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Abstract— Consider an optimization problem with a convex
cost function but a non-convex compact feasible set X , and its
relaxation with a compact and convex feasible set X̂ ⊃ X . We
prove that if from any point x ∈ X̂ \X there is a path connecting
x to X along which both the cost function and a Lyapunov-like
function are improvable, then any local optimum in X for the
original non-convex problem is a global optimum. We use this
result to show that, for AC optimal power flow problems, a well-
known sufficient condition for exact relaxation also guarantees
that all its local optima are globally optimal. This helps explain
the widespread empirical experience that local algorithms for
optimal power flow problems often work extremely well.

I. INTRODUCTION

Motivation. Optimal power flow (OPF) is a class of con-
strained optimization problems that minimizes certain cost
subject to nonlinear physical laws and operational con-
straints. OPF is fundamental in power systems as it under-
lies numerous power systems applications. It is non-convex
and NP-hard [1], [2]. Traditionally OPF problems have
been solved mostly using local algorithms such as Newton-
Raphson or interior-point methods (e.g. [3]). Over the last
decade various convex relaxations have been developed for
solving OPF; see [4] and references therein. Empirically,
convex relaxation methods often produce globally optimal
solutions. More significantly, they provide a way to check
the quality of the solutions produced by local algorithms.
When verified against convex relaxations, these local algo-
rithms turn out to often produce globally optimal solutions.
This is useful as local algorithms are much more scalable
than semidefinite relaxations. While sufficient conditions are
known that guarantee the exactness of semidefinite relax-
ations (see surveys in [5], [4]), to the best of our knowledge,
no analytical result is known that explains the remarkable
performance of local algorithms on OPF problems. In this
paper we provide the first sufficient condition for local
optima of OPF to be globally optimal.

Summary. Specifically consider an optimization problem
with a convex cost function but a non-convex compact
feasible set X , and its relaxation with a compact and convex
feasible set X̂ ⊃ X . We prove that if there is a Lyapunov-
like function that only vanishes over X , and from any point
x ∈ X̂ \ X there is a path connecting x to X along which
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both the cost function and the Lyapunov-like function are
improvable, then any local optimum in X for the original
non-convex problem is a global optimum. We use this result
to show that, for AC OPF over radial networks, a well-known
sufficient condition for exact relaxation also guarantees that
all its local optima are globally optimal. This helps explain
the widespread empirical experience that local algorithms for
OPF often work extremely well.

Beyond OPF. Though motivated by OPF, our main results
(Theorems 1 and 2) are applicable to general non-convex
optimization problems. These problems frequently arise in
applications. Many cyber-physical systems, for instance,
are governed by nonlinear physical laws that render their
optimization non-convex. Most machine learning problems
are non-convex problems since nonlinear models such as
neural networks have a powerful representability of real data
[6]. For some classes of non-convex problems, even solving
them approximately is NP-hard [7]. Yet for many non-convex
problems in signal processing and machine learning (e.g.,
dictionary learning, phase retrieval, sparse coding, matrix
completion, low-rank semidefinite programs), simple local
algorithms such as gradient descent or alternating minimiza-
tion often produce globally optimal solutions. Some of the
theoretical explanations for this phenomenon are summarized
in [8], [9], [10], [11] and references therein. A common
method is to study the gradient and curvature of the cost
function over the feasible set and show that (i) all local
optima are globally optimal, and (ii) any local maximum
or saddle point always has a negative curvature in an eigen
direction of the Hessian. This implies that a stochastic
gradient descent or a well designed local algorithm can easily
escape local maxima or saddle points to produce a global
solution [12], [13], [8], [9]. Another technique, developed
in [10], treats the non-convex sparse decoding problem as a
convex problem with an unknown gradient and proves that
alternative minimization is a gradient descent algorthim with
approximate gradients that approach the true gradient.

