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Abstract
We introduce threshold growth in the classical threshold contagion model, or equivalently a

network of Cramér-Lundberg processes in which nodes have downward jumps when there is a
failure of a neighboring node. Choosing the configuration model as underlying graph, we prove
fluid limits for the baseline model, as well as extensions to the directed case, state-dependent inter-
arrival times and the case of growth driven by upward jumps. We obtain explicit ruin probabilities
for the nodes according to their characteristics: initial threshold and in- (and out-) degree. We
then allow nodes to choose their connectivity by trading off link benefits and contagion risk. We
define a rational equilibrium concept in which nodes choose their connectivity according to an
expected failure probability of any given link, and then impose condition that the expected failure
probability coincides with the actual failure probability under the optimal connectivity. We show
existence of an asymptotic equilibrium as well as convergence of the sequence of equilibria on the
finite networks. In particular, our results show that systems with higher overall growth may have
higher failure probability in equilibrium.
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1 Introduction

The random graph approach is a tool for systemic risk modeling when uncertainty stems from
missing information on linkages. Such is the case for financial networks, see e.g. [12, 36, 40].
Instead of who is connected to whom, only aggregated information at the level of each node (agent)
is available. One can think of these as node characteristics, and examples include capital, asset or
liability size, degree of connectivity. Under some degree (distribution) regularity conditions, the
random graph approach allows one to establish a limit (when the size of the network is large) of
the fraction of agents that fail after an exogenous shock. The assumption is that one can categorize
nodes according to some of their characteristics, and within each category, nodes are exchangeable.
Along this direction, [6] assume that connectivity of each node is known and that the underlying
graph is the configuration model, chosen uniformly over all graphs with the prescribed degree
sequence. Their exchangeability assumptions on the linkage weights ensure that a limit exists for
the fraction of nodes with an initial threshold to contagion. The final fraction of affected nodes is
given in closed form for all values of degrees and initial thresholds.

Using random graphs models requires some caution in the real world application. For instance,
networks must be sufficiently large in order for the asymptotic analysis to be relevant. In financial
and risk networks, this is true at the level of a large economic zone. Real-world networks may have
small cycles, while most existing literature on sparse random graphs (nongeometric models with
finite average degree distribution) feature a locally tree-like property when the size of network goes
to infinity, e.g., Erdös-Rényi random graph, configuration model, inhomogeneous random graphs,
preferential attachment model [56]. However, recent literature shows that the basic configuration
model can be extended to incorporate clustering; see e.g., [31, 53, 54, 57]. In light of its tractability
and interpretability, as well as its potential to be enriched with clustering, in this paper we use
the configuration model as our base model. Moreover, in the case of financial networks, closed
form interpretable results based on random graphs can serve as a mandate for regulators to collect
data on that specific network and assess contagion via more intensive computational methods.
Without such mandate, data collection is only at aggregate level and existing methods for filling
in the gaps are entropy methods, likely to understate contagion, or bayesian methods, which are
computationally intensive even to generate one network compatible with the aggregated values.

Our main contribution in this paper is to extend the independent threshold contagion on the
configuration model to the case when nodes’ thresholds receive growth from the linkages. Threshold
models of cascades in social network have been used primarily to study the spread of influence,
see e.g., [44, 47, 50, 59] and references therein.Because losses from the linkages and growth are
intertwined, we call this the recovery feature of the threshold. We are motivated by the application
to financial and insurance-reinsurance networks. Indeed, in financial networks thresholds represent
–depending on the context – either capital or liquidity. An initial set of nodes fail exogenously and
affect the nodes connected to them as they default on financial obligations. If those nodes’ capital
or liquidity is insufficient to absorb the losses, they will fail in turn. In other terms, if the number
of failed neighbors reaches a node’s threshold, then this node will fail as well, and so on. Since
contagion takes time, there is the potential for the capital to recover before the next failure. It is
therefore important to introduce a notion of growth.

Networks of insurers and reinsurers are the closest example of what we model here, for several
reasons. First, as the recent literature [21, 46, 48] emphasizes, network effects are critical in
insurance-reinsurance networks, where reinsurers insure the primary insurers and other reinsurers.
Contagion proceeds as failed reinsurers cannot honor contracts to other institutions, and such
failures can propagate via chains of reinsurance contracts. Such networks contain several thousand
nodes with infrequent reporting, and consequently uncertainty about the reinsurance links, [52].
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Therefore asymptotic results on the scope of contagion on a random graph model are appealing.
Second, the growth model is particularly adequate, as both primary insurers and reinsurers receive
premiums rather deterministically between instances of large losses.

The model we consider in this paper can be seen as a set of Cramér-Lundberg processes living
on the nodes of a graph and which interact through the graph links. The capital grows linearly over
time. In contrast to the Cramér-Lundberg process, losses do not arrive according to an exogenous
Poisson process. Nodes have downward jumps when there is a failure of a neighboring node. When
a node’s capital or liquidity reaches zero, the node fails and it leads to downward jumps to its own
neighbors. The notion of time is also important. Calendar time governs the growth of capital. On
the other hand, jumps are governed by the interaction between nodes (specifically between a failed
one and one of its neighbors, chosen according to a probability law dictated by the random graph
model). There is a natural notion of interaction time and the link revealing filtration. Consequently,
jump arrival times have to be translated from interaction time to calendar time. We assume that
inter-arrival times are exponentials with mean inversely proportional to the size of the network.

We assume that in each time unit, nodes’ growth is proportional to nodes’ number of linkages.
The linear growth as in the Cramér-Lundberg is also consistent with models in the wider network
literature that attribute a fixed reward (respectively cost in some models) to each link as a tradeoff
to more contagion risk (respectively network rewards), see [22] and references therein.

Our model allows us to study a connectivity game in which agents choose their degrees. More
connectivity leads to more benefits from the links, but also to more exposure to contagion risk.
Although stylized, this tradeoff is highly relevant to the last two global crises. In the financial crisis,
it was the banks and other financial institutions that became highly interconnected and posed what
is now well known as systemic risk, a risk that the financial system collapses and imposes extreme
losses in the overall economy. In the current Covid-19 crisis, it is individuals’ choices to connect
(or rather socially disconnect) to their peers that drives the path of the epidemic.

We provide several extensions and applications of the baseline model.

• First, we propose how to apply this model to an epidemic, whose course is determined by the
overall social distancing decision of the agents.

• Second, we allow nodes’ in- and out-degrees to differ. Further, we allow the inter-arrival times
of interactions to depend on the state of the system, and in particular on the number of failed
links (out-going links of failed nodes). This essentially provides a self-exciting process for the
interactions on the network: the more failed linkages in the system, the higher the intensity with
which counterparties are affected.

• Third, we consider the case when the intensity of the growth process can be prescribed and we
provide fluid limits for the number of surviving agents.

• The relation to the Cramér-Lundberg networked risk processes is discussed in Section 5.4. In the
classical model, a firm’s (insurer’s) capital is modeled as

C(t) = x+ αt−
Nβ(t)∑
k=1

Lk, (1)

where x denotes the initial capital, Lk are i.i.d. non-negative random variable and Nβ(t) is a
Poisson process with intensity β independent of Lk. The ruin time for the insurer is defined by
τx := inf{t | C(t) ≤ 0}, (with the convention that inf ∅ = ∞) and the central question is to
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find the ruin probability ψ(x) = P(τx < ∞). In our threshold model with linear growth, there
is capital growth α on every link. Most importantly, losses are not driven by an independent
Poisson process, but by the ruin times of the neighbours. When those losses are constant but
their arrival is driven by the neighbours’ ruin, our model can be seen as the networked version
of (1).

Relation to prior literature. For the Cramér-Lundberg process, many extensions have been
proposed and there is an extensive machinery for a variety of first passage problems. However
the multi-dimensional case is considerably harder. In [28], authors provide Pollaczek-Khinchine
type formula for the transform of ruin probabilities in the two-dimensional case. A risk network
with a central branch has been proposed recently in [14]. A particular dependence that allows for
tractability is when one of the processes models a central branch and another one a subsidiary,
and the jumps form the central branch are driven by bailouts of the subsidiary. This particular
two-dimensional case allows for approximations via a reduction to the one-dimensional case. Other
explicit computations for the two dimensional case are provided in [15–17]. Recent work in insurance
mathematics [20] finds ruin probabilities for risk processes living on bipartite networks, on one side
the firms and on the other side the insured objects. Losses are associated to the objects and
are divided among firms according to the bipartite network. In contrast to our paper, there is
no contagion among firms. In the case of two-dimensional coupled Levy queues, two-dimensional
Laplace transform for the ”or” ruin probability is given in [26]. Our coupling of the individual risk
processes is by the random graph given by the configuration model. This allows us to give explicit
results which are asymptotic and thus quite different in nature.

Limiting systemic risk requires new analytical and computational tools. Several previous works
point to the link between network structure and financial stability, see e.g., [1–3, 9, 11, 19, 30, 34,
35, 38, 39, 43]. In particular, [6] study financial contagion on configuration model and derive a
criterion for the resilience of a financial network to insolvency contagion, based on connectivity and
the structure of contagious links (i.e., those exposures of a bank larger than its capital). The model
extends the results on bootstrap percolation model (when the thresholds are fixed) in configuration
model studied in [4, 5, 18]. Further, [7, 8] studied bootstrap percolation in inhomogeneous random
graphs and show that when the degree distribution has infinite variance, then a sublinear number
of initially infected vertices is enough to spread the infection over a linear fraction of the vertices of
the random graph, with high probability. [32] apply and extend the techniques developed in [7, 8]
to determine minimal capital requirements for financial institutions sufficient to make the network
resilient to small shocks in the context of inhomogeneous random graphs.

Parallel to the development of network models for systemic risk, a recent series of works [27,
37, 41, 42, 42] introduced a reduced form approach to systemic risk analysis, based on mean field
interaction models. Two works on interacting diffusions stand out as highly relevant to our work
[49, 51]. The first one, [51] is closest in spirit. They study diffusions that live on the nodes of an
infinite (directed, weighted) and complete graph, with weights that depend on the end nodes’ types.
There is an underlying stochastic kernel on the type set, and which encodes the networks structure
of the model. Nodes impact each other via upward and downward jumps prescribed by the kernel
when the processes hit certain barriers. Their network, while deterministic, is connected to the
inhomogeneous random graph in [24]. Consistently with past results on contagion in inhomogeneous
random graphs [7–9], the interacting particle system exhibits large macroscopic jumps (that we can
interpret as cascades) that are linked to the largest eigenvalue of a matrix related to the type kernel.
The type kernel can be controlled by the agents via a mean-field game. While close in spirit, the
interactions in our model live on a random graph that is a finite configuration model. We study
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the scaling limit, when the size of this random graph tends to infinity. The process that lives on
the graph nodes is not a diffusion, but a Cramér-Lundberg process, with downward jumps at the
failure times. Note that our model also features types, namely the initial thresholds, and can be
extended to have more categorization, e.g. by having different in- and out-degrees. Agents control
here the connectivity in a rational expectations equilibrium for which we prove convergence as the
number of agents tends to infinity.

In [49], the authors study the scaling limit of interacting diffusions, where infractions do occur
according to a random graph. While remarkably comprehensive, their model is not intended for
cascades and there is no mechanism by which ”small” jumps can add to macroscopic effects and
our results on the size of a dynamic process on the network could not be obtained using their
methodology. Indeed, we could not study the (scaled) limit of the stopping time of the contagion
by analyzing the graph within a finite number of hops from a root. Indeed, as the size of the graph
grows, so does the stopping time of the cascade.

Outline. The paper is organized as follows. In section 2 we give the main results on the scaled
limit of failures when the model allows for recovery. We introduce the problem of choosing connec-
tivity optimally in Section 3 and we give the equilibrium solution in the limit, the convergence of
the equilibrium in the finite network as well as a numerical analysis of the equilibrium. Proofs of
the main result are provided in Section 4. Finally, in Section 5, we give further results on different
extensions.

Notations. We let N be the set of non-negative integers. For non-negative sequences xn and yn,
we write xn = O(yn) if there exist N ∈ N and C > 0 such that xn ≤ Cyn for all n ≥ N , and
xn = o(yn), if xn/yn → 0, as n→∞.

