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ABSTRACT: Diethylpyrocarbonate (DEPC) labeling analyzed with mass spectrometry can provide important insight into 
higher order protein structure. It has been previously shown that neighboring hydrophobic residues promote a local increase 
in DEPC concentration such that serine, threonine, and tyrosine residues are more likely to be labeled despite low solvent 
exposure. In this work, we developed a Rosetta algorithm that used knowledge of labeled and unlabeled serine, threonine, 
and tyrosine residues and assessed their local hydrophobic environment to improve protein structure prediction. 
Additionally, DEPC-labeled histidine and lysine residues with higher relative SASA values (i.e. more exposed) were scored 
favorably. Application of our score term led to reductions of the root-mean-square deviations (RMSDs) of the lowest scoring 
models. Additionally, models that scored well tended to have lower RMSDs. A detailed tutorial describing our protocol and 
required command lines is included. Our work demonstrated the considerable potential of DEPC covalent labeling data to be 
used for accurate higher order structure determination.

With the aid of various labeling reagents, mass 
spectrometry (MS) is emerging as an attractive technique 
for investigating protein structure. Techniques such as 
hydrogen-deuterium exchange, chemical cross-linking, and 
covalent labeling have been successfully employed to 
elucidate protein structure and dynamics.1-3 Covalent 
labeling with MS (CL-MS), in which labeling reagents 
irreversibly modify protein residues, can provide insight 
into relative solvent exposure of labeled residues. Hydroxyl 
radical footprinting, radical trifluoromethylation, and 
carbene footprinting are promising techniques in covalent 
labeling mass spectrometry that rely upon label generation 
via photolysis or radiolysis.4-6  Diethylpyrocarbonate 
(DEPC) is a popular covalent labeling reagent that is 
commercially available; it also does not require additional 
steps such as radical generation.7-9 One advantage of DEPC 
as a labeling reagent is the single product generation for 
labeled residues. DEPC reacts with six nucleophilic residues 
(Cys, Lys, His, Ser, Thr, and Tyr) in addition to the protein 
N-terminus.7, 10,11 Labeled residues are identified by a mass 
increase of +72.021 Da.12 Structures of DEPC and DEPC-
modified residues are shown in Supplementary Figure 1. 
With careful attention to concentration and exposure times 
to avoid labeling-induced structural perturbation, cysteine 
scrambling13 or hydrolysis leading to label loss14, DEPC is a 
promising covalent labeling reagent to use for structure 
elucidation. While DEPC labeling yields valuable structural 
information, labeling data is too sparse to unambiguously 
determine protein structure. Computational methods are 
necessary in combination with the DEPC labeling data in 
order to illuminate additional structural detail. 

MS-guided modeling has previously been successfully 
executed for protein structure investigation.3, 15-23 One tool 
that has been applied is Rosetta, a powerful molecular 
modeling software suite.24, 25 Amongst its many 
applications, structure prediction using sparse data from a 
variety of experimental techniques (including mass 
spectrometry) has been implemented.24, 26-34 The Rosetta 
software features structural modeling applications, such as 
ab initio modeling that relies only on an amino acid 
sequence for structure building and template-guided 
homology modeling, that can predict protein structure.25, 35 
Additionally, Rosetta is capable of assessing relative solvent 
exposure, making it an ideal tool to predict protein 
structure from covalent labeling data. Functionality to use 
covalent labeling data to guide protein tertiary structure 
prediction has successfully been incorporated into the 
Rosetta software and shown to improve model and 
distribution quality.26, 27, 29 Overall, there is a growing need 
for automated and reliable algorithms that generate protein 
structures based on CL-MS data, so as to move beyond 
reliance on manual interpretation of data in light of crystal 
structures and homology models. 