These methods analyze the optimization landscape through
the gradient and curvature of the cost function and usually
require that the feasible set X has a simple structure, e.g.,
polytopes or spherical surface. When the feasible set X is a
high dimensional manifold with highly non-convex features,
it may be difficult to compute the gradient or curvature of
the cost function over X .

In contrast, our method is applicable to such a problem
with a highly non-convex feasible set X because we leverage
its convex relaxation X̂ . An interesting feature is that our



conditions only involve properties of X̂ \ X outside the
feasible set, yet they imply an important (global optimality)
property of local optimal points in X .

The rest of the paper is organized as follows. We formulate
our problem in Section II, prove our main results in Sections
III and IV, apply these results to OPF in Section V, and
conclude in Section VI.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space with a norm ‖ · ‖.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x ∈ X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x ∈ X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ⊆ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ → R is convex and
continuous over X̂ . We do not require the relaxation X̂ to
be efficiently represented.

Definition 1: A point xlo ∈ X is called a local optimum
of (1) if there exists a δ > 0 such that f(xlo) ≤ f(x) for all
x ∈ X with ‖x− xlo‖ < δ.

Definition 2: We say the relaxation (2) is exact with
respect to (1) if any optimal point of (2) is feasible, and
hence globally optimal, for (1).

Definition 2 implies in particular that, if (2) is exact, then
for any x̂ ∈ X̂ \ X , f(x̂) > minx∈X̂ f(x).

Definition 3: A path in S ⊆ Kn connecting point a to
point b is a continuous function h : [0, 1] → S such that
h(0) = a and h(1) = b.

We may refer to a path by the corresponding function h
in the remainder of the paper.

Lemma 1: The following are equivalent:
(A) Problems (2) is exact with respect to (1).
(B) For any x ∈ X̂ \ X , there is a path h in X̂ such that

h(0) = x, h(1) ∈ X , f(h(t)) is non-increasing for t ∈
[0, 1] and f(h(0)) > f(h(1)).
Proof: (A) =⇒ (B): Let x∗ be any optimal point of

(2). By (A), x∗ ∈ X , thus for x ∈ X̂ \ X , we could choose
the path as the line segment from x to x∗ since X̂ is convex.

(B) =⇒ (A): Condition (B) implies that no point x ∈
X̂ \ X can be optimal for (2).

Lemma 1 is not surprising, and in fact many works in the
literature proving exact relaxations of optimal power flow
problems can be interpreted as using (B) to prove (A) by
implicitly finding such a path h for each x ∈ X̂ \ X (see
also Section V).

Condition (B) does not say anything about the local optima
in X for (1). In the next section we will strengthen (B) by
equipping the path with a Lyapunov-like function and show

that the stronger condition implies that all local optima of (1)
are globally optimal. We start by classifying local minima.

Definition 4: We classify each local optimum xlo of (1)
into three disjoint classes: xlo is a
• Global optimum if f(xlo) ≤ f(x) for all the feasible
x ∈ X .

• Pseudo local optimum if there is a path h : [0, 1]→ X
such that h(0) = xlo, f(h(t)) ≡ f(xlo) for all t ∈ [0, 1]
and h(1) is not a local optimum.

• Genuine local optimum if it is neither a global optimum
nor a pseudo local optimum.

Examples of all three classes are shown in Fig. 1.
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Fig. 1. Examples for three classes of local optima. The arrow indicates
the direction along which the cost function linearly decreases. Point b (in
green) is a global optimum, point c (in blue) is a pseudo local optimum,
while points a and d (in red) are genuine local optima.

Definition 5: A point x is improvable in X if there is a
path h : [0, 1]→ X such that
• h(0) = x;
• f(h(t)) is non-increasing for t ∈ [0, 1];
• h(1) is not a local optimum or f(h(1)) < f(x).
Remark 1: If a local optimum is improvable in X , then it

must be a pseudo local optimum.
Finally we need the following properties about a collection

of paths.
Definition 6: A set {hi : i ∈ I} of paths indexed by i is

said to be uniformly bounded if there is a finite number M
such that ‖hi(t)‖ ≤M for every i ∈ I and t ∈ [0, 1].

