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Summary 
 Hydrogen-deuterium exchange (HDX) measured by NMR provides structural information 

for proteins relating to solvent-accessibility and flexibility. While this structural information is 

beneficial, the data cannot be used exclusively to elucidate structures. However, the structural 

information provided by the HDX-NMR data can be supplemented by computational methods. In 

previous work, we developed an algorithm in Rosetta to predict structures using qualitative HDX-

NMR data (categories of exchange rate). Here we expand on the effort, and utilize quantitative 

protection factors (PFs) from HDX-NMR for structure prediction. From observed correlations 

between PFs and solvent accessibility/flexibility measures, we present a scoring function to 

quantify the agreement with HDX data. Using a benchmark set of 10 proteins, an average 

improvement of 5.13 Å in root-mean-square deviation (RMSD) is observed for cases of inaccurate 

Rosetta predictions. Ultimately, 7/10 predictions are accurate without including HDX data, and 

9/10 are accurate when using our PF-based HDX Score.  
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Introduction 
Protein function is encoded in the structure of the protein, allowing for understanding and 

manipulation of both mechanisms and function if the structure can be determined experimentally. 

However, experimental structure determination is challenging, particularly for more complex and 

disordered proteins, with some proteins eluding high resolution structure determination due to their 

intrinsic properties. As a result, the gap between known protein sequences, which can be quickly 

determined, and known protein structures increases by the day. This gap is fueled by the difficulty 

of structural biology experiments, such as X-ray crystallography, cryogenic electron microscopy 

(cryo-EM), and 13C-, 15N-edited nuclear magnetic resonance (NMR) experiments, all of which 

have limitations associated with them (Ardenkjaer-Larsen et al., 2015; Lyumkis, 2019; Srivastava 

et al., 2018). 

While tertiary structure has traditionally been determined using the aforementioned 

methodologies, in recent decades the advent of computational methods has led to potentially far 

higher throughput structure prediction. With these predictions, however, come limitations such as 

increased probability of inaccurate ab initio structure predictions as protein size increases (Kim et 

al., 2009). The accuracy of computational methods can be significantly improved by the inclusion 

of experimental data (Seffernick and Lindert, 2020). Inclusion efforts began in the 1980s with 

NMR and X-ray crystallography, with more recent studies aiming towards including data from 

lower-resolution methods, such as electron paramagnetic resonance (EPR), mass spectrometry 

(MS), and cryo-EM (Alexander et al., 2008; Aprahamian et al., 2018; Aprahamian and Lindert, 

2019; Biehn and Lindert, 2021; Bowers et al., 2000; DiMaio et al., 2015; Harvey et al., 2019; 

Lindert et al., 2012; Pilla et al., 2017; Roberts et al., 2017; Seffernick et al., 2019a; Srivastava et 

al., 2018; van Zundert et al., 2015). Ideally, these types of experimental data would be high-

throughput and require a smaller sample size.   

Biomolecular hydrogen-deuterium exchange (HDX) experiments, originating in the 1970s, 

have typically been used to map exchange rates onto atomic-resolution structures, elucidating 

dynamic properties using static models (Choe et al., 1998; Hooke et al., 1994; Palmer, 1997; Rosa 

and Richards, 1979). These studies have probed native-state dynamics on a diverse set of proteins, 

as well as mapped protein folding pathways by performing the experiments as the molecule is 

(un)folding (Di Paolo et al., 2010; Rogov et al., 2004; Schulman et al., 1995). Determination of 

dynamic properties stem from a consensus that HDX rates are generally governed by exposure and 

flexibility of the amide protons, thus regions of faster exchange can be correlated to regions of 

higher flexibility and/or solvent exposure. Additionally, a wide variety of studies have 

demonstrated the importance of accounting for dynamic properties by using sophisticated 

sampling methods (such as molecular dynamics simulations) to match structures to experimental 

data, as well as using these methods to better understand the factors influencing HDX (Best and 

Vendruscolo, 2006; Devaurs et al., 2017; Devaurs et al., 2018; Hilser and Freire, 1996; Makarov 

et al., 2020; Martens et al., 2019; McAllister and Konermann, 2015; Mohammadiarani et al., 2018; 

Petruk et al., 2013; Vendruscolo et al., 2003; Wan et al., 2020). Studies to simulate HDX data (Liu 

et al., 2012), reweigh model ensembles (Bradshaw et al., 2020; Craig et al., 2011; Wan et al., 

2020), and evaluate protein-protein interactions (Borysik, 2017) require structural information and 

long, computationally expensive trajectories obtained from molecular dynamics simulations. 