Despite its ability to dissolve in aqueous solutions up to 
40 mM, DEPC is a hydrophobic molecule with limited water 
solubility.12, 36 Recently, it was shown that protein 
microenvironments enriched in neighboring hydrophobic 
residues led to enhanced labeling efficiency of Ser, Thr, and 
Tyr (STY) residues. It was proposed that nearby 
hydrophobic residues were facilitating an increased local 
concentration of DEPC, thus making STY residues more 
likely to be labeled.12 Here, we exploited the connection 
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between the microenvironmental effect of neighboring 
hydrophobic residues and labeling of STY residues from 
DEPC-based CL-MS for structural modeling. We developed 
a score term to assess models based on relative solvent 
accessible surface area (SASA) values and hydrophobic 
neighbor counts for labeled and unlabeled STY residues. 
Additionally, as more exposed residues are more likely to be 
covalently labeled, our score term rewarded models with 
labeled histidine and lysine residues that exhibited higher 
relative SASA values. While covalent labeling data can be 
difficult to accurately quantify37, 38, we have implemented a 
score term that relies only upon residue DEPC-label status 
for structure prediction improvement. This is the first 
implementation of DEPC labeling data-guided structure 
prediction into the Rosetta software suite. When testing our 
algorithm on a benchmark set of six proteins, we found that 
inclusion of DEPC data led to lower, improved top scoring 
model root-mean-square deviation (RMSD) values and to an 
improved funnel-like quality of the model distributions. 

MATERIALS AND METHODS 

Benchmark set. The benchmark set was comprised of six 
proteins for which we obtained DEPC labeling data for His, 
Lys, Ser, Thr, and Tyr residues. The benchmark set included 
carbonic anhydrase (PDB 1V9E, 259 residues), ubiquitin 
(PDB 1UBQ, 76 residues), myoglobin (PDB 1DWR, 152 
residues), -2-microglobin (PDB 1JNJ, 100 residues), 
lysozyme (PDB 2LYZ, 129 residues), and human growth 
hormone (PDB 1HGU, 191 residues).  

The DEPC labeling experiments and associated liquid 
chromatography-MS measurements were conducted as 
described in previous work.12, 14, 39 For all the DEPC-protein 
reactions, conditions were chosen to achieve modification 
levels of between 1 and 1.5 labels per protein on average to 
maintain the structural integrity of the protein.7, 40 Each 
protein was dissolved at a defined concentration between 
10 and 50 µM in a 10 mM 3-(N-
morpholino)propanesulfonic acid (MOPS) buffer at pH 7.4. 
Then, a 4- or 5-molar excess of DEPC was added and allowed 
to react for either 1 or 5 min. The reactions were performed 
at 37 °C and were quenched by the addition of imidazole. 
Between three and five replicates of the labeling 
experiments were carried out for each protein. 

To enable identification of the DEPC modified residues, 
the labeled proteins were digested using immobilized 
trypsin or chymotrypsin after buffer exchange into a 
phosphate buffer at pH 8.0. For proteins with disulfide 
bonds, reduction and alkylation with a 40-fold excess of 
tris(2-carboxyethyl)phosphine (TCEP) and an 80-fold 
excess of iodoacetamide, respectively, were performed 
prior to digestion. Further experimental details about the 
digestions of ubiquitin12, 2-microglobulin12, human 
growth hormone12, carbonic anhydrase39, myoglobin39, and 
lysozyme41 can be found elsewhere. 

The peptide fragments after protein digestion were 
measured by LC/MS on a Thermo Scientific (Waltham, MA) 
Orbitrap Fusion mass spectrometer equipped with a nano-
electrospray ionization source. On-line LC separations were 
conducted using a Thermo Scientific Easy-NanoLC 1000 
system with a Thermo Scientific Acclaim PepMap C18 
nanocolumn (15 cm x 75 μm ID, 2 μm, 100 Å). Peptides were 
eluted using a gradient of acetonitrile containing 0.1% 

formic acid at a flow rate of 0.3 µL/min. The gradient of 
acetonitrile was increased from 0 to 50% for 50 or 60 
minutes, depending on the protein digest, before ramping 
up the acetonitrile to 100% for 15 additional minutes. The 
longer acetonitrile gradient was used for the digests of 
carbonic anhydrase, lysozyme, and myoglobin, while the 
shorter gradient was used for the ubiquitin, 2-microglobin, 
and human growth hormone. Peptides were identified and 
their DEPC labeling extents were determined using a 
custom software pipeline42 that allows labeling percentages 
as low as 0.001% to be determined. Residue level DEPC 
modification percentages (% labeling) were obtained from 
chromatographic peak areas of the unmodified and 
modified peptides using approaches described previously.39 
In the work described here, a residue was considered 
labeled if its labeling percentages exceeded 0.01%.43  