Definition 7: A set {hi : i ∈ I} of paths is said to be
uniformly equicontinuous if for any ε > 0, there exists a
δ > 0 such that ‖hi(t1) − hi(t2)‖ < ε for every i ∈ I
whenever |t1 − t2| < δ.

Remark 2: The index set I could be empty or uncountably
infinite. An empty path set (i.e., when I = ∅) is considered
to be both uniformly bounded and uniformly equicontinuous.

Remark 3: If S is compact in Kn and all paths in a set
H = {hi : i ∈ I} are linear and [0, 1]→ S, then H must be
both uniformly bounded and uniformly equicontinuous.

III. MAIN RESULT

Definition 8: A Lyapunov-like function 1 associated with
(1) and (2) is a continuous function V : X̂ → R+ such that
V (x) = 0 for x ∈ X and V (x) > 0 for x ∈ X̂ \ X .

The strengthened version of (B) is as follows.
(C) There exists a Lyapunov-like function V associated with

(1) and (2) such that:

1In contrast to a standard Lyapunov function, we do not require V to be
differentiable here.
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Fig. 2. Sketch of notations for the proof of Theorem 1. Point x and `(t†)
will be later proved to be identical to each other.

a) For any x ∈ X̂ \ X , there is a path hx in X̂
such that hx(0) = x, hx(1) ∈ X , both f(hx(t))
and V (hx(t)) are non-increasing for t ∈ [0, 1] and
f(hx(0)) > f(hx(1)).

b) The set {hx}x∈X̂\X is uniformly bounded and uni-
formly equicontinuous.

Remark 4: As (C) is stronger than (B), Lemma 1 implies
that (C) =⇒ (A).

Theorem 1: If (C) holds, then any local optimum in X for
(1) is either a global optimum or a pseudo local optimum.

Proof: An illustrative sketch of the notations used in
this proof is in Fig. 2. Suppose x ∈ X is a local but not global
optimum for (1). We will prove that x must be improvable
in X (and thus a pseudo local optimum).

Let x∗ 6= x be a global optimum of (1), i.e., f(x∗) < f(x).
Let ` : [0, 1] → X̂ be the linear function characterizing the
line segment from x to x∗, i.e., `(t) = (1− t)x+ tx∗ with
f(`(1)) = f(x∗) < f(x). Note that f(`(t)) is non-increasing
in t. To see this, consider any t ≥ 0, ε > 0 with t + ε ≤ 1,
x1 = `(t), x2 = `(t + ε). Setting s := ε/(1 − t), we have
x2 = (1 − s)x1 + sx∗. Since f is convex and x∗ is also a
global optimum of (2) over X̂ by Remark 4, we have

f(x2) ≤ (1− s)f(x1) + sf(x∗) ≤ f(x1).

Define

t† := sup
t∈[0,1]

t s. t. `(τ) ∈ X ∀τ ≤ t.

As X is closed, `(t†) is also in X . We first prove `(t†) must
be x (i.e., t† = 0). Otherwise, as x is a local optimum, we
could find δ ∈ (0, t†) such that f(`(t)) ≥ f(`(0)) = f(x)
for all t ∈ [0, δ). Since f(`(t)) is non-increasing in t, we
must have f(`(t)) ≡ f(`(0)) = f(x) for all t ∈ [0, δ). It
contradicts the fact that f(`(t)) is convex and f(`(1)) =
f(x∗) < f(x) = f(`(0)) for the same reason f is non-
increasing in t.

Therefore `(t†) = x and f(`(t†)) = f(x). It is sufficient to
show `(t†) is improvable in X . That is to say, it is sufficient
to find some function h : [0, 1]→ X such that h(0) = `(t†),
f(h(t)) is non-increasing in t ∈ [0, 1] and either f(h(1)) <
f(`(t†)) or h(1) is not a local optimum in X for (1).