Let {Xn}n∈N be a sequence of real-valued random variables on a probability space (Ω,P). If

c ∈ R is a constant, we write Xn
p−→ c to denote that Xn converges in probability to c. That is, for

any ε > 0, we have P(|Xn − c| > ε)→ 0 as n→∞.
Let {an}n∈N be a sequence of real numbers that tends to infinity as n → ∞. We write Xn =

op(an), if |Xn|/an converges to 0 in probability. Additionally, we write Xn = Op(an), to denote that
for any positive sequence ω(n) → ∞, we have P(|Xn|/an ≥ ω(n)) = o(1). If En is a measurable
subset of Ω, for any n ∈ N, we say that the sequence {En}n∈N occurs with high probability (w.h.p.)
if P(E(n)) = 1− o(1), as n→∞.

Bin(k, p) denotes a binomial distribution corresponding to the number of successes of a sequence
of k independent Bernoulli trials each having probability of success p.

2 Model and results

2.1 A dynamic threshold model of cascades

We consider a system of n nodes (agents) [n] = {1, 2, . . . , n} endowed with a sequence of initial
thresholds (θi)i∈[n]. To simplify the analysis, we assume that in-degree equals out-degree for each

node i ∈ [n], i.e., λ+
i = λ−i = λi. In Section 5.2, we state our main theorem for the case when in-

and out-degree are allowed to differ. Given a connectivity λi, i ∈ [n], nodes form links according
to the random matching from the configuration model. In the (directed) configuration model with
given degree sequence λi, i ∈ [n], each node i is assigned λi in-coming half edges and λi outgoing
half edges. The (multi)graph results from uniform matching of the in-coming half edges and the
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outgoing half edges [23, 55]. Although self-loops may occur, these become rare as n→∞ (under
the assumption that the maximum degree is o(n), see e.g. [55]).

This graph is denoted by G(n) and we write (i, j) ∈ G(n) for the event that there’s a link between

i and j. We let µ
(n)
λ,θ be the fraction of nodes with degree λ and threshold θ,

µ
(n)
λ,θ :=

#{i ∈ [n] | θi = θ, λi = λ}
n

. (2)

We assume the following regularity conditions on the degree sequence and thresholds:

(C1) For every λ, θ ∈ N and for some distribution µ : N2 → [0, 1], as n→∞,

µ
(n)
λ,θ → µλ,θ. (3)

(C2) We also assume that the average connectivity converges to a finite limit, as n→∞

λ̄(n) :=
∑
λ,θ

λµ
(n)
λ,θ →

∑
λ,θ

λµλ,θ =: λ̄ ∈ (0,∞). (4)

We let the fraction of nodes with threshold θ be defined as

µ
(n)
θ :=

∑
λ

µ
(n)
λ,θ .

Remark 1. We state our results for the random multigraph G(n) constructed by configuration
model. However, they could be transferred by conditioning on the multigraph being a simple graph

(without loops and multiple edges). The resulting random graph, denoted by G(n)
∗ , will be uniformly

distributed among all directed graphs with the same degree sequence. In order to transfer the results,
we would need to assume that the degree distribution has a finite second moment and (as n→∞)

∞∑
λ=0

∞∑
θ=0

λ2µ
(n)
λ,θ →

∞∑
λ=0

∞∑
θ=0

λ2µλ,θ ∈ (0,∞),

which from [29, 45] implies that the probability of G(n) being simple is bounded away from zero
as n → ∞. This means that, under the above second moment condition, any property that holds
with high probability on the configuration model, also holds with high probability conditional on

this random graph being simple (for the random graph G(n)
∗ ). Indeed, under the above assump-

tion, [29, 45] show that lim infn→∞ P
(
G(n) simple

)
> 0 for the undirected and respectively di-

rected configuration model. Consequently, for any sequence of properties (events) {E(n)} such that

limn→∞ P
(
G(n) ∈ E (n)

)
= 1, then also limn→∞ P

(
G(n)
∗ ∈ E (n)

)
= 1 since

P
(
G(n)
∗ /∈ E (n)

)
= P

(
G(n) /∈ E (n) | G(n) simple

)
≤

P
(
G(n) /∈ E (n)

)
P
(
G(n) simple

) −→ 0 (as n→∞).

However, we conjecture that all results hold for the uniformly chosen random graph G(n)
∗ even

without the second moment assumption. Indeed, [25] have recently shown results for the size of
the giant component from the multigraph case without using the second moment assumption; they
prove that even with the (exponentially) small probability that the multigraph is simple, the error
probabilities are even smaller.
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This network is subject to contagion risk. After the network is formed, a shock occurs. We
let D0 represent an exogenous set of failed nodes. This initial set of failed nodes triggers a failure
cascade, as failed nodes affect the nodes connected to them. Whenever a node’s threshold is smaller
than the number of failed (in-coming) links, i.e., linkages starting from failed nodes, then it fails
due to contagion.

Recovery feature. During the cascade processes, there is a growth feature in the whole
system. This feature is captured by introducing the global growth rate (per unit time) α ·n for the
system with n nodes, where 0 ≤ α < 1. We think of α · n is the rate of growth per unit time of the
entire capital. We assume this global growth is distributed proportionally to the node’s number of
links. That is, the threshold of nodes with connectivity λ will grow with rate (per unit time)

α · n · λ∑
λ,θ λµ

(n)
λ,θn

=
αλ

λ̄(n)
,

where
∑

λ,θ λµ
(n)
λ,θn = nλ̄n gives the total number of links in the system.

A very important feature is that only surviving nodes can grow.

We now introduce the dynamic model of contagion. At time 0 nodes in set the D0 fail ex-
ogenously. Each failed link, defined as a link between any node and a failed node, represents an
interaction and the number of interactions is always lower than the total number of linkages in the
network G(n). In the dynamic model, we introduce the calendar time and relate it to interaction
time. We will study the scaling limit of contagion size and we assume that the total (calendar)
time for all interactions is independent of n. Since the number of links scales linearly with n (see
(4)) then the average time between interactions must scale with 1

n . For a system with n nodes, we

define T
(n)
k the calendar time of the kth interaction and we refer to k as the interaction time.

We assume that the duration in calendar time between the two successive interactions is given

by a random variable ∆
(n)
k follows an exponential distribution of parameter n, i.e.,

∆
(n)
k = T

(n)
k − T (n)

k−1 ∼ Exp(n).

This reward mechanism in the dynamic case allows the threshold to grow αλ
λ̄(n) ∆

(n)
k between the

two interactions. Further extensions will be discussed in Section 5.
The dynamics of interactions is as follows: links that belong to failed nodes are revealed one by

one (initially all such links are unrevealed). At each interaction time, a link belonging to a failed
node is revealed1 and the survival condition of the counterparty node is checked according to its
current threshold. If the number of failed links of the counterparty exceeds its current threshold,
the node fails and its links become unrevealed failed links. The cascade progresses until there are
no more unrevealed failed links. Therefore it stops at most after nλ̄(n) interactions.

Formally, we let S
(n)
λ,θ,`(k) be the number of surviving nodes with initial threshold θ, λ outgoing

links and ` failed (incoming) links at time T
(n)
k . We have that S(n)(k) =

(
S

(n)
λ,θ,`(k)

)
λ,0≤`≤λ,0≤θ≤λ

is a Markov chain and its transitions are given in Section 4.1.

Remark 2 (Threshold at k-th interaction). It is easy to see that any (surviving) node with λ
outgoing links and initial threshold θ will have a threshold

θ + α
λ

λ̄(n)
T

(n)
k

at the k-th interaction.
1The choice is uniform among all unrevealed links belonging to failed nodes.
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The number of failed nodes among those with connectivity λ and initial threshold θ is then

D
(n)
λ,θ (k) = nµ

(n)
λ,θ −

∑
0≤`<dθ+α λ

λ̄(n)
T

(n)
k e

S
(n)
λ,θ,`(k).

Contagion stops at a time when all failed links have been revealed

k
(n)
stop = min

{
k = 0, 1, . . . , nλ̄(n) :

∑
λ,θ

λD
(n)
λ,θ (k) = k

}
.

We let D(n)
f the set of failed nodes at the end of the contagion process. The number of failed nodes

at the end of the contagion process is thus given by

| D(n)
f | =

∑
λ,θ

D
(n)
λ,θ (k

(n)
stop).

2.2 Limit theorem in the case without growth

In the case without recovery feature, i.e. α = 0, the asymptotic fraction of failed nodes is charac-
terized by the following theorem:

Theorem 3 ([6]). Consider the above threshold contagion process without growth (α = 0) on
random graph G(n) satisfying Conditions (C1)− (C2). Let π∗ be the smallest fixed point of the map
J in [0, 1], where

J(π) :=
∑
λ,θ

λµλ,θ

λ̄
·Bλ,θ(π),

and,

Bλ,θ(π) := P(Bin(λ, π) ≥ θ) =
λ∑
`=θ

(
λ

`

)
π`(1− π)λ−`.

(i) If π∗ = 1, i.e., if J(π) > π for all π ∈ [0, 1), then asymptotically (as n→∞) almost all nodes
fail during the cascade.

(ii) If π∗ < 1 and π∗ is a stable fixed point of J , i.e., J ′(π∗) < 1, then the final fraction of failed
nodes converges in probability to

| D(n)
f |
n

p−→
∑
λ,θ

µλ,θBλ,θ(π
∗). (5)

Furthermore, the asymptotic fraction of surviving nodes with degree λ and initial threshold θ
converges in probability (as n→∞)

S
(n)
λ,θ (k

(n)
stop)

n

p−→ µλ,θ (1−Bλ,θ(π∗)) .

Theorem 3 states that in the asymptotic limit the fraction of failed nodes can be described by
means of the binomial distribution (which governs the solution on the infinite Galton-Watson tree):
given the probability π∗ that a link failed, then the probability of failure of a node with connectivity
λ and threshold θ is approximated by Bλ,θ(π

∗), the probability of failure as if the links failure events
were independent. For this reason we will refer to π∗ as the global failure probability, which is the
probability that a link chosen at random leads to a failed node at the end of the cascade process,
in the limit when n→∞. The fraction of failed nodes is given by (49). Note that a fixed point as
in theorem always exists as we check that J(0) ≥ 0 and J(1) ≤ 1 and the function J is continuous.
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2.3 Scaled limit of contagion with recovery features

We can now extend Theorem 3 to the case where the global growth rate is α > 0. We will prove
that a similar convergence result also holds in this case. The proof is more involved because the
threshold at any point in time is no longer constant and equal to θ, but grows at a rate α. Nodes
that fail during the contagion process will not benefit from the recovery feature, only surviving
nodes can grow at any given time. This presents challenges in the description and the analysis of
the system.

In the case without growth, it was sufficient at any time to keep track of the number of failed
linkages since failure happens when the number of failed linkages reaches the initial threshold. In
contrast, here nodes fail at the first time when the number of failed links reaches the initial threshold
plus the growth up to that time, so it is insufficient to keep track only of the current number of
failed links. We need to keep track of cumulative failed links process (which is an increasing jump
process with jump size one). If this process has ever crossed the threshold (with linear growth),
then the node has failed, so the failure of a node is a first passage problem.

Remarkably, one can give a heuristic to compute the probability that a node fails based on a
notion of average growth and the notion of global failure probability. The rigorous proof is given
below as proof to Theorem 5.

Heuristic of node failure probability computation. We introduce Bα
λ,θ(π

∗) as the failure
probability of a node with degree λ, threshold θ when the growth rate is α and the global failure
probability is π∗. We also introduce βαλ,θ,`(π

∗) as the probability that the nodes with connectivity λ,
initial threshold θ and under the growth threshold rate α survive when the global failure probability
is π∗ and have ` failed links at the end of cascade. The quantity Bα

λ,θ(π
∗) can be calculated by:

Bα
λ,θ(π

∗) := 1−
λ∑
`=0

βαλ,θ,`(π
∗).

By Remark 2 the threshold at the end of the cascade is (approximately)

θ + α
λ

λ̄(n)

k
(n)
stop

n
.

As we will see, side result of the proof to Theorem 5 is that

k
(n)
stop

λ̄(n)n

p−→ π∗.

The global failure probability π∗ can also be thought of as the duration of the contagion in calendar
time: the higher the global failure probability, the longer the contagion lasts. In turn, if the cascade
lasts for longer then nodes that survive have also recovered for longer. Heuristically, the final
threshold θ + αλπ∗ is the initial threshold plus the growth. A (necessary) condition for the node
to survive is that the number of failed links ` does not exceed the final threshold. Hence,

βαλ,θ,`(π
∗) = 0 for ` ≥ dθ + αλπ∗e.

