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Abstract 
 Prussian blue analogues (PBAs) are model host compounds for the intercalation 

of monovalent cations for electrochemical energy storage and separations.  However, the 

interactions among interstitial species and their effects on atomic arrangements therein 

are understood mainly at a phenomenological level.  Analyzing correlations between 

electronic interactions and polyatomic arrangements in hydrated Prussian blue analogues 

is complicated by the non-local hydrogen-bonding interactions between zeolitic water and 

lattices.  Here, we train machine-learning (ML) models to learn DFT-calculated energy 

landscapes of NiFe-PBA lattices with various lattice hydration degrees, oxidation states, 

and types of intercalated alkali cations based on various 3-particle feature parameters.  

This ML approach is enabled by using gradient-boosted regression trees with features 

that are rotationally invariant geometric parameters.  ML model accuracy is shown to be 

a cation-specific indicator of correlations between energy and polyatomic arrangements.  

Overlap population analysis among correlated atoms further confirms that such 

correlations are caused by the competition for dative bonding between Lewis-acid 

intercalated cations and Lewis bases (cyanide and oxygen in H2O).  Examination of 

lowest-energy structures reveals that cation hydrophilicity and bare ionic radius determine 

dative-bonding strength, resulting in cation-H2O ordering in interstitial space.  We also 

explore the projected energy landscapes of hydrated PBA lattices in sub-spaces spanned 

by certain many-particle feature parameters inspired by ML analysis.  The downhill traces 

in such landscapes indicate that lattice distortion is accompanied by two kinds of 

collective movements: (1) rearrangements in the hydration shells around small and 
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hydrophilic cations and (2) collective attack of H2O molecules on nickel-cyanide bonds 

promoted by large, hydrophobic cations. 

Keywords: machine learning, density functional theory, Prussian blue analogue, overlap 

population 
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I. INTRODUCTION 

Prussian blue analogues (PBAs) have been and are being used as redox-active 

host materials in aqueous electrochemical devices [1], [2], including electrochemical 

separations cells [3]–[6] and alkali-ion rechargeable batteries [7]–[10].  PBAs 

intercalate/de-intercalate cations from/into solution when transition metal centers therein 

are reduced/oxidized. Unlike typical Li-ion host materials, PBAs are hygroscopic as a 

result of H2O sorption into defect sites where 𝐹𝑒(𝐶𝑁)! units are missing [11] and within 

interstitial vacancies [12] that are also accessible to cations at body-centered sites [13].  

While water molecules at such 𝐹𝑒(𝐶𝑁)!  defect sites are relatively inert during 

electrochemical cycling [11], [14], zeolitic H2O molecules in interstitial vacancies actively 

interact with intercalated cations and the PBA framework itself [15], [16], resulting in lattice 

distortion [17], [18] and disordered spatial arrangement of interstitial species [19].  These 

effects are important because PBA framework distortion affects long-term cycling 

performance [20], while the interstitial arrangement of water molecules influences cation 

storage capacity and intercalation kinetics [21]. Therefore, mechanistic understanding of 

the role that interstitial H2O plays in mediating cation intercalation is essential to the 

development of PBA electrodes with simultaneously high capacity, long cycle life, and 

high rate capability.  Beyond these attributes that are especially important for energy 

storage applications, PBAs exhibit cation-specific reduction potential [22], resulting in the 

preferential intercalation of monovalent cations with smallest hydrated ionic radius [23].  

This attribute of PBAs has enabled their application in selective electrochemical 

separations for Cs+ over Na+ [24], [25], K+ over Na+ [26], and NH4+ over Na+ [27]. While 

the hydration of intercalated cations is commonly believed to play a role in determining 
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such selectivity preferences, understanding of bonding between and the arrangements of 

H2O, intercalated cations, and PBA frameworks is needed in order to enable the design 

of future redox-active host materials with molecular recognition toward particular ions of 

interest. 

