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ABSTRACT: Diethylpyrocarbonate (DEPC) labeling analyzed with mass spectrometry can provide important insight into
higher order protein structure. It has been previously shown that neighboring hydrophobic residues promote a local increase
in DEPC concentration such that serine, threonine, and tyrosine residues are more likely to be labeled despite low solvent
exposure. In this work, we developed a Rosetta algorithm that used knowledge of labeled and unlabeled serine, threonine,
and tyrosine residues and assessed their local hydrophobic environment to improve protein structure prediction.
Additionally, DEPC-labeled histidine and lysine residues with higher relative SASA values (i.e. more exposed) were scored
favorably. Application of our score term led to reductions of the root-mean-square deviations (RMSDs) of the lowest scoring
models. Additionally, models that scored well tended to have lower RMSDs. A detailed tutorial describing our protocol and
required command lines is included. Our work demonstrated the considerable potential of DEPC covalent labeling data to be

used for accurate higher order structure determination.

With the aid of various labeling reagents, mass
spectrometry (MS) is emerging as an attractive technique
for investigating protein structure. Techniques such as
hydrogen-deuterium exchange, chemical cross-linking, and
covalent labeling have been successfully employed to
elucidate protein structure and dynamics.!3 Covalent
labeling with MS (CL-MS), in which labeling reagents
irreversibly modify protein residues, can provide insight
into relative solvent exposure of labeled residues. Hydroxyl
radical footprinting, radical trifluoromethylation, and
carbene footprinting are promising techniques in covalent
labeling mass spectrometry that rely upon label generation
via photolysis or radiolysis.#¢  Diethylpyrocarbonate
(DEPC) is a popular covalent labeling reagent that is
commercially available; it also does not require additional
steps such as radical generation.”? One advantage of DEPC
as a labeling reagent is the single product generation for
labeled residues. DEPC reacts with six nucleophilic residues
(Cys, Lys, His, Ser, Thr, and Tyr) in addition to the protein
N-terminus.”- 1911 Labeled residues are identified by a mass
increase of +72.021 Da.'? Structures of DEPC and DEPC-
modified residues are shown in Supplementary Figure 1.
With careful attention to concentration and exposure times
to avoid labeling-induced structural perturbation, cysteine
scrambling®?® or hydrolysis leading to label loss'4, DEPC is a
promising covalent labeling reagent to use for structure
elucidation. While DEPC labeling yields valuable structural
information, labeling data is too sparse to unambiguously
determine protein structure. Computational methods are
necessary in combination with the DEPC labeling data in
order to illuminate additional structural detail.

MS-guided modeling has previously been successfully
executed for protein structure investigation.? 1523 One tool
that has been applied is Rosetta, a powerful molecular
modeling software suite.2* 25 Amongst its many
applications, structure prediction using sparse data from a
variety of experimental techniques (including mass
spectrometry) has been implemented.?4 26-3* The Rosetta
software features structural modeling applications, such as
ab initio modeling that relies only on an amino acid
sequence for structure building and template-guided
homology modeling, that can predict protein structure.?5 35
Additionally, Rosetta is capable of assessing relative solvent
exposure, making it an ideal tool to predict protein
structure from covalent labeling data. Functionality to use
covalent labeling data to guide protein tertiary structure
prediction has successfully been incorporated into the
Rosetta software and shown to improve model and
distribution quality.26 2729 Overall, there is a growing need
for automated and reliable algorithms that generate protein
structures based on CL-MS data, so as to move beyond
reliance on manual interpretation of data in light of crystal
structures and homology models.