Note that Bα
λ,0(π∗) = 1. This follows by definition, since βλ,0,`(π

∗) = 0. Moreover, we can check
that Bα

λ,θ(0) = 0 for θ > 0 (all not initially failed nodes survive). This is due to the following:

(i) If ` = 0, then βαλ,θ,`(0) =
(
λ
0

)
00(1− 0)λ = 1;
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(ii) If 0 < ` ≤ θ, then βαλ,θ,`(0) =
(
λ
`

)
0`(1− 0)λ−` = 0;

(iii) If ` > θ, then βαλ,θ,`(0) = 0.

In general, when 0 ≤ π ≤ `−θ
αλ , we have βαλ,θ,`(π) = 0 (see Theorem 5 (ii)).

We now proceed to give the heuristic for the computation of β. For the case when the number of
failed links ` is smaller or equal than the initial threshold θ, then the survival probability βαλ,θ,`(π

∗)
is simply the binomial distribution (the probability to have ` failed links)

βαλ,θ,`(π
∗) =

(
λ

`

)
(π∗)`(1− π∗)λ−` for ` ≤ θ,

since each link is exposed to failure probability π∗. For the case when ` is larger than the initial
threshold θ, the calculation of βαλ,θ,`(π

∗) is more involved.

If the number of failed links is ` > θ, then the node is definitely failed if the growth cannot
cover `− θ, i.e., if απ∗λ ≤ `− θ, which gives

βαλ,θ,`(π) = 0 for 0 ≤ π ≤ `− θ
αλ

.

In contrast, if π > `−θ
αλ then we need to make sure that the node survives. Namely, it needs to

satisfy the survival condition at the end of contagion and also at each time before. This makes the
computation more involved. Remarkably, the solution has a combinatorial representation, that we
show in Figure 1. The key point is to identify the critical times when the threshold process could be
crossed by the cumulative failed links process. Let t be the current time in the spread of contagion.

As we will show, the cascade will end at a time (step) k
(n)
stop when all failed linkages have been

explored and is related to the global link failure probability π∗ by a scaling constant: tstop ≈ λ̄π∗.
The longer the contagion lasts the larger the global link failure probability. We note that the
threshold process for a node with initial threshold θ and connectivity λ is θ + αλ

λ̄
t, t ∈ [0, tstop].

Recall that we are computing the survival probability of such a node, given that its final number
of failed linkages is `. For every u ∈ [θ + 1, `] we let

tu = tλ,θ,u :=
u− θ
αλ

,

the scaled time (real time divided by average degree λ̄) when the node’s threshold process is equal
to u and thus the node can withstand up to u failed links at this time. In order to ensure that the
node survives, we need to check that the number of failed links at time t` is lower than `. The first
case is when this number is r ≤ θ. In this case, we are sure that the cumulative failed links process
has not crossed the threshold process at any time s ∈ [0, tλ,θ,`]. Therefore the survival probability
in this case is simply the probability that there are r failed linkages between 0 and t` times the
probability that there are `− r failed linkages between the time t` and tstop. The proof of Theorem
5 suggests that the failure probability of a linkage in any time interval is proportional to the length
of that interval (with the scaling 1

λ̄
).

The second case is when the number of failed links at time t` is θ+um, for some um ∈ [1, `−θ−1].
Then we have a backward recursion by which we determine previous times when we need to check
that the crossing has not happened. The previous time when such crossing could have happened is
tθ+um , since between tθ+um and t`, the threshold processes is definitely above θ+um. Thus we only
need to check that the number of failed links at time tθ+um is given by θ + um−1 for um−1 < um.
By the same reasoning, we need to check at time tθ+um−1 the number of failed links is given by
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θ + um−2 for a um−2 < um−1 and so on, until at time tθ+u1 we need to check that the number of
failed links is r ≤ θ. Then the survival probability is the product of the probabilities that there
are r, θ + u1 − r . . . , um−1 − um−2, um − um−1 and ` − θ − um in the respective time intervals
[0, tθ+u1 ], [tθ+u1 , tθ+u2 ] . . . , [tθ+um−1 , tθ+um ], [tθ+um , t`] and finally [t`, tstop]. It is understood that
m is a discrete variable which takes values in [1, `− 1− θ] (this is the number of times it would be
possible to cross the threshold process).

t

`

θ

θ + αλt

tstop

`

t`

θ + um

tθ+um

θ + um−1

tθ+u1

r
r

Figure 1: Heuristic of node failure probability computation

It turns out that

βαλ,θ,`(π)(
λ
`

)
π`(1− π)λ−`

=
θ∑
r=0

`−θ−1∑
m=1

∑
0<u1<...<um<`−θ

`!

r!(θ + u1 − r)!(u2 − u1)! . . . (um − um−1)!(`− θ − um)!( u1

αλπ

)r (u2 − u1

αλπ

)θ+u1−r (u3 − u2

αλπ

)u2−u1

. . .

(
um − um−1

αλπ

)um−1−um−2

(
`− θ − um

αλπ

)um−um−1
(

1− `− θ
αλπ

)`−θ−um
.

Let Uπ1 , U
π
2 , . . . , U

π
` be i.i.d. uniform distribution on [0, π] and the order statistics be

Uπ(1) ≤ U
π
(2) ≤ · · · ≤ U

π
(`).

As the above heuristic arguments suggest, we expect to have

• for ` = 0, 1, . . . , θ:

βαλ,θ,`(π) =

(
λ

`

)
π`(1− π)λ−`.

• for ` = θ + 1, . . . , λ:

βαλ,θ,`(π) =

(
λ

`

)
π`(1− π)λ−`P

(
Uπ(θ+1) > tθ+1, U

π
(θ+2) > tθ+2, . . . , U

π
(`) > t`

)
,

where tu = tλ,θ,u = u−θ
αλ for all u = θ + 1, . . . , λ.
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Let us denote by

Pλ,θ,`(π) := P
(
Uπ(θ+1) > tθ+1, U

π
(θ+2) > tθ+2, . . . , U

π
(`) > t`

)
, (6)

for ` = θ + 1, . . . , λ and Pλ,θ,`(π) = 1 for ` = 0, 1, . . . , θ.

Remark 4. The density of Uπ(θ+1), U
π
(θ+2), . . . , U

π
(`) is given by

f(xθ+1, xθ+2, . . . , x`) =
`! (xθ+1)θ

θ!π`
11{0<xθ+1<xθ+2<···<x`<π}.

With the intuition behind the survival probability computation, we can now turn to finding the
global link failure probability π∗. Our theorem below shows that this quantity is the solution to
the fixed point equation π = Jα(π), where the function Jα makes use of the survival probability
Bα. To see that this fixed point represents the global link failure probability, let us multiply
both sides of the fixed point equation with nλ̄, which represents the total number of links in the
network. Then on the lefthand side we have π∗nλ̄ which represents the expected total number of
failed links present in the system at the end of the cascade. The number of failed links at the end
of the cascade can be also accounted as the sum of expected failed links across different nodes.
Indeed, λnµλ,θB

α
λ,θ(π

∗) gives the expected number of failed links from nodes with threshold θ and
connectivities λ, since Bα

λ,θ(π
∗) represents the failure probability of node with threshold θ and

connectivities λ while λnµλ,θ counts the total number of links belongs to such nodes. Summing
up over θ and λ we have that

∑
λ,θ λnµλ,θB

α
λ,θ(π

∗) also gives the total number of failed links. The
fixed point equation π∗ = Jα(π∗) states that the second way to account for failed links reaches the
same value as the first one.

Theorem 5. Consider the above threshold contagion process with growth (α > 0) on random graph
G(n) satisfying Conditions (C1)− (C2). Let π∗ be the relaxed fixed point of the map Jα defined as

π∗ := min{π ∈ [0, 1] | Jα(π) ≤ π},

where

Jα(π) :=
∑
λ,θ

λµλ,θ

λ̄
Bα
λ,θ(π),

and for fixed α, λ, θ, π,

Bα
λ,θ(π) := 1−

min{dθ+αλπe−1,λ}∑
`=0

(
λ

`

)
π`(1− π)λ−`Pλ,θ,`(π).

We have for all ε > 0, w.h.p.,

| D(n)
f |
n

≥
∑
λ,θ

µλ,θB
α
λ,θ(π

∗)− ε.

Moreover,

(i) if π∗ = 1, i.e., if Jα(π) > π for all π ∈ [0, 1), then asymptotically (as n → ∞) almost all
nodes fail during the cascade.
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(ii) if π∗ < 1 and π∗ is a stable fixed point of Jα, then the final fraction of failed nodes converges
in probability to

| D(n)
f |
n

p−→
∑
λ,θ

µλ,θB
α
λ,θ(π

∗). (7)

Furthermore, the asymptotic fraction of surviving nodes with degree λ and initial threshold θ
converges in probability (as n→∞)

S
(n)
λ,θ (k

(n)
stop)

n

p−→ µλ,θ
(
1−Bα

λ,θ(π
∗)
)
.

Note that when α = 0, we have B0
λ,θ(π) = Bλ,θ(π) and we recover the result of Theorem 3.

Remark 6 (Existence and stability of a fixed point). The relaxed fixed point always exists, even
if Jα is discontinuous, since Jα(0) ≥ 0 and Jα(1) ≤ 1. When the function Jα is continuous on
[0, 1), the relaxed fixed point is the same as a standard fixed point. We request that π∗ is a stable
fixed point, i.e., it is not a local minimum of the function Jα(π) − π. The stability condition of
the fixed point solution therefore implies that Jα(π)− π becomes negative after π∗. As we will see,
Jα(π) − π is (asymptotically) the fraction of remaining failed links (for which interaction has not
yet taken place). Intuitively, contagion stops when there are no more failed linkages, so when π∗

is a stable fixed point, w.h.p contagion stops at time λ̄π∗ + o(1). On the other hand, if π∗ is not a
stable fixed point, it cannot be guaranteed that there are no remaining failed links and more precise
error bounds around π∗ would be needed. This case remains an open question.

The main theorem is established by describing the contagion process using a Markov chain of
lower dimension than the initial system, in which we aggregate nodes according to their connectivity,
threshold, and number of failed counterparties. From the point of view of the evolution of the
cascade, the nodes in the same class are exchangeable. We use the standard machinery of Wormald’
differential equation method to prove that the rescaled Markov chain converges in probability to
a limit described by a system of ordinary differential equations. However, the application is quite
tricky, especially due to complications like the state space increasing with time. This readily gives
us the asymptotic fraction of surviving nodes (in each class of connectivity and threshold) at each

time of the cascade spread. The stopping time of the cascade k
(n)
stop is the first time when there

are no more unexplored failed linkages. We can relate the stopping time of the cascade to the
global failure risk captured by π∗ and in the sequel we will use this quantity to define the nodes’
performance criteria and define their connectivity optimization problem.

3 Agents’ optimal connectivity choice in equilibrium

In this section we introduce the problem of optimal connectivity choice. In choosing their con-
nectivity, agents (nodes) face the following tradeoff: as they add more connectivity, they increase
the risk of contagion. At the same time they derive more rewards from their linkages. In the
finance example, one can lend more and earn more interest, but with more connections comes
more counterparty default risk. In an epidemic example, that we push further in Section 5.1, more
connectivity can mean more social contacts or economic activity, and at the same time more local
and global infection risk.

Here we study this trade-off in the simplest form. Surviving agents with connectivity λ receive
λ (units of a numéraire) at the end of the cascade. They receive no reward (and later we will allow
for potential loss) if they fail. We define the agents’ reward as follows.
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Definition 7 (Nodes’ asymptotic reward). We define the asymptotic reward for a node with degree
λ and threshold θ as the expected benefit of linkages, and it is given in the asymptotic limit by

λ
(
1−Bα

λ,θ(π
∗)
)
,

with π∗ given in Theorem 5.

The timeline is as follows. At time 0, each node is given a certain positive threshold (its initial
capacity to absorb losses from potential counterparties). The distribution of thresholds is common
knowledge. Based on the reward function and its threshold each node chooses its connectivity. The
network is then formed according to the configuration model and is subject to an exogenous initial
shock. The contagion then ensues starting from the set of exogenous initial failures (chosen with
fixed probability among all nodes, for simplicity).

