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Abstract—When the shunt elements in the Π circuit line
model are assumed zero, it has been proved that branch flow
models are equivalent to bus injection models and that the
second-order cone relaxation of optimal power flow problems
on a radial network is exact under certain conditions. In this
note we propose a branch flow model that includes nonzero
line shunts and prove that the equivalence and the exactness of
relaxation continue to hold under essentially the same conditions
as for zero shunt elements.

Index Terms—Branch flow model, DistFlow equations, line
shunt, SOCP relaxation

I. INTRODUCTION

THE DistFlow model is introduced in [1], [2] for radial
networks. It is extended in [3], [4] to a branch flow

model for general networks that may contain cycles. The
branch flow model is justified in [5] by proving its equiva-
lence to the widely used bus injection AC power flow model.
For radial networks the DistFlow equations are nonlinear
and hence optimal power flow (OPF) problems formulated
based on these equations are nonconvex. Second-order cone
programming (SOCP) relaxation is introduced in [3] and a
sufficient condition for the relaxation to be exact is proved
there for radial networks.

All models in [1], [2], [3], [5], [4] assume zero shunt
elements (line charging) in the Π circuit line model. Branch
flow models are recently proposed in [6], [7] where the
SOCP relaxation of a more conservative approximation of
an OPF problem is studied. The purpose of this note is to
propose an alternative branch flow model (equations (9) for
radial networks and (11) for general networks) that includes
nonzero line shunts, and prove that the equivalence and
the exactness of SOCP relaxation continue to hold under
essentially the same conditions as when line shunts are zero.

II. BACKGROUND

Notations. Let C denote the set of complex numbers and
R the set of real numbers. Let i :=

√
−1. For any a ∈ C,

a∗ denotes its complex conjugate. Unless otherwise specified
a quantity a denotes a vector whose jth entry is a j, e.g.,
s := (s j, j ∈ N), S := (S jk,( j,k) ∈ L). For vectors a and b,
a≤ b means a j ≤ b j, ∀ j. If a j and b j are complex numbers,
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then the inequality is enforced for both real and imaginary
parts.

Consider a single-phase power network with N buses and L
lines modeled as a connected undirected graph G(N,L) where
N := {1,2, . . . ,N} and L ⊆ N ×N. This may represent the
positive sequence network of a balanced three-phase system.
A line ( j,k)∈ L, or j∼ k, is represented by a Π circuit model
(ys

jk,y
m
jk,y

m
k j) where ys

jk = ys
k j ∈ C are the series admittances

of the line, ym
jk ∈C is the shunt admittance of the line at bus

j, and ym
k j is the shunt admittance of the line at bus k. Since

the line model may include not just transmission lines, but
other devices such as transformers, we do not require ym

jk and
ym

k j to be equal. Denote zk j = z jk := 1/ys
jk. Let

• s j := p j + iq j or s j := (p j,q j) denote the real and
reactive power injections at bus j.

• Vj denote the voltage phasor at bus j, j ∈ N.
Without loss of generality [8], we fix bus 1 as the slack bus
and set V1 := 1∠0◦.

A widely used power flow model, we called a bus injection
model (BIM), is specified by the following set of equations
that relates nodal injections s and voltages V : for j ∈ N,

s j = ∑
k: j∼k

(
ys

jk
)∗(|Vj|2−VjV ∗k

)
+ ∑

k: j∼k

(
ym

jk
)∗|Vj|2 (1)

Let V denote the set of power flow solutions:

V := { (s,V ) ∈ C2N : (s,V ) satisfies (1), V1 := 1∠0◦ } (2)

While the bus injection model (1) involves only nodal vari-
ables, branch flow models also involve branch variables. Let
• I jk denote the phasor of the sending-end current from

bus j to bus k, ( j,k) ∈ L.
• S jk := Pjk + iQ jk or S jk := (Pjk,Q jk) denote the sending-

end real and reactive power flows from bus j to bus k,
( j,k) ∈ L.

