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Abstract 

Amide hydrogen-deuterium exchange (HDX) has long been used to determine regional flexibility 

and binding sites in proteins, however the data are too sparse for full structural characterization. 

Experiments that measure HDX rates, such as HDX-NMR, are far higher throughput compared to 

structure determination via X-ray crystallography, cryo-EM, or a full suite of NMR experiments. 

Data from HDX-NMR experiments encode information on protein structure, making HDX a prime 

candidate to be supplemented by computational algorithms for protein structure prediction. We 

have developed a methodology to incorporate HDX-NMR data into ab initio protein structure 

prediction using the Rosetta software framework to predict structures based on experimental 

agreement. To demonstrate the efficacy of our algorithm, we examined 38 proteins with HDX-

NMR data available, comparing the predicted model with and without the incorporation of HDX 

data into scoring. The root-mean-square deviation (RSMD, a measure of average atomic distance 

between superimposed models) of the predicted model improved by 1.42 Å on average after 

incorporating the HDX-NMR data into scoring. The average RMSD improvement for the proteins 

where the selected model RMSD changed after incorporating HDX data was 3.63 Å, including 

one improvement of more than 11 Å and seven proteins improving by greater than 4 Å, with 12/15 

proteins improving overall. Additionally, for independent verification, two proteins that were not 

part of the original benchmark were scored including HDX data, with a dramatic improvement of 

the selected model RMSD of nearly 9 Å for one of the proteins. Moreover, we have developed a 

confidence metric allowing us to successfully identify near-native models in the absence of native 

structure. Improvement in model selection with a strong confidence measure demonstrates that 

protein structure prediction with HDX-NMR is a powerful tool which can be performed with 

minimal additional computational strain and expense.   

  



Introduction 

The function of a protein is dictated by its structure; thus, the understanding of biological processes 

is significantly facilitated by the knowledge of protein structure.1 Despite this, the gap between the 

number of known sequences of proteins and their three-dimensional structures is widening by the 

day.2 There are many experimental approaches available for structural and dynamic 

characterization of proteins. In the world of dynamic studies, one such method is the monitoring 

of hydrogen-deuterium exchange rates via nuclear magnetic resonance spectroscopy (HDX-

NMR). HDX-NMR data are typically generated to elucidate regional flexibility or binding sites 

after a protein’s structure has been fully characterized via other methods, such as X-ray 

crystallography, cryo-EM, or a full suite of NMR structural experiments.3-6 The result of HDX-

NMR  experiments is a residue-resolved map of exchange rates, allowing for extrapolation of 

regional flexibility and solvent exposure, two factors that are generally considered to influence 

HDX rate.7 HDX rate determination is not exclusive to NMR, however, and can be measured using 

mass spectrometry (MS) as well.8, 9 While HDX-NMR studies yield important information on 

structure and dynamics, these are still sparse data, generally insufficient for full protein structure 

determination or unambiguous dynamics characterization. Computational methods that can 

facilitate the structural interpretation of HDX-NMR data are required. 

There have been strides to incorporate experimental techniques with computation, with efforts 

spanning back to the 1980s with NMR and X-ray crystallography, and more recently EPR, MS, 

and cryo-EM among others.10-30 HDX experiments, originally probed in the 1970s31, have been 

used to map exchange rates onto atomic-resolution structures to assign dynamic properties to 

otherwise static representations.4, 32-37 In the general case, HDX rates have also been coupled to 

molecular dynamics simulations to explain variation in different regions of a protein.14, 38-42 

Additionally, these data have been incorporated into protein-protein docking of complexes with 

known tertiary structure to elucidate quaternary structure.43-45 However, importantly, HDX rates 

have not yet been used to predict de novo tertiary structure. Previous implementations for structural 

characterization rely on either homology modeling or some starting structure such as an alternative 

conformation of a protein or a designed protein.46-49 While there are multiple software packages 

with impressive results that exist for ab initio structure prediction, such as the co-evolution-

dependent neural network AlphaFold50, the secondary structure assembling BCL51, or iterative 

threading I-TASSER52, none have been coupled to experimental data as frequently or diversely as 

the Rosetta Modeling Software.13, 20, 21, 27, 30, 53-62 Rosetta ab initio structure prediction allows for 

the generation of models from amino acid sequence alone, assembling fragments generated from 

short segments with similar sequences using Monte Carlo sampling combined with a hybrid 

classical physics and probabilistic knowledge-based scoring function in both coarse-grained and 

full-atom modeling, similar to other multiscale modeling methods.63, 64 Due to its modular score 

function, Rosetta is an ideal candidate to use HDX-NMR data for ab initio structure prediction.  