3.1 Asymptotic Nash equilibrium analysis

The global link failure probability π∗ depends on the connectivity choice of all agents. Therefore,
the optimal connectivity is an outcome of an equilibrium. In a large network of size n, nodes with
degree λ and threshold θ compute a reward

λ

1−
D

(n)
λ,θ (k

(n)
stop)

n

 = λ
(
1−Bα

λ,θ(π
∗) + op(1)

)
. (8)

We now proceed in two steps to determine this equilibrium with the asymptotic criterion. In
the first step, we let nodes choose their connectivity according to an expected failure probability π
of a link, i.e., a node with threshold θ chooses a connectivity λ∗θ(π) which satisfies

λ∗θ(π) ∈ arg max
λ

λ
(
1−Bα

λ,θ(π)
)
. (9)

In the second step, we will impose an equilibrium condition that the expected failure probability
of a link coincides with the actual failure probability of a link, under the optimal connectivity.

It is understood that all other nodes’ connectivities and nodes optimize the same asymptotic
criterion in all networks of size n. A finite optimizer exists, and as such it can be used to obtain
an equilibrium.

Proposition 8 (Existence). The optimization problem (43) admits a finite optimizer λ∗θ(π).

Proof. We define V (λ) := λ
(
1−Bα

λ,θ(π)
)

which is (upper) bounded by the following quantity:

U(λ) := λ

( ∑
`≤θ+αλπ

(
λ

`

)
(1− π)λ−`π`

)
.

We recognize here that 1 −Bα
λ,θ(π) is bounded by an Incomplete beta function I1−π(λ− θ + 1, θ).

It follows that
U(λ) = λI1−π(λ− θ − αλπ, θ + αλπ + 1).

We next recall the following estimates: if k ≤ nπ, then

I1−π(n− k, k + 1) ≤ exp

(
−(nπ − k)2

2πn

)
.
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Since α < 1, there exist λ0 such that when λ > λ0, we have θ + αλπ ≤ λπ. This gives

V (λ) ≤ U(λ) ≤ λ exp

(
−(λπ − θ − αλπ)2

2πλ

)
= λ exp

(
−(1− α)2

2
λπ +

(1− α)

2
θ − θ2

2λπ

)
The righthand side tends to 0 when λ→ +∞. Thus the maximizer exists and is finite.

Remark 9. The quantity U gives the value function for the same optimization problem for a
modified system in which we allow failed nodes to receive rewards from their linkages and even
recover, so it is intuitive that V (λ) ≤ U(λ). We formally check that V (λ) ≤ U(λ) by using the
inequality βαλ,θ,`(π) ≤

(
λ
`

)
(1− π)λ−`π`.

We now impose the equilibrium condition that the anticipated global failure probability co-
incides with the global failure probability given by Theorem 5 when nodes are at their optimal
connectivity.

Definition 10 (Equilibrium). We call
(
π∗, (λ∗θ)θ≥0

)
a rational expectations equilibrium if

• given π∗,
λ∗θ ∈ arg max

λ
λ
(
1−Bα

λ,θ(π
∗)
)
, for each θ; (10)

• π∗ is the smallest solution of the fixed point equation :

π∗ =
∑
θ

λ∗θµθ∑
θ λ
∗
θµθ

Bα
λ∗θ ,θ

(π∗). (11)

The fixed point equation in the equilibrium definition is derived from the fixed point equation in
Theorem 5, where the connectivity is set to λ∗θ and we let µθ = µλ∗θ ,θ. Combining the two conditions
above, we see that in equilibrium the failure probability of a link π∗ is the smallest fixed point of
the map

Jα(π) :=
∑
θ

λ∗θ(π)µθ∑
θ λ
∗
θ(π)µθ

·Bα
λ∗θ(π),θ(π), (12)

where λ∗θ(π) is defined in (43).
Now we study the existence of the equilibrium.

Proposition 11 (Existence of equilibrium). When λ∗θ(π) is continuous in π ∈ [0, 1), the function
Jα admits at least one fixed point π∗. When λ∗θ(π) is not continuous in π, the map Jα admits a
relaxed fixed point π∗ defined as

π∗ := min{π ∈ [0, 1) | Jα(π) ≤ π}.

For both cases, we let λ∗θ = λ∗θ(π
∗).

Proof. The proof is immediate: when λ∗θ(π) is continuous in π ∈ [0, 1) then the function Jα is
continuous on [0, 1). It thus admits at least one fixed point since

lim
π→1

Jα(π) ≤
∑
θ

µθ
λ∗θ(π)∑
θ λ
∗
θ(π)µθ

= 1

and limp→0 J
α(0) ≥ 0. When λ∗θ(π) is not continuous, the relaxed fixed point always exists since

Jα(0) ≥ 0 and Jα(1) ≤ 1.
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Proposition 12. The continuity of the map π → λ∗θ(π) holds under uniqueness of the optimal
connectivity λ∗θ(π).

Proof. Suppose uniqueness holds. For a fixed θ, if πi → π, let

λi = arg max
λ

λ
(
1−Bα

λ,θ(πi)
)
.

We may assume λi ≤ K for some constant K. Now suppose λ∗ is an accumulation point of λi, that
is, λ(i) → λ over some subsequence. Since λ

(
1−Bα

λ,θ(πi)
)

is continuous in λ and πi, we have

λ∗ = arg max
λ

λ
(
1−Bα

λ,θ(π)
)
.

In particular, any accumulation point of the sequence πi is an optimizer. Since the optimizer is
unique, the only accumulation point of the sequence λi is the optimizer λ∗. Thus we have proved
that any subsequence of λi has a further subsequence that converges to λ∗, which indicates λi → λ∗.
This gives λ(πi)→ λ(π), so the map π → λ∗θ(π) is continuous.

Remark 13 (Asymptotic Nash equilibrium). We can relate the equilibrium of Definition 10 to
a Nash equilibrium of the following game. Any player with threshold θ0, given the connectivity
{λθ}θ 6=θ0 of the other players, computes their optimal connectivity

λ∗θ0(π) ∈ arg max
λ

λ
(
1−Bα

λ,θ0(π)
)
,

under the constraint that∑
θ 6=θ0

µθ
λθ∑

θ 6=θ0
µθλθ + µθ0λ

Bα
λθ,θ

(π) + µθ0
λ∑

θ 6=θ0
µθλθ + µθ0λ

Bα
λ,θ0(π) = π.

We can rewrite the above constraint as π = J({λ∗θ}θ 6=θ0 , λ) for some function J . Thus, the
optimization criterion can be rewritten as :

λ∗θ0 ∈ arg max
λ

λ
(
1−Bα

λ,θ0(J({λ∗θ}θ 6=θ0 , λ))
)
.

In this sense, (λ∗θ, θ ≥ 0) is a Nash equilibrium.

The following theorem establishes that the equilibrium in the network of size n converges to
the asymptotic equilibrium.

Theorem 14. For the network of size n, define a rational expectations equilibrium
(
T ∗(n), (λ

∗(n)
θ , θ ≥ 0)

)
as follows:

• Given T ∗(n)

λ
∗(n)
θ ∈ arg max

λ
λ

1−
D

(n)
λ,θ (T ∗(n))

n

 , for each θ; (13)

• T ∗(n) is the smallest solution of the fixed point equation :

T ∗(n) =
∑
θ

λ
∗(n)
θ µ

(n)
θ ·D

(n)

λ∗(n),θ
(T ∗(n)).
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Suppose λ
∗(n)
θ is unique in (13). If we define π∗(n) := T ∗(n)∑

θ λ
∗(n)
θ µ

(n)
λ,θn

, then we have (as n→∞)

π∗(n) −→ π∗ and λ
∗(n)
θ −→ λ∗θ. (14)

Proof. Firstly we notice that if
(
T ∗(n), (λ

∗(n)
θ , θ ≥ 0)

)
is the standard equilibrium of (13), then π∗(n)

is the fixed point of the map

J (n)(π) :=
∑
θ

λ
∗(n)
θ (π)µ

(n)
θ∑

θ λ
∗(n)
θ (π)µ

(n)
λ,θ

·
D

(n)

λ
∗(n)
θ ,θ

(
λ
∗(n)
θ (π)µ

(n)
θ nπ

)
n

, forπ ∈ [0, 1]. (15)

By the continuity of arg max, we have λ
∗(n)
θ (π) −→ λ∗θ(π) as n→∞. By the uniform convergence

results (32), we obtain

D
(n)

λ
∗(n)
θ ,θ

(
λ
∗(n)
θ (π)µ

(n)
θ nπ

)
n

p−→ Bα
λ∗θ ,θ

(π).

These give J (n)(π)
p−→ J(π) as n → ∞ for π ∈ [0, 1]. Obviously we have |J (n)(π)| ≤ 1 for each n.

If we furthermore assume the sequence {J (n)}n∈N is equicontinuous, i.e. for each ε > 0 there is a
δ > 0 such that

|J (n)(π1)− J (n)(π2)| < ε (16)

whenever |π1 − π2| < δ for all functions J (n) in the sequence. Then by Arzela-Ascoli theorem,
the sequence {J (n)}n∈N contains a uniformly convergent subsequence {J (nk)}k∈N. Now suppose
{π(nk)}k∈N are the fixed points of the maps {J (nk)}k∈N. i.e. J (nk)(π(nk)) = 0. Since {π(nk)}k∈N are

bounded in [0, 1], π∗ is an accumulation point of π(nk), that is, π
(nk)
(i) → π∗ over some subsequence.

Taking limit of both sides on subsequence, since J (n) is continuous in π, we obtain J(π∗) = 0.

In particular, any accumulation point of the sequence π
(nk)
(i) is a zero point. Since the zero point

is unique, the only accumulation point of the sequence π(nk) is the optimizer π∗. Thus we have
proved that any subsequence of π(nk) has a further subsequence that converge to π∗, which implies
π(nk) → π∗.

3.2 Numerical analysis of equilibrium

While the equilibrium connectivity cannot be given in closed form, it can be efficiently investigated
numerically as it benefits of the simple closed form equations for the probability of survival and
the fixed point equation for the global link failure probability.

We first investigate for regular homogeneous networks how agents choose their connectivity
when they all have the same initial threshold θ. The initial failure probability is p(0) = 0.05.
Figure 2 shows that equilibrium connectivity is non decreasing with the initial threshold and the
growth parameter α. However, the monotonicity of the failure probability does not hold neither
with θ nor with α. This is a case of moral hazard: the individual agent chooses a higher connectivity
because it leads to a higher increase in utility. Then, the overall failure risk increases in the system.

We now assume that nodes’ initial thresholds θ are randomly distributed over a given range
[0, θmax]. We keep the mean constant and we change the variance of this distribution. We assume
a conditional Gaussian distribution with mean 5 and standard deviation σ ∈ [1, 5] (We then con-
dition on the interval [0, 30] and take the integer part). As we vary σ from 1 to 6 we have more
heterogeneity in the initial threshold.
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Figure 2: Failure probability and average connectivity in equilibrium with different initial threshold
θ for regular networks with initial failure probability p(0) = 0.05.
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Figure 3: Failure probability and final fraction of failed nodes in equilibrium with different standard
deviations and global growth rates. Here the thresholds are normally distributed with mean 5,
conditioned to be between 0 and 20. The initial failure probability is p(0) = 0.05.
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Figure 3 shows that while most of the time, the average connectivity increases with the global
growth rate and with the standard deviation, the failure probability is a more irregular and complex
function of these variables.

We find that for both cases with medium growth (α ≈ 0.4) and small growth (α ≈ 0) the
link failure probability in equilibrium decreases as initial thresholds become more heterogeneous
(as modeled by larger standard deviation for the initial threshold distribution). As agents become
more dissimilar in terms of their thresholds, the system is more diversified and turns out more
robust. This is true even as larger standard deviation in the initial distribution of θ gives raise to
larger average connectivities in equilibrium.

As we vary the growth rate α ∈ [0, 0.4], we find that the link failure probability and final fraction
of failed nodes in equilibrium both increase as the growth rate increases. This unintuitive result can
be explained as follows. When growth increases, agents may engage in over-lending (the equilibrium
connectivity λ∗θ increases). Nodes with higher thresholds can act as stabilizers in the system when
they choose a lower connectivity, but this is no longer true if they increase their connectivity as it
happens when α increases. The growth effect on the thresholds can be outweighed (for α in small
and medium range) by the increase in connectivity throughout the system and especially for the
most connected nodes. In this case more instability can ensue as the growth rate increases. As
expected, when α is large enough (α ∈ [0.4, 1]), then the growth effect outweighs the effect of larger
connectivity.

4 Proofs and asymptotic results

In this section, we present the proof of Theorem 5. In [6], the authors extend the differential
equation method of [60] to show that as the network size increases, the rescaled Markov chains
that describe the contagion converge in probability to a limit described by a system of ordinary
differential equations. The case solved there corresponds to the zero growth case α = 0 of this
paper. Here, with non-zero growth, the size of the state space also increases with time as the
threshold increases. We show similar convergence results to a limit described by a more involved
system of ordinary differential equations for the case α > 0 and we obtain an analytical result on
the final fraction of failed nodes in the network. The convergence result is shown in section 4.3.

