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Abstract—Simulations have shown that while semi-definite
relaxations of AC optimal power flow (AC-OPF) on three-phase
radial networks with only wye connections tend to be exact,
the presence of delta connections seem to render them inexact.
This paper shows that such inexactness originates from the non-
uniqueness of relaxation solutions and numerical errors amplified
by the non-uniqueness. This finding motivates two algorithms to
recover the exact solution of AC-OPF in unbalanced distribution
networks featuring both wye and delta connections. In simu-
lations using IEEE 13, 37 and 123-bus systems, the proposed
algorithms provide exact optimal solutions up to numerical
precision.

Index Terms—Optimal power flow, semi-definite relaxation,
distribution networks, delta-connected devices.

I. INTRODUCTION

OPTIMAL power flow (OPF) is a mathematical program
that finds an optimal operating point for a power grid

subject to laws of physics and operational constraints [1]. OPF
formulated under the AC model is known to be both noncon-
vex and NP-hard to solve [2], [3]. Commonly used methods
to approximately solve this non-convex problem include, e.g.,
the Newton-Raphson method [4] and various linearizations [5],
[6], [7]. Another approach that has emerged over the last
decade or so is to relax the OPF problem to a convex program,
such as semi-definite program (SDP) relaxations and second-
order cone program (SOCP) relaxations [8], [9]. For single-
phase radial networks (i.e., networks with a tree topology) as
well as the single-phase equivalent of a balanced three-phase
radial network, simulations have shown that these relaxations
often yield solutions that are also global optima of the original
nonconvex problems [10]. Sufficient conditions that guarantee
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exact relaxations for single-phase radial networks have sub-
sequently been proved. There is now sizeable literature on
OPF relaxations; see, e.g., comprehensive surveys in [10], [11]
for pointers to various contributions including many earlier
surveys on OPF. In [12], the authors provided a comprehensive
comparison between nonlinear methods and relaxation for test
cases of different sizes. Many recent works further refine
and improve the convexification of OPF problems and exhibit
promising performance [13], [14].

Most of this literature focuses on single-phase models, but
distribution systems have multiple phases that are increasingly
unbalanced as distributed energy resources continue to grow.
Mathematically, we can identify each bus-phase pair of a
three-phase radial network with an equivalent single-phase bus
and transform it into a single-phase equivalent circuit with a
meshed topology [15], [16]. Most analytical results on exact
relaxation for meshed networks are restricted to weakly-cyclic
networks [17], but the single-phase equivalent of a three-
phase radial network is beyond this class. SDP relaxation has
been generalized in [18], [19] to three-phase radial networks
with only wye connections and shown to be exact in the
simulation of several test cases. A recent work [20] proves
a sufficient condition for exact relaxation in this case. Besides
SDP relaxation, [21] also provides an iterative algorithm for
three-phase networks, also without delta connections.

Semi-definite relaxation is recently extended in [22] to
networks with both wye and delta connected devices by
introducing a new positive semi-definite matrix that represents
the outer product of voltages and phase-to-phase currents
in the delta connections (matrix Mv,X,ρ(j) in (8b) below).
Simulation results in [22] showed that, surprisingly, this matrix
was never rank-1 at an optimal solution of the relaxation.
This seems to suggest that the SDP relaxation was inexact
in these simulations. In this paper, we show that even though
the matrix Mv,X,ρ(j) fails to attain rank 1, an exact solution
can still be recovered under certain conditions; see Theorem 2
and Remark 1. The inexactness in previous works is due to two
issues. First, optimal solutions to the SDP relaxation in these
simulations are generally not unique, and the exact solution is
only one of them which is not returned by the solver. Second,
such non-uniqueness could significantly amplify the numerical
error and make it computationally challenging to recover the
exact solution. We propose two variants of the standard SDP
relaxation that address both issues. The first algorithm post-
processes the relaxation solution and tends to provide lower
cost but larger constraint violation, while the second algorithm
adds a penalty term to the cost and tends to provide higher
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cost but smaller constraint violation. Simulations of both
algorithms corroborate the theoretical results and show that
they can recover exact solutions for three IEEE distribution
feeders.

To summarize the main contribution, this paper first explains
why conventional semi-definite relaxation is often inexact
when delta connections are present. Then we propose two
algorithms and prove that they can recover exact solutions
under certain conditions. As a byproduct, we also prove that
two models, bus injection model and branch flow model, are
equivalent when we relax the problem.

The remainder of the paper is organized as follows. In
Section II, we define the network structure and formulate
the three-phase OPF problem in both the bus injection model
(BIM) and the branch flow model (BFM). Section III proves
that the global optimal solution to the nonconvex OPF problem
can be recovered from its relaxation under certain conditions,
and two algorithms are presented. Section IV shows the
equivalence between BIM and BFM. Finally, in Section V, we
apply our algorithms to IEEE 13-, 37- and 123-bus systems.