In this work, we have developed methods to account for residual solvent exposure, through amide 

neighbor count and residual relative solvent accessible surface area, and flexibility, through 

hydrogen-bonding energies and order score, all within the Rosetta framework. While the Rosetta 

ab initio sampling approach does not allow for the determination of realistic folding assembly 



pathways, the ability to quantify the flexibility and exposure of residues in a native-state model 

means that correlations between HDX of residues within the protein and the protein structure can 

be explored. Using HDX-NMR data for 38 proteins from the Start2Fold database65, we have 

developed a score term for the Rosetta energy function based upon agreement with experimental 

data, while also accounting for local sequence context. Using this new scoring term, we have 

scored structures generated using Rosetta’s ab initio prediction application, improving the root-

mean-square deviation (RSMD, a measure of average atomic distance between superimposed 

models) from native of the best scoring predicted model with negligible additional computational 

expense; in several predictions, RMSD improved by more than 5 Å, including one prediction 

improving by over 11 Å. 

Materials and Methods 

Benchmark Dataset 

We assembled a benchmark dataset of proteins with HDX-NMR data from the Start2Fold 

database, a curated database for experimental HDX-NMR determinations of folding pathways and 

regional stability.65 The available data were provided in the form of per-residue classification for 

stability experiments. The experimental stability was classified as either Strong for residues that 

were highly protected from exchange, Weak for residues which exchanged quickly, or Medium for 

residues in between ranges. Each category was defined by the database in accordance with the 

measured experimental data, such as protection factor (a measure inversely proportional to the 

exchange rate constant) or change in peak intensity over time. For example, a strong residue has a 

higher protection factor compared to a medium or weak residue. Due to more strict restrictions on 

the class, only data for the strong residues were used in our analysis, as these were often residues 

which did not exchange at all, whereas a weak residue could transiently move and be exchanged, 

which would not be relevant to the static model. Of the 57 proteins available (at time of searching) 

in the Start2Fold database, 38 were chosen for the scoring benchmark because they contained 

residues classified into the strong category, were monomeric in solution, had an experimentally 

determined structure in the Protein Data Bank (PDB), and models with less than 10 Å RMSD from 

native were sampled with Rosetta (protocol described below). Separately, two proteins were 

selected from the Start2Fold database to serve as an independent verification set, to test the scoring 

protocol outside of the benchmark set. Protein lengths ranged from 56-179. A summary of the 

benchmark set is shown in Table S1. 

Model Generation 

For each of the 38 proteins in the benchmark set, 10,000 decoy models were generated using 

Rosetta’s standard AbinitioRelax protocol.66-71 For this, files containing 3-mer and 9-mer residual 

fragments were generated using the Robetta Web server.72 These fragments were used as input in 

a Monte Carlo assembly, where structures were scored using coarse-grain energy functions, 

followed by all-atom relaxation and use of the Ref2015 scoring function in the final full-atom 

refinement.63 Cα-RMSD from native was calculated for each of the generated decoys for use in 

benchmarking. The RMSD of only ordered secondary structured elements (SSEs) was calculated 

using a custom PyMOL script which aligned a truncated PDB of the native structure containing 



only the ordered SSEs to the generated models.73 The number of 10,000 decoy models was chosen 

because the AbinitioRelax protocol generally requires the generation of a large number of models 

to adequately sample conformational space. The structure with the lowest (most favorable) Rosetta 

Score was identified as the predicted structure. 

Calculation of Flexibility and Exposure Metrics 

There is a general consensus in the HDX community that HDX rates are dependent on the local 

flexibility and solvent exposure at the amide hydrogen position.7 Thus, we have calculated 

parameters which quantify these features on a per-residue basis for use in the scoring of Rosetta 

decoy models based on HDX-NMR data. All calculations were performed using Rosetta 

applications. Four parameters were chosen to quantitatively represent flexibility (hydrogen-bond 

energy and order score) and exposure (neighbor count and relative solvent accessible surface area). 

To quantify flexibility, the backbone hydrogen-bond energy (H-Bond) was extracted from the 

Rosetta Energy Function via the residue_energy_breakdown application, using the following 

hydrogen-bond energy terms: short-range (in sequence) backbone-backbone interactions 

(hbond_sr_bb), long-range (in sequence) backbone-backbone interactions (hbond_lr_bb), and 

backbone-side chain interactions (hbond_bb_sc).63 The term involving hydrogen-bonding 

interactions between side chains (hbond_sc) was discarded for calculations performed herein due 

to the transient nature of these interactions caused by side chain flexibility and for the lack of 

involvement of the amide proton in these interactions. The hydrogen-bonding energies were 

extracted such that the only energy contribution was from the backbone amide group rather than a 

sum of backbone amide and carbonyl oxygen contributions. To do so, a Rosetta application 

(ragul_find_all_hbonds) was used to determine the donor/acceptor pair for each residue. Using the 

determined pairing, the energy was extracted only if the amide hydrogen was involved in the 

interaction, rather than the carbonyl oxygen. The energies of the terms were summed to generate 

the final residual hydrogen-bonding energy, though typically, only one energy term was non-zero. 