Despite its ability to dissolve in aqueous solutions up to
40 mM, DEPC is a hydrophobic molecule with limited water
solubility.'> 3¢ Recently, it was shown that protein
microenvironments enriched in neighboring hydrophobic
residues led to enhanced labeling efficiency of Ser, Thr, and
Tyr (STY) residues. It was proposed that nearby
hydrophobic residues were facilitating an increased local
concentration of DEPC, thus making STY residues more
likely to be labeled.!? Here, we exploited the connection
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between the microenvironmental effect of neighboring
hydrophobic residues and labeling of STY residues from
DEPC-based CL-MS for structural modeling. We developed
a score term to assess models based on relative solvent
accessible surface area (SASA) values and hydrophobic
neighbor counts for labeled and unlabeled STY residues.
Additionally, as more exposed residues are more likely to be
covalently labeled, our score term rewarded models with
labeled histidine and lysine residues that exhibited higher
relative SASA values. While covalent labeling data can be
difficult to accurately quantify37 38, we have implemented a
score term that relies only upon residue DEPC-label status
for structure prediction improvement. This is the first
implementation of DEPC labeling data-guided structure
prediction into the Rosetta software suite. When testing our
algorithm on a benchmark set of six proteins, we found that
inclusion of DEPC data led to lower, improved top scoring
model root-mean-square deviation (RMSD) values and to an
improved funnel-like quality of the model distributions.

MATERIALS AND METHODS

Benchmark set. The benchmark set was comprised of six
proteins for which we obtained DEPC labeling data for His,
Lys, Ser, Thr, and Tyr residues. The benchmark set included
carbonic anhydrase (PDB 1V9E, 259 residues), ubiquitin
(PDB 1UBQ, 76 residues), myoglobin (PDB 1DWR, 152
residues), P-2-microglobin (PDB 1JNJ, 100 residues),
lysozyme (PDB 2LYZ, 129 residues), and human growth
hormone (PDB 1HGU, 191 residues).

The DEPC labeling experiments and associated liquid
chromatography-MS measurements were conducted as
described in previous work.12.14.39 For all the DEPC-protein
reactions, conditions were chosen to achieve modification
levels of between 1 and 1.5 labels per protein on average to
maintain the structural integrity of the protein.” 40 Each
protein was dissolved at a defined concentration between
10 and 50 uM  in  a 10 mM 3-(N-
morpholino)propanesulfonic acid (MOPS) buffer at pH 7.4.
Then, a 4- or 5-molar excess of DEPC was added and allowed
to react for either 1 or 5 min. The reactions were performed
at 37 °C and were quenched by the addition of imidazole.
Between three and five replicates of the Ilabeling
experiments were carried out for each protein.

To enable identification of the DEPC modified residues,
the labeled proteins were digested using immobilized
trypsin or chymotrypsin after buffer exchange into a
phosphate buffer at pH 8.0. For proteins with disulfide
bonds, reduction and alkylation with a 40-fold excess of
tris(2-carboxyethyl)phosphine (TCEP) and an 80-fold
excess of iodoacetamide, respectively, were performed
prior to digestion. Further experimental details about the
digestions of ubiquitin'?, PB2-microglobulin’?, human
growth hormone!?, carbonic anhydrase3?, myoglobin3, and
lysozyme*! can be found elsewhere.

The peptide fragments after protein digestion were
measured by LC/MS on a Thermo Scientific (Waltham, MA)
Orbitrap Fusion mass spectrometer equipped with a nano-
electrospray ionization source. On-line LC separations were
conducted using a Thermo Scientific Easy-NanoLC 1000
system with a Thermo Scientific Acclaim PepMap C18
nanocolumn (15 cm x 75 pm ID, 2 um, 100 A). Peptides were
eluted using a gradient of acetonitrile containing 0.1%

formic acid at a flow rate of 0.3 pL/min. The gradient of
acetonitrile was increased from 0 to 50% for 50 or 60
minutes, depending on the protein digest, before ramping
up the acetonitrile to 100% for 15 additional minutes. The
longer acetonitrile gradient was used for the digests of
carbonic anhydrase, lysozyme, and myoglobin, while the
shorter gradient was used for the ubiquitin, f2-microglobin,
and human growth hormone. Peptides were identified and
their DEPC labeling extents were determined using a
custom software pipeline*? that allows labeling percentages
as low as 0.001% to be determined. Residue level DEPC
modification percentages (% labeling) were obtained from
chromatographic peak areas of the unmodified and
modified peptides using approaches described previously.3?
In the work described here, a residue was considered
labeled if its labeling percentages exceeded 0.01%.43