Ab initio and homology model generation with 
Rosetta. Fragment libraries were generated using the 
Robetta server for all six benchmark proteins.44 3mer and 
9mer fragments and FASTA sequences of each benchmark 
proteins were used with the Rosetta AbInitioRelax protocol 
to generate 10,000 models per benchmark protein. The 
root-mean-square deviation (RMSD) was calculated by 
supplying the respective crystal structures during scoring 
with the Rosetta energy function (abbreviated Ref15). 
Models were then ranked by score. The lowest RMSD model 
generated was used to determine if homology modeling was 
necessary for the particular protein. Proteins whose lowest 
RMSD model exhibited an RMSD greater than 5 Å were 
further modeled with homology modeling. 

Homology models for carbonic anhydrase, lysozyme, and 
human growth hormone were generated with the Rosetta 
Comparative Modeling protocol.35 For each protein, seven 
templates (Supplementary Table 1) with varying sequence 
coverage (60-100%) and identity (24-99%) were used 
during modeling. Each template was used for the generation 
of 500 models for a total of 3,500 models built for each 
protein. Upon generation, models were relaxed with 
Rosetta’s Relax application prior to scoring with the Rosetta 
Ref15 energy function and RMSD calculations.45 

Identification of hydrophobic neighbor count and 
relative SASA parameters. In order to derive the values 
used in the score term, we developed a custom Python 
script to identify the hydrophobic neighboring residues of 
labeled and unlabeled STY residues using the benchmark 
crystal structures. Crystal structures were only used for the 
initial derivation of score term parameters. Labeling data 
for STY residues is included in Supplementary Table 2. 
Distance (distij) was calculated between the hydroxyl group 
oxygen atom in labeled and unlabeled Ser, Thr, and Tyr 
(STY) residues (i) and the beta carbon in the side chain of 
hydrophobic residues (j). Hydrophobic neighboring 
residues were considered to be residue types Phe, Ile, Trp, 
Leu, Val, Met, Tyr, Ala, and Pro, as used previously.12 The 
total contribution to the neighbor count was calculated as 
shown in Eq. 1. 

hnci =  ∑
1.0

1+exp (2 × (𝑑𝑖𝑠𝑡𝑖𝑗−8 Å))

# hydrophobic residues
𝑖≠𝑗  (1) 

A midpoint value of 8.0 Å and a steepness value of 2.0 
were chosen to give a full neighbor contribution up to 
distances of 6 Å, the molecular dimensions of the DEPC 
molecule.12 Relative SASA, the solvent accessible surface 
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area of the residue sidechain normalized by the free residue 
solvent accessible surface area of the side chain, was 
calculated for the crystal structures using Rosetta RelSASA. 
Relative SASA values ranged from 0% indicating complete 
burial to 100% implying full exposure. A relative SASA 
range of 5-35% demonstrated ~1 residue difference in 
average neighbor count between 24 labeled and 22 
unlabeled residues. Labeled HK residues are listed in 
Supplementary Table 3. The relative SASA for labeled HK 
residues was calculated using the Rosetta RelSASA 
application, and crystal structures of benchmark proteins 
were used as input structures. A relative SASA range of 65-
100% was pursued as residues within this range are very 
solvent exposed. 