II. SYSTEM MODEL

A. Network Structure

We study the model proposed in [19], [22]. Let the directed
graph representing the electrical network be G = (V, E), where
V = {0, 1, . . . , n} denotes the set of buses, and E ⊆ V ×
V denotes the set of edges; and let N := |V| = n + 1. In
this paper, we focus on the case where G represents a radial
network (i.e., a tree) because most distribution networks have
a tree topology. Throughout the paper, we will use (graph,
vertex, edge) and (power network, bus, line) interchangeably.
Without loss of generality, we let bus 0 be the substation bus
where the distribution feeder is connected to a transmission
network. Suppose the substation also serves as the slack bus,
so the voltages at the substation bus are fixed and specified.
We use j → k to denote a directed edge from bus j to k.
In many situations, when we do not care about the direction
of the edge, we simply use (j, k) and j ∼ k interchangeably
to denote an edge connecting bus j and k. That means either
j → k or k → j is in E . Consider a three-phase line (j, k)
characterized by the series impedance matrix zjk ∈ C3×3.
When line (j, k) has three phases, the inverse of zjk, denoted
as yjk, is the admittance of line (j, k). If branch (j, k) has
less than three phases, then we fill the rows and columns of
zjk corresponding to the missing phases with zeros, and we
let the admittance matrix yjk be the pseudo-inverse of zjk.
Last, let yj ∈ C3×3 denote the admittance of a shunt device
connected to bus j.1

For each bus j, let the voltages of all three phases at bus j be
collected in the vector Vj ∈ C3. We use Vφ

j for φ ∈ {a, b, c}
to indicate the voltage of phase φ. The voltage V0 at slack bus
0 is known and denoted by Vref . Let V = [VT

0 ,V
T
1 , . . . ,V

T
n]T

collect the voltages for the entire network. Similarly, we use
sφj to denote the bus injection for phase φ at bus j; and we

1The shunt here refers to a capacitive device at bus j and not the line
charging in the Π circuit model.

denote sj and s as the injections at bus j and in the entire
network, respectively.

For delta connected components, we use I∆,j ∈ C3 to
collect the delta line currents for phases in {ab, bc, ca}. Define

Γ :=

 1 −1 0
0 1 −1
−1 0 1

 .
Therefore, the complex power injections of the delta con-
nected components at bus j can be expressed as s∆,j =
diag(ΓVjI

H
∆,j). The net nodal injections contributed by delta

connections at bus j are given by −diag(VjI
H
∆,jΓ). Assume

that the operation regions for sj and s∆,j at bus j are convex
compact sets Sj and S∆,j , respectively.

The AC power flow equations are:

sj − diag(VjI
H
∆,jΓ)− diag(VjV

H
j y

H
j )

=
∑
k:j∼k

diag((VjV
H
j −VjV

H
k )yH

jk) (1a)

s∆,j = diag(ΓVjI
H
∆,j). (1b)

where (1a) is the power balance equation at bus j and (1b)
defines the power through delta connected components.

Similar to [22], we will adopt Xj , ρj ∈ C3×3 as auxiliary
matrices to model the outer products of voltages and currents.

Xj = VjI
H
∆,j (2a)

ρj = I∆,jI
H
∆,j . (2b)

We consider an OPF problem that minimizes a continuous
convex cost function f(s, s∆) over variables (s, s∆,V, I∆)
subject to power flow equations (1) as well as voltage and
injection limits:

minimize
s,s∆,V,I∆

f(s, s∆) (3a)

subject to (1) (3b)
V0 = Vref (3c)
sj ∈ Sj , s∆,j ∈ S∆,j , for j ∈ V (3d)

V ≤ |V| ≤ V. (3e)

In (3e), |V| stands for the modulus of V elementwise, and
V,V ∈ R3N are the lower and upper limits for voltage
magnitudes, respectively. If the limits are homogeneous across
all buses and phases, we can denote them as V 1, V 1, where
V , V are scalars and 1 is the all-one vector. Next, we will
present power flow equations for three-phase radial networks
in both bus injection model (5) and branch flow model (9).

B. Bus Injection Model

The bus injection model (BIM) is defined in terms of
(s, s∆,W,X, ρ), where we use W ∈ C3N×3N to replace
VVH in (1). The matrix Wjk ∈ C3×3 is the (j, k) submatrix
of W. For notational simplicity, we let

MW,X,ρ(j) :=

[
Wjj Xj

XH
j ρj

]
for j ∈ V. (4)
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The power flow model is represented as

sj − diag(XjΓ)− diag(Wjjy
H
j )

=
∑
k:j∼k

diag((Wjj −Wjk)yH
jk) (5a)

s∆,j = diag(ΓXj) (5b)

W00 = VrefV
H
ref (5c)

W � 0 (5d)
rank(W) = 1 (5e)

MW,X,ρ(j) � 0 (5f)

rank
(
MW,X,ρ(j)

)
= 1. (5g)

Equations (5f), (5g) are derived from (2) to model the current
and power flow of delta connections.

Hence, the AC-OPF problem in BIM formulation is:

minimize
s,s∆,W,X,ρ

f(s, s∆) (6a)

subject to (5), (3d). (6b)

diag(VVH) ≤ diag(W) ≤ diag(VV
H

) (6c)

C. Branch Flow Model

In a branch flow model (BFM), we introduce S, v, and ` to
model the branch power flow, squared voltages, and squared
currents, respectively. We let Ijk := yjk(Vj − Vk) be the
sending-end current from bus j to bus k, and Sjk be the
sending-end branch power from j to k. The matrices S, v,
and ` can be written as

S = (Sjk ∈ C3×3)(j→k)∈E , Sjk = VjI
H
jk (7a)

v = (vj ∈ C3×3)j∈V , vj = VjV
H
j (7b)

` = (`jk ∈ C3×3)(j→k)∈E , `jk = IjkI
H
jk. (7c)

Let

Mv,S,`(j, k) :=

[
vj Sjk
SH
jk `jk

]
for j → k (8a)

Mv,X,ρ(j) :=

[
vj Xj

XH
j ρj

]
for j ∈ V. (8b)

The branch flow model is defined in terms of variables
(s, s∆,S,v, `,X, ρ), and it is expressed as

vk = vj − (Sjkz
H
jk + zjkS

H
jk) + zjk`jkz

H
jk (9a)∑

k:j→k

diag(Sjk)−
∑
l:l→j

diag(Slj − zlj`lj)

=− diag(vjy
H
j + XjΓ) + sj

(9b)

s∆,j = diag(ΓXj) (9c)

v0 = VrefV
H
ref (9d)

Mv,S,`(j, k) � 0 (9e)

rank
(
Mv,S,`(j, k)

)
= 1 (9f)

Mv,X,ρ(j) � 0 (9g)

rank
(
Mv,X,ρ(j)

)
= 1. (9h)

Similar to BIM, (9g), (9h) are also derived from (2).