In absence of existing structural models, the data can also be used as restraints in 

computational protein structure prediction. Multiple studies have demonstrated that modeling 

based on agreement to HDX data measured from MS can be beneficial to enhance structural 

understanding of specific systems. For structure prediction of monomeric proteins from sequence, 



approaches using homology modeling along with HDX-MS data can be successful, even for 

systems that are difficult to crystallize (Ramsey et al., 2018; Zhang et al., 2014). Protein-protein 

docking has also been performed in combination with HDX-MS data, allowing for the prediction 

of complex structures in agreement with the data (Borysik, 2017; Roberts et al., 2017; Zhang et 

al., 2019). 

In previous work, we have demonstrated that structural features relating to exposure and 

flexibility of amide protons are correlated to experimental HDX rates measured using NMR 

(Marzolf et al., 2021). Using a benchmark set of 38 proteins, a correlation between HDX rate and 

four calculated parameters related to exposure and flexibility was established. In brief, exposure 

was quantified using a calculated amide proton neighbor count (NC) and relative solvent accessible 

surface area (RelSASA) (Aprahamian et al., 2018). Flexibility was estimated using the order score 

(OS) (Kim et al., 2018; Seffernick et al., 2019b), a window-averaged residual Rosetta score, and 

hydrogen-bonding energies involving the amide proton. After developing a score term that 

evaluated agreement of the four parameters to experimental HDX rate categories in a large set of 

decoy structures, we were able to improve prediction accuracy, reducing root-mean-square-

deviation (RMSD) substantially. However, this scoring term used strength categories which 

corresponded to HDX rates rather than the quantitative exchange rates themselves, introducing a 

potential source of uncertainty.  

In this report, we extend the methodologies from the previous work to directly employ 

quantitative HDX rates during the protein modeling using a benchmark set of 10 proteins. The 

quantitative rates, reported as protection factors, were used to predict parameters which related to 

exposure and flexibility. The predicted values were then compared to calculated values in models 

generated by Rosetta, with the difference in the values incorporated in a Rosetta scoring term. This 

method differs from our previous work (using quantitative protection factors, rather than categories 

of exchange) and other methods in the literature, which are generally used to match agreement for 

a single system (monomer or complex) using HDX-MS. In this report, we directly incorporated 

HDX rates measured from NMR experiments into a general method, available in Rosetta, to 

predict monomer structure from sequence alone. Using this new scoring term, protein structure 

prediction accuracy increased, moving from 7/10 to 9/10 of the benchmark proteins predicting an 

accurate model (< 5.5 Å RMSD to the native model) when the HDX data was included. 

 

Results and Discussion 
Previous work showed HDX-NMR data provide useful information to structure prediction 

 Experimental data from hydrogen-deuterium exchange (HDX) measured by NMR provide 

structural information on proteins. While this information alone cannot be used to fully elucidate 

the structures, it can be utilized as a supplement to computational prediction methods. Recently, 

we developed a method to use HDX-NMR data to predict tertiary structure from sequence using 

Rosetta ab initio structure prediction (Marzolf et al., 2021). In this previous work, the experimental 

data were categorized as strong, medium, or weak, corresponding to slow, medium, and fast 

exchange, respectively. The HDX score term was dependent on the following four residue-

resolved metrics that were expected to influence the HDX rate: neighbor count (NC), relative 

solvent accessible surface area (RelSASA), hydrogen bond score (HB), and Rosetta order score 

[OS, using ResidueDisorder (Kim et al., 2018; Seffernick et al., 2019b)]. In the previous study, 

structure prediction results improved when qualitative HDX data were included (Marzolf et al., 

2021). 