By the definition of t†, there is a decreasing sequence
tm → t† such that tm ∈ (t†, 1] and `(tm) ∈ X̂ \X for all m.
Since f(`(t)) is non-increasing in t, the sequence f(`(tm))
is non-decreasing in m and f(`(tm)) ≤ f(`(t†)). For each
`(tm) we take the function hm : [0, 1] → X̂ guaranteed by
Condition (C). As the sequence hm is uniformly bounded and
uniformly equicontinuous, a subsequence must uniformly
converge to a limit h by Arzelà-Ascoli theorem. Without
loss of generality, we denote this subsequence as hm as well.
Next we prove this h satisfies all the properties in Definition
5, implying the improvability of x.

To show h(t) ∈ X for any fixed t ∈ [0, 1], we consider
the sequence (V (hm(t)) : m ∈ Z). As V is continuous, we
have

lim
m→∞

V (hm(t)) = V (h(t)) ≥ 0.

On the other hand, we have V (hm(t)) ≤ V (hm(0)), thus

lim
m→∞

V (hm(t)) ≤ lim
m→∞

V (hm(0))

= lim
m→∞

V (`(tm)) = V (`(t†)) = 0.

Hence V (h(t)) = 0 and h(t) ∈ X .
To show h(0) = `(t†), we consider

h(0) = lim
m→∞

hm(0) = lim
m→∞

`(tm) = `(t†).

To show f(h(t)) is non-increasing, we take any s, t ∈
[0, 1] such that s < t. As f is continuous, we have

f(h(s)) = lim
m→∞

f(hm(s))

f(h(t)) = lim
m→∞

f(hm(t))

and by Condition (C) we have f(hm(s)) ≥ f(hm(t)) for
each m. Therefore f(h(s)) ≥ f(h(t)).

Finally, we will show if f(h(1)) = f(`(t†)) then h(1)
must not be a local minimal in X for (1). For each m,

f(hm(1)) < f(hm(0)) = f(`(tm)) ≤ f(`(t†)) = f(h(1))

and hm(1) ∈ X . Since the sequence hm(1) converges to
h(1) as m→∞, within any open neighborhood of h(1) in
X , we could always find some hm(1) with strictly smaller
cost value. Thus h(1) cannot be a local minimum in X .

IV. COROLLARIES

A corollary of Theorem 1 is as follows.
Corollary 1: Condition (C) implies that the feasible set of

(1) is connected.
Proof: If X is not connected, then by definition X can

be partitioned into two disjoint non-empty closed sets X1

and X2 with X = X1 ∪ X2, which are hence both compact.
Further we let xi be any global optimum of minx∈Xi f(x)
for i = 1, 2. Clearly x1 6= x2 and they are both local optima
of (1).

If f(x1) = f(x2), then any convex combination of x1,
x2 must be a global optimum to (2). Since x1 and x2 are
not connected, there must some convex combination that is
outside X . This contradicts the exactness of relaxation.



If f(x1) 6= f(x2), without loss of generality we assume
f(x1) < f(x2), i.e., x2 is not a global optimum of (1). But
x2 is not a pseudo local optimum of (1) either, contradicting
Theorem 1. To see this, note that any point x′ ∈ X which
is connected to x2 via a path in X must also be a point in
X2 and if f(x′) = f(x2) then x′ must be a local optimum
of (1) as well.

Theorem 1 guarantees that any local optimum is either
global optimum or pseudo local optimum. It is therefore
possible for a gradient-based algorithm to be trapped at a
pseudo local optimum. In the following, we discuss some
conditions that rule out pseudo local optima and therefore
guarantee that any local optimum must be a global optimum.

Corollary 2: If all local optima of (1) are isolated, then
Condition (C) implies that any local optimum of (1) is a
global optimum.