The AC-OPF problem in the BFM form can be formulated
as:

minimize
s,s∆,S,v,`,X,ρ

f(s, s∆) (10a)

subject to (9), (3d) (10b)

diag(VjV
H
j )≤diag(vj) ≤ diag(VjV

H

j )
(10c)

III. ANALYTICAL RESULTS

The main challenge to solving OPF problems (6) and (10)
is the nonconvex rank constraints in (5e), (5g), (9f) and (9h).
If we drop all the rank-1 constraints, then we obtain

minimize
s,s∆,W,X,ρ

f(s, s∆) (11a)

subject to (5a)− (5d), (5f), (3d), (6c). (11b)

as the relaxation for the BIM and

minimize
s,s∆,S,v,`,X,ρ

f(s, s∆) (12a)

subject to (3d), (10c), (9a)− (9e), (9g) (12b)

as the relaxation for the BFM. Solving the relaxed prob-
lems (11) and (12) could lead to solutions that are infeasible
for the original nonconvex problems (6) and (10) respectively
when the solutions do not satisfy the rank-1 constraints. In
what follows, we will explore conditions under which optimal
solutions of (6) and (10) can be recovered from their respective
relaxations. First, the following lemma is presented, which is
the main ingredient for subsequent results.

Lemma 1: Consider a block Hermitian matrix

M :=

[
A B
BH C

]
(13)

where A and C are both square matrices. If M � 0 and
A = xxH for some vector x, then there must exist some
vector y such that B = xyH.

Proof: As M � 0, it can be decomposed as

M =

[
M1

M2

] [
MH

1 MH
2

]
(14)

and A = M1M
H
1 , B = M1M

H
2 , C = M2M

H
2 . Because

A = xxH has rank-1, matrix M1 is in the column space of
x and has rank-1 as well. There must exist vector z such
that M1 = xzH. As a result, B = M1M

H
2 = xzHMH

2 =
x(M2z)H.

One observation in Lemma 1 is when submatrices A and
B are fixed and specified as xxH and xyH, there are non-
unique C to make M positive semi-definite. Similarly, in the
relaxations (11) and (12), the optimal solutions are always non-
unique. Taking (11) as an example, for any optimal solution
(s∗, s∗∆,W

∗,X∗, ρ∗), one could add to ρ∗ an arbitrary positive
semi-definite matrix to obtain a different optimal solution
(s∗, s∗∆,W

∗,X∗, ρ∗ + KKH). This non-uniqueness in the
optimal ρ explains why in existing literature such as [22], the
relaxation (11) could compute rank-1 W (within numerical
tolerance) but the resulting MW,X,ρ is always not rank-1.
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In fact, the next result shows in theory, if the optimal W
is perfectly of rank 1 without any numerical error, then an
feasible and optimal solution of (6) is recoverable.

Theorem 1: If u∗ = (s∗, s∗∆,W
∗,X∗, ρ∗) is an optimal

solution to (11) that satisfies rank(W∗) = 1, then a feasible
and optimal solution of (6) can be recovered from u∗.

Proof: We decompose W∗
jj as VjV

H
j for each j, where

Vj is a vector. By Lemma 1, there exists vector I∆,j such that
X∗j = VjI

H
∆,j . One could construct ρ̃ such that ρ̃j = I∆,jI

H
∆,j .

Since (11) is a relaxation of (6), for (s∗, s∗∆,W
∗,X∗, ρ̃) to

be optimal for (6), it is sufficient that it is feasible for (6).
Clearly, constraints (3d), (6c), (5a)–(5d) are satisfied because
they are also the constraints in (11) and they do not involve the
decision variable ρ. Constraint (5e) also holds as rank(W∗) =
1. Further, by Lemma 1, we have[

W∗
jj X∗j

(X∗j )
H ρ̃j

]
=

[
Vj

I∆,j

] [
Vj

I∆,j

]H

is both positive semi-definite and of rank-1. Hence, (5f) and
(5g) are also satisfied. Hence, (s∗, s∗∆,W

∗,X∗, ρ̃) is feasible
for (6), and this completes the proof.

Theorem 2: If u∗ = (s∗, s∗∆,S
∗,v∗, `∗,X∗, ρ∗) is an opti-

mal solution to (12) and satisfies rank(Mv∗,S,∗`∗(j, k)) = 1
for j ∼ k and rank(v∗j ) = 1 for j ∈ V , then an optimal
solution of (10) can be recovered from u∗.

The proof of Theorem 2 is omitted because it is similar to
the proof of Theorem 1.

Theorem 1 asserts that in theory, the only critical non-
convex constraint of (6) is (5e), in the sense that a solution
satisfying (5g) could always be recovered whenever (5e) holds.
However in practice, W∗ is typically not exactly rank-1 due
to numerical precision and therefore Theorem 2 could not be
directly applied to recover the optimal solution as long as
numerical error exists. This is because the recovery method
in Theorem 1 relies on the rank-1 decomposition of X∗. In
practice even if W∗ is close to being rank-1, the optimal X∗

could still be very different from being rank-1, as we will
explain below in Remark 1.