Ab initio and homology model generation with
Rosetta. Fragment libraries were generated using the
Robetta server for all six benchmark proteins.** 3mer and
9mer fragments and FASTA sequences of each benchmark
proteins were used with the Rosetta AbInitioRelax protocol
to generate 10,000 models per benchmark protein. The
root-mean-square deviation (RMSD) was calculated by
supplying the respective crystal structures during scoring
with the Rosetta energy function (abbreviated Refl5).
Models were then ranked by score. The lowest RMSD model
generated was used to determine if homology modeling was
necessary for the particular protein. Proteins whose lowest
RMSD model exhibited an RMSD greater than 5 A were
further modeled with homology modeling.

Homology models for carbonic anhydrase, lysozyme, and
human growth hormone were generated with the Rosetta
Comparative Modeling protocol.35 For each protein, seven
templates (Supplementary Table 1) with varying sequence
coverage (60-100%) and identity (24-99%) were used
during modeling. Each template was used for the generation
of 500 models for a total of 3,500 models built for each
protein. Upon generation, models were relaxed with
Rosetta’s Relax application prior to scoring with the Rosetta
Ref15 energy function and RMSD calculations.*>

Identification of hydrophobic neighbor count and
relative SASA parameters. In order to derive the values
used in the score term, we developed a custom Python
script to identify the hydrophobic neighboring residues of
labeled and unlabeled STY residues using the benchmark
crystal structures. Crystal structures were only used for the
initial derivation of score term parameters. Labeling data
for STY residues is included in Supplementary Table 2.
Distance (dist;;) was calculated between the hydroxyl group
oxygen atom in labeled and unlabeled Ser, Thr, and Tyr
(STY) residues (i) and the beta carbon in the side chain of
hydrophobic residues (j). Hydrophobic neighboring
residues were considered to be residue types Phe, Ile, Trp,
Leu, Val, Met, Tyr, Ala, and Pro, as used previously.'? The
total contribution to the neighbor count was calculated as
shown in Eq. 1.

_ # hydrophobic residues 1.0
hne; = Zi:t' ist:—8 A (1)
J 1+exp (2 x (dist;j—8 A))

A midpoint value of 8.0 A and a steepness value of 2.0
were chosen to give a full neighbor contribution up to
distances of 6 A, the molecular dimensions of the DEPC
molecule.l? Relative SASA, the solvent accessible surface
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area of the residue sidechain normalized by the free residue
solvent accessible surface area of the side chain, was
calculated for the crystal structures using Rosetta RelSASA.
Relative SASA values ranged from 0% indicating complete
burial to 100% implying full exposure. A relative SASA
range of 5-35% demonstrated ~1 residue difference in
average neighbor count between 24 labeled and 22
unlabeled residues. Labeled HK residues are listed in
Supplementary Table 3. The relative SASA for labeled HK
residues was calculated using the Rosetta RelSASA
application, and crystal structures of benchmark proteins
were used as input structures. A relative SASA range of 65-
100% was pursued as residues within this range are very
solvent exposed.