 



Protection factors provided more information for modeling and trends followed expected 

structural hypotheses 

 While results from previous work were promising and showed that a very small amount of 

experimental data can meaningfully improve prediction results, there was a potential to include 

more information from HDX-NMR experiments into structure prediction. In this study, rather than 

using qualitative data (where measured exchange rates were categorized into strong, medium, and 

weak), we used quantitative protection factors (PFs) measured from HDX-NMR experiments. 

Protection factors are defined as the ratio of the sequence-dependent intrinsic HDX rate constant 

to observed exchange rate constant. Residues (specifically backbone amide hydrogens) with higher 

protection factor (corresponding to lower relative exchange rate) are expected to be less flexible 

(i.e., participate strongly in hydrogen bonding) and/or have less exposure to the solvent. Similar 

to previous work, here we used HB and OS to quantify flexibility, and NC and RelSASA to 

quantify solvent exposure, but have done so using protection factors. 

 Quantitative protection factors were not as readily available as qualitative exchange rate 

categories for a large number of proteins. Our benchmark dataset contained 10 proteins (ranging 

from 76-223 residues; summarized in Table S1) for which experimental protection factors were 

provided in the literature. For this dataset, we first sought to test our hypotheses (high exposure 

and high flexibility leading to increased exchange) by examining the correlations between the 

calculated residue-resolved parameters and PF. Figure 1 shows the NC, RelSASA, HB, and OS as 

a function of log(PF) for residues in all 10 proteins (a total of 431 residues). The values of slopes 

and intercepts for each correlation are provided in Table S3. While the individual correlations did 

not appear to be exceptionally strong (R2 of 0.12, 0.05, 0.05, and 0.04 respectively), the 

hypothesized trends were observed for all four parameters. The relatively weak correlations were 

unsurprising because no individual parameter can be expected to govern exchange in a complex 

process such as HDX. Nonetheless, based on these native distributions, we developed a scoring 

function to be used to quantify the quality of a predicted protein structure based on its agreement 

with the NMR-HDX data. 

 

Inclusion of HDX-NMR PF was beneficial for structure prediction 

 Rosetta ab initio structure prediction was used to predict structures from sequence for the 

majority of proteins in the dataset (8/10). However, due to poor observed sampling, homology 

models were instead generated for 1SNO and 2ETL using RosettaCM. Regardless of method, 

10,000 models were generated for each protein in the dataset and scored using the Rosetta 

REF2015 scoring function. For each protein, within the respective pool of models, structures with 

RMSD (root-mean-square deviation with respect to the crystal structures) of less than 4 Å were 

sampled. The predicted structure without using HDX-NMR data was the lowest scoring model by 

Rosetta score. The accuracy of the predicted structures varied, with the RMSDs ranging from 0.67 

Å to 14.75 Å, with 7/10 less than 5.5 Å (see Figure 2).  

 To test the ability of HDX-NMR protection factors to facilitate protein structure prediction, 

structures were also scored based on agreement with PF from HDX-NMR in addition to scoring 

with Rosetta (HDX Score). A detailed summary of the score is provided in the Methods section, 

but in short, for each residue with a measured experimental PF, observed regression lines from 

Figure 1 (Table S3) were used to predict a value for all exposure and flexibility parameters 

respectively (NC, RelSASA, HB, and OS). Next, each predicted parameter was compared to the 

calculated parameter using the structure of the model. Based on the difference between observed 

and predicted parameters, each residue was scored in the range of -1 (good agreement, fully 



rewarded) and 0 (bad agreement, not rewarded). Using this function on all one hundred thousand 

generated models, ~20% of residues were fully rewarded (score of -1), ~35% were intermediately 

rewarded (score between -1 and 0), and ~45% of residues were not rewarded (score of 0). This 

distribution was similar to the distributions of the proteins individually, showing no strong bias for 

any one protein in the benchmark set. The HDX component of the scores for full protein structures 

was then derived by aggregating the agreement scores (referring to Equation 4) for each residue 

(with PF) and each parameter (NC, RelSASA, OS, and HB). While the scoring results using all 

four computational parameters are described in detail in the following paragraphs, we note that 

scoring with individual scoring terms was not as successful. This was not surprising, since single 

features were not expected to govern the complicated process of HDX. The scoring with individual 

terms was similar or slightly worse than scoring with Rosetta only (average RMSD of Rosetta 

only: 5.4 Å, average RMSD range using individual terms: 5.1-7.7 Å).  