To assess the noisiness of the exposure data, we 
investigated the number of false negatives in our datasets. 
False negatives were defined as unlabeled residues with 
high solvent exposure, and it has been shown that datasets 
can accommodate up to 35% false negatives data and still 
meaningfully guide protein structure prediction.26 
Unlabeled STY residues with 5-35% relative SASA and a 
high hydrophobic neighbor count were considered false 
negatives. We defined a high hydrophobic neighbor count 
as greater than 3.91, which is the midpoint between the 
average labeled hydrophobic neighbor count (4.42) and the 
average unlabeled hydrophobic neighbor count (3.39).  
False negatives within the 65-100% SASA HK residues were 
defined as unlabeled HK residues with greater than 80% 
SASA, the midpoint between the average labeled SASA and 
the averaged unlabeled SASA of HK residues. False positives 
were also calculated by assessing the number of labeled STY 
residues with hydrophobic neighbor counts less than 3.91 
and labeled HK residues with relative SASA values less than 
80% relative SASA. The percentage of false negatives and 
false positives for each residue type set was calculated using 
a custom Python script. 

DEPC-guided scoring and model evaluation. Based on 
the observed differences in Ser, Thr, and Tyr labeled and 
unlabeled hydrophobic neighbor counts, a score term was 
developed to harness these variations for structure 
prediction. The labeled portion of the term, STY_labeled, 
was calculated using Eq. 2: 

𝑆𝑇𝑌_𝑙𝑎𝑏𝑒𝑙𝑒𝑑 =  ∑  [ 
1.0

1+exp(8 × (hnc𝑖−4.42))

𝑛
𝑖 − 1] (2) 

in which n represents the number of labeled Ser, Thr, and 
Tyr residues, hnci is the hydrophobic neighbor count (see 
equation 1; calculated within the Rosetta score term) of the 
labeled Ser, Thr, or Tyr residue i, 8.0 is the steepness value, 
and 4.42 is the average hydrophobic neighbor count value 
calculated from the number of hydrophobic neighboring 
residues of labeled Ser, Thr, and Tyr residues according to 
the initial derivation. The per-residue depc_ms_STY_labeled 
value ranged from -1, representing agreement with the 
labeled residue having a hydrophobic environment, to 0, 
indicating disagreement because the labeled residue did not 
exhibit a hydrophobic environment. The unlabeled portion 
of the term, STY_unlabeled, was calculated as shown in Eq. 
3: 

𝑆𝑇𝑌_𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 =  ∑  
−1.0

1+exp (8 × (hnc𝑖−3.39))

𝑛
𝑖  (3) 

in which n is the number of unlabeled Ser, Thr, and Tyr 
residues, hnci is the hydrophobic neighbor count (calculated 

within Rosetta) of the particular unlabeled Ser, Thr, or Tyr 
residue i, 8.0 is the steepness value, and 3.39 is the average 
hydrophobic neighbor count value of unlabeled Ser, Thr, 
and Tyr residues in the benchmark protein crystal 
structures. The per-residue values also ranged from -1, 
indicating the unlabeled residue had fewer hydrophobic 
neighbors, to 0, implying that the unlabeled residue had 
more hydrophobic neighboring residues and disagreed 
with expected trends.  

Labeled His and Lys residues were rewarded based on 
their relative SASA value, as shown in the HK_labeled term 
in Eq. 4: 

𝐻𝐾_𝑙𝑎𝑏𝑒𝑙𝑒𝑑 =  ∑  [  
1.0

1.0+exp(2.0 × (𝑟𝑒𝑙𝑆𝐴𝑆𝐴𝑖−0.65))
− 1]𝑛

𝑖  (4) 

in which n is the number of labeled His and Lys residues, 
relSASAi is the relative SASA value of the labeled His or Lys 
residue i, 2.0 is the steepness value, and 0.65 is the midpoint 
value of the score. The midpoint value was set as the lower 
end of the investigated SASA range, 65-100%, which 
demonstrated a measurable difference in the average 
relative SASA value between labeled and unlabeled 
residues. 

Finally, the labeled and the unlabeled scores for Ser, Thr, 
and Tyr residues along with the portion from labeled His 
and Lys residues were aggregated to determine depc_ms, as 
shown in Eq. 5. 