Remark 1 (Spectrum Error): The matrix A in (14) being
approximately rank-1 does not necessarily mean that B is
also approximately rank-1.2 For example, consider the case
where x, e1, and e2 are orthogonal vectors with norms 1,
10−4, and 10−5, respectively. Similarly, let y, z1, and z2 be
orthogonal vectors with norms 1, 104, and 105, respectively.
Then, construct the matrix M as in (14) with M1 = [x e1 e2]
and M2 = [y z1 z2]. Clearly, M has the upper left diagonal
block that is approximately rank-1. On the other hand, the
upper right block is of rank 3 with three singular values of
1. Consequently, even when W∗ is close to rank-1 within
a certain numerical tolerance, X∗ could be far from being
a rank-1 matrix, especially if ρ∗ already contains a large
redundant positive semi-definite matrix KKH. Decomposing
X∗ as the product of two vectors, as in the proof of Theorem
1, could result in a large numerical error.

2Here, being approximately rank-1 means that the second largest eigenvalue
of the matrix is nonzero but smaller than the largest eigenvalue by several
orders of magnitude.

To summarize, there are two factors that prevent the relax-
ation output from being exact. The first is the non-uniqueness
in the relaxation solution, and the second is that such non-
uniqueness further greatly amplify the numerical error in com-
putation. This finding motivates two algorithms for practical
implementation.

A. Relaxation with Post-Processing

Remark 1 shows recovering the vector I∆,j from X∗j can
lead to poor numerical performance. In the first algorithm, we
instead recover I∆,j as

(
diag(ΓVj)

)−1
s∗∆,j from (1b), and

then we reconstruct X̃j as VjI
H
∆,j . If there is no numerical

error, X∗ and X̃ should be equal; however, in the presence of
spectrum error, they could be different, as discussed in Remark
1. The pseudo code is provided in Algorithm 1.

Algorithm 1 Relaxation Algorithm with Post-Processing.
Input: y, S, S∆

Output: Optimal solution (s, s∆,W,X, ρ) to (6).
1: Solve (11) to obtain (s∗, s∗∆,W

∗,X∗, ρ∗).
2: if (rank(W∗) > 1) then
3: Output ‘Failed!’
4: Exit
5: else
6: Decompose W∗

jj = VjV
H
j

7: I∆,j ←
(
diag(ΓVj)

)−1
s∗∆,j

8: X̃← VjI
H
∆,j , ρ̃j ← I∆,jI

H
∆,j

9: return (s∗, s∗∆,W
∗, X̃, ρ̃)

10: end if

Theorem 3: If Algorithm 1 does not fail, then its output is
an optimal solution of (6).

Theorem 3 is the direct consequence of Theorem 1. Simi-
larly for BFM, one could also apply post-processing to recover
the solution of (10) from an optimal solution of (12). In the
BFM, instead of checking the rank of W∗, we check the rank
of Mv∗,S,∗`∗(j, k) for each j ∼ k and v∗j for j ∈ V .

B. Relaxation with Penalized Cost Function

The second algorithm we propose is to penalize and sup-
press the trace of ρj in the cost function. With such penalty
term, the value of ρ∗ will be unique for fixed W∗ and X∗

in the solution of (11) and the spectrum error can also be
restricted. Similar penalization approaches were also previ-
ously proposed in [23], [24] to promote low-rank solutions.
The penalized relaxed formulation under the BIM becomes

minimize
s,s∆,W,X,ρ

f(s, s∆) + λ
∑
j∈V

tr(ρj) (15a)

subject to (5a)− (5d), (5f), (3d), (6c) (15b)

Similarly, the penalized relaxed program under the BFM
becomes

minimize
s,s∆,S,v,`,X,ρ

f(s, s∆) + λ
∑
j∈V

tr(ρj) (16a)

subject to (9a)− (9e), (9g), (3d), (10c). (16b)
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Because tr(ρj) is linear and all constraints in (15b) and
(16b) are convex, both (15) and (16) are convex optimization
problems and can be efficiently solved in polynomial time.
Here, λ > 0 controls the weight of

∑
tr(ρj) in the cost

function. The pseudo code (based on BIM) is summarized
in Algorithm 2. The algorithm for BFM is similar.

Algorithm 2 Relaxation Algorithm with Penalized Cost Func-
tion.
Input: y, S, S∆

Output: Optimal solution (s, s∆,W,X, ρ) to (6).
1: Pick a sufficiently small λ > 0
2: Solve (15) and obtain u∗ := (s∗, s∗∆,W

∗,X∗, ρ∗)
3: if (rank(W∗) > 1) then
4: Output ‘Failed!’
5: Exit
6: else
7: return u∗

8: end if

Because the cost function in the penalized program has
been changed, the output of Algorithm 2 might not be the
global optimal solution of (6). We next show that the output
of Algorithm 2 serves as an approximation of the true optimal
solution. We make the following assumption.

Assumption 1: The problem (11) has at least one finite
optimal solution.

Now consider a sequence of positive and decreasing λi for
i = 1, 2, · · · such that λi → 0 as i → ∞. Taking BIM as an
example, let the optimal solution of (15) with respect to λi
be u(i).3 Then the following lemma implies the sequence u(i)

has a limit point.
Lemma 2: The sequence (u(i))∞i=1 resides in a compact set,

and hence has a limit point.
Proof: Because all the constraints in (15) are closed, we

only need to prove boundedness. By assumption, s
(i)
j and

s
(i)
∆,j at bus j are in compact sets Sj and S∆,j respectively.

The positive semi-definite matrix W(i) has upper bounds
on its diagonal elements and is therefore bounded. We only
need to show that

∑
j tr(ρ

(i)
j ) is also bounded because the

boundedness of X(i) is implied by the constraint (5f) as long
as
∑
j tr(ρ

(i)
j ) is bounded.