Ultimately, structures were scored using a combined score including both the Rosetta score 

and HDX component scores (based on agreement with HDX-NMR data) to get a consensus 

between the Rosetta energy function and experimental data (HDX Score, referring to Equation 5). 

However, the HDX-dependent component of the HDX Score performed remarkably well by itself 

as well (referring to the sum of HDX terms in Equation 5). For the majority of proteins in the 

dataset (7/10), the top scoring model using only the HDX-dependent component of the HDX score 

was less than 5.5 Å, the same number as when scoring with Rosetta only (although a different set 

of 7). When using the HDX Score, the RMSDs of all (10/10) predicted structures were improved 

or were within 0.75 Å of the result obtained by scoring without experimental data. We also note 

that the results based on the relative weights between the four terms (NC, SASA, OS, and HB) in 

Equation 5 were relatively stable with respect to small changes in weights. Figure 2A shows the 

RMSD of the predicted structures with and without including HDX data. Overall, the number of 

predicted structures with less than 5.5 Å RMSD improved to 9/10 when HDX protection factors 

were included (7/10 without PF). The top scoring models were rewarded more by the individual 

HDX components of the score compared to the complete set of decoys: 27% fully rewarded, 40% 

intermediately rewarded, and 33% not rewarded. 

Furthermore, two important features were observed: (1) for the seven proteins where 

Rosetta alone predicted an accurate structure (< 5.5 Å RMSD), inclusion of HDX data did not 

significantly change prediction results (selected model RMSD changed by an average of 0.07 Å) 

and (2) for the three proteins where Rosetta alone predicted an inaccurate structure (1AYI, 1FS3, 

and 3BLG with RMSDs of 12.72 Å, 10.63 Å, and 14.75 Å, respectively), the inclusion of HDX 

data markedly improved the prediction results. The RMSD of the predicted model for each of these 

proteins improved by more than 3 Å with an average improvement of 5.13 Å when HDX data were 

included. This improvement compared favorably to our previous work (Marzolf et al., 2021) which 

used qualitative HDX-NMR data to predict structures (3.63 Å). We acknowledge that the dataset 

is too small (only 3 proteins met this criterion) to draw any universal conclusions. However, we 

hypothesize that more structural information is encoded in the quantitative HDX PF used in this 

work than the qualitative categories of exchange rates used in previous work. The additional 

information provided in the data may have contributed to the improved results. For two of these 

improved predictions (1AYI and 1FS3), accurate structures were predicted when using HDX data, 

i.e., the RMSD of the final predicted structure was less than 5.5 Å. Figures 2B and 2D show the 

scores as a function of RMSD without (red) and with (blue) HDX data used for scoring 1AYI and 

1FS3, respectively. The predicted structures (i.e., models with the lowest score, corresponding to 

Figure 2A) are indicated with a star and those structures are shown aligned to the native crystal 



structures in Figures 2C and 2E. Similar score vs. RMSD plots for the remaining 8 proteins in the 

dataset are shown in Figure S1. From the ab initio sampling, the best RMSD structures were 

typically in the range of 2-5 Å (depending on the system). To demonstrate that the HDX Score 

also ranked native-like structures well, we calculated the scores for 100 relaxed native structures 

(shown in the plots as gray circles). These data show that the HDX Score did indeed identify these 

~1 Å RMSD structures as native-like. 

 

Confidence metric separated most native-like predictions from others 

 We sought to define a metric to assess the confidence of a prediction in the absence of a 

crystal structure. The confidence metric was defined as the average RMSD of the top 10 scoring 

models to the top scoring model. We hypothesized that this value would be lower when accurate 

predictions were made because a larger number of structures similar to the predicted structure 

would also score well. Using this metric, we were able to categorize our predictions as high 

confidence (< 6 Å), or low confidence (> 6 Å), as shown in Figure 3. This metric identified the top 

six predictions (all with RMSD less than 3 Å) as high confidence, while identifying the only 

prediction with RMSD > 5.5 Å as low confidence. For high confidence models, the average RMSD 

of the predicted structure was 2.06 Å, compared to 6.21 Å for low confidence models. 