The expected trend of this hydrogen-bonding energy is that a lower HDX rate would correlate with 

a higher magnitude of the energy (i.e. more negative). As a second measure of flexibility, order 

score (OS, a measure of residue-resolved disorder) was calculated using the Rosetta 

ResidueDisorder application that calculates a window-averaged Rosetta Score to map per-residue 

disorder.74, 75 We used the Ref2015 scoring function and a window size of 11 to quantify disorder 

of residue i, based on a score average spanning from residue i-5 to residue i+5. Similarly to 

hydrogen-bonding, as the HDX rate decreases, the order score is expected to become more 

negative. 

With respect to exposure, relative per-residue solvent accessible surface area (RelSASA) was 

calculated using Rosetta scoring classes (SasaCalc). Since RelSASA decreases as exposure 

decreases, the expected correlation between HDX rate and RelSASA is that as HDX rate decreases, 

the RelSASA is expected to trend towards zero. For neighbor count (NC) calculations, the Rosetta 

neighbor count application (per_residue_solvent_exposure) was modified in order to calculate 

conical NC based on the oxygen atoms neighboring the amide proton, as the oxygen atoms can 

both sterically and electronically alter the amide proton environment.16 The angle cutoffs were 

chosen such that no atoms behind the amide were counted as neighbors, with the angle contribution 



midpoint set at 
𝜋

2
 radians. The distance contribution midpoint was set to 9 Å, as optimized 

previously.24 Neighbor count increases as exposure decreases, thus as HDX rate decreases, the NC 

should increase, as the amide becomes less accessible to deuterated solvent. 

HDX Score 

For each of the four calculated parameters, the mean and standard deviations for each strength 

category for the 38 native crystal structures were determined to verify expected trends between the 

parameters and protection strength categories. In order to score decoys based on agreement with 

HDX data, a scoring function for each calculated metric was developed to reward or penalize 

residues of ab initio models. This was done by scoring residues in the strong category based on 

the deviation of calculated metrics from the distribution observed in the crystal structures. The 

strategy was to reward residues that strongly matched hypothesized features of strong residues and 

penalize residues that did not. 

If a calculated metric was within a range around the average, as defined in Equation 1 (where µ is 

the mean of the native distribution of the parameter, σ is the standard deviation of the native 

distribution of the parameter, and f is a scaling factor of the standard deviation), the residue was 

scored as zero. Figure 1 (solid black vertical lines) shows an example (for H-Bond energy) of the 

range where zero score was applied (average shown as dotted black vertical line).  

(The value of f changed depending on the range of the native structure distribution. For example, 

the neighbor count distribution ranged from ~2 to 18 and the standard deviation of the distribution 

was 2.25; due to the size of the range compared to the standard deviation, the value of f was set to 

1.0 for NC, resulting in a zero-score region of size 4.5, or approximately 28% of the total range. 

Conversely, RelSASA’s distribution ranged from 0 to 1, with a standard deviation of 0.26; if the f 

value was set to 1.0 for RelSASA, the zero-score region would include all values in a range from 

0 to 0.52, which contains approximately 80% of strong residues. To prevent this, the f value was 

set to 0.25 for RelSASA, resulting in only 13% of the distribution being a zero-score and allowing 

for residues with very low RelSASA to be scored. For similar reasons, the f values for H-Bond 

energies and OS were set to 0.25 and 0.5, respectively.)  

 𝑅𝑎𝑛𝑔𝑒 =  𝜇 ± 𝜎 ∗ 𝑓 (Eq. 1) 

However, outside of this range, residues of a decoy model were rewarded or penalized based on 

the level of (dis)agreement with the distribution of the calculated parameters of the native structure 

and our structural hypotheses. (The specific function will be described in more detail at the end of 

this section). For example, following the hypothesis that a residue within the strong category 

should be less flexible, if a strong residue in a generated model had a high H-Bond energy (outside 

of the zero-score region), it resulted in a penalty for that model which increases as the H-Bond 

energy increases. This penalty function is shown in Figure 1 (at high H-bond energies). 

