additionally, while the overall
selected model RMSD improved by 1.42 A, the average RMSD of residues within ordered
secondary structure elements improved by 0.92 A, with a maximal improvement of 10.48 A,
indicating that the improvement in RMSD was not solely in disordered regions. These regions are
important to protein function yet highly dynamic compared to core regions which are less likely
to have major disruptions in solution and are vital to protein structure as well.”’8! While, ideally,
incorporating the HDX data would improve the model selection for every protein, such a result
would require far less sparse experimental data, removing the benefit of pairing high-throughput
computation and experimentation. However, this sparse HDX NMR dataset was able to improve
prediction in cases when the score distribution from the initial prediction without experimental
data was close to accurate.

Not only did the top scoring model improve when HDX data were included, the average RMSD
of the top 10 scoring models also improved from 6.97 A using the Rosetta Score to 6.30 A, shown
in Figure S2 for all proteins. While only one of the average RMSDs increased by greater than 0.5
A, the average RMSD of the top 10 scoring models improved by more than 0.5 A for sixteen
proteins, indicating strong model selection improvement. Figure S3 shows the RMSD distribution
for the top 10 scoring models for all proteins in the dataset. When using the HDX Score, the RMSD
distribution shifted towards a lower RMSD compared to using the Rosetta Score without HDX
data incorporated, with a marked improvement in number of models in the sub-5 A range. Figure
4C shows the score vs RMSD distributions for three proteins for which we observed significant
improvement in RMSD of the top 10 scoring models upon application of the HDX Score. Amongst
all distributions in the benchmark set, Pnear improved by 7% when the HDX Score was used
compared to when Rosetta Score was used, another indication that model selection improvement
was not limited to only the top scoring model.



Figure 4. Results of the 38 protein benchmark set using the HDX Score. (A) The selected model RMSD for the Rosetta prediction and when scoring
with the HDX Score. Markers below the y=x line indicate a protein with an improvement in selected model RMSD, with those above worsening.
Points in gold are represented in (B) and (C). (B) Lowest scoring models (red) using the Rosetta (left) and HDX (right) Score overlaid with the X-
ray crystal structure (blue). (C) Rosetta (left) and HDX (right) Score vs RMSD plots of three proteins that benefitted by use of HDX Score. The
lowest scoring model is marked by a black star.
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While the native structures and thus RMSDs were known for the models generated within the
benchmark dataset, this knowledge is unavailable for true ab initio prediction, motivating the
establishment of a confidence metric which can be used as a marker of a probable near-native
model generation. To this end, we developed a confidence metric, the average RMSD of the top
100 scoring models to the top scoring model when using the HDX Score. Figure 5 shows the
selected model RMSD as a function of our confidence measure. If the average RMSD to the top
scoring model was less than 5.0 A (indicating strong funneling and thus high confidence), the
average selected model RMSD was 2.54 A. The RMSD of the selected model for all 18 proteins
identified by the metric as high confidence was less than 5 A. Additionally, all proteins with a
selected model RMSD below 2.5 A were identified as high confidence. Contrasting this, the
average RMSD of proteins in the low confidence region was 7.70 A, with 14 of the 20 proteins
selecting a model with an RMSD of 5 A or above. The distinct difference in model selection quality
between the high and low confidence regions indicates that the confidence measure is a powerful
tool for enabling positive identification of near-native models, even in the absence of a known
native structure.

Figure 5. Plot of the confidence metric (the average RMSD of the top 100 scoring models to the selected model using
the HDX Score) vs RMSD of the selected model following scoring using the HDX Score, where the solid line indicates
the confidence cutoff of 5.0 A such that proteins with an average RMSD to the left of the line have a high confidence
for increased model selection accuracy.
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The HDX Score Improved Model Selection for Proteins outside of the Benchmark Set

To ensure broader applicability, two proteins were selected from the Start2Fold database for
independent verification separately from the benchmark set. These proteins (PDB IDs: 1A2P and
IHRC) matched the requirements of the benchmark set (monomeric in solution, had an
experimentally determined structure in the PDB, and models with less than 10 A RMSD from
native were sampled with Rosetta). The HDX Score was calculated for the proteins as stated above.
When using the Rosetta Score, the selected model RMSD from native for 1A2P was 12.87 A and
for IHRC was 13.34 A. However, using the HDX Score, 1A2P remained approximately the same,
selecting a model with an RMSD from native of 13.09 A, while 1HRC improved to 4.41 A,
selecting the best model generated in the pool. The selected models for IHRC using the Rosetta
Score and HDX Score overlaid with the X-ray crystal structure are shown in Figure 6. Score vs
RMSD distributions are shown in Figure S4.

Figure 6. Selected models (red) using the Rosetta Score (left) and HDX Score (right) overlaid with the X-ray crystal
structure (blue).

Rosetta Score HDX Score
RMSD = 13.34 A RMSD =441 A

Conclusion

Hydrogen-deuterium exchange rates have been studied for decades, primarily to characterize
dynamics for proteins which had already been structurally elucidated experimentally. Though ab
initio protein structure prediction has made major strides in a similar time-frame, moving from
computing small peptides to deep-learning structural prediction, this too often requires a broadly



inaccessible amount of computational power or conjunction with expensive and difficult
experimentation. %283 We sought to eliminate this burden by utilizing data from high-throughput,
broadly accessible hydrogen-deuterium exchange experiments that are too sparse for structure
determination themselves, but, as we have demonstrated, highly useful when incorporated into
computational analysis and structural prediction.

To our knowledge, we are the first to incorporate sparse HDX-NMR data into computational ab
initio protein structure prediction. By incorporating HDX data into Rosetta scoring, the RMSD of
the selected model improved by 1.42 A on average; of the 15 proteins whose RMSD changed by
greater than 0.5 A, 12 improved with an average improvement of 3.63 A. The RMSD of the
selected model also improved for core residues in ordered secondary structure elements by 0.92
A, with an improvement as high as 10.48 A. Additionally, a confidence metric was developed to
determine the confidence of identifying native-like predicted structure. The RMSD of the selected
model for all 18 proteins in the high-confidence region was less than 5 A. Improvement in model
selection with a strong confidence measure demonstrates that protein structure prediction with
HDX-NMR is a powerful tool in facilitating protein structure determination.

While HDX-MS has recently gained popularity as a method of HDX rate determination, the large
dataset available via the Start2Fold database made HDX-NMR ideal for the development of a
scoring system. Importantly, the scoring algorithm developed from this database paves the way
for expansion to HDX-MS data, as well as multimeric structural prediction. While HDX-MS
typically generates fragment-resolved (as opposed to residue-resolved) data, the HDX principles
are maintained regardless of the experiment, making HDX-MS a prime target for adaptation of the
scoring algorithm. Mass spectrometry is typically far higher throughput than NMR
experimentation, which would increase the overall speed of this prediction method. Moreover, MS
experiments are not as stringently bound to protein size limitations as NMR experiments, which
tend to be unviable for proteins larger than 50 kDa unless specialized sampling is used, which has
its own set of limitations.** Removing the size limitation allows for studies of complex structures
via differential HDX-MS experiments. Future work may focus on expanding our scoring algorithm
to HDX-MS for monomeric structure prediction and protein complex structure prediction which
are crucial to the vast majority of biological processes.
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