DistFlow equations. When the shunt elements are assumed
zero ym

jk = ym
k j = 0, [1], [2] introduce a power flow model,

called DistFlow equations, for single-phase radial networks
(i.e., networks with a tree topology) and uses it to optimize
the placement and sizing of switched capacitors in distribu-
tion circuits for volt/var control. DistFlow equations adopt
a directed graph. When the line is directed from bus j to
bus k, we refer to it by j→ k ∈ L. For each directed line
j→ k, only the variable S jk is defined but not the variable
Sk j. The orientation of the graph can be arbitrary, but for ease
of exposition, we assume without loss of generality that bus
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1 is the root of the graph and every line points away from
the root. The DistFlow equations are given by [1], [2]: 1

s j = ∑
k: j→k

S jk − (Si j− zi j`i j) , j ∈ N (3a)

v j` jk = |S jk|2, j→ k ∈ L (3b)

v j− vk = 2Re
(
z∗jkS jk

)
−|z jk|2` jk, j→ k ∈ L (3c)

Here the variable v j, ` jk are the squared voltage magnitude
at bus j and the squared current magnitude on line j→ k.
The key feature of the DistFlow equations is that they do
not involve angles of voltage and current phasors because
these angles can be deduced from a solution x := (s,v, `,S)∈
R3(N+L) of the DistFlow equations (3) when the network is
radial, but not when the network contains cycles.

Branch flow model. The model (3) is extended to a branch
flow model (BFM) in [3], [4] for general networks that may
contain cycles by introducing a cycle condition. Given any
x := (s,v, `,S) define

β jk(x) := ∠(v j − z∗jkS jk), j→ k ∈ L (4)

and let β (x) := (β jk(x), j→ k ∈ L). Even though a solution
x of the DistFlow equations (3) does not contain voltage
phase angles, β jk(x) can be interpreted as the angle difference
across line j→ k (also see Section III below). The DistFlow
equations are extended in [3] to general networks as:

(3a)(3b)(3c), ∃θ ∈ RN s.t. β (x) = CT
θ (5)

where C is the N×L incidence matrix of the directed graph
with C jl = 1 if l = j→ k for some k, −1 if l = i→ j for some
i, and 0 otherwise. We refer to the condition β (x) =CTθ on
x in (5) as the cycle condition, which can be enforced by
introducing θ as additional variables. For general networks
(3) can thus be interpreted as a relaxation of (5) where the
cycle condition is ignored. When a network is radial the cycle
condition is vacuous and (5) reduces to (3).

Equivalence and SOCP relaxation. A justification of the
branch flow model (5), and hence (3), is that they are equiv-
alent to the widely used bus injection model (1). Specifically
it is proved in [5] that, when shunt elements are assumed
zero ym

jk = ym
k j = 0, there is a bijection between the set V and

the set of solutions x ∈ R3(N+L) of (5) for general networks
and the set of solutions x of (3) for radial networks.

The DistFlow equations (3a)(3c) are linear in its variable
x but (3b) is quadratic. Therefore OPF problems formulated
using the DistFlow equations are nonconvex. Second-order
cone program (SOCP) relaxation is introduced in [3] where
(3b) is relaxed to the convex constraint:

v j` jk ≥ |S jk|2, j→ k ∈ L (6)

The SOCP relaxation of an OPF problem is called exact if
every solution of the relaxation attains equality in (6) and

1 The complex notation is used only as a shorthand for real quantities.

hence is optimal for the original OPF problem. It is proved
in [3] that, for radial networks, SOCP relaxation is exact if
the injections are not lower bounded.

Remark 1. A nodal shunt element at bus j is included as
an injection ssh

j in [1], [2], and as an admittance load ysh
j in

[3]. They can be accommodated by modifying (3a) to:

s j + ssh
j = ∑

k: j→k
S jk − (Si j− zi j`i j) + ysh

j v j.

In this note we ignore nodal shunt elements for simplicity,
but all results here will still hold when they are included.

The models in [1], [2] and [3], [4], however, assume zero
shunt elements (line charging) ym

jk = ym
k j = 0 in the Π circuit

model. In the rest of this note we generalize the branch
flow models (3) and (5) to include line shunts, i.e., when
ym

jk and ym
k j are nonzero, and show that the results in [3] [5]

on equivalence and exact SOCP relaxation continue to hold
under essentially the same conditions as when ym

jk = ym
k j = 0.