To show
∑
j tr(ρ

(i)
j ) is bounded, let û = (ŝ, ŝ∆,Ŵ, X̂, ρ̂)

be an optimal solution of (11). Then û is feasible for (15)
regardless of the value of λ. For any i, we must have∑
j tr(ρ

(i)
j ) ≤

∑
j tr(ρ̂j); otherwise, û will always give a

strictly smaller cost value in (15) for λ = λi and it would
contradict the optimality of u(i).

Suppose ũ := (s̃, s̃∆,W̃, X̃, ρ̃) is an arbitrary limit point
of the sequence u(i). We present sufficient conditions for ũ to
be an optimal solution of (6).

Theorem 4: If rank(W̃) = 1, then ũ is a globally optimal
solution of (6).

The proof of Theorem 4 can be found in [25]. Theorem
4 shows that when we solve the penalized program with a

3If the program has multiple solutions, then pick any one of them.

sequence of decreasing λi that converge to 0, any limit point
would be a global optimal for (6) as long as the W matrix
associated with the limit point is of rank-1. In our simulations,
we apply Algorithm 2 to solve (15) with a fixed but sufficiently
small λ, which usually results in rank-1 solutions.

Remark 2: Further, if all optimal solutions of (11) have
the same value for s, s∆,W,X, then Algorithm 1 succeeds if
and only if rank(W̃) = 1 holds in Theorem 4. If Algorithm
1 succeeds, its output will also be the same as ũ.

IV. MODEL EQUIVALENCE

In the previous sections, our results for the BIM and BFM
always come in pairs and are analogous. In single-phase
networks and multi-phase systems with only wye connections,
[26] and [19] have shown that the two models are equivalent in
the sense that one will produce an exact solution if and only if
the other will. We show in this subsection that a similar result
holds in the presence of delta connections.

Definition 1: Consider two optimization problems

minimize
x

fA(x) subject to x ∈ X (17)

minimize
y

fB(y) subject to y ∈ Y. (18)

We say (17) and (18) are equivalent if there exist mappings
g1 : X → Y and g2 : Y → X such that

x ∈ X ⇒ g1(x) ∈ Y, fA(x) = fB(g1(x)),

y ∈ Y ⇒ g2(y) ∈ X , fB(y) = fA(g2(y)).

We do not require g1 and g2 to be bijections, but if one of the
mappings is a bijection, then we can always set the other as
its inverse. We denote the decision variables for the BIM as

uBIM = (sBIM, sBIM
∆ ,WBIM,XBIM, ρBIM)

and the decision variables for the BFM as

uBFM = (sBFM, sBFM
∆ ,SBFM,vBFM, `BFM,XBFM, ρBFM).

The superscripts here are to distinguish the same variable for
different models.

Proposition 1: Problems (11) and (12) are equivalent. More-
over, for the pairs g1 and g2 in Definition 1, if uBIM satisfies
(5e), then g1(uBIM) satisfies (9f). If uBFM satisfies (9f), then
g2(uBFM) satisfies (5e).

Note that (11) and (12) are the relaxed BIM and BFM mod-
els. The proposition above implies that besides the equivalence
between nonconvex BIM and BFM models as we derived in
Section II, their relaxations are also equivalent. We only sketch
a proof here by providing the mappings g1 and g2, where g1

can be written as

sBFM = sBIM, sBFM
∆ = sBIM

∆ (19a)

SBFM
jk = (WBIM

jj −WBIM
jk )yH

jk (19b)

vBFM
j = WBIM

jj (19c)

`BFM
jk = yjk(WBIM

jj +WBIM
kk −WBIM

jk −WBIM
kj )yH

jk (19d)

XBFM
j = XBIM

j , ρBFM
j = ρBIM

j (19e)
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and g2 as

sBIM = sBFM, sBIM
∆ = sBFM

∆ (20a)

WBIM
jj = vBFM

j (20b)

WBIM
jk =

{
vBFM
j − SBFM

jk zH
jk, if j → k

(WBIM
kj )H, if k → j

(20c)

XBIM
j = XBFM

j , ρBIM
j = ρBFM

j . (20d)

For g2, the value of WBIM
jk where j 6= k and (j, k) 6∈ E

can be determined arbitrarily as long as W � 0. As G is a
tree, we can always complete the matrix WBIM � 0, but not
necessarily in a unique way.

Proposition 1 shows that to apply Algorithm 1, if an optimal
solution of (11) can produce an exact solution of (6), then there
must also be an optimal solution of (12) that can produce an
exact solution of (10), even though both (6) and (10) may have
multiple solutions. The converse is also true. Informally, for
Algorithm 1, both the BIM and BFM have the same capability
of producing exact solutions.

The same holds for the penalized program. The next propo-
sition can be easily proved using the same mappings g1 and
g2 in (19) and (20), respectively.

Proposition 2: Problems (15) in the BIM and (16) in the
BFM are equivalent when λ takes the same value for both
problems.

Though BIM and BFM are mathematically equivalent, the
two models may behave differently in practice and shed
lights on different properties. Some analysis may rely on the
structure of one model but not the other, which is indeed the
case for single-phase networks [27]. The equivalence implies
that one could freely choose a model that is more convenient
for a specific problem.