Past studies have attempted to characterize the interactions between zeolitic water 

molecules and PBA frameworks using first-principles calculations [16], [28] and ex situ 

experiments [29], [30]. The X-ray diffraction (XRD) pattern for nickel hexacyanoferrate 

(NiFe-PBA) has shown evidence of water co-intercalation with Na-ions and of water’s 

interactions with cyanide ligands that induce reversible cubic-monoclinic lattice 

transformations [31].  Recent first-principles calculations have predicted the electronic 

structure within PBA supercells having two distinct redox-active centers and have shown 

that the affinity of water molecules to the framework dilates interstitial space, facilitating 

low-strain cation intercalation [32]. Contrarily, others have found that the presence of 

water in PBAs deteriorates cycling performance. Fourier-transform infrared spectroscopy 

(FTIR) spectra has revealed that MnCoNi-PBA alleviates water-induced capacity fading 

by intercalating dehydrated Na+ ions [18].  Also, strong Zn-water coordination in a ZnFe-

PBA causes the formation of 𝐹𝑒(𝐶𝑁)! defects during PBA synthesis, exacerbating long-

term capacity fading [20]. In the MnCr-PBA lattice interstitial water distorts the orientations 

of metal octahedra therein, making cation intercalation sluggish [21]. These conflicting 

results indicate that water-lattice interactions alone are not sufficient to explain the effects 

of interstitial H2O on the electrochemical activity of PBAs.  Instead, we show here that 

water-cation and cation-lattice interactions must be understood in concert due to the 

confined environment of the interstitial space within PBAs. 
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Past work has also linked cation-water interactions to cation intercalation kinetics 

at solid/electrolyte interfaces.  Various PBAs show preference for intercalating potassium 

ions [16], [33] over lithium ions [34] as K-ions are less coordinated by solvent molecules. 

Aside from alkali cations, the selectivity of multi-valent cation intercalation into PBAs has 

been characterized [35] with CuFe-PBA, in particular, showing selectivity for Al3+ 

intercalation over Mg2+ due to the compact hydration shell around Al3+ [36]. Earlier 

research using NiFe-PBA to intercalate Ca2+ from both aqueous and non-aqueous 

electrolytes showed that reversible capacity is only achievable when the Ca2+ are 

dehydrated [37], [38]. The suppressed activation energy of redox kinetics at 

PBA/electrolyte also implicates interfacial dynamics to the intercalation preferences of 

PBAs [39]. 

Bulk interactions between intercalated cations and zeolitic H2O inside PBA lattices 

have also been implicated in their electrochemical behavior. H2O coabsorption has been 

shown to increase reduction potential for intercalation of Li+ and Na+ into PBAs, while 

intercalation of K+ is not accompanied by H2O coabsorption [33]. Recent observations of 

switchable thermal expansion in PBAs suggest that ordering of cations and water can 

occur in the bulk of PBAs [40], [41]. thus differentiating the interactions between cations 

and water in such interstitial environments from those in bulk liquid electrolytes.  Since 

the spatial confinement of H2O has recently been shown to suppress its dielectric 

screening [42], confinement of co-absorbed H2O within the moderately sized interstitial 

space of PBAs (~5 Å) is likely to screen cation-framework interactions to a lesser extent 

than H2O would in bulk form.  H2O co-absorption has been studied in other electrosorption 

materials, as well.  Non-Faradaic MXene materials have shown ~1 H2O per Li+ and ~0 
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H2O per Na+ [43].  In contrast, poly(vinylferrocene) films have shown coabsorption of >9 

H2O molecules per electron during electrosorption of organic anions [44], and after 

electrosorption of ReO4- poly(vinylferrocene) shows relatively weak ReO4-/vinyl 

interactions and no direct ReO4-/Fc+ interactions [45]. We posit here, and later 

demonstrate in this work using first principles modeling, that cation-specific ordering of 

interstitial H2O affects the cation-framework interactions that are responsible for ion 

recognition by PBAs.  

Previous atomistic modeling of PBAs has focused on linking cation-framework 

interactions to macroscopic phenomena in the absence of water. Supported by the 

Landau theory and XRD data, the magnetic ordering temperature of the MnMn-PBA 

lattice has recently been shown to increase with the strength of cation-cyanide 

interactions [46].  The tautomerism of Fe-CN-metal chains in PBAs has been used to 

show that the active redox center switches from Fe to Mn when intercalated Rb+ ions are 

present to strengthen orbital interactions between Fe and Mn [47]. Building on DFT 

calculations that revealed the mutual repulsion of interstitial vacancies, we used grand 

canonical ensemble theory to predict the variation between equilibrium intercalation 

potential with the degree of Na+ intercalation in an anhydrous NiFe-PBA, in agreement 

with experiment [12]. 