To assess the noisiness of the exposure data, we
investigated the number of false negatives in our datasets.
False negatives were defined as unlabeled residues with
high solvent exposure, and it has been shown that datasets
can accommodate up to 35% false negatives data and still
meaningfully guide protein structure prediction.2¢
Unlabeled STY residues with 5-35% relative SASA and a
high hydrophobic neighbor count were considered false
negatives. We defined a high hydrophobic neighbor count
as greater than 3.91, which is the midpoint between the
average labeled hydrophobic neighbor count (4.42) and the
average unlabeled hydrophobic neighbor count (3.39).
False negatives within the 65-100% SASA HK residues were
defined as unlabeled HK residues with greater than 80%
SASA, the midpoint between the average labeled SASA and
the averaged unlabeled SASA of HK residues. False positives
were also calculated by assessing the number of labeled STY
residues with hydrophobic neighbor counts less than 3.91
and labeled HK residues with relative SASA values less than
80% relative SASA. The percentage of false negatives and
false positives for each residue type set was calculated using
a custom Python script.

DEPC-guided scoring and model evaluation. Based on
the observed differences in Ser, Thr, and Tyr labeled and
unlabeled hydrophobic neighbor counts, a score term was
developed to harness these variations for structure
prediction. The labeled portion of the term, STY labeled,
was calculated using Eq. 2:

1.0
STY labeled = Z? [ 1+exp(8 x (hnc;—4.42))

—-11(2)

in which n represents the number of labeled Ser, Thr, and
Tyr residues, hnci is the hydrophobic neighbor count (see
equation 1; calculated within the Rosetta score term) of the
labeled Ser, Thr, or Tyr residue i, 8.0 is the steepness value,
and 4.42 is the average hydrophobic neighbor count value
calculated from the number of hydrophobic neighboring
residues of labeled Ser, Thr, and Tyr residues according to
the initial derivation. The per-residue depc_ms_STY labeled
value ranged from -1, representing agreement with the
labeled residue having a hydrophobic environment, to 0,
indicating disagreement because the labeled residue did not
exhibit a hydrophobic environment. The unlabeled portion
of the term, STY unlabeled, was calculated as shown in Eq.
3:

_ on -1.0
STY_unlabeled - i 1+exp (8 x (hnc;—3.39))

(3)

in which n is the number of unlabeled Ser, Thr, and Tyr
residues, hnciis the hydrophobic neighbor count (calculated

within Rosetta) of the particular unlabeled Ser, Thr, or Tyr
residue i, 8.0 is the steepness value, and 3.39 is the average
hydrophobic neighbor count value of unlabeled Ser, Thr,
and Tyr residues in the benchmark protein crystal
structures. The per-residue values also ranged from -1,
indicating the unlabeled residue had fewer hydrophobic
neighbors, to 0, implying that the unlabeled residue had
more hydrophobic neighboring residues and disagreed
with expected trends.

Labeled His and Lys residues were rewarded based on
their relative SASA value, as shown in the HK_labeled term
in Eq. 4:

_ wn 1.0 _
HK _labeled = ¥ [ 1.0+exp(2.0 X (relSASA;—0.65))

114

in which n is the number of labeled His and Lys residues,
relSASA; is the relative SASA value of the labeled His or Lys
residue i, 2.0 is the steepness value, and 0.65 is the midpoint
value of the score. The midpoint value was set as the lower
end of the investigated SASA range, 65-100%, which
demonstrated a measurable difference in the average
relative SASA value between labeled and unlabeled
residues.

Finally, the labeled and the unlabeled scores for Ser, Thr,
and Tyr residues along with the portion from labeled His
and Lys residues were aggregated to determine depc_ms, as
shown in Eq. 5.

depc_ms = STY _labeled + STY _unlabeled +
HK labeled (5)

The depc_ms term was used to score 10,000 ab
initio models (for each of the benchmark proteins B2-
microglobin, ubiquitin, and myoglobin) and 3,500
homology models (for each of the benchmark proteins
carbonic anhydrase, lysozyme, and human growth
hormone). The total score was calculated as a weighted
superposition of the initial Rosetta score and the depc_ms
score (as shown in Eq. 6).