4.1 Markov chain transitions

The set of survived nodes in different states Sn(k) =
(
S

(n)
λ,θ,`(k)

)
λ,0≤θ≤λ,0≤`≤λ

represents a Markov

chain whose transition probabilities are as in [6]. The key difference is that the number of possible
solvent states changes with time as nodes’ threshold grows, in particular it is possible the have

surviving nodes with ` failed links for 0 < ` < θ + α
λ̄(n) · λ · T

(n)
k .

Formally, we let ∆
(n)
k be the difference operator: ∆

(n)
k S := S(n)(k + 1) − S(n)(k). We let F (n)

k

the natural filtration of the Markov chain. We obtain the following equations for the expectation
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of Sn(k + 1), conditional on F (n)
k , by averaging over the possible transitions:

E[∆
(n)
k S

(n)
λ,θ,0 | F

(n)
k ] = −

(
λ

λ̄(n)n− k

)
S

(n)
λ,θ,0(k),

E[∆
(n)
k S

(n)
λ,θ,`(k) | F (n)

k ] =

(
λ− `+ 1

λ̄(n)n− k

)
S

(n)
λ,θ,`−1(k)−

(
λ− `

λ̄(n)n− k

)
S

(n)
λ,θ,`(k), 0 < ` < θ +

α

λ̄(n)
· λ · T (n)

k ,

E[∆
(n)
k S

(n)
λ,θ,`(k) | F (n)

k ] =

(
λ− `+ 1

λ̄(n)n− k

)
S

(n)
λ,θ,`−1(k), ` = θ +

α

λ̄(n)
· λ · T (n)

k ,

S
(n)
λ,θ,` = 0, ` ≥ θ +

α

λ̄(n)
· λ · T (n)

k .

The initial condition is

S
(n)
λ,θ,`(0) = µ

(n)
λ,θn11(` = 0)11(0 < θ ≤ λ).

The last two equations capture the feature that failed nodes will not benefit from the thresh-
old growth. Recall that the number of failed nodes among those with connectivity λ and initial
threshold θ is

D
(n)
λ,θ (k) = nµ

(n)
λ,θ −

∑
0≤`<dθ+α λ

λ̄(n)
T

(n)
k e

S
(n)
λ,θ,`(k),

and contagion stops at a time when all failed links have been revealed

k
(n)
stop = inf

{
k = 0, 1, . . . , nλ̄(n) :

∑
λ,θ

λD
(n)
λ,θ (k) = k

}
. (17)

Indeed, the number of (alive) outgoing half-edges belonging to failed nodes at time k is

D
(n)
out =

∑
λ,θ

λD
(n)
λ,θ (k)− k

and k
(n)
stop is the first time that D

(n)
out = 0. The number of failed nodes at the end of the contagion

process is thus given by

| D(n)
f | =

∑
λ,θ

D
(n)
λ,θ (k

(n)
stop).

We introduce (for fixed λ, θ, ` ≤ λ)

k̂
(n)
λ,θ,` := inf

{
k | ` ≤

(
θ +

αλ

λ̄n
· T (n)

k

)}
∧ λ (18)

as the first interaction time when a node starting with threshold θ has accumulated enough growth
to withstand ` ≤ λ failed links. Clearly, for ` ≤ θ, the node can withstand the failed links using

only the initial threshold, so we have k̂
(n)
λ,θ,` = 0 for ` ≤ θ.

The above transition probabilities equations can be rewritten as following
E[∆

(n)
k S

(n)
λ,θ,0 | F

(n)
k ] = −

(
λ

λ̄(n)n−k

)
S

(n)
λ,θ,0(k),

E
[
∆

(n)
k S

(n)
λ,θ,` | F

(n)
k

]
=
(
λ−`+1
λ̄(n)n−k

)
S

(n)
λ,θ,`−1(k)−

(
λ−`

λ̄(n)n−k

)
S

(n)
λ,θ,`(k) for k ≥ k̂(n)

λ,θ,`,

S
(n)
λ,θ,`(k) = 0 for k < k̂

(n)
λ,θ,`,

(SDE)

with initial condition
S

(n)
λ,θ,`(0) = µ

(n)
λ,θn11(` = 0)11(0 < θ ≤ λ).
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4.2 Fluid limit

We show that the Markov chain admits a fluid limit, namely that rescaled by the size of the network
n it is close to the solution of the ordinary differential equations stated below.

We define the following set of differential equations:
dsλ,θ,0
dt (t) = −( λ

λ̄−t)sλ,θ,0(t),
dsλ,θ,`
dt (t) = (λ−`+1

λ̄−u )sλ,θ,`−1(t)− (λ−`
λ̄−t )sλ,θ,`(t) for t ≥ t̂λ,θ,`,

sλ,θ,`(t) = 0 for t < t̂λ,θ,`,

(DE)

with initial conditions

sλ,θ,`(0) = µλ,θ11(` = 0)11(0 < θ ≤ λ),

where for θ ≤ ` ≤ λ,

t̂λ,θ,` =
(`− θ)λ̄
αλ

, (19)

and t̂λ,θ,` = 0 for 0 ≤ ` ≤ θ.

Lemma 15. The system of ordinary differential equations (DE) admits the unique solution

s(t) = (sλ,θ,`(t))λ,0≤θ≤λ,0≤`≤λ

in the interval 0 ≤ t < λ̄,with

• for ` = 0, 1, . . . , θ:

sλ,θ,`(t) = µλ,θ

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−`
. (20)

• for ` = θ + 1, . . . , λ:

sλ,θ,`(t) =µλ,θ

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−`
P
(
U t(θ+1) > t̂λ,θ,θ+1, U

t
(θ+2) > t̂λ,θ,θ+2, . . . , U

t
(`) > t̂λ,θ,`

)
,

where U t(1) ≤ U t(2) ≤ · · · ≤ U t(`) denotes the order statistics of ` i.i.d. uniformly distributed

random variables on [0, t].

The solution of the corresponding DE without growth is given by [6, Lemma 5.8]. Here the
solution is significantly more involved, and we have to proceed piecewise and setting the initial
condition at successive times t̂λ,θ,θ+k (the first time when the threshold has grown from θ to θ+k).

Proof. Let τ = τ(t) = − ln(λ̄− t). Then τ(0) = − ln(λ̄), τ is strictly increasing and so is the inverse
function t = t(τ). We write the system of differential equations (DE) with respect to τ :

s′λ,θ,0(τ) =− λsλ,θ,0(τ),

s′λ,θ,`(τ) =(λ− `+ 1)sλ,θ,`−1(τ)− (λ− `)sλ,θ,`(τ) for τ ≥ τ̂λ,θ,`,
sλ,θ,`(τ) =0 for τ < τ̂λ,θ,`,
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where for θ + 1 ≤ ` ≤ λ,

τ̂λ,θ,` = − ln

(
λ̄− (`− θ)λ̄

αλ

)
,

and τ̂λ,θ,` = τ(0) = − ln(λ̄) for 0 ≤ ` ≤ θ. Then we have (for ` ≥ 1)

d

dτ

(
e(λ−`)(τ−τ(0))sλ,θ,`(τ)

)
= (λ− `)e(λ−`)(τ−τ(0))sλ,θ,`−1(τ)11(τ ≥ τ̂λ,θ,`). (21)

(i) For the case 0 ≤ ` ≤ θ, similar to [6, Lemma 5.8], by induction we find

sλ,θ,`(τ) = e−(λ−`)(τ−τ(0))
`−1∑
r=0

(
λ− r
`− r

)(
1− e−(τ−τ(0))

)`−r
sλ,θ,r(τ(0)). (22)

By going back to t, we have

sλ,θ,`(t) =

(
1− t

λ̄

)λ−` `−1∑
r=0

sλ,θ,r(0)

(
λ− r
`− r

)(
t

λ̄

)`−r
.

Then, by using the initial conditions, we find (for θ > 0)

sλ,θ,`(t) = µλ,θ

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−`
.

(ii) Consider the case ` = θ + k for k ≥ 1. We proceed the proof by induction on k. For k = 1,
when ` = θ + 1, by Equation 21, we have

d

dτ

(
e(λ−θ−1)(τ−τ(0))sλ,θ,θ+1(τ)

)
=(λ− θ − 1)e(λ−θ−1)(τ−τ(0))sλ,θ,θ(τ)11(τ ≥ τ̂λ,θ,θ+1).

For τ ≥ τ̂λ,θ,θ+1, by setting τ̂λ,θ,θ+1 as the initial time, we have (similar to Equation 22)

sλ,θ,θ+1(τ) = e−(λ−θ−1)(τ−τ̂λ,θ,θ+1)
θ∑
r=0

(
λ− r
`− r

)(
1− e−(τ−τ̂λ,θ,`)

)`−r
sλ,θ,r(τ̂λ,θ,θ+1).

By going back to t, we find for ` = θ + 1 and t̂λ,θ,` ≤ t < λ̄,

sλ,θ,`(t) =

(
λ̄− t

λ̄− t̂λ,θ,`

)λ−` θ∑
r=0

(
λ− r
`− r

)(
t− t̂λ,θ,`
λ̄− t

)`−r
sλ,θ,r(t̂λ,θ,`)

=

(
λ̄− t

λ̄− t̂λ,θ,`

)λ−` θ∑
r=0

(
λ− r
`− r

)(
t− t̂λ,θ,`
λ̄− t̂λ,θ,`

)`−r
µλ,θ

(
λ

r

)(
t̂λ,θ,`

λ̄

)r (
λ̄− t̂λ,θ,`

λ̄

)λ−r

=µλ,θ

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−` 1

t`

θ∑
r=0

(
`

r

)(
t− t̂λ,θ,`

)`−r
t̂rλ,θ,`

=µλ,θ

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−` t` − t̂`λ,θ,`
t`

=µλ,θ

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−`
P
(
U t(θ+1) > t̂λ,θ,θ+1

)
,

since (for ` = θ + 1)

P
(
U t(`) > t̂

)
= 1− P

(
U t1 ≤ t̂, U t2 ≤ t̂, , . . . , U t

` ≤ t̂
)

= 1−
(
t̂

t

)`
=
t` − t̂`

t`
.
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Suppose now that the statement is true up to ` = θ + k. We now proceed with the proof for
` = θ + k + 1. Let us denote by

Pλ,θ,`(t) := P
(
U t(θ+1) > t̂λ,θ,θ+1, U

t
(θ+2) > t̂λ,θ,θ+2, . . . , U

t
(`) > t̂λ,θ,`

)
, (23)

for ` = θ + 1, . . . , λ and Pλ,θ,`(t) = 1 for ` = 0, 1, . . . , θ.

Lemma 16. For all ` ≥ θ + 1, the following recursive identity holds:

Pλ,θ,`(t) =
1

t`

`−1∑
r=0

(
`

r

)(
t− t̂λ,θ,`

)`−r
t̂rλ,θ,`Pλ,θ,r(t̂λ,θ,`).

Proof. Let U t1, U
t
2, . . . , U

t
` be i.i.d. uniformly distributed random variables on [0, t]. Then P(U ti ≤

t̂λ,θ,`) =
t̂λ,θ,`
t . We write Pλ,θ,`(t) by conditioning on the number of points in [0, t̂λ,θ,`]. Let Ar be

the event that there are exactly r points in [0, t̂λ,θ,`]. Then we have (for r = 0, . . . , `− 1)

P(Ar) =

(
`

r

)(
t− t̂λ,θ,`

t

)`−r (
t̂λ,θ,`
t

)r
.

Moreover, since t̂λ,θ,` is increasing in ` and (U ti | U ti ≤ t̂λ,θ,`) is uniformly distributed on [0, t̂λ,θ,`],
given there are r points in [0, t̂λ,θ,`] we have

P
(
U t(θ+1) > t̂λ,θ,θ+1, U

t
(θ+2) > t̂λ,θ,θ+2, . . . , U

t
(`) > t̂λ,θ,` | Ar

)
= Pλ,θ,r(t̂λ,θ,`).

Thus we obtain the recursive equation

Pλ,θ,`(t) =
`−1∑
r=0

(
`

r

)(
t− t̂λ,θ,`

t

)`−r (
t̂λ,θ,`
t

)r
Pλ,θ,r(t̂λ,θ,`),

as desired.