𝑑𝑒𝑝𝑐_𝑚𝑠 =  𝑆𝑇𝑌_𝑙𝑎𝑏𝑒𝑙𝑒𝑑 +  𝑆𝑇𝑌_𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 +
𝐻𝐾_𝑙𝑎𝑏𝑒𝑙𝑒𝑑  (5) 

 The depc_ms term was used to score 10,000 ab 
initio models (for each of the benchmark proteins 2-
microglobin, ubiquitin, and myoglobin) and 3,500 
homology models (for each of the benchmark proteins 
carbonic anhydrase, lysozyme, and human growth 
hormone). The total score was calculated as a weighted 
superposition of the initial Rosetta score and the depc_ms 
score (as shown in Eq. 6). 

Total score = (9.0 ×  𝑑𝑒𝑝𝑐_𝑚𝑠 𝑠𝑐𝑜𝑟𝑒) +
 Rosetta Ref15 score (6) 

A weight of 9.0 was used, similar to those reported in 
previous work.27, 29 A tutorial describing how to use DEPC 
data to predict protein structure in Rosetta is included in 
the Supplementary Materials section.  

A comparison of Rosetta scoring and scoring with 
depc_ms was executed using several evaluation metrics. The 
top scoring model RMSD value was compared before and 
after rescoring. Additionally, the funnel-like quality, or the 
shape of the score versus RMSD distributions, was assessed 
with Pnear. The metric Pnear provided insight into whether the 
score versus RMSD distributions featured distinctive low-
energy conformations that were similar to the crystal 
structure. We used a funnel depth of 1.0 as proposed by 
Bhardwaj et al and employed in our previous score term 
implementations.27, 29, 46 Pnear was calculated according to 
Eq. 7: 

𝑃𝑛𝑒𝑎𝑟 =  
∑ exp (−

rmsdm
2

𝜆2 ) exp (−
scorem

𝑘𝐵𝑇
)𝑛

𝑚=1

∑ exp (−
scorem

𝑘𝐵𝑇
)𝑛

𝑚=1

 

in which n represents the number of models generated, 
scorem is the score of the model, and rmsdm is the RMSD of 
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the particular model to the crystal structure. The λ value 
was maintained at 2.0 Å to specify which models were 
considered native-like. kBT, the effect of funnel depth, was 
maintained at a value of 1.0. A Pnear value of 0 indicated no 
funnel-like quality while a value of 1 signified a perfect 
funnel-like distribution. 

RESULTS AND DISCUSSION 

Identification of relative SASA ranges to maximize 
differences in labeled and unlabeled residues. Based on 
the proposition that DEPC labeling for STY residues is 
sensitive to neighboring hydrophobic residues in the 
microenvironment,12 we aimed to use Rosetta to elucidate a 
notable difference in hydrophobic neighbor count between 
labeled and unlabeled STY residues. 

The six proteins in our benchmark set for which we 
obtained DEPC-based CL-MS data were carbonic anhydrase, 
ubiquitin, myoglobin, 2-microglobin, lysozyme, and 
human growth hormone. We used the crystal structures of 
the benchmark proteins during the score development in 
order to identify the number of hydrophobic neighbors in 
the microenvironment and relative solvent exposures of the 
STY residues. 

We identified all STY residues with a relative SASA 
ranging from 5 to 35%. Within the benchmark set, this 
encompassed 24 labeled STY residues and 22 unlabeled STY 
residues. This SASA range captured low-exposure STY 
residues, similar to those which were noted to be relevant 
to hydrophobic microenvironmental effects. Subsequently, 
we assessed the hydrophobic microenvironment for all 46 
low-exposure STY residues by measuring the hydrophobic 
neighbor counts. 