Total score = (9.0 X depc_ms score) +
Rosetta Ref15 score (6)

A weight of 9.0 was used, similar to those reported in
previous work.?7. 29 A tutorial describing how to use DEPC
data to predict protein structure in Rosetta is included in
the Supplementary Materials section.

A comparison of Rosetta scoring and scoring with
depc_ms was executed using several evaluation metrics. The
top scoring model RMSD value was compared before and
after rescoring. Additionally, the funnel-like quality, or the
shape of the score versus RMSD distributions, was assessed
with Prear. The metric Prear provided insight into whether the
score versus RMSD distributions featured distinctive low-
energy conformations that were similar to the crystal
structure. We used a funnel depth of 1.0 as proposed by
Bhardwaj et al and employed in our previous score term
implementations.?” 2 46 Pnear was calculated according to
Eq.7:

n _ rmsd,zn) _scorey,

P m=leXp< 12 ( kT )
near — n __scorey,
o (- 250

in which n represents the number of models generated,
scorem is the score of the model, and rmsd. is the RMSD of
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the particular model to the crystal structure. The A value
was maintained at 2.0 A to specify which models were
considered native-like. ksT, the effect of funnel depth, was
maintained at a value of 1.0. A Pnear value of 0 indicated no
funnel-like quality while a value of 1 signified a perfect
funnel-like distribution.

RESULTS AND DISCUSSION

Identification of relative SASA ranges to maximize
differences in labeled and unlabeled residues. Based on
the proposition that DEPC labeling for STY residues is
sensitive to neighboring hydrophobic residues in the
microenvironment,!? we aimed to use Rosetta to elucidate a
notable difference in hydrophobic neighbor count between
labeled and unlabeled STY residues.

The six proteins in our benchmark set for which we
obtained DEPC-based CL-MS data were carbonic anhydrase,
ubiquitin, myoglobin, B2-microglobin, lysozyme, and
human growth hormone. We used the crystal structures of
the benchmark proteins during the score development in
order to identify the number of hydrophobic neighbors in
the microenvironment and relative solvent exposures of the
STY residues.

We identified all STY residues with a relative SASA
ranging from 5 to 35%. Within the benchmark set, this
encompassed 24 labeled STY residues and 22 unlabeled STY
residues. This SASA range captured low-exposure STY
residues, similar to those which were noted to be relevant
to hydrophobic microenvironmental effects. Subsequently,
we assessed the hydrophobic microenvironment for all 46
low-exposure STY residues by measuring the hydrophobic
neighbor counts.

To maintain the 6 A distance similar to DEPC molecular
dimensions'? while still accounting for neighbors likely to
have a microenvironmental effect on labeling, we used a
gradual neighbor count contribution method. We calculated
the per-residue neighbor count by determining the
contribution of neighboring hydrophobic residues based on
the distance from the STY hydroxyl group. The average
labeled STY hydrophobic neighbor count was determined to
be 4.42, while the average unlabeled STY hydrophobic
neighbor count was 3.39, as shown in Figure 1. The violin
plot in Figure 1 shows the relative frequency of
hydrophobic neighbor count values for labeled and
unlabeled STY residues. There were less than four
hydrophobic neighbors for 46% of labeled STY residues
versus 68% of unlabeled STY residues while only 25% of
labeled residues and 14% of unlabeled residues had a
hydrophobic neighbor count greater than five. Labeled STY
residues exhibited more hydrophobic neighbors than
unlabeled STY residues, corroborating that STY labeling is
sensitive to neighboring hydrophobic residues within the
microenvironment.
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Figure 1. Violin plot demonstrating the relative
frequency of different hydrophobic neighbor count values
for labeled STY (blue, includes 24 residues) and unlabeled
STY (orange, includes 22 residues) residues with relative
SASA values of 5-35% from benchmark protein crystal
structures. Mean and extrema are shown on the plot.

Using the observed trends, we developed a Rosetta score
term that rewarded models containing labeled STY residues
with higher hydrophobic neighbor counts and also
rewarded models containing unlabeled STY residues with
lower hydrophobic neighbor counts.