V. NUMERICAL RESULTS

In this section, we show the ability of the proposed re-
laxation algorithms to recover the optimal solution to (6)
and (10). We use the IEEE 13-, 37-, and 123-node distribution
feeders [28] to assess the exactness of both algorithms for
both the BIM and BFM models. Note that the IEEE 123-bus
feeder does not include delta-connected components. Hence,
we artificially added 4 delta-connected loads to the feeder to
assess the performance of the proposed approaches. Therefore,
all feeders in our simulation will include delta connections.
In our experiments, we check how close the output matri-
ces W,MW,X,ρ,Mv,S,`,Mv,X,ρ are to being rank-1, and
we evaluate the maximum violation of the constraints when
the decision variables are produced from the two proposed
algorithms. For all the experiments in this section, we show
that both algorithms succeed up to numerical precision, and
each has its own advantages and disadvantages.

In previous sections, when we refer to Algorithm 1 and
2 as being exact, the claim is in the sense that Algorithm 1
in theory would produce the globally optimal solution of (6)
if there were no numerical error (i.e., Theorem 3), and the
output of Algorithm 2 would converge to the globally optimal
solution of (6) as λ goes to 0 (i.e., Theorem 4). In practice,
the machine always has finite precision and we always set λ

as a fixed small number in the program. Therefore, the output
cost of Algorithm 1 in our simulation should be regarded as
a lower bound of the globally optimal cost and the cost of
Algorithm 2 should be regarded as an approximation. With
higher precision and smaller λ (depending on the precision),
the output cost of both algorithms will be closer to the actual
globally optimal cost.

A. Experimental Setup

The load transformer in the IEEE test feeders are modeled
as lines with equivalent impedance, whereas the substation
transformers and regulators are removed. The switches are as-
sumed to be open or short according to their default status. The
capacitor banks are modeled as controllable reactive power
sources with continuous control space. The same modification
is also commonly applied in the literature [18], [22].

The voltage at the substation is assumed to be Vref =
V [1, e

− i2π/3, e
i2π/3]T, where V is the maximum allowed volt-

age magnitude. The operational constraints for controllable
loads are set as in [22]. The AC-OPF problem is solved with
the cost function f(s, s∆) comprising three parts. 4 The first
part minimizes the total power losses in the network, and it
can be written as

ploss =
∑
j∈V

∑
φ∈ΦjY

pφj +
∑
j∈V

∑
φ∈Φj∆

pφ∆,j .

The second part penalizes deviations of the active and
reactive injection profile from nominal profiles, and it is given
by dp(p,p∆) and dq(q,q∆) as follows.

dp(p,p∆) =
∑
j∈V
φ∈ΦjY

(pφj − pφj )2

2pφj
+
∑
j∈V
φ∈Φj∆

(pφ∆,j − pφ∆,j)
2

2pφ∆,j
,

dq(q,q∆) =
∑
j∈V
φ∈ΦjY

(qφj − qφj )2

2qφj
+
∑
j∈V
φ∈Φj∆

(qφ∆,j − qφ∆,j)
2

2qφ∆,j
.

The values pφj ,q
φ
j ,p

φ
∆,j ,q

φ
∆,j represent the nominal active

and reactive injection values for phase φ at bus j. All the
tracking errors are normalized by their nominal values to have
the same order of magnitude for all quantities. In addition,
ΦjY ⊆ {a, b, c} and Φj∆ ⊆ {ab, bc, ca} denote the available
wye and delta connections at bus j ∈ V , respectively. Penal-
izing the deviation of power injection can characterize either
the operational cost of controllable loads, the curtailment of
photovoltaic systems, or the charging cost of batteries. The
same cost expression was also used in [22], [29].

The last part minimizes the deviation of the power injections
at the substation from the reference injections p0, q0 ∈ R
provided by the transmission system operator. Therefore, the

4We will use p,q to denote the real and imaginary parts of s, and p∆,q∆

to denote the real and imaginary parts of s∆.
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system operational cost function can be written as

f(s, s∆) =µ` ploss + wp dp(p,p∆) + wq dq(q,q∆)

+ µp
(1Tp0 − p0)2

p0

+ µq
(1Tq0 − q0)2

q0

.

The nonnegative weights wp, wq , µ`, µp and µq are used to
reflect the relative importance of the components of the cost
function and are set as follows

wp = wq = µ` = 1, µp = µq = 4. (21)

B. Exactness Results for Algorithm 1

In this subsection, we assess the quality of the solutions
recovered using Algorithm 1. We solve (11) for the BIM as
well as (12) for the BFM with different values of voltage
limits for the three considered feeders. We invoke the Mosek
8.0 conic solver using CVX, a MATLAB-based convex opti-
mization toolbox.

The left-hand side of Table I provides the result of Algo-
rithm 1 based on the BIM. The voltage column represents
the maximum and minimum voltage deviation allowed, i.e.,
3% means that the value of V and V are set to 1.03 pu and
0.97 pu, respectively. We assess the rank of matrices Wjj , for
all j ∈ V , in terms of the ratio between the top two largest
eigenvalues of these matrices. The maximum ratio among all
j ∈ V is listed in the table. In the solution of (11) (before post-
processing), the ratio between the two maximum eigenvalues
of the matrices MW,X,ρ is on the order of 10−1, and after
the post-processing in Algorithm 1, the final MW,X,ρ-ratio
will be dominated by W-ratio and is thus not informative to
be displayed in the table. Because of the spectrum error, the
output X̃ could be different from X∗, and thus having a very
small W-ratio is not enough to guarantee the feasibility of
the final output of Algorithm 1. Therefore, we also assess
the infeasibilty of the power flow equations by measuring
the maximum violation in (5a) for the solutions returned by
Algorithm 1. Here, the violation is defined as the difference
between the left- and right-hand sides of (5a) (in kW) when
s,W,X are evaluated as the output of Algorithm 1. In our
simulations, the infeasibility is on the order of 10−3 to 10−1

kW, which reflects the effect of the spectrum error after the
post-processing. As a benchmark, the load injections for those
feeders are on the order of 101 to 102 kW, and are typically
two orders of magnitude higher than the infeasibility.