III. BRANCH FLOW MODEL WITH LINE SHUNTS

Following [6] we consider the following branch flow model
with line shunt elements in complex form (adopting an
undirected graph):

s j = ∑
k: j∼k

S jk, j ∈ N (7a)

S jk = Vj I∗jk, Sk j = Vk I∗k j, ( j,k) ∈ L (7b)
I jk = ys

jk(Vj−Vk) + ym
jkVj, ( j,k) ∈ L (7c)

Ik j = ys
k j(Vk−Vj) + ym

k jVk, ( j,k) ∈ L (7d)

where (7a) imposes power balance at each bus, (7b) defines
branch power in terms of the associated voltage and current,
and (7c)(7d) describes the Kirchhoff’s laws. The main dif-
ference from the model in [3] is the use of undirected rather
than directed graph when shunt elements are included so that
line currents and power flows are defined in both directions.

Following [6], we define α jk := 1+ z jkym
jk and αk j := 1+

zk jym
k j for line ( j,k) ∈ L. Note that α jk = αk j if and only if

ym
jk = ym

k j and α jk = αk j = 1 if and only if ym
jk = ym

k j = 0 as
|z jk| 6= 0. Substituting (7c)(7d) into (7b) gives

Vj V ∗k = α
∗
jk |Vj|2 − z∗jk S jk. (8a)

Vk V ∗j = α
∗
k j |Vk|2 − z∗k j Sk j. (8b)

This motivates the following generalization of (3) as a branch
flow model for radial networks with shunt elements : for all
j ∈ N and ( j,k) ∈ L,

s j = ∑
k: j∼k

S jk (9a)

v j ` jk =
∣∣S jk

∣∣2 , vk `k j =
∣∣Sk j

∣∣2 , (9b)∣∣α jk
∣∣2 v j− vk = 2Re

(
α jk z∗jk S jk

)
−

∣∣z jk
∣∣2 ` jk (9c)∣∣αk j

∣∣2 vk− v j = 2Re
(
αk j z∗k j Sk j

)
−

∣∣zk j
∣∣2 `k j (9d)

α
∗
jk v j − z∗jk S jk =

(
α
∗
k j vk − z∗k j Sk j

)∗ (9e)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2020.3029732

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

The equivalence between (7) and (9) is provided as part
of the proof to Theorem 1 in the Appendix.

Remark 2. We propose to use the original LinDistFlow
model of [2] without shunt as a linear approximation of the
branch flow model (9) as the effect of shunts is negligible;
see justification in [9].

For general networks that may contain cycles, (8) suggests
extending the definition (4) of β (x) to both directions of a
line as follows:

β jk(x) := ∠(α∗jk v j− z∗jk S jk), ( j,k) ∈ L (10a)
βk j(x) := ∠(α∗k j vk− z∗jk Sk j), ( j,k) ∈ L (10b)

To generalize (5), fix an arbitrary graph orientation repre-
sented by the incidence matrix C and label the lines such
that entries β jk(x) in the first half of the vector β (x) :=
(β jk(x),βk j(x), j → k ∈ L) correspond to lines in the same
direction as specified in C, and entries βk j(x) in the second
half of β (x) correspond to lines in the opposite direction.
Then we propose the following generalization of (5) as a
branch flow model for general networks with shunt elements:
for all j ∈ N and ( j,k) ∈ L,

(9a)(9b)(9c)(9d) (11a)
∃θ ∈ RN s.t. β (x) = [C, −C]Tθ (11b)

where the components (β jk(x),βk j(x)) of the vector β (x)
are ordered such that (11b) implies

β jk(x) = θ j−θk = −βk j(x).

As (9b)(9c)(9d) imply that the magnitudes on both sides of
(9e) are equal, (9e) can be replaced by (11b) for general
networks. While (9e) is linear in the variable x, (11b) is
nonlinear. This is the major simplification of radial networks.

When the lines are modeled by series admittances without
shunt elements, ym

jk = ym
k j = 0, then α jk = αk j = 1 and (9) and

(11) can be shown to reduce to (3) and (5) respectively.

IV. EQUIVALENCE AND EXACT SOCP RELAXATION

A. Equivalence

Even though BIM (1) and BFMs (9) and (11) are defined
by different sets of equations in terms of their own variables,
all of them are models of the Kirchhoff’s laws and the Ohm’s
law and therefore must be related. We now clarify the precise
sense in which these mathematical models are equivalent.