Here, local optima being isolated means any local opti-
mum of (1) has an open neighborhood which contains no
other local optimum. The proof is straightforward as by
definition isolated local optimum could not be pseudo local
optimum.

Another way to get rid of pseudo local optima is by
strengthening the monotonicity of f(hx(t)) in Condition (C).
Consider the following condition which is slightly stronger
than (C).
(C’) Condition (C) holds, and there exists k > 0 such that

∀x ∈ X̂ \ X , ∀0 ≤ t < s ≤ 1 we have

f(hx(t))− f(hx(s)) ≥ k‖hx(t)− hx(s)‖. (3)

In Condition (C’), ‖ · ‖ could be any norm on Kn. As
a caveat, `0-“norm” is not allowed here as it is not a norm
since it does not satisfy ‖αx‖ = |α|‖x‖. Note that Condition
(C) already implies f(hx(t)) − f(hx(s)) ≥ 0, while (C’)
strengthens this condition by enforcing a positive lower
bound depending on hx.

Theorem 2: If (C’) holds, then any local optimum of (1)
must be a global optimum.

Proof: Following the proof of Theorem 1, suppose x ∈
X is a local but not global optimum for (1). Then we have
x = `(t†) and could obtain a limit point of the sequence
hm, denoted as h. Since both sides of (3) are continuous in
hm(t) and hm(s), and the limits of hm(t) and hm(s) are
h(t) and h(s), we must have whenever h(t) 6= h(s),

f(h(t))− f(h(s)) ≥ k‖h(t)− h(s)‖ > 0.

Taking t = 0 we can conclude that h(0) (i.e. `(t†), which is
the same point as x) is not a local optimum of (1).

V. APPLICATION: OPTIMAL POWER FLOW

In this section, we apply the main results of Sections III
and IV to non-convex AC Optimal Power Flow problems
(OPFs) to show that a well-known sufficient condition for
exact Second-Order Cone Program (SOCP) relaxation also
guarantees that any local optimum of the original non-convex
problem is a global optimum. This sufficient condition for
exactness is proposed in [14]. It is applicable to a radial
network and requires that no lower bound for real or reactive

power injections ever be tight at any optimal point of
the SOCP relaxation. Under the same condition, our result
explains why many local search algorithms such as primal-
dual interior-point methods tend to converge to a global
optimum, even though in general OPF is non-convex and
NP-hard.

A. System Model

Consider a power network with an underlying connected
directed graph G(V, E). Let V := {0, 1, · · · , N − 1} be the
set of buses (i.e., nodes), and E ⊆ V ×V be the set of power
lines (i.e., edges). We will refer to a power line from bus j
to bus k by j → k or (j, k) interchangeably. For each power
line (j, k), its series admittance is denoted by yjk ∈ C, and
its series impedance is hence zjk := y−1jk . Both the real and
imaginary parts of zjk are assumed to be positive.

We adopt the Branch Flow Model (BFM) to formulate
power flow equations. For each bus j, let Vj ∈ C, sj =
pj+iqj ∈ C denote its voltage and bus injection respectively.
For line (j, k), let Sjk and Ijk ∈ C denote the branch power
flow and current from bus j to k, both at the sending end.
We will denote the conjugate of a complex number a by aH.
The power flow equations are:

Vj − Vk = zjkIjk, ∀(j, k) ∈ E (4a)

Sjk = VjI
H
jk, ∀(j, k) ∈ E (4b)∑

i:i→j
(Sij − zij |Iij |2) + sj =

∑
k:j→k

Sjk, ∀j ∈ V (4c)

If the underlying graph G is a tree, then we can introduce
vj := |Vj |2 ∈ R and `jk := |Ijk|2 ∈ R. The power flow
equations (4) can be equivalently represented in terms of
new variables as:

vj = vk + 2Re(zjkS
H
jk)− |zjk|2`jk, ∀(j, k) ∈ E (5a)

vj =
|Sjk|2
`jk

, ∀(j, k) ∈ E (5b)

sj =
∑
k:j→k

Sjk −
∑
i:i→j

(Sij − zij`ij), ∀j ∈ V (5c)