Conversely, a strong residue with a low (more negative) H-Bond energy (outside of the zero-score 

region) would be rewarded. Figure 1 (at low H-bond energies) shows the function used for reward. 

 

HDX has been shown experimentally to be sequence dependent as well, where the level of 

exchange depends on the identity of side chains adjacent to the amide in sequence.76 Thus, another 

feature, coined “side chain amide protection (SAP)”, was used to influence scoring, altering the 

scoring range based on sequence context. To generate the SAP factor, the relative literature 

exchange rates in an acid catalyzed environment, which were derived from residue identity, were 

added together for the i and i-1 residues, as the side chains for the those residues affect HDX rate.76 

For example, the 28th residue of 1BDD, a strong residue, is an arginine with a SAP value of -0.59, 



and the 27th residue is glutamine with a SAP value of -0.27; thus, the SAP factor for R28 in 1BDD 

was -0.86. This sequence-specific score range adaptation allowed us to account for the intrinsic 

HDX protection or catalysis from local sequence when scoring individual residues. All residual 

SAP values are provided in a separate supplemental file. With the implementation of the SAP 

factor, the scoring range was defined by Equation 2, where SAP is the residual SAP value, P is the 

SAP scaling factor (P = 0.2 for RelSASA, 3.0 for H-Bond, and not applied to OS and NC), and 

other terms follow the naming conventions vide supra. 

 

 𝑅𝑎𝑛𝑔𝑒 =  𝜇 ± 𝜎 ∗ 𝑓 + 𝑆𝐴𝑃 ∗ 𝑃 (Eq. 2) 

 

The scoring function outside of the zero-score region was implemented as a set of two fade 

functions as qualitatively described previously (function shown in Eq. 3), graphically depicted in 

Figure 1 for H-Bond with examples of  HDX-catalyzing SAP (top) and HDX-inhibiting SAP 

(bottom, where V is the calculated parameter value (NC, OS, RelSASA, or H-Bond energies), C 

is the nearest range cutoff value (𝜇 ± 𝜎 ∗ 𝑓 + 𝑆𝐴𝑃), and M is the nearest extreme value of the 

distribution. If the SAP factor indicated that neighboring side chains were HDX-catalyzing groups, 

the non-zero scoring cutoffs would shift such that the penalty region expanded (Figure 1, top, 

vertical blue lines), while HDX-inhibiting groups would result the reward region expanding 

(Figure 1, bottom, vertical red lines).  

 

𝑆(𝑉) = 2 ∗ (−
𝑉 − 𝐶 − (𝑀 − 𝐶)

𝑀 − 𝐶
)

3

− 3 ∗ (−
𝑉 − 𝐶 − (𝑀 − 𝐶)

𝑀 − 𝐶
)

2

+ 1 
 

(Eq. 3) 



 
 

The HDX Score was defined as a weighted sum of the Rosetta Score and the score components 

for solvent accessibility (NC, RelSASA) and flexibility (OS, H-Bond) as shown in Equation 4, 

where RS is the Rosetta Score, S(V) is the score derived from each category, and all other variables 

follow naming conventions from above. The results of this scoring were relatively stable with 

respect to different combinations of weights. 

 

Pnear  (a measurement of how funnel-like a score vs RMSD distribution is) was calculated for each 

of the distributions using the Rosetta Score without HDX data incorporated and using the HDX 

Score (Equation 4).77 Pnear values can range from 0 (indicating a poor funnel with several low-

energy models at a range of RSMDs from native) to 1 (a perfect funnel with a unique low-energy 

 

 𝐻𝐷𝑋 𝑆𝑐𝑜𝑟𝑒 = 𝑅𝑆 + 1 ∗ 𝑆(𝑁𝐶) + 5 ∗ 𝑆(𝑅𝑒𝑙𝑆𝐴𝑆𝐴) + 5 ∗ 𝑆(𝑂𝑆) + 30 ∗ 𝑆(𝐻-𝑏𝑜𝑛𝑑) (Eq. 4) 

Figure 1. (Top) Score function S(V) for the H-Bond parameter with (blue) and without (black) an 

HDX-catalyzing SAP factor incorporated into score range definition. (Bottom) Score function S(V) 

for the H-Bond parameter with (red) and without (black) an HDX-inhibiting SAP factor 

incorporated into score range definition. Solid vertical lines mark the borders of the non-zero scoring 

range for their respective colors. Dotted lines indicate the mean (black) and mean + SAP factor 

(blue/red). 

 



conformation in the near-native state). For the calculation of Pnear, λ was set equal to 2.0 and KBT 

was set equal to 1.0.  