To maintain the 6 Å distance similar to DEPC molecular 
dimensions12 while still accounting for neighbors likely to 
have a microenvironmental effect on labeling, we used a 
gradual neighbor count contribution method. We calculated 
the per-residue neighbor count by determining the 
contribution of neighboring hydrophobic residues based on 
the distance from the STY hydroxyl group. The average 
labeled STY hydrophobic neighbor count was determined to 
be 4.42, while the average unlabeled STY hydrophobic 
neighbor count was 3.39, as shown in Figure 1. The violin 
plot in Figure 1 shows the relative frequency of 
hydrophobic neighbor count values for labeled and 
unlabeled STY residues. There were less than four 
hydrophobic neighbors for 46% of labeled STY residues 
versus 68% of unlabeled STY residues while only 25% of 
labeled residues and 14% of unlabeled residues had a 
hydrophobic neighbor count greater than five. Labeled STY 
residues exhibited more hydrophobic neighbors than 
unlabeled STY residues, corroborating that STY labeling is 
sensitive to neighboring hydrophobic residues within the 
microenvironment. 

 

Figure 1. Violin plot demonstrating the relative 
frequency of different hydrophobic neighbor count values 
for labeled STY (blue, includes 24 residues) and unlabeled 
STY (orange, includes 22 residues) residues with relative 
SASA values of 5-35% from benchmark protein crystal 
structures. Mean and extrema are shown on the plot. 

Using the observed trends, we developed a Rosetta score 
term that rewarded models containing labeled STY residues 
with higher hydrophobic neighbor counts and also 
rewarded models containing unlabeled STY residues with 
lower hydrophobic neighbor counts. 

Additionally, since exposed His and Lys residues are more 
likely to be labeled by DEPC12, we developed a score that 
rewarded labeled His and Lys residues with high exposure 
(independent of their hydrophobic neighbor count). We 
used a relative SASA range of 65% to 100% to reward 
labeled His and Lys residues with high solvent exposure. 
The violin plot distribution for labeled and unlabeled HK 
relative SASA values is shown in Supplementary Figure 2, 
which demonstrated the expected trend that labeled HK 
residues were more likely to be strongly solvent exposed. 
The average relative SASA for labeled residues was 0.09 
higher than those of unlabeled residues. None of the 
unlabeled HK residues had relative SASA values greater 
than 0.9, while 37.5% of labeled HK residues had relative 
SASA higher than 0.9.  

We sought to examine the noise level of DEPC labeling 
data by investigating false negative data points. False 
negative data points within covalently labeling datasets 
have been previously examined; it has been suggested that 
35% of exposed residues can be tolerated as false negatives 
while still being useful for protein structure prediction.26 
We defined false negatives in this work as unlabeled STY 
residues with a hydrophobic neighbor count greater than 
3.91 and unlabeled HK residues with relative SASAs greater 
than 80%.  We found that 26% of the subset of STY residues 
with 5-35% SASA were false negatives, and 16% of the 
unlabeled HK residues within 65-100% SASA were false 
negatives. Both residue subsets fell well below the 35% 
tolerance cutoff, demonstrating that while some noise 
existed in our datasets, it did not impact our ability to 
predict accurate structures. False positive data points were 
defined as labeled STY residues with a hydrophobic 
neighbor count less than 3.91 and labeled HK residues with 
relative SASAs less than 80%. We determined that 15% of 
labeled STY residues with 5-35% relative SASA were false 
positives, and 16% of labeled HK residues with 65-100% 
relative SASA were false positives. Subsequently, we sought 
to utilize the observed exposure and microenvironment 
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trends for STY and HK residues in Rosetta protein structure 
prediction. 

Ab initio models scored with the DEPC-guided score term 
showed improvement in best scoring model RMSDs and 
funnel-like distributions. Based on differences in 
hydrophobic neighbor counts for labeled and unlabeled STY 
residues (Figure 1) and differences in SASA for labeled and 
unlabeled HK residues (Supplementary Figure 2), we 
proceeded to develop a score term that rewarded the 
desired trends. An overview of the score term is shown in 
Figure 2. We mapped the label status of labeled and 
unlabeled residues onto protein models using the DEPC-
based CL-MS data. Panel 2a depicts the inputs of the score 
term, which included labeling data as label status (L for 
labeled, U for unlabeled) and appropriate residue number 
along with ab initio or homology protein models. Additional 
details can be found the tutorials in Supplementary Note 1. 
We calculated relative SASA for all mapped residues and 
hydrophobic neighbor counts for buried STY residues 