Using the above lemma and by following the same steps as the case ` = θ + 1, we obtain for
` = θ + k + 1 and t̂λ,θ,` ≤ t < λ̄,

sλ,θ,`(t) =

(
λ̄− t

λ̄− t̂λ,θ,`

)λ−` θ+k∑
r=0

(
λ− r
`− r

)(
t− t̂λ,θ,`
λ̄− t

)`−r
sλ,θ,r(t̂λ,θ,`)

=µλ,θ

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−` 1

t`

θ+k∑
r=0

(
`

r

)(
t− t̂λ,θ,`

)`−r
t̂rλ,θ,`Pλ,θ,r(t̂λ,θ,`)

=µλ,θ

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−`
Pλ,θ,`(t),

which completes the proof.

A key idea to prove Theorem 5 is to approximate, following [60], the Markov chain by the
solution of a system of differential equations in the large network limit. We summarize here the
main result of [60].

For a set of variables Y1, ..., Yb and for D ⊆ Rb+1, define the stopping time

TD = TD(Y1, ..., Yb) = inf{t ≥ 1, (t/n;Y1(t)/n, ..., Yb(t)/n) /∈ D}.
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Lemma 17 ([58, 60]). Given integers b, n ≥ 1, a bounded domain D ⊆ Rb+1, functions (FL)1≤`≤b

with f` : D → R, and σ-fields Fn,0 ⊆ Fn,1 ⊆ . . . , suppose that the random variables
(
Y

(n)
` (t)

)
1≤`≤b

are Fn,t-measurable for t ≥ 0. Furthermore, assume that, for all 0 ≤ t < TD and 1 ≤ ` ≤ b, the
following conditions hold

(i) (Boundedness). max1≤`≤b |Y
(n)
` (t+ 1)− Y (n)

` (t)| ≤ β,

(ii) (Trend-Lipschitz). |E[Y
(n)
` (t+1)−Y (n)

` (t)|Fn,t]−f`(t/n, Y
(n)

1 (t)/n, ..., Y
(n)
` (t)/n)| ≤ δ, where

the function (f`) is L-Lipschitz-continuous on D,

and that the following condition holds initially:

(iii) (Initial condition). max1≤`≤b |Y
(n)
` (0)− ŷ`n| ≤ αn, for some (0, ŷ1, . . . , ŷb) ∈ D.

Then there are R = R(D, L) ∈ [1,∞) and C = C(D) ∈ (0,∞) such that, whenever α ≥
δmin{C,L−1}+R/n, with probability at least 1− 2be−nα

2/(8Cβ2) we have

max
0≤t≤σn

max
1≤`≤b

|Y (n)
` (t)− y`(t/n)n| < 3eCLαn,

where (y`(t))1≤`≤b is the unique solution to the system of differential equations

dy`(t)

dt
= f`(t, y1, ..., yb) with y`(0) = ŷ`, for ` = 1, ..., b,

and σ = σ(ŷ1, . . . , ŷb) ∈ [0, C] is any choice of σ ≥ 0 with the property that (t, y1(t), ..., yb(t)) has
`∞-distance at least 3eLCα from the boundary of D for all t ∈ [0, σ).

In the next section, we apply Lemma 17 to the contagion model described in Section 4.1. Let
us define, for 0 ≤ t ≤ λ̄

δλ,θ(t) := µλ,θ −
∑
`

sλ,θ,`(t),

δ−(t) :=
∑
λ,θ

λδλ,θ(t)− t, and

δ(t) :=
∑
λ,θ

δλ,θ(t),

with sλ,θ,` given in Lemma 15. Hence, we have

δλ,θ(t) = µλ,θ

(
1−

∑
`

(
λ

`

)(
t

λ̄

)`(
1− t

λ̄

)λ−`
Pλ,θ,`(t)

)
= µλ,θ

(
1−Bα

λ,θ(
t

λ̄
)

)
, (24)

δ−(t) =
∑
λ,θ

λδλ,θ(t)− t = λ̄

(
Jα(

t

λ̄
)− t

λ̄

)
, and, (25)

δ(τ) =
∑
λ,θ

µλ,θB
α
λ,θ(

t

λ̄
). (26)
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4.3 Proof of Theorem 5

We now proceed to the proof of Theorem 5 whose aim is to approximate the value
D(n)(T

(n)
stop)

n as
n → ∞. We build on the techniques used in [6, Theorem 3.8]. In contrast to [6], the number
of states of the Markov chain grows with time. We first prove the convergence for the rescaled
number of nodes that have ` < θ failed neighbors, i.e. which are guaranteed to survive. This part
of the proof follows from [6, Theorem 3.8]. Next we consider ` ≥ θ and partition the time interval
according to the possibility that growth is sufficient for survival. For every ` ≥ θ there is a minimal
time t̂λ,θ,` such that a node with initial threshold θ can survive after t̂λ,θ,`. As the induction initial

step we have convergence on the entire time interval [0, 1] of the rescaled vector S
(n)
λ,θ,` for ` < θ.

As induction step, we show that convergence on the interval [t̂λ,θ,˜̀, 1] of S
(n)
λ,θ,` for ` < ˜̀ implies

convergence on the interval [t̂λ,θ,˜̀+1, 1] of S
(n)
λ,θ,` for ` < ˜̀+ 1.

Let k = γλ̄(n)n+ o(n) for some γ ∈ [0, 1]. We first show that T
(n)
k

p−→ γλ̄. Since

E(T
(n)
k ) =

k∑
i=1

E(T
(n)
i − T (n)

i−1) =
k∑
i=1

1

n
=
k

n
, (27)

and

Var(T
(n)
k ) =

k∑
i=1

Var(T
(n)
i − T (n)

i−1) =

k∑
i=1

1

n2
=

k

n2
∼ O(

1

n
), (28)

we have by Chebysev’s inequality, as n→∞, in probability

T
(n)
k

p−→ γλ̄.

This gives us that (for fixed λ, θ, ` ≤ λ)

k̂
(n)
λ,θ,`

n
= t̂λ,θ,` + op(1). (29)

We also need to bound the contribution of higher order terms in the infinite sums (25) and (26).
Fix ε > 0. By regularity conditions on the degree sequence, we know

λ̄ =
∑
λ

λ∑
θ=0

λµλ,θ ∈ (0,∞).

Then, there exists an integer Kε, such that∑
λ≥Kε

∑
θ

λµλ,θ < ε.

It follows that for all 0 ≤ t ≤ λ̄,∑
λ≥Kε

∑
θ

λδλ,θ(t) =
∑
λ≥Kε

∑
θ

λµλ,θ

(
1−Bα

λ,θ(
t

λ̄
)

)
< ε. (30)

The number of vertices with degree λ and initial threshold θ is nµ
(n)
λ,θ . Again, by regularity condi-

tions, ∑
λ,θ

λµ
(n)
λ,θ → λ̄ ∈ (0,∞).
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Therefore, for n large enough, ∑
λ≥Kε

∑
θ

λµ
(n)
λ,θ < ε,

which implies for all 0 ≤ k ≤ nλ̄(n), ∑
λ≥Kε

∑
θ

λD
(n)
λ,θ (k)/n < ε. (31)

For K ≥ 1, we denote by

sK(t) := (sλ,θ,`(t))λ≤K, 0≤`,θ≤λ and

SKn (k) :=
(
S

(n)
λ,θ,`(k)

)
λ≤K, 0≤`,θ≤λ

,

both of dimension b(K).
We now show by induction that

sup
0≤t≤σn

∣∣SKn (k)/n− sK(k/n)
∣∣ ≤ Cε+ op(1), (32)

where σ = λ̄− ε. As the induction first step, we consider the subvector with ` < θ.
For K ≥ 1, we denote this subvector where ` < θ by

sK,θ := (sλ,θ,`(t))λ≤K, 0≤`<θ≤λ and

SK,θn :=
(
S

(n)
λ,θ,`(k)

)
λ≤K, 0≤`<θ≤λ

,

where the superscript θ marks the upper bound on `. For an arbitrary constant ε > 0, we define
the domain Dθε as

Dθε = {
(
τ, sK

)
∈ RKθ+1 : −ε < τ < λ̄− ε , −ε < sλ,θ,` < 1}

and we verify the conditions of Lemma 17 which shows that the fluid limit holds on the domain
Dθε . We obtain that for a sufficiently large constant C

sup
0≤k≤σn

∣∣∣SK,θn (k)/n− sK,θ(k/n)
∣∣∣ ≤ Cε+ op(1)

with σ = λ̄− ε.
For ˜̀≥ θ we denote the subvector (sK,

˜̀
, SK,

˜̀
n )λ≤K,θ≤λ,0≤`<˜̀ with index ` < ˜̀ by

sK,
˜̀

:= (sλ,θ,`(t))λ≤K,θ≤λ,0≤`<˜̀ and

SK,
˜̀

n :=
(
S

(n)
λ,θ,`(k)

)
λ≤K,θ≤λ,0≤`<˜̀

.

Now consider on the domain

D ˜̀
ε = {

(
t, sK

)
∈ RK ˜̀+1 : −ε < t < λ̄− ε , −ε < sλ,θ,` < 1}.

We prove by induction on ˜̀ that the fluid limit holds on the domain D ˜̀
ε

sup
0≤k≤σn

∣∣∣SK,˜̀n (k)/n− sK,
˜̀
(k/n)

∣∣∣ ≤ C ˜̀
ε+ op(1). (33)
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We have seen that the fluid limit holds for ˜̀≤ θ − 1, so we use this as the initial induction step.
We now suppose that it holds for an ˜̀≥ θ − 1 and we need to show that it holds for ˜̀+ 1. We
consider the ODEs solution s̃K,θ := (s̃λ,θ,`(t))λ<K,θ≤λ,0≤`<˜̀+1 on the domain

D ˜̀+1
ε = {

(
t, sK

)
∈ RK(˜̀+1)+1 : −ε ≤ t < λ̄− ε , −ε < sλ,θ,` < 1},

with initial condition s̃K,
˜̀+1

n (k̂
(n)

λ,θ,˜̀+1
/n) = (SK,

˜̀
n (k̂

(n)

λ,θ,˜̀+1
)/n, 0); namely we start the same system

from the time k̂
(n)

λ,θ,˜̀+1
/n. At this time it is guaranteed that SK,

˜̀+1
n = 0.

Then from Lemma 17, we have

sup
k̂

(n)

λ,θ,˜̀+1
≤k≤σn

∣∣∣SK,˜̀+1
n (k)/n− s̃K,

˜̀+1(k/n)
∣∣∣ ≤ Cε+ op(1). (34)

By the induction hypothesis, namely (33), we have∣∣∣SK,˜̀n (k̂
(n)

λ,θ,˜̀+1
)/n− sK,

˜̀
(k̂

(n)

λ,θ,˜̀+1
/n)
∣∣∣ ≤ C ˜̀

ε+ op(1),

and using that gives ∣∣∣̃sK,˜̀(k̂(n)

λ,θ,˜̀+1
/n)− sK,

˜̀
(k̂

(n)

λ,θ,˜̀+1
/n)
∣∣∣ ≤ C ˜̀

ε+ op(1). (35)

By definition
sλ,θ,˜̀+1(t) = 0 for t ≤ t̂λ,θ,˜̀+1

Thus by continuity property of ODEs,∣∣∣s̃λ,θ,˜̀+1(k̂
(n)

λ,θ,˜̀+1
/n)− sλ,θ,˜̀+1(k̂

(n)

λ,θ,˜̀+1
/n)
∣∣∣ ≤ Cε+ op(1).

Combining with (35) we obtain∣∣∣̃sK,˜̀+1(k̂
(n)

λ,θ,˜̀+1
/n)− sK,

˜̀+1(k̂
(n)

λ,θ,˜̀+1
/n)
∣∣∣ ≤ C1ε+ op(1).

Thus by the stability results of ODEs we have

sup
k̂

(n)

λ,θ,˜̀+1
≤k≤σn

∣∣∣sK,˜̀+1
n (k/n)− s̃K,

˜̀+1(k/n)
∣∣∣ ≤ C2ε+ op(1)

Combined with (34) this gives

sup
k̂

(n)

λ,θ,˜̀+1
≤k≤σn

∣∣∣SK,˜̀+1
n (k)/n− sK,

˜̀+1(k/n)
∣∣∣ ≤ (C2 + C)ε+ op(1) (36)

By definition

S
(n)

λ,θ,˜̀+1
(k) = 0 for k ≤ k̂(n)

λ,θ,˜̀+1

and
sλ,θ,˜̀+1(t) = 0 for t ≤ t̂λ,θ,˜̀+1.