On the right-hand side of Table I, the rank of Mv,S,`(j, k)
for all lines (j, k) ∈ E is examined for the same algorithm
under the BFM. Again, we present the maximum ratio be-
tween the two largest eigenvalues. Similar to the BIM, the
infeasibility, i.e., the violation of (1a), is shown in the table.

C. Exactness Results for Algorithm 2

In our setting, the penalized formulations (15) and (16) are
solved with the parameter λ = 10 in all experiments. We will
later show how the value of λ affects the solution quality.

Table II presents the maximum ratio between the top two
largest eigenvalues of MW,X,ρ(j) for the BIM and Mv,X,ρ(j)

for the BFM returned by the solvers. Comparing the infeasibil-
ity of the solutions obtained using Algorithm 1, shown in Table
I, and Algorithm 2, shown in Table II, it is clear that adding a
penalty helps reduce the effect of the spectrum error and leads
to globally optimal solutions with much lower infeasibility.

To assess the effect of the penalization approach on the
quality of the solutions in terms of cost and feasibility,
Table III shows the effect of increasing the penalty parameter
in the cost function as well as the maximum infeasibility of the
power equations (in kVA) for the IEEE 37-bus network with
3% voltage limits. The cost in Table III is evaluated without
the penalty term. Note that the case λ = 0 corresponds to
the output of Algorithm 1. Although the solution feasibility
is enhanced by increasing the penalty parameter, the cost
associated with the solution obtained also increases. Note that
the cost obtained with λ = 0, i.e., from Algorithm 1, represents
a lower bound for the optimal cost of the original AC-
OPF problem. 5 In addition, increasing the penalty parameter
beyond the values considered in Table III leads to uninteresting
solutions because the cost function becomes dominated by the
penalty term. For real applicaitons, we suggest to use binary
search to find the smallest λ such that the infeasibility of the
solution is within the user-specified tolerance range.

D. Results with Distributed Energy Resources

We now assess the performance of the proposed approach
in a more general setting where distributed energy resources
(DERs), such as photovoltaics (PV), are installed. In this
simulation, we utilize the IEEE 37-bus distribution feeder
where we assume that five PV systems are installed in delta-
connections at the buses 725, 729, 731, 732, and 740. The
available power at these units is set at 120, 75, 90, 105, and
180 KW, respectively. We also assume that all the PV inverters
can provide reactive power support such that the resultant
power factor is at least 0.8. Using this modified feeder, we
evaluate the performance of the proposed algorithms when
the cost function is ploss, i.e., µp = µq = wp = wq = 0 and
µ` = 1. In addition, we set the upper and lower bounds on
voltage magnitudes to be 1.03 pu and 0.97 pu, respectively,
in this simulation. In Table IV, the results of both Algorithm
1 and Algorithm 2 are presented. It is consistent with pre-
vious sections that Algorithm 2 often has lower infeasibility
compared to Algorithm 1. To assess the voltage magnitudes
resulting from the proposed algorithms, Fig. 1 depicts the
voltage magnitude at all phases for the solution produced by
Algorithm 2 (λ = 1). It is worth noting that the same voltage
profile is obtained by both the BFM and BIM formulations.
The results confirms that the voltages in the solution are within
the operational limits.

In additon, we evaluate the performance of both the BIM
and BFM under a different cost function which also includes
the substation power deviation, i.e., wp = wq = 0, µp =

5Here is the reason why the cost of Algorithm 1 is regarded as a lower
bound. One consequence of having the spectrum error is that numerical error
in BIM formulation could lead to larger constraint violation (as indicated by
the infeasibility). Therefore, the output cost (with slight constraint violation)
may be lower than the actual optimal cost within the feasible set. We would
expect the actual optimal cost to be exact if there were no numerical error.
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TABLE I
RANK AND INFEASIBILITY FOR THE OUTPUTS OF ALGORITHM 1 (WITH POST-PROCESSING).

Network # of ∆-loads Voltage
BIM BFM

W-ratio Infeas. (kW) Mv,S,`-ratio Infeas. (kW)

IEEE-13 2
3% 1.91× 10−8 3.20× 10−1 1.74× 10−5 4.29× 10−2

5% 2.73× 10−9 3.20× 10−1 1.58× 10−5 4.10× 10−2

IEEE-37 25
3% 4.81× 10−10 9.84× 10−2 7.81× 10−5 9.67× 10−2

5% 2.77× 10−8 9.83× 10−2 2.70× 10−5 9.72× 10−2

IEEE-123 4
3% 7.75× 10−8 1.54× 10−3 1.07× 10−4 1.03× 10−2

5% 7.67× 10−8 1.54× 10−3 9.64× 10−5 1.02× 10−2

TABLE II
RANK AND INFEASIBILITY FOR THE OUTPUTS OF ALGORITHM 2 (WITH PENALIZED COST FUNCTION).