 

Conclusion 
 Hydrogen-deuterium exchange rates of backbone amide hydrogens measured by NMR 

provide structural information such as flexibility and solvent accessibility of backbone amide 

protons. In previous work, we developed a scoring function to utilize qualitative HDX-NMR data 

for protein structure prediction. In this study, we extended this methodology to HDX-NMR data 

containing quantitative protection factors. We demonstrated that these protection factors correlated 

with structural features of proteins exhibiting the expected trends when modeled onto native crystal 

structures.  

 We then used these observed correlations of each parameter to develop a scoring function 

to quantify agreement between modeled structures and PF. When predicting tertiary structures of 

proteins using Rosetta, accurate structures (< 5.5 Å RMSD of the predicted model) were predicted 

in 7/10 cases. However, when quantitative protection factors from HDX were included, 9/10 of 

these benchmark cases were predicted accurately. For two cases, the RMSD of the predicted model 

improved by more than 6.5 Å when experimental data were included and none of the accurate 

predictions were adversely affected by the HDX data (only changed by an average of 0.07 Å 

RMSD). Finally, we developed a confidence metric to identify the cases where our predicted 

structure was most likely to be native-like in the absence of knowledge of the crystal structure. 

This confidence metric correctly flagged the top six predictions as high confidence.  

 This work is an important extension of our previously developed HDX-NMR algorithm for 

protein structure prediction. These two algorithms now enable researchers to extract data from 

HDX-NMR as either qualitative categories or quantitative protection factors to elucidate structures 

of proteins. Based on the relative ease of data collection for HDX-NMR, this computational 

method is beneficial. In this benchmark set, for all predictions where an inaccurate structure was 

predicted using Rosetta, the scoring based on HDX-NMR data improved the accuracy of the 

predicted structure. Based on our data, we speculate that the protection factors from HDX-NMR 

provide information that can discriminate between correct and incorrect topology, but do not 

contain enough information to refine near-atomic resolution models. A tutorial on how to perform 

qualitative and quantitative HDX scoring with our algorithm in Rosetta has been included in the 



SI (Method S1). In future work, we will extend our HDX methodology to study protein complexes. 

Additionally, we aim to utilize HDX data measured from mass spectrometry (which has become 

more popular in recent years) and incorporate multiple types of experimental data to make more 

accurate predictions. 
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Figure 1: Experimental data correlations to structure. Correlations between the calculated structural parameters 

(neighbor count [NC], relative solvent-accessible surface area [RelSASA], hydrogen bond energy [HB], and order 

score [OS]) with the log base 10 of HDX protection factor. Linear regression lines are shown in red along with the R2 

values. All trends matched structural hypotheses. 

 
Figure 2: Comparison of prediction accuracy with and without HDX data. (A) RMSD of top scoring models with 

(y-axis) and without (x-axis) HDX data. Circles indicate structures predicted with ab initio and triangles indicate 

homology models. (B) and (D) show score vs. RMSD plots for 1AYI and 1FS3 for Rosetta (red) and HDX score 

(blue). The predicted structure (lowest scoring model) is represented as a black star and 100 relaxed native structures 

are represented by gray circles. (C) and (E) Predicted structures (Rosetta score: red; HDX Score: blue) aligned to 

native (shown in gray). 
 

Figure 3: Confidence metric for analyzing prediction results. RMSD of predicted structure using HDX data for each 

protein shown along with the confidence metric (avg RMSD of top 10 scoring models to top scoring model). Circles 

indicate structures predicted with ab initio and triangles indicate homology models. Vertical line shows separation 

between confidence regions: high confidence (less than 6 Å) and low confidence (greater than 6 Å). The confidence 

metric separated predictions well without knowledge of the native structure. 

 

 

 

  



STAR METHODS 

 
RESOURSE AVAILABILITY 

Lead Contact 

Further information and requests for resources should be directed to and will be fulfilled by the 

lead contact, Steffen Lindert (lindert.1@osu.edu). 