Additionally, since exposed His and Lys residues are more
likely to be labeled by DEPC'?, we developed a score that
rewarded labeled His and Lys residues with high exposure
(independent of their hydrophobic neighbor count). We
used a relative SASA range of 65% to 100% to reward
labeled His and Lys residues with high solvent exposure.
The violin plot distribution for labeled and unlabeled HK
relative SASA values is shown in Supplementary Figure 2,
which demonstrated the expected trend that labeled HK
residues were more likely to be strongly solvent exposed.
The average relative SASA for labeled residues was 0.09
higher than those of unlabeled residues. None of the
unlabeled HK residues had relative SASA values greater
than 0.9, while 37.5% of labeled HK residues had relative
SASA higher than 0.9.

We sought to examine the noise level of DEPC labeling
data by investigating false negative data points. False
negative data points within covalently labeling datasets
have been previously examined; it has been suggested that
35% of exposed residues can be tolerated as false negatives
while still being useful for protein structure prediction.?6
We defined false negatives in this work as unlabeled STY
residues with a hydrophobic neighbor count greater than
3.91 and unlabeled HK residues with relative SASAs greater
than 80%. We found that 26% of the subset of STY residues
with 5-35% SASA were false negatives, and 16% of the
unlabeled HK residues within 65-100% SASA were false
negatives. Both residue subsets fell well below the 35%
tolerance cutoff, demonstrating that while some noise
existed in our datasets, it did not impact our ability to
predict accurate structures. False positive data points were
defined as labeled STY residues with a hydrophobic
neighbor count less than 3.91 and labeled HK residues with
relative SASAs less than 80%. We determined that 15% of
labeled STY residues with 5-35% relative SASA were false
positives, and 16% of labeled HK residues with 65-100%
relative SASA were false positives. Subsequently, we sought
to utilize the observed exposure and microenvironment
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trends for STY and HK residues in Rosetta protein structure
prediction.

Ab initio models scored with the DEPC-guided score term
showed improvement in best scoring model RMSDs and
funnel-like distributions. Based on differences in
hydrophobic neighbor counts for labeled and unlabeled STY
residues (Figure 1) and differences in SASA for labeled and
unlabeled HK residues (Supplementary Figure 2), we
proceeded to develop a score term that rewarded the
desired trends. An overview of the score term is shown in
Figure 2. We mapped the label status of labeled and
unlabeled residues onto protein models using the DEPC-
based CL-MS data. Panel 2a depicts the inputs of the score
term, which included labeling data as label status (L for
labeled, U for unlabeled) and appropriate residue number
along with ab initio or homology protein models. Additional
details can be found the tutorials in Supplementary Note 1.
We calculated relative SASA for all mapped residues and
hydrophobic neighbor counts for buried STY residues

(Panel 2b). The score term included components that
rewarded labeled STY residues with high numbers of
hydrophobic neighbors, rewarded unlabeled STY residues
with low numbers of hydrophobic neighbors, and rewarded
labeled HK residues with high solvent exposure (Panel 2c).
While our initial analysis of hydrophobic neighbor counts
and relative SASA ranges relied on crystal structures, no
crystal structures were used in model generation or score
term evaluation. To test DEPC-guided scoring, we generated
10,000 ab initio models for each protein within our
benchmark set. Upon examination of the ab initio models,
we noticed that three of the benchmark protein model sets
did not contain any models under 5 A RMSD to the crystal
structure. The DEPC score was designed to distinguish
native-like models (RMSD < 5 A) from incorrect models
(RMSD > 10 A). In order to have higher quality models
present in all of the benchmark cases, homology models
were generated for those three benchmark proteins. The
results of scoring those homology models will be discussed
in the next section.
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Figure 2. Overview of the DEPC score term (depc_ms) algorithm. The DEPC score term required CL-MS labeling data
(residue numbers and label status) as input, along with input structures, which were either generated with homology or ab
initio modeling (a). The relative SASA was calculated for all residues listed in the input file (b). If the residue was STY,
additionally the hydrophobic neighbor count was calculated for residues with relative SASA between 5 and 35% (c). Labeled
HK residues with higher relative SASA were rewarded (d). Labeled STY residues with more hydrophobic neighbors and
unlabeled residues with less hydrophobic neighbors were rewarded as well (e).