These are the DistFlow equations introduced in [15], [16].
Given a cost function f(s) : CN → R, we are interested

in the following OPF problem:

minimize
x=(s,v,`,S)

f(s) (6a)

subject to (5) (6b)
vj ≤ vj ≤ vj (6c)
sj ≤ sj ≤ sj (6d)

`jk ≤ `jk (6e)

All the inequalities for complex numbers in this section are
enforced for both the real and imaginary parts.

B. Optimality

Consider a stronger version of monotonicity.



Definition 9: A function g : R→ R is strongly increasing
if there exists real c > 0 such that for any a > b, we have

g(a)− g(b) ≥ c(a− b).
We now make the following assumptions on OPF:

(i) The underlying graph G is a tree.
(ii) The cost function f is convex, and is strongly increasing

in Re(sj) (or Im(sj)) for each j ∈ V and non-
decreasing in Im(sj) (or Re(sj)).

(iii) The problem (6) is feasible.
(iv) The line current limit satisfies `jk ≤ vj |yjk|2.
Assumption (i) is generally true for distribution networks and
assumption (iii) is typically mild. As for (ii), f is commonly
assumed to be convex and increasing in Re(sj) and Im(sj)
in the literature (e.g., [17], [18], [19]). Assumption (ii) is
only slightly stronger since one could always perturb any
increasing function by an arbitrarily small linear term to
achieve strong monotonicity. Assumption (iv) is not common
in the literature but is also mild because of the following
reason. Typically Vj = (1 + εj)e

iθj in per unit where
ε ∈ [−0.1, 0.1] and the angle difference θjk := θj − θk
between two neighboring buses j, k typically has a small
magnitude. Thus the maximum value of |Vj − Vk|2 = |(1 +
εj)e

iθjk−(1+εk)|2, which is equivalent to `jk/|yjk|2, should
be much smaller than vj which is ≈ 1 per unit.

Problem (6) is non-convex, as constraint (5b) is not
convex. Denote by X the set of (s, v, `, S) that satisfy (6b)-
(6e), so (6) is in the form of (1). We can relax (6) by
convexifying (5b) into a second-order cone [14]:

minimize
x=(s,v,`,S)

f(s) (7a)

subject to (5a), (5c), (6c)− (6e) (7b)
|Sjk|2 ≤ vj`jk (7c)

One can similarly regard X̂ as the set of (s, v, `, S) that
satisfy (7b), (7c). It is proved in [14] that if sj = −∞− i∞
for all j ∈ V , then (7) is exact, meaning any optimal solution
of (7) is also feasible and hence globally optimal for (6). Now
we show that the same condition also guarantees that any
local optimum of (6) is also globally optimal. This implies
that a local search algorithm such as the primal-dual interior
point method can produce a global optimum as long as it
converges.

Theorem 3: If sj = −∞ − i∞ for all j ∈ V , then any
local optimum of (6) is a global optimum.

To prove Theorem 3, our strategy is to find a Lyapunov-
like function such that Condition (C’) holds. Theorem 2 then
directly implies the theorem. Let

V (x) :=
∑

(j,k)∈E
vj`jk − |Sjk|2. (8)

Clearly, V is a valid Lyapunov-like function satisfying Def-
inition 8.

Proof: We first prove that for V defined in (8),
Condition (C) holds. For each x = (s, v, `, S) ∈ X̂ \ X ,

let M be the set of (j, k) ∈ E such that |Sjk|2 < vj`jk. For
(j, k) ∈M, the quadratic function

φjk(a) :=
|zjk|2

4
a2 +

(
vj − Re(zjkS

H
jk)
)
a+ |Sjk|2 − vj`jk

must have a unique positive zero as |Sjk|2 − vj`jk < 0.
We define ∆jk to be this positive zero if (j, k) ∈ M and 0
otherwise.