(Panel 2b). The score term included components that 
rewarded labeled STY residues with high numbers of 
hydrophobic neighbors, rewarded unlabeled STY residues 
with low numbers of hydrophobic neighbors, and rewarded 
labeled HK residues with high solvent exposure (Panel 2c). 
While our initial analysis of hydrophobic neighbor counts 
and relative SASA ranges relied on crystal structures, no 
crystal structures were used in model generation or score 
term evaluation. To test DEPC-guided scoring, we generated 
10,000 ab initio models for each protein within our 
benchmark set. Upon examination of the ab initio models, 
we noticed that three of the benchmark protein model sets 
did not contain any models under 5 Å RMSD to the crystal 
structure. The DEPC score was designed to distinguish 
native-like models (RMSD < 5 Å) from incorrect models 
(RMSD > 10 Å). In order to have higher quality models 
present in all of the benchmark cases, homology models 
were generated for those three benchmark proteins. The 
results of scoring those homology models will be discussed 
in the next section. 

 

Figure 2. Overview of the DEPC score term (depc_ms) algorithm. The DEPC score term required CL-MS labeling data 
(residue numbers and label status) as input, along with input structures, which were either generated with homology or ab 
initio modeling (a). The relative SASA was calculated for all residues listed in the input file (b). If the residue was STY, 
additionally the hydrophobic neighbor count was calculated for residues with relative SASA between 5 and 35% (c). Labeled 
HK residues with higher relative SASA were rewarded (d). Labeled STY residues with more hydrophobic neighbors and 
unlabeled residues with less hydrophobic neighbors were rewarded as well (e). 

For the three proteins whose ab initio model distributions 
included native-like models (ubiquitin, myoglobin, and 2-
microglobin), we tested our score term, depc_ms, by adding 
the DEPC score to the total Rosetta score. As seen in Figure 
3, the best scoring model RMSD values improved from 
Rosetta scoring (Figure 3a) to scoring with Rosetta and 

depc_ms, our DEPC-guided score term (Figure 3b). The 
RMSD of the best scoring model for 2-microglobin 
improved from an RMSD of 3.14 Å to 2.13 Å while ubiquitin 
improved from an RMSD of 3.16 Å to 1.97 Å. Myoglobin saw 
notable improvement from an RMSD of 7.11 Å to 1.36 Å 
when scoring with the depc_ms term. 
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Figure 3. Score versus RMSD to the crystal structure for 
10,000 ab initio models for a, Rosetta without DEPC labeling 
data and b, Rosetta with DEPC labeling data. Best scoring 
models are marked by a black star and shown in color 
aligned to the crystal structure (grey). Pnear values are listed. 

Additionally, the funnel-like quality of the distributions 
was quantified by the Pnear value, with a higher Pnear value 
(near 1) indicating more funnel-like quality and a lower 
Pnear value (near 0) indicating lack of any funnel-like quality. 
We noticed that all distributions became more funnel-like, 
i.e. increased in Pnear, with DEPC labeling data included in 
scoring, indicating that we were selecting lower-energy 
conformations that were more similar to the native. For 2-
microglobin, Pnear values increased from 0.22 with Rosetta 
to 0.31 with depc_ms; ubiquitin improved from 0.08 to 0.32. 
Myoglobin exhibited the largest improvement in Pnear value, 
increasing from 0.07 to 0.33 with depc_ms scoring. 