Network
Voltage

BIM BFM

W-ratio MW,X,ρ-ratio Infeas. (kW) Mv,S,`-ratio Mv,X,ρ-ratio Infeas. (kW)

IEEE-13
3% 1.34× 10−10 2.36× 10−9 8.85× 10−2 1.44× 10−10 1.97× 10−10 4.43× 10−5

5% 1.31× 10−10 1.96× 10−9 8.84× 10−2 1.36× 10−10 1.57× 10−10 1.46× 10−5

IEEE-37
3% 3.04× 10−8 6.22× 10−8 5.75× 10−6 8.85× 10−8 3.38× 10−5 1.45× 10−6

5% 2.94× 10−8 1.05× 10−8 1.06× 10−6 2.12× 10−8 3.18× 10−5 1.00× 10−6

IEEE-123
3% 1.45× 10−9 7.03× 10−9 9.13× 10−7 1.05× 10−8 8.99× 10−9 1.34× 10−6

5% 1.94× 10−8 9.31× 10−8 7.84× 10−6 7.98× 10−9 6.59× 10−9 1.40× 10−6

TABLE III
EFFECT OF THE PENALTY PARAMETER ON THE COST AND INFEASIBILITY.

λ
BIM BFM

Cost Infeas. (kW) Cost Infeas. (kW)

0 100.0036 9.84× 10−2 100.0194 9.67× 10−2

0.1 103.9504 1.15× 10−2 104.7141 5.99× 10−4

1 104.7846 6.00× 10−5 104.7840 1.80× 10−5

10 104.7886 5.75× 10−6 104.7982 1.45× 10−6

100 104.9431 3.17× 10−6 105.0332 1.23× 10−7

TABLE IV
RESULTS ON IEEE 37-BUS NETWORK WITH DERS INSTALLED WHEN

MINIMIZING THE ELECTRICAL LOSSES.

Model
Algorithm 1 Algorithm 2 (λ = 1)

Cost Infeas. (kW) Cost Infeas. (kW)

BIM 2.5571 6.68× 10−2 4.0415 4.42× 10−6

BFM 2.5631 6.57× 10−2 4.0442 7.00× 10−6

µq = 4, and µ` = 1. Furthermore, we set the reference
substation injection such that it is achievable only if the
available PV power is curtailed. Therefore, the reference power
tracking term in the cost function becomes not increasing in

Fig. 1. The voltage magnitude at all buses for the solution obtained through
Algorithm 2 (λ = 1) for the modified IEEE 37-bus feeder.

power injections. This is known to lead to inexactness of the
relaxation. We test this cost function using Algorithm 1 and
Algorithm 2 (λ = 1). Table V shows the infeasibility and
the cost function of the solutions obtained using both BIM
and BFM. We can see that the infeasibility of the solution
obtained using Algorithm 1 is aggravated due to the use of
the cost function that is not increasing with power injections.
However, adding the penalty term in Algorithm 2 is enough
to significantly reduce the infeasibility.
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TABLE V
RESULTS ON IEEE 37-BUS NETWORK WITH DERS INSTALLED WHEN

MINIMIZING REFERENCE TRACKING COST AND ELECTRICAL LOSS.

Model
Algorithm 1 Algorithm 2 (λ = 1)

Cost Infeas. (kW) Cost Infeas. (kW)

BIM 18.2124 1.42× 10−1 19.6029 6.00× 10−7

BFM 18.2281 1.40× 10−1 19.6026 6.35× 10−6

TABLE VI
COMPUTATIONAL TIME FOR BOTH BIM AND BFM (IN SECONDS).

Model IEEE-13 IEEE-37 IEEE-123

BIM 2.46 5.56 9.03

BFM 2.77 4.93 9.87

E. Algorithm Summary and Comparison

Algorithms 1 and 2 can be useful for different applications.
Algorithm 1 solves the un-penalized problem and therefore
prioritizes cost minimization at the cost of larger constraint
violation. The simulation shows that the infeasibility is typi-
cally two orders of magnitude smaller than the load injections
and should be acceptable. Algorithm 2, on the other hand, can
recover a solution with much smaller constraint violation, but
the optimal cost is higher because of the penalty term.

The simulation results also show that the methods under
BFM are more numerically stable than BIM, in terms of the
infeasibility in Table I and II. This observation is consistent
with the performance of two models for single-phase feeders
and feeders without delta-connections, as shown in [19], [10].

We also benchmark the computational time of the proposed
algorithms in our case studies. Since both algorithms require
solving similar optimization problems with slightly different
cost functions, the computational time of the two algorithms
is similar. Hence, we only present the computational time
of Algorithm 1 for all networks using both the BIM and
BFM formulations. The algorithm was implemented using
Mosek 8.0 as a conic solver on a laptop with Intel Core
i9 CPU (2.40 GHz), 16 GB RAM, macOS Catalina OS,
and MATLAB R2019b. The results show that the proposed
algorithms take less than 10 seconds to solve the AC-OPF
problem for the IEEE 123-bus network on a standard lap-
top, which demonstrates the computational efficiency of the
proposed algorithms. More advanced methods such as sparse
semi-definite programming solvers, e.g., [30], can further scale
the implementation to thousands of buses.

VI. CONCLUSION

This paper studied the SDP relaxation of the AC-OPF
problem for an unbalanced three-phase radial network with
delta connections, formulated under both the BIM and BFM.
We showed the equivalence between the BIM and BFM
formulations and presented sufficient conditions for recovering

exact solutions of the nonconvex AC-OPF formulations from
their respective relaxations. The paper also showed why con-
ventional relaxation (by directly dropping rank-1 constraints)
always fails when the sufficient conditions are approximately
satisfied. It is due to the non-uniqueness in the relaxation
solution and the spectrum error in computation. Inspired by
this finding, we then proposed two algorithms which are
guaranteed to produce exact solutions whenever our sufficient
conditions are satisfied. One applies post-processing and pro-
duces lower cost but larger constraint violation. The other adds
a penalty term and produces higher cost but smaller constraint
violation. In simulations, we demonstrated that for three IEEE
standard test cases, both algorithms are able to recover near
globally optimal solutions with tolerable constraint violation
and cost suboptimality.
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