For the three proteins whose ab initio model distributions
included native-like models (ubiquitin, myoglobin, and B2-
microglobin), we tested our score term, depc_ms, by adding
the DEPC score to the total Rosetta score. As seen in Figure
3, the best scoring model RMSD values improved from
Rosetta scoring (Figure 3a) to scoring with Rosetta and

depc_ms, our DEPC-guided score term (Figure 3b). The
RMSD of the best scoring model for B2-microglobin
improved from an RMSD of 3.14 A to 2.13 & while ubiquitin
improved from an RMSD of 3.16 A to 1.97 A. Myoglobin saw
notable improvement from an RMSD of 7.11 A to 1.36 A
when scoring with the depc_ms term.
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Figure 3. Score versus RMSD to the crystal structure for
10,000 ab initio models for a, Rosetta without DEPC labeling
data and b, Rosetta with DEPC labeling data. Best scoring
models are marked by a black star and shown in color
aligned to the crystal structure (grey). Pnear values are listed.

Additionally, the funnel-like quality of the distributions
was quantified by the Pnear value, with a higher Pnear value
(near 1) indicating more funnel-like quality and a lower
Pnear value (near 0) indicating lack of any funnel-like quality.
We noticed that all distributions became more funnel-like,
i.e. increased in Pnear, with DEPC labeling data included in
scoring, indicating that we were selecting lower-energy
conformations that were more similar to the native. For 2-
microglobin, Prear values increased from 0.22 with Rosetta
to 0.31 with depc_ms; ubiquitin improved from 0.08 to 0.32.
Myoglobin exhibited the largest improvement in Pnear value,
increasing from 0.07 to 0.33 with depc_ms scoring.

Homology model predictions also improved upon
scoring with DEPC data. For carbonic anhydrase, human
growth hormone, and lysozyme, the best model generated
with ab initio modeling had an RMSD value greater than 5 A
to the crystal structure. We thus sought to generate
additional models with Rosetta’s comparative modeling
protocol. The homology modeling templates with their
respective sequence identities and similarities are shown in
Supplementary Table 1. By generating 500 models per
template and using multiple templates per protein, we were
able to generate a distribution of models with varying RMSD
values. We scored all models with depc.ms and
subsequently added the score to the Rosetta score. Total
score versus RMSD plots along with the best scoring model
aligned with the crystal structure are shown in Figure 4.
While the models identified by Rosetta were already
significantly better for homology models (as compared to
the ab initio models in the last section), scoring with DEPC
data further improved model selection consistently. The

human growth hormone best scoring model RMSD
improved from 4.31 A with Rosetta without labeling data to
3.85 A with Rosetta with DEPC labeling data by way of
depc_ms. The lysozyme best scoring model RMSD (0.78 A)
stayed constant from Rosetta to scoring with DEPC data, at
already accurate atomic detail. Finally, the carbonic
anhydrase best scoring model RMSD improved from 1.33 A
to 1.22 A.