Confidence Metric 

To determine confidence in model selection, a confidence metric was developed based upon 

knowledge independent of native structure. The confidence metric was defined as the average 

RMSD of the top 100 scoring models to the top scoring model. This was chosen because a low 

average RMSD indicated high structural similarity for the top scoring models. We hypothesized 

that this would suggest a favorable energy landscape and thus better scoring of native-like 

structures. Therefore, if the confidence metric was less than 5 Å, predictions were identified as 

high confidence, and if the metric was above 5 Å, predictions were identified as low confidence. 

Results and Discussion 

Experimental Data from Native Structures follow Hypothesized Exposure and Flexibility 

Trends 

Given the consensus in the HDX community of the influence of both exposure and flexibility on 

HDX rates, the parameters to quantify these residual properties were calculated from the native 

crystal structures for each of the 38 benchmark proteins to determine if the relationship between 

strength categories matched our hypotheses.7 Figure 2 depicts the distributions of all calculated 

parameters (NC, RelSASA, OS, H-Bond) as a function of residual HDX protection. Each of the 

averages of the distributions followed the hypothesized trends, where the strong category 

corresponded to the lowest exposure and flexibility. The averages for the strong category for the 

parameters were 11.41 (NC), 0.23 (RelSASA), -2.39 (OS), and -1.36 (H-Bond).  

 

Scoring using HDX was performed solely using residues within the strong category for three 

reasons. First, the size of the dataset for the strong category was significantly larger than other 

strength categories, with 678 residues in the strong category compared to 165 and 267 residues in 

the weak and medium categories, respectively. Additionally, while a weak residue could be in a 

highly dynamic region where the residue could change from exposed to buried via random motion, 

a strong residue must be resistant to exchange for the majority of the experiment, resulting in a 

more reliable metric to generate HDX restraints for modeling. Finally, we observed minimal 

overlap between the strong category and the weaker categories, especially in the extremes of the 

distribution, which were used in the scoring algorithm; this provided a higher confidence that the 

distribution that the scoring is based upon is unique to the strong category rather than one where a 

value of a parameter could be weak or strong. 



 

Initial Rosetta Model Generation Yielded a Large Distribution of High and Low RMSD 

Models 

For each of the 38 proteins selected from the Start2Fold database,65 10,000 models were generated 

using Rosetta’s standard AbinitioRelax protocol.66-70 While near-native structures (RMSD < 3 Å) 

were predicted using the Rosetta Score without HDX data incorporated for 11 proteins, the average 

RMSD of the predicted structure was 6.68 Å (Table S1). The RMSD of the predicted structure was 

greater than 5 Å for 18 benchmark proteins, and greater than 10 Å for 8 proteins. However, for 32 

of the 38 proteins, at least one model with RMSD less than 5 Å was sampled with Rosetta ab initio, 

and for 22/38 at least one model with RMSD less than 3 Å was sampled. This indicated that near-

native structure selection was possible for a majority of the benchmark set if an additional score 

was used. Pnear (a measurement of how funnel-like a score vs RMSD distribution is) values were 

Figure 2. Distributions of calculated parameters for native structures with widths proportional to dataset size. 

Horizontal line in center of each distribution marks the mean of the dataset.  

 



generally low, indicating that models of high and low RMSD had similar energies, with an average 

Pnear of 0.136. 

Individual HDX Parameter-Based Scoring Improved Model Selection Accuracy 

We developed the HDX scoring function as a linear combination between the Rosetta Ref2015 

scoring function and our newly developed terms that quantify the agreement with HDX data based 

on exposure and flexibility parameters. If, in a generated model, the exposure or flexibility 

parameters of residue agreed with the distribution of the parameters in the X-ray crystal structures, 

the residue was rewarded, with those opposite penalized. The score was dependent upon the level 

of (dis)agreement to the distribution. Additionally, the non-zero scoring range was modulated by 

the side chain amide protection (SAP) factor, which accounted for sequence context by biasing 

scoring towards reward or penalty depending on the side chains immediately neighboring the 

amide proton. Before incorporation into the linear combination, each of the individual parameters 

was used to score based on HDX rate agreement. In doing so, each of the parameters was analyzed 

to determine whether scores based on the hypothesized trends could be used to improve model 

selection alone, as well as give insight into which, if any, of the parameters were the most 

beneficial. Moreover, the parameters needed to be tested to determine which would benefit from 

the inclusion of the SAP factor. 