Combining with (33), it gives
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sup
0≤k≤min{t̂λ,θ,˜̀+1n,k̂

(n)

λ,θ,˜̀+1
}

∣∣∣SK,˜̀+1
n (k)/n− sK,

˜̀+1(k/n)
∣∣∣ = 0. (37)

Thus by the continuity of solution
(
sλ,θ,˜̀+1(t)

)
t≥0

between min{t̂λ,θ,˜̀+1n, k̂
(n)

λ,θ,˜̀+1
} and k̂

(n)

λ,θ,˜̀+1
,

combining with (33), (36) and (37), we obtain

sup
0≤k≤σn

∣∣∣SK,˜̀+1
n (k)/n− sK,

˜̀+1(k/n)
∣∣∣ ≤ (C2 + C)ε+ op(1).

Thus by mathematical induction, (32) holds.

When the solution reaches the boundary of Dε, it violates the first constraint, determined by
σ = λ̄− ε. By convergence of λ̄(n) to λ, there is a value n0 such that ∀n ≥ n0, λ̄(n) > λ− ε, which
ensures that σn ≤ λ̄(n)n. Using (30) and (31), we have, for 0 ≤ k ≤ σn and n ≥ n0:∣∣∣D(n)

out(k)/n− δ−(k/n)
∣∣∣ = |

∑
λ

∑
θ≤λ

λ(D
(n)
λ,θ (t)/n− δλ,θ(t/n))|

≤
∑
λ

∑
θ≤λ

λ
∣∣∣D(n)

λ,θ (t)/n− δλ,θ(t/n)
∣∣∣

≤
∑
λ≤Kε

∑
θ≤λ

λ
∣∣∣D(n)

λ,θ (t)/n− δλ,θ(t/n)
∣∣∣+ 2ε, (38)

and ∣∣∣D(n)(k)/n− δ(k/n)
∣∣∣ ≤ ∑

λ≤Kε

∑
θ≤λ

∣∣∣D(n)
λ,θ (k)/n− δλ,θ(k/n)

∣∣∣+ 2ε. (39)

We then obtain by (32) that

sup
0≤k≤σn

∣∣∣D(n)
out(k)/n− δ−(k/n)

∣∣∣ ≤ 2Cε+ op(1), and (40)

sup
0≤k≤σn

∣∣∣D(n)(k)/n− δ(k/n)
∣∣∣ ≤ 2Cε+ op(1). (41)

We now study the stopping time k
(n)
stop defined in (50) and the size of the default cascade D(n)(k

(n)
stop).

First assume Jα(π) > π for all π ∈ [0, 1), i.e., π∗ = 1. Then we have for all t < σ,

δ−(t) =
∑
λ,θ

λδλ,θ(t)− t > 0.

We have then that k
(n)
stop/n = σ+O(ε) + op(1) and from convergence (41), since δ(σ) = 1−O(ε), we

obtain by tending ε to 0 that |D(n)(k
(n)
stop)| = n− op(n). This proves the first part of the theorem.

Now consider the case π∗ < 1, and furthermore π∗ is a stable fixed point of Jα(π). Then
by definition of π∗ and by using the fact that Jα(1) ≤ 1, we have Jα(π) < π for some interval
(π∗, π∗ + π̃). Then δ−(t) is negative in an interval (t∗, t∗ + τ), with t∗ = λ̄π∗.

Let ε such that 2ε < − inft∈(t∗,t∗+τ) δ
−(t) and denote σ̂ the first iteration at which it reaches the

minimum. Since δ−(σ̂) < −2ε it follows that with high probability D
(n)
out(σ̂n)/n < 0, so k

(n)
stop/n =

t∗ +O(ε) + op(1). The conclusion follows by taking the limit ε→ 0.
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5 Applications, extensions and open questions

In this section we propose several extensions to our baseline model and define some open questions.

5.1 Agents optimal connectivity choice during a pandemic

With the current Covid-19 health crisis underway, it becomes apparent that the control of the
epidemic hinges on the decisions of all individuals. The basic trade-off underlying the agents’
connectivity decision in Section 3 can be reinterpreted: more connectivity brings the benefits of
social interaction, and at the same time increase the infection risk. In recent work [10], we model
the benefit of social interaction as a fraction of the Value of Statistical Live Year (VSLY)2. If the
individual is infected, then they will face a loss. In the case of Covid-19 or a deadly infectious
disease, that loss can be modeled as the Value of Statistical Life (VSL). Of course, these values are
heterogeneous across the population, for example they clearly depend on age. In [10], we consider a
susceptible-infected-recovered (SIR) epidemic and the individual chooses a social distancing level.
The connectivity is fixed there and the social distancing level modifies the infection probability on
each link. In the following, we suggest how to extend our model of Section 3 in order to investigate
the optimal connectivity decision of agents during an epidemic.

Assume that the agents have heterogeneous loss in case they are infected. Let `i denote the
loss for agent i in case he is infected by the end of the contagion process. For example, `i can
incorporate the death (or severe illness) rate given infection and VSL. The distribution of agents’
losses is denoted by F`. We assume that the threshold distribution for an agent choosing degree λ
follows p(θ;λ) for θ = 0, 1, . . . , λ. In the SIR epidemic (or contact process) model, if we denote by
γ the infection probability over each link and γ0 as the initial infection probability, we can easily
express

p(0;λ) = γ0, p(θ;λ) = (1− γ0)γ(1− γ)θ−1 for θ = 1, 2, . . . , λ.

In this case, we can simply set the growth rate α = 0. We will nonetheless give the mathematical
formulation for all α.

We restrict our analysis by assuming that the threshold distribution is (stochastically) decreas-
ing in the connectivity λ, i.e., higher connectivity gives higher payoff but comes along with increased
the risk of infection (failure). Equivalently, p(0;λ) + p(1;λ) + · · ·+ p(θ;λ) is an increasing function
of λ for all θ ∈ N. Note that for the contact process this assumption is always satisfied because

p(0;λ) + p(1;λ) + · · ·+ p(θ;λ) = γ0 + (1− γ0)
(
1− (1− γ)θ

)
,

is increasing in γ for all θ = 0, 1, . . . , λ.

The infection probability for an individual choosing connectivity λ (when neighbors are infected
independently with probability π) is given by Bα

λ (π) :=
∑∞

θ=0 p(θ;λ)Bα
λ,θ(π) for all π ∈ [0, 1] and

λ ∈ N0. We write the asymptotic reward for agent i with degree λ as the expected benefit of
linkages (normalized to one for each link) minus the expected loss (in case the agent fails) by

λ
(
1−Bα

λ (π∗)
)
− `iBα

λ (π∗), (42)

with π∗ is given in Theorem 5.
Note that the global failure probability of a link π∗ depends on the connectivity choice of all

nodes. Therefore, the optimal connectivity is an outcome of the equilibrium, similarly defined as

2Value of Statistical Life (VSL) and Value of Statistical Life Year (VSLY) are estimated on the basis of how much
an individual would be willing to pay in order to decrease death risk by a small percentage point.
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in Section 3. We proceed again in two steps to determine this equilibrium with the asymptotic
criterion. Let πe denote the expected infection probability via a randomly chosen link. So agent i
with loss `i computes a reward

λ
(
1−Bα

λ (πe)
)
− `iBα

λ (πe).

In the first step, nodes choose their connectivity according to an expected infection probability π
of a link, i.e., a node with threshold θ and facing loss ` (in case infected) chooses a connectivity

λ∗(π; `) ∈ arg max
λ∈N0

{
λ
(
1−Bα

λ (π)
)
− `Bα

λ (π)
}
. (43)

In the second step, we impose an equilibrium condition that the expected infection probability via
a link coincides with the actual infection probability via a link, under the optimal connectivity.

A representative agent with loss ` prefers connectivity λ0 over λ1 with λ0 < λ1 for a given
infection probability π if and only if

` >
(λ1 − λ0)−

(
λ1B

α
λ1

(π)− λ0B
α
λ0

(π)
)

Bα
λ1

(π)−Bα
λ0

(π)
.

For a given π ∈ [0, 1] and λ ∈ [0, λmax], let us denote by Aλ(π) the set of all loss values
` ∈ R+ such that λ ∈ [0, λmax] is the optimal connectivity for agent with loss ` and global infection
probability π. Considering the contact process with infection probability γ and α = 0, Theorem 5
implies that

B0
λ(π) = 1− (1− γ0)(1− γπ)λ (44)

and π∗ is the smallest solution in [0, 1] to the equation

π = 1− (1− γ0)
∑
λ

µλ(π)(1− πγ)λ. (45)

Here the fraction of individuals who choose connectivity λ (under infection probability π) is precisely
the fraction of individuals whose loss is in the set Aλ(π) and has therefore the very simple form

µλ(π) = F` (Aλ(π)) . (46)

5.2 Different in/out-degree distribution

So far we have considered the baseline case where nodes have the same in- and out-degree (that we
call connectivity) and where the relation between the interaction time and the calendar time is not
dependent on the state of the system. In this section we show that both these assumptions can be
relaxed to yield more realism to the model.

In the following, we consider the case when in- and out-degrees are allowed to differ. The in-
degree is a channel by which one node is impacted by its neighbors, whereas the out-degree is the
channel by which the node impacts others in the case of distress. Growth depends mainly on the
in-degree: the higher the in-degree, the more a bank is exposed to others and in return it receives
higher interest or fees. In particular, for a reinsurer its capital grows with the number of firms that
it provides reinsurance to, as they pay premiums. However, growth can also be a function of the
out-degree: banks’ leverage and growth depends on how much debt they issue; reinsurers’ business
growth depends on how many other firms reinsure them.
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We provide the asymptotic limit of the survival probability (under growth benefits). We leave
it for future research the analysis of an equilibrium in which both in- and out-degrees are bank
choices. Such equilibrium can be defined as in the baseline case, but with the additional constraint
that average in-degree matches average out-degree.

Let µ
(n)
λ+,λ−,θ

be the fraction of nodes with in-degree λ+, out-degree λ− and threshold θ. Assume

the following regularity conditions µ
(n)
λ+,λ−,θ

→ µλ+,λ−,θ, as n→∞, for some distribution µ : N3 →
[0, 1]. We also assume again that the average connectivity converges to a finite limit

λ̄(n) :=
∑

λ+,λ−,θ

λ+µ
(n)
λ+,λ−,θ

=
∑

λ+,λ−,θ

λ−µ
(n)
λ+,λ−,θ

→
∑

λ+,λ−,θ

λ+µλ+,λ−,θ =: λ̄ ∈ (0,∞). (47)

Suppose that growth benefits arrive uniformly over time according to the “growth parameter“ α
and both the in- and out-degrees. Given a growth function g, g(α, λ+, λ−), one can define similarly
to (19) the minimal time when the node could survive ` failed neighbors

t̂λ+,λ−,θ,` =
(`− θ)λ̄

g(α, λ+, λ−)
. (48)

We let Pλ+,λ−,θ,`(π) as in (23) but with the new definition of t̂.

Theorem 18. Let π∗ be the relaxed fixed point of the map Jα defined as

π∗ := min{π ∈ [0, 1] | Jα(π) ≤ π},

where

Jα(π) :=
∑

λ+,λ−,θ

λ−µλ+,λ−,θ

λ̄
·Bα

λ+,λ−,θ(π),

and

Bα
λ+,λ−,θ(π) := 1−

min{dθ+g(α,λ+,λ−)πe−1,λ+}∑
`=0

(
λ+

`

)
π`(1− π)λ−`Pλ+,λ−,θ,`(π).

We have:

(i) If π∗ = 1, i.e., if Jα(π) > π for all π ∈ [0, 1), then asymptotically (as n → ∞) almost all
nodes fail during the cascade.