a Rosetta without b Rosetta with

DEPC labeling data

& DEPC labeling data
0
© -300 2 P res; 0.65 ’“001 d Ppoa, 0.69
-] 400 1
> | .
= 500 ; L
£ » ¢, - ‘ .
£ -600 - | o
] 8 il | gl 3!
o ~T00 £ ; & >
g -800 € W-'U’ I e T ¥
-1 i RMSD 1.37 A ‘ RMSD 1.22 A
=
S o F  wm  w ™ T T
RMSD (4) RMSD (4)
5 -350 1
s Porear 0.01 o] Poear 0.02
400 —as01
g 450 A o “5001 wAn
§ -so0 g 8 -ss0 o ki
550 v, " 600 i ‘
—600 -850 d
RMSD 4.31 A <100] RMSD 3.85 A
=650 - - . . . | ’ - y - . . - - i
2 4 6 8 10 12 14 8% 18 (1] 2 4 6 8 0 12 14 18 118
RMSD (A) RMSD (4)
2 2501
o : Pear 0.87 : Prear 0.86
-250 3
g i anlli
* . e
> é’m .:1‘ “, cne § ) ' can
8 -350 & A % i i
e e o .
g * - :
RMSD 0.78 A RMSD 0.78 A
-450 % - v " - 1
10 15 20 25 30 5 10 15 20 25 30
RMSD (4) RMSD (4)

Figure 4. Score versus RMSD to the crystal structure for
3,500 homology models for a, Rosetta without DEPC
labeling data and b, Rosetta with DEPC labeling data. Best
scoring models are marked by a black star and shown in
color aligned to the crystal structure (grey). Pnear values are
listed.

Improvements in the funnel-like quality of the
distributions, Pnear, were also noted for both human growth
hormone and carbonic anhydrase. The Ppear value of
lysozyme, for which the best scoring model had a sub-
angstrom RMSD, stayed at 0.83, an already near-perfect
value. Human growth hormone Phear slightly improved from
0.01 to 0.02 while carbonic anhydrase Pnear improved from
0.65 to 0.69 with DEPC scoring. Overall, our scoring
methodology with DEPC labeling data successfully
improved best scoring model quality and distribution
funnel-like quality.

CONCLUSION

To employ DEPC labeling MS data in protein structure
prediction, we analyzed the difference in hydrophobic
neighbor counts between labeled and unlabeled STY
residues and used labeled HK residues with high solvent
exposure. Our benchmark set, consisting of DEPC-labeled
ubiquitin, B2-microglobin, myoglobin, human growth
hormone, carbonic anhydrase, and lysozyme, was used to
explore the utility of DEPC labeling in protein structure
elucidation. We developed a novel Rosetta score term which
rewarded STY residues known to be DEPC labeled if those
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residues exhibited a hydrophobic microenvironment and
rewarded unlabeled STY residues that lacked such
hydrophobic microenvironment. Additionally, the term
rewarded labeled HK residues with high solvent exposure.
In a test of our algorithm, we noted that usage of DEPC data
improved best scoring model RMSD and the funnel-like
quality of the model distribution. For the six benchmark
proteins, we saw improvement in prediction quality for
both ab initio and homology models. Notably, we elucidated
accurate atomic detail for all six proteins upon employment
of DEPC labeling data. The advantageous qualities of the
DEPC label, such as single product generation and ease of
commercial availability, along with our DEPC-guided
Rosetta modeling that is solely based on label status and
computationally determined exposure metrics underscore
the huge potential of DEPC labeling for protein structure
determination.

While our work was primarily focused on DEPC labeling,
different modeling strategies for other types of labels have
previously been developed. The nature of the label
generally dictates the modeling strategies warranted. For
instance, hydroxyl radical protein footprinting is
sufficiently modeled with solvent exposure alone.??
Modeling HDX labeling benefits from accounting for both
residue exposure and flexibility.4” Other labels with
microenvironmental effects would benefit from further
analysis regarding modeling strategies to employ. Future
work will continue to pursue covalent labeling data
implementation into model generation protocols.
Additionally, we aim to test this methodology on larger
(500-1000 residues) proteins. We plan to examine the
accuracy of our scoring function when utilizing DEPC data
as labeling extent. Further studies will also emphasize the
role of dynamics and microenvironmental effects in
covalent labeling.
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