Results of each scoring method are listed in Table 1. Scoring using a static scoring range cutoff 

based solely upon the mean and standard deviation of the distribution of the parameters in the 

native structures (without the SAP factor) were somewhat unimpressive. We hypothesized this to 

be due to the lack of sequence context, where an amide neighboring two glycine side chains would 

be treated the same as one surrounded by a phenylalanine and tyrosine, neglecting the differences 

in steric and electronic environment  between side chains. Thus, the SAP factor was introduced to 

create a sequence dependent scoring range that would account for a residue with minimal 

neighbors being sterically or electronically hindered from HDX due to its neighboring side chains 

in sequence rather than the full environment measured by the parameters.  

Each parameter was tested with (Equation 2) and without (Equation 1) including sequence context 

to modify the scoring range cutoffs, as shown in Table 1. Model selection was improved when 

SAP was included in the RelSASA and H-Bond-based scoring. Conversely, NC and OS methods 

did not benefit from including the SAP factor.  

The ineffectiveness of the SAP factor for NC- and OS-based scoring was initially surprising and 

contrary to our hypothesis that a sequence dependent scoring range would improve model 

selection. However, this effect can be explained by elements that determine NC and OS compared 

to H-Bond and RelSASA. NC is dependent on the location of oxygen atoms within a hemisphere 

surrounding the amide proton, with the contribution to the neighbor count degrading with respect 

to distance and angle to the amide NH vector. Similarly, OS is calculated by a window-averaged 

Rosetta per-residue score, dependent on the five residues on the N- and C-terminal sides of the 

scored amide and each of their local environments. However, SAP is based solely on the i and i-1 

side chains, far closer in both space and sequence than the NC and OS determinants. Thus, the 

inclusion of SAP to these terms did not benefit scoring. Conversely, H-Bond and RelSASA are 



inherently dependent on the local environment in the location of i and i-1 residues. This is 

supported by the improvement in the RelSASA- and H-Bond-based scoring when the SAP factor 

was included, as these parameters are determined by the scored residue alone and the amide 

proton’s H-Bond partner, respectively. Thus, for all HDX scoring methods, the SAP factor was 

excluded from OS- and NC-based scoring methods, while it was included in H-Bond- and 

RelSASA-based scoring, as indicated in Table 1. Further comparison of the results of SAP 

inclusion can be found in the supplemental information. 

Figure 3 shows the results of scoring using the individual parameter-based score compared to using 

the Rosetta Score without HDX data incorporated. In general, model selection improved for each 

of the scoring methods, with an average improvement of 0.71 Å. Importantly, while some 

parameter-based scoring resulted in an increase in selected model RMSD, this deficiency was not 

shared by other parameters. For example, if the RMSD of the selected model was higher when the 

neighbor count scoring term was used, the selected model had the same or better RMSD when 

scored based on another parameter. The individual parameters were categorized based on whether 

they quantified flexibility (OS and H-bond) or solvent exposure (NC or RelSASA). The scoring 

results of the combination of these terms are discussed in the supplemental material, Figure S1, 

and Table S2. In general, these paired terms performed slightly better than the terms separately. 

 

Table 1. Summary of results following scoring for the neighbor count- (NC) , relative solvent accessible surface area- (RelSASA), order 

score- (OS), and hydrogen bond energy (H-Bond)-based HDX scoring, with and without the inclusion of the SAP factor in the definition of 

the score range (Eq. 1,2). A change in RMSD is defined by the magnitude of selected model RMSD changing by greater than 0.5 Å. Parameters 

used in further analysis are highlighted in gold. 

 Without SAP 

 Weight Applied 

to Rosetta Score 

Average ΔRMSD 

of All Proteins (Å) 

Average ΔRMSD of 

Proteins with Changes in 

RMSD (Å) 

Number of Proteins 

with RMSD 

Improved 

Number of Proteins with 

RMSD Increased 

NC 10 -0.73 -2.90 10 0 

RelSASA 5 -0.74 -1.41 8 5 

OS 6 -0.22 -1.92 4 0 

H-Bond 10 -0.02 -0.11 6 3 

 With SAP 

 Weight Applied 

to Rosetta Score 

Average ΔRMSD 

of All Proteins (Å) 

Average ΔRMSD of 

Proteins with Changes in 

RMSD (Å) 

Number of Proteins 

with RMSD 

Improved 

Number of Proteins with 

RMSD Increased 

NC 10 -0.63 -2.22 9 2 

RelSASA 5 -0.93 -1.61 9 4 

OS 6 -0.20 -1.39 5 0 

H-Bond 10 -0.94 -4.00 9 0 

 



The Combination of All Four Score Terms Produced the Largest Improvement in Model 