 

Materials Availability 

This study did not generate new unique reagents. 

 

Data and Software Availability 

The HDXEnergy application has been contributed to Rosetta software, and a tutorial for running 

the application is available in the Supplemental Information (Method S1). All model generation 

and residual property calculations were performed within the Rosetta software framework, 

available free for educational purposes at https://www.rosettacommons.org/software. All protein 

structure and sequence files are available in the Protein Data Bank (PDB) at https://www.rcsb.org/. 

Residual protection factors can be found in the Excel file provided in the Supplemental 

Information (Data S1). All software and algorithms used in this paper are available and listed in 

the key resources table. Any additional information required to reanalyze the data reported in this 

paper is available from the lead contact upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
All data were generated from the datasets provided in the KRT. 

 

METHOD DETAILS 
Benchmark Dataset 

In this work, we used HDX-NMR protection factors (PFs), which are dependent on solvent 

accessibility and structural flexibility of specific residues (Bai et al., 1993). For a residue, 

protection factor is defined as a ratio between the intrinsic HDX rate constant (kint) and the 

observed HDX rate constant (kex) as shown in Equation 1 (Bai et al., 1993; Perrett et al., 1995): 

 

 

The benchmark dataset for this study contained ten proteins with reported residue-resolved 

HDX-NMR protection factors which were all consistent with the definition in Equation 1. While 

a detailed summary of the benchmark set is shown in Table S1, in short, the proteins used in this 

study were barnase (PDB: 1A2P), colicin E immunity protein 7 (PDB: 1AYI), barstar (PDB: 

1BTA), che Y (PDB: 1CYE), bovine pancreatic ribonuclease A (PDB: 1FS3), staphylococcal 

nuclease (PDB: 1SNO), chymotrypsin inhibitor 2 (PDB: 1TM1), ubiquitin (PDB: 1UBQ), 

ubiquitin carboxyl-terminal hydrolase isozyme L1 (PDB: 2ETL), and beta-lactoglobulin (PDB: 

3BLG). All ten proteins were monomers and experimentally determined structures were available 

in the Protein Data Bank (PDB). The total number of residues of these proteins ranged from 64 to 

223 (Table S1). For 1A2P, 1FS3, and 2ETL, the HDX experiments were conducted at various pHs. 

The protection factors for the most acidic pH were selected for each protein [pH = 6.5 for 1A2P 

𝑃𝐹 =  
𝑘𝑖𝑛𝑡

𝑘𝑒𝑥
 

 

(Eq. 1) 
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(Perrett et al., 1995), pH = 6.5 for 1FS3 (Wang et al., 1995), and pH = 7.6 for 2ETL (Lou et al., 

2016)]. In our benchmark dataset, five proteins were reported with the raw protection factors 

[1A2P (Perrett et al., 1995), 1BTA (Bhuyan and Udgaonkar, 1998), 1FS3 (Wang et al., 1995), 

1UBQ (Pan and Briggs, 1992), and 3BLG (Forge et al., 2000)], three proteins were reported with 

the logarithmic base 10 of protection factors [1CYE (Lacroix et al., 1997), 1SNO (Devaurs et al., 

2017; Skinner et al., 2012), and 2ETL (Lou et al., 2016)], and two proteins were reported with the 

natural logarithm of protection factors [1AYI (Devaurs et al., 2017) and 1TM1 (Devaurs et al., 

2017)]. Thus, to standardize protection factors and calculations, all the values were converted into 

logarithm with base 10 of raw protection factors (log[PF]).   

 

Model Generation 

To assess the competence of the developed HDX scoring function to distinguishing near-

native models from other decoy models, the decoy set must have a wide distribution of RMSDs 

(root-mean square deviation to crystal structures), ranging from near-native models (<4 Å RMSD) 

to models with incorrect topology (>8 Å RMSD). For the majority of proteins in the benchmark 

dataset, to achieve this purpose, we generated 10,000 decoy models using the standard Rosetta 

AbinitioRelax protocol (Leaver-Fay et al., 2011; Simons et al., 1997). The Robetta Web server 

was used to generate the 3-mer and 9-mer fragment files (Kim et al., 2004). The REF2015 scoring 

function (Alford et al., 2017) was used to score each model for its conformational stability, and 

the RMSD to the relaxed native structure was calculated for each of the generated models. For 

1BTA, 1CYE, 1TM1, 1UBQ, and 3BLG, we used the fragment files generated by excluding 

homologs. However, for 1A2P, 1AYI, and 1FS3, due to poor model sampling, (none of the models 

generated were considered near-native) fragment files were generated by including homologs. 