Homology model predictions also improved upon 
scoring with DEPC data. For carbonic anhydrase, human 
growth hormone, and lysozyme, the best model generated 
with ab initio modeling had an RMSD value greater than 5 Å 
to the crystal structure. We thus sought to generate 
additional models with Rosetta’s comparative modeling 
protocol. The homology modeling templates with their 
respective sequence identities and similarities are shown in 
Supplementary Table 1. By generating 500 models per 
template and using multiple templates per protein, we were 
able to generate a distribution of models with varying RMSD 
values. We scored all models with depc_ms and 
subsequently added the score to the Rosetta score. Total 
score versus RMSD plots along with the best scoring model 
aligned with the crystal structure are shown in Figure 4. 
While the models identified by Rosetta were already 
significantly better for homology models (as compared to 
the ab initio models in the last section), scoring with DEPC 
data further improved model selection consistently. The 

human growth hormone best scoring model RMSD 
improved from 4.31 Å with Rosetta without labeling data to 
3.85 Å with Rosetta with DEPC labeling data by way of 
depc_ms. The lysozyme best scoring model RMSD (0.78 Å) 
stayed constant from Rosetta to scoring with DEPC data, at 
already accurate atomic detail. Finally, the carbonic 
anhydrase best scoring model RMSD improved from 1.33 Å 
to 1.22 Å. 

 

Figure 4. Score versus RMSD to the crystal structure for 
3,500 homology models for a, Rosetta without DEPC 
labeling data and b, Rosetta with DEPC labeling data. Best 
scoring models are marked by a black star and shown in 
color aligned to the crystal structure (grey). Pnear values are 
listed. 

Improvements in the funnel-like quality of the 
distributions, Pnear, were also noted for both human growth 
hormone and carbonic anhydrase. The Pnear value of 
lysozyme, for which the best scoring model had a sub-
angstrom RMSD, stayed at 0.83, an already near-perfect 
value. Human growth hormone Pnear slightly improved from 
0.01 to 0.02 while carbonic anhydrase Pnear improved from 
0.65 to 0.69 with DEPC scoring. Overall, our scoring 
methodology with DEPC labeling data successfully 
improved best scoring model quality and distribution 
funnel-like quality. 

CONCLUSION 

To employ DEPC labeling MS data in protein structure 
prediction, we analyzed the difference in hydrophobic 
neighbor counts between labeled and unlabeled STY 
residues and used labeled HK residues with high solvent 
exposure. Our benchmark set, consisting of DEPC-labeled 
ubiquitin, 2-microglobin, myoglobin, human growth 
hormone, carbonic anhydrase, and lysozyme, was used to 
explore the utility of DEPC labeling in protein structure 
elucidation. We developed a novel Rosetta score term which 
rewarded STY residues known to be DEPC labeled if those 
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residues exhibited a hydrophobic microenvironment and 
rewarded unlabeled STY residues that lacked such 
hydrophobic microenvironment. Additionally, the term 
rewarded labeled HK residues with high solvent exposure. 
In a test of our algorithm, we noted that usage of DEPC data 
improved best scoring model RMSD and the funnel-like 
quality of the model distribution. For the six benchmark 
proteins, we saw improvement in prediction quality for 
both ab initio and homology models. Notably, we elucidated 
accurate atomic detail for all six proteins upon employment 
of DEPC labeling data. The advantageous qualities of the 
DEPC label, such as single product generation and ease of 
commercial availability, along with our DEPC-guided 
Rosetta modeling that is solely based on label status and 
computationally determined exposure metrics underscore 
the huge potential of DEPC labeling for protein structure 
determination. 

While our work was primarily focused on DEPC labeling, 
different modeling strategies for other types of labels have 
previously been developed. The nature of the label 
generally dictates the modeling strategies warranted. For 
instance, hydroxyl radical protein footprinting is 
sufficiently modeled with solvent exposure alone.29 
Modeling HDX labeling benefits from accounting for both 
residue exposure and flexibility.47 Other labels with 
microenvironmental effects would benefit from further 
analysis regarding modeling strategies to employ. Future 
work will continue to pursue covalent labeling data 
implementation into model generation protocols. 
Additionally, we aim to test this methodology on larger 
(500-1000 residues) proteins. We plan to examine the 
accuracy of our scoring function when utilizing DEPC data 
as labeling extent. Further studies will also emphasize the 
role of dynamics and microenvironmental effects in 
covalent labeling.  
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