Selection 

The final HDX Score (Equation 4) was composed of a weighted sum of the individual terms that 

measure exposure and flexibility. The weighting of the terms skewed highly towards the hydrogen 

bonding component, one of the measurements of residual flexibility. This is to be expected due to 

the mechanism of HDX; if the amide proton is engaged in an energetically favorable hydrogen 

bond, it is less likely to undergo reactions requiring electron transfer. Thus, the presence of a highly 

stabilizing hydrogen bond is known to correlate strongly to the exchange rate and thus the 

experimental HDX category.78 

Figure 3. The selected model RMSD for the Rosetta prediction and scoring that incorporated HDX data, using 

NC (neighbor count) (top, left), RelSASA (relative solvent accessible surface area) (top, right), OS (order score) 

(bottom, left), or H-Bond (amide hydrogen bonding energy) (bottom, right) as the parameter used to determine 

agreement.  The SAP factor was included in only the RelSASA and H-Bond scoring (right). Markers below the 

y=x line indicate a protein with an improvement in selected model RMSD, with those above worsening.  

 

 

 



Figure 4A shows the selected model RMSD when using the Rosetta Score compared to the HDX 

Score. The average improvement of the RMSD of the best scoring model was 1.42 Å, with seven 

proteins improving by over 4 Å. The selected models for four of these proteins using the Rosetta 

Score and using the HDX Score are overlaid with the native structure in Figure 4B. When using 

the HDX Score, for proteins with greater than 0.5 Å RMSD difference between selected model 

with and without HDX data, 12/15 improved, with an average improvement of 3.63 Å. For two 

proteins, the top scoring model using the HDX Score was the best possible model from the decoy 

pool (lowest RMSD), including one case where the RMSD of the predicted structure improved 

from 14.93 Å to 3.77 Å (Table S1) when HDX data was included. Additionally, while the overall 

selected model RMSD improved by 1.42 Å, the average RMSD of residues within ordered 

secondary structure elements improved by 0.92 Å, with a maximal improvement of 10.48 Å, 

indicating that the improvement in RMSD was not solely in disordered regions. These regions are 

important to protein function yet highly dynamic compared to core regions which are less likely 

to have major disruptions in solution and are vital to protein structure as well.79-81 While, ideally, 

incorporating the HDX data would improve the model selection for every protein, such a result 

would require far less sparse experimental data, removing the benefit of pairing high-throughput 

computation and experimentation. However, this sparse HDX NMR dataset was able to improve 

prediction in cases when the score distribution from the initial prediction without experimental 

data was close to accurate. 

Not only did the top scoring model improve when HDX data were included, the average RMSD 

of the top 10 scoring models also improved from 6.97 Å using the Rosetta Score to 6.30 Å, shown 

in Figure S2 for all proteins. While only one of the average RMSDs increased by greater than 0.5 

Å, the average RMSD of the top 10 scoring models improved by more than 0.5 Å for sixteen 

proteins, indicating strong model selection improvement. Figure S3 shows the RMSD distribution 

for the top 10 scoring models for all proteins in the dataset. When using the HDX Score, the RMSD 

distribution shifted towards a lower RMSD compared to using the Rosetta Score without HDX 

data incorporated, with a marked improvement in number of models in the sub-5 Å range. Figure 

4C shows the score vs RMSD distributions for three proteins for which we observed significant 

improvement in RMSD of the top 10 scoring models upon application of the HDX Score. Amongst 

all distributions in the benchmark set, Pnear improved by 7% when the HDX Score was used 

compared to when Rosetta Score was used, another indication that model selection improvement 

was not limited to only the top scoring model.  

 



 

 

Figure 4. Results of the 38 protein benchmark set using the HDX Score. (A) The selected model RMSD for the Rosetta prediction and when scoring 

with the HDX Score. Markers below the y=x line indicate a protein with an improvement in selected model RMSD, with those above worsening. 

Points in gold are represented in (B) and (C). (B) Lowest scoring models (red) using the Rosetta (left) and HDX (right) Score overlaid with the X-

ray crystal structure (blue). (C) Rosetta (left) and HDX (right) Score vs RMSD plots of three proteins that benefitted by use of HDX Score. The 

lowest scoring model is marked by a black star. 

 

 

 



While the native structures and thus RMSDs were known for the models generated within the 

benchmark dataset, this knowledge is unavailable for true ab initio prediction, motivating the 

establishment of a confidence metric which can be used as a marker of a probable near-native 

model generation. To this end, we developed a confidence metric, the average RMSD of the top 

100 scoring models to the top scoring model when using the HDX Score. Figure 5 shows the 

selected model RMSD as a function of our confidence measure. If the average RMSD to the top 

scoring model was less than 5.0 Å (indicating strong funneling and thus high confidence), the 

average selected model RMSD was 2.54 Å. The RMSD of the selected model for all 18 proteins 

identified by the metric as high confidence was less than 5 Å. Additionally, all proteins with a 

selected model RMSD below 2.5 Å were identified as high confidence. Contrasting this, the 

average RMSD of proteins in the low confidence region was 7.70 Å, with 14 of the 20 proteins 

selecting a model with an RMSD of 5 Å or above. The distinct difference in model selection quality 

between the high and low confidence regions indicates that the confidence measure is a powerful 

tool for enabling positive identification of near-native models, even in the absence of a known 

native structure. 