Likewise, because of poor observed sampling of the Rosetta AbinitioRelax protocol (both 

with and without homologous fragments), for 1SNO and 2ETL, the RosettaCM protocol was 

applied to generate 10,000 decoy homology models of the target proteins (Song et al., 2013). The 

Standard Protein BLAST server (using the Position-Specific Iterated BLAST) was used to search 

for different protein sequences with various query coverage and percent identity to the target 

protein (Johnson et al., 2008). For 1SNO, 3SK6 and 2W8U were selected as templates, while for 

2ETL, the templates were 1UCH and 3IHR. Percent identity, coverage, and similarity for each 

template are shown in Table S2. The templates were aligned with the targets (1SNO and 2ETL) 

using the Clustal Omega server (Sievers and Higgins, 2018). From the alignment, the sequence of 

the target was threaded onto each template. Finally, 10,000 decoy models were generated by 

hybridizing the threaded target sequence on templates with different weights (Table S2).  

 

Calculations of HDX-dependent metrics 

The HDX rate for each residue was expected to correlate with flexibility and solvent 

exposure (Vadas and Burke, 2015). Neighbor count (NC) and relative solvent accessible surface 

area (RelSASA) were used to quantify solvent accessibility, and order score (OS) and hydrogen 

bond energy (HB) were used to quantify flexibility. Calculations of each of these four metrics were 

thoroughly described in our previous work (Marzolf et al., 2021). In short, NC was based on the 

number of oxygen atoms in the proximity of the amide protons (based on distance and angular 

cutoffs). RelSASA quantified the solvent accessibility of the side-chain atoms by calculating the 

ratio between the measured SASA and the theoretical maximum SASA. OS was a window 

averaged Rosetta residue score, representing the disorder of a residue (Kim et al., 2018; Seffernick 



et al., 2019b). Finally, HB was the hydrogen bonding energy of interactions between the amide 

proton and other residues. All four metrics were calculated using Rosetta applications. 

 

HDX agreement scores 

Similar to the previous work, we developed the HDX agreement score based on the 

observed correlation between the flexibility and solvent exposure metrics and the experimental 

HDX-NMR protection factors (Marzolf et al., 2021). However, here, the quantitative protection 

factors were incorporated directly into the scoring function. From the crystal structures of the ten 

proteins, for each residue with experimental PF (total of 431), four different parameters (NC, 

RelSASA, OS, and HB) were calculated. For each metric, the correlation between the parameters 

and PF of ten proteins was examined with linear regression lines as shown in Equation 2. 

 

 

The trends between each parameter and log(PF) matched our hypotheses (sign of slope, α), 

thus they were used to score predicted structures based on HDX agreement. To score sampled 

structures from Rosetta ab initio or RosettaCM, we first used Rosetta to calculate the four 

parameters (NC, RelSASA, OS, and HB) for each of the residues with HDX PF. Next, the values 

of the parameters were predicted based on the PF (using Equation 2). The slopes and y-intercepts 

of the linear regressions for the four metrics are reported in Table S3. The HDX agreement score 

was developed to score residues by quantifying the absolute differences (𝑖) between the Rosetta 

calculated values and the predicted values of a residue i using the corresponding PF. In short, 

residues with a poor agreement were scored as 0, residues with strong agreement were scored as -

1, and a linear function was used for those between. The specific form of the score function is 

shown in Equation 3. 