Assumption (iv) implies `jk ≤ vj |yjk|2, and therefore

vj − Re(zjkS
H
jk) ≥ vj − |zjk||Sjk|

≥ vj − |zjk|
√
vj`jk ≥ vj − |zjk|

√
v2j |yjk|2 = 0.

It further implies φjk(a) is strictly increasing for a ∈
[0,∆jk].

Now consider the path hx(t) := (s̃(t), ṽ(t), ˜̀(t), S̃(t)) for
t ∈ [0, 1], where

s̃j(t) = sj −
t

2

∑
i:i→j

zij∆ij −
t

2

∑
k:j→k

zjk∆jk, (9a)

ṽj(t) = vj , (9b)
˜̀
jk(t) = `jk − t∆jk, (9c)

S̃jk(t) = Sjk −
t

2
zjk∆jk. (9d)

Clearly we have hx(0) = x ∈ X̂ \ X . We show in
Appendix A that hx(t) is feasible for (7) for t ∈ [0, 1] and
hx(1) is feasible for (6). Therefore, hx is indeed [0, 1]→ X̂
and hx(1) ∈ X .

Since zjk > 0, both real and imaginary parts of s̃j(t)
are strictly decreasing for (j, k) ∈ M and stay unchanged
otherwise. By assumption (ii), f(s̃(t)) is also strictly de-
creasing. To show V (hx(t)) is also decreasing, we notice
that V (hx(t)) equals to∑

(j,k)∈E
ṽj(t)˜̀

jk(t)− |S̃jk(t)|2

=
∑

(j,k)∈Mc

vj`jk − |Sjk|2 +
∑

(j,k)∈M
ṽj(t)˜̀

jk(t)− |S̃jk(t)|2

=
∑

(j,k)∈Mc

vj`jk − |Sjk|2 −
∑

(j,k)∈M
φjk(t∆jk).

As φjk(a) is strictly increasing for a ∈ [0,∆jk], we conclude
that V (hx(t)) is strictly decreasing for t ∈ [0, 1].

By Remark 3, the set {hx}x∈X̂\X is uniformly bounded
and uniformly equicontinuous as all hx(t) are linear func-
tions in t. In summary, Condition (C) is satisfied.

Finally, we show Condition (C’) also holds. By assumption
(ii), there exists some real c > 0 independent of x such that
for any 0 ≤ a < b ≤ 1,

f(s̃(a))− f(s̃(b))

≥ c
∑
j∈V

Re(s̃j(a)− s̃j(b)) + Im(s̃j(a)− s̃j(b))

= c‖s̃(a)− s̃(b)‖m



where ‖ · ‖m is defined as ‖a‖m :=
∑
i |Re(ai)|+ |Im(ai)|

over the complex vector space. It is easy to check ‖ · ‖m is
a valid norm.

On the other hand, by (9) we have ‖ṽ(a) − ṽ(b)‖m ≡ 0
and

‖˜̀(a)− ˜̀(b)‖m ≤
1

max
(j,k)∈E

{|zjk|}
‖s̃(a)− s̃(b)‖m,

‖S̃(a)− S̃(b)‖m ≤
1

2
‖s̃(a)− s̃(b)‖m.

Therefore,

‖hx(a)− hx(b)‖m ≤
(3

2
+

1

max
(j,k)∈E

)
‖s̃(a)− s̃(b)‖m

and there exists ĉ > 0 independent of x, a, b such that

f(s̃(a))− f(s̃(b)) ≥ ĉ‖hx(a)− hx(b)‖m.

Therefore Condition (C’) is also satisfied and by Theorem
2, any local optimum of (6) is a global optimum.