(ii) If π∗ < 1 and π∗ is a stable fixed point of Jα, i.e., Jα′(π∗) < 1, then the final fraction of
failed nodes converges in probability to

| D(n)
f |
n

p−→
∑

λ+,λ−,θ

µλ+,λ−,θB
α
λ+,λ−,θ(π

∗). (49)

Furthermore, the asymptotic fraction of surviving nodes with degree λ and initial threshold θ
converges in probability (as n→∞)

Sλ+,λ−,θ(k
(n)
stop)

n

p−→ µλ+,λ−,θ

(
1−Bα

λ+,λ−,θ(π
∗)
)
.
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Proof. We discuss the changes needed to adapt the proof of Theorem 5 for the case of different
in/out-degree distribution. In this case, the set of surviving nodes in different states is given by

Sn(k) =
(
S

(n)
λ+,λ−,θ,`

(k)
)
λ+,λ−,0≤θ,`≤λ+

, which represents a Markov chain whose transition probabil-

ities are

E[∆
(n)
k S

(n)
λ+,λ−,θ,0

| F (n)
k ] = −

(
λ+

λ̄(n)n− k

)
S

(n)
λ+,λ−,θ,0

(k),

E[∆
(n)
k S

(n)
λ+,λ−,θ,`

(k) | F (n)
k ] =

(
λ+ − `+ 1

λ̄(n)n− k

)
S

(n)
λ+,λ−,θ,`−1(k)−

(
λ+ − `
λ̄(n)n− k

)
S

(n)
λ+,λ−,θ,`

(k),

for 0 < ` < θ + α
λ̄(n)λ+T

(n)
k and

E[∆
(n)
k S

(n)
λ+,λ−,θ,`

(k) | F (n)
k ] =

(
λ+ − `+ 1

λ̄(n)n− k

)
S

(n)
λ+,λ−θ,`−1(k), ` = θ +

α

λ̄(n)
λ+T

(n)
k ,

S
(n)
λ+,λ−,θ,`

= 0, ` > θ +
α

λ̄(n)
λ+T

(n)
k .

The initial condition changes to

S
(n)
λ+,λ−,θ,`

(0) = µ
(n)
λ+,λ−,θ

n11(` = 0)11(0 < θ ≤ λ+).

The number of failed nodes among those with connectivity (λ+, λ−) and initial threshold θ is

D
(n)
λ+,λ−,θ

(k) = nµ
(n)
λ+,λ−,θ

−
∑

0≤`<dθ+α λ+

λ̄(n)
T

(n)
k e

S
(n)
λ,θ,`(k),

and contagion stops at a time when all failed links have been revealed

k
(n)
stop = inf

{
k = 0, 1, . . . , nλ̄(n) :

∑
λ+,λ−,θ

λ−D
(n)
λ+,λ−,θ

(k) = k
}
. (50)

The number of outgoing half-edges belonging to failed nodes at time k is

D
(n)
out =

∑
λ+,λ−,θ

λ−D
(n)
λ+,λ−,θ

(k)− k

and k
(n)
stop is the first time that D

(n)
out = 0. The number of failed nodes at the end of the contagion

process is thus given by

| D(n)
f | =

∑
λ+,λ−,θ

D
(n)
λ+,λ−,θ

(k
(n)
stop).

The rest of the proof follows exactly as in the proof of Theorem 5.

Note that in this case, in order to transfer the results to the uniformly chosen simple random

graph G
(n)
∗ , one needs to assume the second moment condition, which becomes now the convergence

of second moment for both in- and out-degrees. In addition, one needs to assume the convergence
of the covariance of the in and out degree (see [29, Theorem 3.6] and Remark 1).
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5.3 Calendar time between interactions

So far, we have analyzed systemic risk under the assumption that the duration in calendar time
between the two successive interactions follows an exponential distribution with parameter n.

In this subsection we consider the case when the calendar time between two interactions is an
exponential whose parameter depends on the state of the system. In particular, the exponential
time between interactions can depend on the current duration of the contagion process or on the
number of unrevealed outgoing links from the failed nodes. The larger the number of unrevealed
links, the higher the intensity with which we learn of affected counterparties. Growth is unlikely to
stabilize the system if it happens uniformly over time. On the other hand, if the number of initial
failures is small, then so is the intensity with which we learn the counterparties of failed linkages.
This will slow contagion as there is a threshold growth in the meanwhile for the counterparties,
and the system is likely to stabilize itself even without intervention.

In order to allow the growth intensity to vary over time, we can change the distribution of
inter-arrival times to an exponential of mean given by a general function of k and n. The higher
the mean, the more time nodes have to grow their thresholds before failed links are revealed. This
gives us the flexibility to control the different growth rates depending on the stage of the cascade.
For k/n smaller we are in the early stages of the cascade and for k/n ∼ λ̄(n) we are in the later
stages of the cascade.

In particular, our results extend to the case when

∆
(n)
k = T

(n)
k − T (n)

k−1 ∼ Exp(F
(n)
k ),

where F
(n)
k satisfies

F
(n)
k = nf(

k

n
) + o(1)

for some (squared) integrable function 1/f on [0, λ̄ − ε]. The proof of Theorem 5 follows through
as in Section 4.3. Indeed, we note that only two changes are necessary. Let k = γλ̄(n)n+ o(n) for

some γ ∈ [0, 1]. First, we show that in this case T
(n)
k

p−→
∫ γλ̄

0
1

f(s)ds. Indeed, (27)-(28) become

E(T
(n)
k ) =

k∑
i=1

1

F
(n)
i

=
k∑
i=1

(
i

n
− i− 1

n
)

1

F
(n)
i
n

≈
∫ γλ̄

0

1

f(s)
ds+ o(1),

and,

Var(T
(n)
k ) =

k∑
i=1

1(
F

(n)
i

)2 =
1

n

k∑
i=1

(
i

n
− i− 1

n
)

1(
F

(n)
i
n

)2 ≈
1

n

∫ γλ̄

0

1

f2(s)
ds+ o(

1

n
) = O(

1

n
).

Thus (again) by using Chebysev’s inequality, we have as n→∞, in probability

T
(n)
k

p−→
∫ γλ̄

0

1

f(s)
ds.

Second, let V π
1 , V

π
2 , . . . , V

π
` be i.i.d. random variables on [0, πλ̄] with density

g(s) =

1
f(s)∫ πλ̄

0
1

f(s)ds
for s ∈ [0, πλ̄]
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and the order statistics be
V π

(1) ≤ V
π

(2) ≤ · · · ≤ V
π

(`).

In this case, we need to set

• for ` = 0, 1, . . . , θ:

βαλ,θ,`(π) =

(
λ

`

)
π`(1− π)λ−`.

• for ` = θ + 1, . . . , λ:

βαλ,θ,`(π) =

(
λ

`

)
π`(1− π)λ−`P

(
V π

(θ+1) > tθ+1, V
π

(θ+2) > tθ+2, . . . , V
π

(`) > tλ,θ,`

)
,

where

t̂u :=
u− θ
αλ

λ̄

for all u = θ + 1, . . . , λ.

Using these changes, Theorem 5 will be still valid.

Remark 19 (Lender of last resort). Here we considered a fixed schedule f that drives the inter-
arrival times. Of course, it is desirable to have inter-arrival times as large as possible to allow for
maximum growth and recovery. The natural case is when events happen faster in the beginning of
the cascade, then decrease in intensity towards the end. Decreasing the intensity of inter-arrival
times would come at a cost. We can envision an extension of this model where a lender of last
resort or government can intervene to decrease inter-arrival time intensity or alternatively increase
the growth intensity α.

We now consider a more concrete example where the intensity between the two successive
interactions depends on the number of unrevealed links in the system, i.e.

∆
(n)
k = T

(n)
k − T (n)

k−1 ∼ Exp(D
(n)
out(k)),

where D
(n)
out(k) denotes the number of unrevealed outgoing links belonging to failed agents at the

k-th interaction time T
(n)
k . As shown in Section 4, for k = γλ̄(n)n+ o(n) and γ < π∗,

D
(n)
out(k)

n

p−→ λ̄ (Jα(γ)− γ) .

In this case we conjecture all our results hold, since

E(T
(n)
k ) ≈

∫ γ

0

1

λ̄ (Jα(s)− s)
ds+ o(1)

and the variance is negligible:

Var(T
(n)
k ) ≈ 1

n

∫ γ

0

1

λ̄2 (Jα(s)− s)2ds+ o(
1

n
) ∼ o( 1

n
).

We leave this to a future work.
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5.4 Networked Cramér-Lundberg risk processes

In the Cramér-Lundberg model, or the classical compound Poisson risk process, the aggregate
capital of an agent (insurer) who starts with initial capital x is given by

C(t) = x+ αt−
Nβ(t)∑
k=1

Lk, (51)

where Lk are i.i.d. non-negative random variable following distribution F , mean L̄ and Nβ(t) is a
Poisson process with intensity β independent of Lk. The ruin time for the insurer is defined by

τx := inf{t | C(t) ≤ 0},

(with the convention that inf ∅ =∞) and the central question is to find the ruin probability

ψ(x) = P(τx <∞).

This can be computed exactly using the PollaczekKhinchine formula (see e.g. [13, 33]) as

ψ(x) =

(
1− βL̄

α

) ∞∑
k=0

(
βL̄

α

)k (
1− F̂ ∗k(x)

)
, (52)

where

F̂ (x) =
1

L̄

∫ x

0

(
1− F (u)

)
du,

and f∗k denotes the k-fold convolution of any function f .

We now extend this setup to the case when the agents interact through a network. Namely, when
an agent j fails it will impose failure cost or write down on its neighbor i, denoted by Lji. Similar
to the classical model, we assume that these losses are i.i.d. random variables with distribution F
over all existing links. The aggregate capital for agent i with initial surplus xi and capital growth
αi at time t is given by

Ci(t) = xi + αit−
∑
j∈D(t)

Lji, t ≤ τi, (53)

where D(t) is the set of failed (ruined) agents at time t and τi denotes the ruin time of agent i, i.e.,

τi = inf{t | Ci(t) ≤ 0}. (54)

The (initial) threshold distribution for an agent with connectivity λ and initial capital x follows

px(θ;λ) = P

(
θ−1∑
k=1

Lk < x ≤
θ∑

k=1

Lk

)
, θ = 0, 1, . . . , λ, (55)

where {Lk}∞k=0 are i.i.d. distributed random variables with distribution F . Remark that x incorpo-
rates any exogenous macroeconomic shock in the stress scenario, and therefore x might be negative.
The initial set of defaults is exogenous and determined by x.

It would be interesting to extend Theorem 5 to this setup, find the analogous of (52) and give
the ruin probability for an agent with connectivity λ and initial capital x in the case of networked
Cramér-Lundberg risk processes. This seems to be more involved due to the inter-dependence of the
inter-arrival times of losses and the loss distribution. For this we need to generalize our approach,
allowing for random threshold times t̂λ,θ,` depending on loss distribution. While the general case
remains open, Theorem 5 can be seen as a first step toward this direction for deterministic loss
function Lij = L̄11{i→j}. These and some other related issues are left to a future work.
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Conclusions

We investigated the fluid limit for a network of Cramér-Lundberg processes interacting through a
random graph. Nodes receive growth benefits and suffer downward jumps occurring on exponential
clocks after the failure of a neighbor. Using the limiting solution for the probability of failure, we
define a game in which nodes choose their connectivity under the tradeoff that linkages provide
income, and at the same time they bear the risk of contagion. In equilibrium, the risk of contagion
depends on the choices of all nodes in the system. Our notion of equilibrium is similar to a mean
field game: players take as given a mean-field, namely the conjectured failure probability of a link
(which also gives the proportion of failed nodes at the end of a potential contagion process). They
then decide on their own connectivity. This leads to an actual failure probability in the network and
we check that a fixed point holds: the actual link failure probability is the same as the conjectured
link failure probability.

Our results show that a higher heterogeneity in the initial distribution of the threshold (as
captured by its standard deviation) implies a lower default probability in equilibrium even as
it leads to a larger average connectivity in equilibrium. More importantly, systems with higher
growth/recovery rates can have equilibria with higher failure probability as well as higher final
fraction of failed agents. The fact that bailouts lead to moral hazard problems is a known fact.
Our results point to the fact that even in systems where threshold growth happens over time (as
opposed to equity or liquidity infusions) strategic agents will adapt and potentially take more risks
in equilibrium as captured by increased connectivity. This result is surprising. In anticipation
of future growth agents take higher exposure to systemic risk and therefore the growth effect is
hindered by higher exposures. To counteract this effect, the most interconnected agents should
have higher thresholds in proportion to their interconnectedness, and this proportion should be
even higher in environments with large growth. The effect of threshold growth over time would
then allow them to play a role as shock absorbers in the system.
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[20] A. Behme, C. Klüppelberg, and G. Reinert. Ruin probabilities for risk processes in a bipartite
network. Stochastic Models, pages 1–26, 2020.

[21] J. Blanchet, J. Li, and Y. Shi. Stochastic risk networks: Modeling, analysis and efficient monte
carlo. Analysis and Efficient Monte Carlo, year=2015.

[22] L. Blume, D. Easley, J. Kleinberg, R. Kleinberg, and É. Tardos. Network formation in the
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