 

𝑆𝑐𝑜𝑟𝑒 𝑝𝑒𝑟 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑖 =  {

−1,𝑖 ≤ 𝑐1

𝑖

2
− (

𝑐1 + 𝑐2

4
) − 0.5, 𝑐1 < 𝑖 ≤ 𝑐2 

0, 𝑐2 <  𝑖  

 

 

    (Eq. 3) 

 

 

For each metric, there were two cutoffs used to determine whether the residue followed the 

HDX agreement. Cutoff 1 (c1) was the rewarding cutoff. Specifically, the residue was fully 

rewarded with -1, if 𝑖 was less than c1, which showed that the observed parameters were 

consistent with the predicted parameters. Values of c1 for each different metric were determined 

based on the range of numerical values of each metric (c1 = 1 for NC, c1 = 0.1 for RelSASA, c1 = 

0.2 for OS, and c1 = 0.2 for HB). Cutoff 2 (c2) was the non-rewarding cutoff. If 𝑖 was greater than 

c2, the calculated parameters were inconsistent with the predicted values. Hence, the residue would 

not be rewarded (0). From the standard deviations of native models of 10 proteins for NC, 

RelSASA, OS, and HB (2.31 for NC, 0.278 for RelSASA, 0.623 for OS, and 0.836 for HB), values 

of c2 were determined (c2 = 2.0 for NC, c2 = 0.3 for RelSASA, c2 = 0.6 for OS, and c2 = 0.8 for 

HB). If 𝑖 fell between c1 and c2, the residue would be linearly rewarded based on 𝑖 as shown in 

Equation 3. 

Using this scoring algorithm, the score per residue for each parameter would range between 

-1 for a fully rewarded residue to 0 for a non-rewarded residue. For a model, the HDX component 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = log(𝑃𝐹) ∗  𝛼 +  𝛽  (Eq. 2) 



score (S) for each individual parameter was defined as the sum of the residue scores for all residues 

with experimental PF, as shown in Equation 4. 

 

By including the HDX agreement score, the HDX score was defined as the linear 

combination of the REF2015 Rosetta score (RS) and model score (S) of each metric, as showed in 

Equation 5. The HDX terms in Equation 5 are defined as the HDX component of the score. 

 

𝐻𝐷𝑋 𝑆𝑐𝑜𝑟𝑒 = 𝑅𝑆 + 2 ∗ 𝑆(𝑁𝐶) + 3 ∗ 𝑆(𝑅𝑒𝑙𝑆𝐴𝑆𝐴) + 4 ∗ 𝑆(𝑂𝑆) + 3 ∗ 𝑆(𝐻𝐵) (Eq. 5) 

 

Confidence metric 

A confidence metric was developed to assess the extent of confidence in near-native model 

generation without knowledge of a crystal structure. The confidence metric was defined as the 

average RMSD of the top 10 scoring models to the top scoring model. If the confidence metric 

was less than 6 Å, the prediction was considered to be the high confidence. For these proteins, the 

predicted model had a high probability to be a near-native model. On the other hand, if the 

confidence metric was greater than 6 Å, the prediction was considered low confidence, such that 

a near-native model was not expected to be predicted.   

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
 The correlation between the flexibility and solvent exposure metrics and the experimental 

HDX-NMR protection factors of 431 residues, for which we had protection factors, were examined 

using linear regression (Figure 1). The R2 values were reported in Figure 1, while the slopes and 

y-intercepts were reported in Table S3. The standard deviations of native models of 10 proteins 

for NC, RelSASA, OS, and HB of 431 residues were calculated and reported in the Method Details 

section. All calculations and statistical analysis were performed using Python v3.8. 

 

SUPPLEMENTAL INFORMATION 
SI_PF_HDX_NMR_Structure_resubmission_final_final_v3.pdf 

Document S1. Method S1, Table S1-S3, and Figure S1. Related to STAR Methods. 

 

PF_HDX_Data.xlsx 

Data S1. Residue-resolved protection factor values of the benchmark dataset. Related to STAR 

Methods. 

 

1A2P_tutorial.zip 

Data S2. Inputs for the scoring tutorial in the Supplemental Information. Related to Method S1 

and STAR Methods. 

 

 

𝑆 =  ∑ 𝑆𝑐𝑜𝑟𝑒 𝑝𝑒𝑟 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑖

# 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑤𝑖𝑡ℎ 𝑃𝐹

𝑖

 

 

 

  

(Eq. 4) 
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