VI. CONCLUSION

Our main results (Theorems 1 and 2) provide new con-
ditions to guarantee global optimality for non-convex opti-
mization problems. Specifically we show that if from any
point x ∈ X̂ \ X there is a path connecting x to X along
which both the cost function and a Lyapunov-like function
are improvable, then any local optimum in X is globally
optimal. This implies that, for AC OPF over radial networks,
a well-known sufficient condition for exact relaxation also
guarantees that there are no spurious local optimum. Hence
local algorithms are not only much more scalable than
semidefiniite relaxations, but also tend to perform well.

Most works in the literature prove global optimality of
non-convex problems by studying the gradient and curvature
of the cost function and are applicable for problems with
a nonconvex cost function but a tractable feasible set. We
propose a new approach that is applicable to problems
with highly non-convex feasible sets by leveraging their
convex relaxations. In general constructing a Lyapunov-like
function function V and a path hx for each x ∈ X̂ \ X
that satisfy condition (C) is difficult. As an example, the
feasible set of OPF is characterized by nonlinear power flow
equations and exhibit a complicated structure (see [20] for
a visualization). Fortunately, its SOCP relaxation suggests a
natural Lyapunov-like function. Our results suggest that other
conditions for exact relaxations might also be leveraged to
guarantee global optimality of local algorithms.

Besides OPF, there are other problems, e.g., matrix com-
pletion [21], [13], that are generally NP-hard, but in practice
can be solved by local algorithms or convex relaxations. Our
condition is sufficient for both exact relaxation and global
optimality of local solutions. This suggests a potentially
deeper connection between those two properties. In particular
our condition may characterize the intersection of problem
instances that have exact relaxations and instances whose
local optima are always globally optimal.
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APPENDIX

A. Feasibility of hx(t)

We first show that for t ∈ [0, 1], hx(t) is feasible for (7).
That is to say, constraints (5a), (5c), (6c)-(6e) and (7c) are
satisfied.



To show (5a) holds, consider

ṽk(t) + 2Re(zjkS̃
H
jk(t))− |zjk|2 ˜̀

jk(t)

= vk + 2Re
(
zjk
(
SH
jk −

t

2
zHjk∆jk

))
− |zjk|2(`jk − t∆jk)

= vk + 2Re(zjkS
H
jk)− |zjk|2`jk = vj = ṽj(t).

To show (5c) holds, consider

S̃ij(t)− zij ˜̀
ij(t) = Sij −

t

2
zij∆ij − zij(`ij − t∆ij)

=Sij − zij`ij +
t

2
zij∆ij

and hence∑
k:j→k

S̃jk(t)−
∑
i:i→j

(S̃ij(t)− zij ˜̀
ij(t))

=
∑
k:j→k

(
Sjk −

t

2
zjk∆jk

)
−
∑
i:i→j

(
Sij − zij`ij +

t

2
zij∆ij

)
=sj −

t

2

∑
i:i→j

zij∆ij −
t

2

∑
k:j→k

zjk∆jk = s̃j(t).

Constraints (6c)-(6e) are satisfied since ṽ = v and (s̃, ˜̀)
are decreased compared to (s, `) for both the real and
imaginary parts for each coordinate.

To show (7c) holds, we only consider those (j, k) ∈ M
since the constraints for other lines are not affected. We have

|S̃jk(t)|2 − ṽj(t)˜̀
jk(t)

=
∣∣Sjk − t

2
zjk∆jk

∣∣2 − vj(`jk − t∆jk)

=|Sjk|2−Re(zjkS
H
jk)t∆jk+

|zjk|2
4

t2∆2
jk − vj(`jk − t∆jk)

=φjk(t∆jk) ≤ φjk(∆jk) = 0. (10)

where the last inequality follows because φjk(a) is increas-
ing for a ∈ [0,∆jk] and the last equality follows because,
by definition, ∆jk is the unique positive zero of φjk.

Moreover, when t = 1, equality is achieved in (10) and
hence hx(1) satisfies (5b). As a result, hx(1) is feasible for
(6), as desired.