Figure 5. Plot of the confidence metric (the average RMSD of the top 100 scoring models to the selected model using 

the HDX Score) vs RMSD of the selected model following scoring using the HDX Score, where the solid line indicates 

the confidence cutoff of 5.0 Å such that proteins with an average RMSD to the left of the line have a high confidence 

for increased model selection accuracy.

 



The HDX Score Improved Model Selection for Proteins outside of the Benchmark Set 

To ensure broader applicability, two proteins were selected from the Start2Fold database for 

independent verification separately from the benchmark set. These proteins (PDB IDs: 1A2P and 

1HRC) matched the requirements of the benchmark set (monomeric in solution, had an 

experimentally determined structure in the PDB, and models with less than 10 Å RMSD from 

native were sampled with Rosetta). The HDX Score was calculated for the proteins as stated above. 

When using the Rosetta Score, the selected model RMSD from native for 1A2P was 12.87 Å and 

for 1HRC was 13.34 Å. However, using the HDX Score, 1A2P remained approximately the same, 

selecting a model with an RMSD from native of 13.09 Å, while 1HRC improved to 4.41 Å, 

selecting the best model generated in the pool. The selected models for 1HRC using the Rosetta 

Score and HDX Score overlaid with the X-ray crystal structure are shown in Figure 6. Score vs 

RMSD distributions are shown in Figure S4. 

 

 Conclusion 

Hydrogen-deuterium exchange rates have been studied for decades, primarily to characterize 

dynamics for proteins which had already been structurally elucidated experimentally. Though ab 

initio protein structure prediction has made major strides in a similar time-frame, moving from 

computing small peptides to deep-learning structural prediction, this too often requires a broadly 

Figure 6.  Selected models (red) using the Rosetta Score (left) and HDX Score (right) overlaid with the X-ray crystal 

structure (blue). 

 



inaccessible amount of computational power or conjunction with expensive and difficult 

experimentation.2, 82, 83 We sought to eliminate this burden by utilizing data from high-throughput, 

broadly accessible hydrogen-deuterium exchange experiments that are too sparse for structure 

determination themselves, but, as we have demonstrated, highly useful when incorporated into 

computational analysis and structural prediction.  

To our knowledge, we are the first to incorporate sparse HDX-NMR data into computational ab 

initio protein structure prediction. By incorporating HDX data into Rosetta scoring, the RMSD of 

the selected model improved by 1.42 Å on average; of the 15 proteins whose RMSD changed by 

greater than 0.5 Å, 12 improved with an average improvement of 3.63 Å. The RMSD of the 

selected model also improved for core residues in ordered secondary structure elements by 0.92 

Å, with an improvement as high as 10.48 Å. Additionally, a confidence metric was developed to 

determine the confidence of identifying native-like predicted structure. The RMSD of the selected 

model for all 18 proteins in the high-confidence region was less than 5 Å. Improvement in model 

selection with a strong confidence measure demonstrates that protein structure prediction with 

HDX-NMR is a powerful tool in facilitating protein structure determination.   

While HDX-MS has recently gained popularity as a method of HDX rate determination, the large 

dataset available via the Start2Fold database made HDX-NMR ideal for the development of a 

scoring system. Importantly, the scoring algorithm developed from this database paves the way 

for expansion to HDX-MS data, as well as multimeric structural prediction. While HDX-MS 

typically generates fragment-resolved (as opposed to residue-resolved) data, the HDX principles 

are maintained regardless of the experiment, making HDX-MS a prime target for adaptation of the 

scoring algorithm. Mass spectrometry is typically far higher throughput than NMR 

experimentation, which would increase the overall speed of this prediction method. Moreover, MS 

experiments are not as stringently bound to protein size limitations as NMR experiments, which 

tend to be unviable for proteins larger than 50 kDa unless specialized sampling is used, which has 

its own set of limitations.84 Removing the size limitation allows for studies of complex structures 

via differential HDX-MS experiments. Future work may focus on expanding our scoring algorithm 

to HDX-MS for monomeric structure prediction and protein complex structure prediction which 

are crucial to the vast majority of biological processes. 
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