Let the sets of solutions of BFMs be:

Xtree := {x := (s,v, `,S) ∈ R3(N+2L) | x satisfies (9),v1 = 1}
Xmesh := {x := (s,v, `,S) ∈ R3(N+2L) | x satisfies (11),v1 = 1}

Two sets A and B are said to be equivalent, denoted by A≡B,
if there is a bijection between them. Indeed we explicitly
exhibit bijections in the proof of Theorem 1 that preserve
the physical meaning of variables in each set.

Theorem 1. V ≡ Xmesh ⊆ Xtree. For radial networks V ≡
Xmesh = Xtree.

Proof. See Appendix.

B. Exact SOCP relaxation for radial networks

Consider a radial network and the following OPF problem:

min
x

f (x) s. t. x ∈ Xtree∩Y (12)

where Y := {x : s≤ s≤ s, v≤ v≤ v, 0≤ `≤ `} collects the
operation constraints. We make the following assumptions:
A1 The cost function f is strictly increasing in `, nonde-

creasing in s and independent of S.
A2 The OPF problem (12) is feasible.
Common cost functions that satisfy A1 include real power
loss or real power generation.

All the constraints in (12) are linear in x except the
quadratic equality (9b). Following [3] we relax (9b) to a
second-order cone constraint: for ( j,k) ∈ L,

|S jk|2 ≤ v j ` jk, |Sk j|2 ≤ vk `k j (13)

Let

Xsoc := {x ∈ R3(N+2L) | x satisfies (9a)(13)(9c)− (9e),v1 = 1}

The SOCP relaxation of OPF (12) is:

min
x

f (x) s. t. x ∈ Xsoc∩Y (14)

Consider the following conditions and Theorem 2, which
provides a sufficient condition for exact SOCP relaxation.
C1 s j =−∞− i∞ for all buses j ∈ N.
C2 Both Re(α jk) and Re(αk j) are strictly positive for j∼ k.

Theorem 2. If C1 and C2 hold, then every optimal solution
of the SOCP relaxation (14) is optimal for OPF (12).

Proof. If the optimal solution x̂ = (ŝ, v̂, ˆ̀, Ŝ) to (14) is not in
Xtree, then there must exist j ∼ k such that |Ŝ jk|2 < v̂ j ˆ̀jk.
Taking the squared magnitude on both sides of (9e) and
plugging in (9c),(9d), we obtain |Ŝ jk|2− v̂ j ˆ̀jk = |Ŝk j|2− v̂k ˆ̀k j
and therefore |Ŝk j|2 < v̂k ˆ̀k j also holds. Following [3] we now
construct another point x̃ = (s̃, ṽ, ˜̀, S̃) as follows.

ṽ = v̂,
˜̀jk = ˆ̀jk−Re(α jk)ε, ˜̀k j = ˆ̀k j−Re(αk j)ε,

S̃ jk = Ŝ jk− z jkε/2, S̃k j = Ŝk j− zk jε/2,
s̃ j = ŝ j− z jkε/2, s̃k = ŝk− zk jε/2.

All the other entries of s̃, ˜̀, S̃ not listed above take the same
values as in ŝ, ˆ̀, Ŝ.

It can be easily checked that x̃ is feasible to (14) for
sufficiently small ε > 0. By A1, f (x̃) < f (x̂). It contradicts
the optimality of x̂.

Remark 3. The exactness of SOCP relaxation for DistFlow
model without shunt elements is proved in [3], [4] under
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condition C1. Theorem 2 extends this result to DistFlow
model with shunt elements under the additional condition
C2. C2 generally holds since shunt admittances are usually
much smaller than series admittances in magnitude and
hence |z jkym

jk| and |zk jym
k j| are strictly smaller than 1. The

theorem hence suggests that exactness would hold even for
applications where line shunts are not negligible.

V. APPENDIX: PROOF OF THEOREM 1

Proof. Let

X̃ := {x̃ := (s,V, I,S) ∈ C4(N+2L) | x̃ satisfies (7),V1 := 1∠0◦}

For general networks that may contain cycles we will prove
V ≡ X̃, X̃ ≡ Xmesh, and Xmesh ⊆ Xtree. For radial networks
we will prove that Xmesh = Xtree.

Proof of V≡ X̃. Given (s,V ) ∈ V, define I by (7c)(7d) and
S by (7b) and the resulting (s,V, I,S) ∈ X̃. Conversely given
(s,V, I,S) ∈ X̃, substituting (7b)(7c)(7d) into (7a) shows
(s,V ) ∈V. As both mappings are derived from (7), it is easy
to check that they are inverses of each other.

Proof of X̃≡ Xmesh. Fix an x̃ := (s,V, I,S) ∈ X̃. Define (v, `)
by v j := |Vj|2 and ` jk := |I jk|2. We now show that x :=
(s,v, `,S)∈Xmesh. Clearly (9a)(9b) follow from (7a)(7b). For
(9c) rewrite (7c) as Vk = α jk Vj − z jk

(
S jk/Vj

)∗ where we
have substituted I jk := S∗jk/V ∗j from (7b). Taking the squared
magnitude on both sides gives

vk =
∣∣α jk

∣∣2 v j +
∣∣z jk

∣∣2 ` jk − 2Re
(
α jk

(
z jk

)∗S jk
)

which is (9c) (recall that z jk := 1/ys
jk). Similarly for (9d).

From (8) and the definitions of β jk(x) and βk j(x) in (10), we
have

β jk(x) = ∠Vj−∠Vk = −βk j(x)

and hence (11b) holds. This shows x∈Xmesh. We denote this
mapping from x̃ to x as φ1.

Conversely fix an x := (s,v, `,S) ∈ Xmesh. Define (V, I) as
follows. Pick a θ that satisfies (11b) with θ1 = 0. 2 Let Vj :=√v j eθ j for j ∈ N. Define I jk and Ik j in terms of V according
to (7c) and (7d) respectively for all lines ( j,k) ∈ L. We now
prove the following inequalities.(

α
∗
jk v j− z∗jkS jk

)
=
√

v jvk ei(θ j−θk) (15a)(
α
∗
k j vk− z∗k jSk j

)
=
√

vkv j ei(θk−θ j) (15b)

Taking (15a) as an example, (10) and (11b) imply that both
sides of (15a) have the same phase angle. We now show that
both sides have the same magnitude as well. Indeed∣∣α∗jkv j− z∗jkS jk

∣∣2 =∣∣α jk
∣∣2v2

j +
∣∣z jk

∣∣2 |S jk|2−2Re
(
α jkz∗jkv jS jk

)
=v j vk

2Since [C, −C] has rank N− 1 and the all-ones vector is in its null
space, such θ always uniquely exists.

where the last equality follows from multiplying both sides
of (9c) by v j and then substituting |S jk|2 = v j` jk from (9b).

To show that x̃ := (s,V, I,S) ∈ X̃ it suffices to show (7b)
holds. By construction we have

VjI∗jk = y∗jk(v j−VjV ∗k ) +
(
ym

jk
)∗v j

= y∗jk
(
α
∗
jk v j−

√
v jvk ei(θ j−θk)

)
= y∗jk

((
α
∗
jk v j− z∗jkS jk

)
−√v jvk ei(θ j−θk)

)
+ S jk

= S jk.

Here y jk is a shorthand for ys
jk. Hence x̃ := (s,V, I,S) satisfies

(7) (the proof that VkI∗k j = Sk j is similar). We denote the
mapping from x to x̃ as φ2. It is easy to check that φ1 and φ2
are inverses of each other and there is a bijection between X̃
and Xmesh.

Proof of Xmesh ⊆ Xtree. Suppose x ∈ Xmesh and hence satis-
fies (11). Inequalities (15) imply (9e). Hence x ∈ Xtree.

Proof of Xmesh = Xtree for radial networks. Suppose x ∈
Xtree and hence satisfies (9). We now show that x satisfies
(11b) when the network is radial. Recall that, by construction,
the first half β̃ (x) of β (x) correspond to lines in the same
directions as specified by the incidence matrix C. The
condition (9e) implies that β (x) = [β̃ T(x), −β̃ T(x)]T. It
is well-known that C has rank N− 1 and L = N− 1 for a
(connected) radial network. Hence C has full column rank
and a solution θ to β̃ (x) = CTθ always exists and is given
by θ =C

(
CTC

)−1
β̃ (x). Therefore

β (x) = [β̃ (x)T,−β̃ (x)T]T = [C,−C]T θ

which is condition (11b). Hence x ∈ Xmesh.

This completes the proof of Theorem 1.
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