To date atomistic modeling of hydrated PBA lattices has focused on particular 

aspects of cation-water-framework interactions that largely neglect many-particle 

correlations [41], [48] due to the challenge of disentangling polyatomic orbital overlap from 

atom-specific interactions.  To circumvent cumbersome analysis of atomic correlations, 

ligand field stabilization energy (LFSE) and redox center ionization energy concepts have 
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been applied to PBAs [49], where zeolitic water has been shown to switch the redox 

sequence of metal centers by increasing LFSE [49].  Lattice stiffness has also been 

shown to increase by weakening the interaction between water molecules and metal-

nitrogen bonds [50]. However, LFSE has limited application to understanding the 

interstitial interactions of PBAs that contain octahedral low-spin complexes [51] since only 

half of metal centers therein are redox-active.  Among the broader class of metal organic 

frameworks (MOFs) the principles of Hard-Soft Acid-Base (HSAB) theory have been 

applied to rationalize the interactions of interstitial cations with MOF ligands [52]. By 

surveying the dissociation energies of different metal-ligand bonds, both hard-base/hard-

acid and soft-base/soft-acid framework-cation interactions were shown to promote MOF 

stability, while simultaneously making cation-exchange processes reversible. However, 

HSAB theory can only predict qualitative trends in the reversibility of cation absorption, 

as its precise application depends heavily on ligand relaxation energy [53], an empirical 

parameter that is material/ion specific. 

Theories of many-particle correlations have been developed based on density 

functional theory (DFT) calculations [32], [49], but have not yet been applied to PBAs. 

Among them, the theory of many-body expansion (MBE) is often used to investigate the 

interactions between molecular clusters [54]–[56], where a certain n-body interaction 

energy is defined as total cluster energy minus the energies of independent n-atom 

components [54]. Such n-body energies can be calculated using DFT, and each such 

energy is a characteristic measure of the atomic/electronic interactions outside of nuclei 

cores. Notably, MBE has been applied to investigate many-body effects in deformed 

cluster structures [57], [58] and in non-covalent bonding among charged molecules [59]. 
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Alternatively, other methods than MBE have used partitioning of DFT electron density 

fields to analyze many-body interactions [60], including the DDEC6 method [61], [62] that 

accounts for both itinerant and localized electrons. Here, the number of partitioned 

electrons is used to calculate the electron overlap population (OP) and the bond order for 

distinct pairs of atoms.  Using this approach, bond orders have recently been calculated 

on a wide range of organometallic lattices and have shown that the DDEC6 method 

reproduces the chemically expected trend of electron transferability [63].  However, basis-

set superposition effects in MBE [64] and partitioning of each electron to a single nucleus 

with DDEC6 [60] limit the effective application of both methods to understanding 3-body 

interactions. Therefore, other methods are needed to analyze the many-particle 

correlations between the structures of and interactions between interstitial cations, H2O, 

and PBA frameworks. 

In the current study, we investigate the many-particle correlations in the hydrated 

NiFe-PBA framework using a method that combines DFT calculation, overlap population 

analysis, and a machine-learning (ML) model. We first perform lattice relaxation 

calculations of NiFe-PBA unit cells by varying the types of intercalated cation, the 

oxidation state of the PBA, and the number of zeolitic water molecules within the PBA. 

Based on the atomic configurations obtained from DFT calculations, we prepare atomic 

feature vectors to train an ensemble of regression trees using the Xgboost method [65]. 

We introduce an importance index (IMP) that enables us to rank the sensitivity of total 

energy to many-body arrangements.  This analysis reveals that the type of intercalated 

cation, small/hydrophilic or large/hydrophobic, is a critical factor that affects the variation 

of many-body structural correlations with the degree of hydration.   We then use overlap 
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population analysis to link structural correlations between the PBA framework and 

interstitial species to the extent of dative bonding between (1) intercalated cations and 

framework ligands and (2) intercalated cations and oxygen in H2O.  Inspection of the 

lowest-energy structures for a certain cation type, hydration number, and oxidation state 

enables us to categorize cations of interest into three groups based on their bare ionic 

radius and hydrophilicity.  In particular, we show that bare ionic radius determines the 

degree of cation-water coordination and that cation hydrophilicity dictates bonding within 

clusters formed by multiple H2O molecules.  Identification of the most important features 

from analysis of machine learning results subsequently enables us to investigate the 

corresponding DFT-calculated energy landscape of PBAs in sub-spaces defined by 

many-body structural features.  The downhill traces therein illustrate how atoms in two 

different clusters move collectively and how zeolitic H2O’s orientation is affected by its 

surrounding atoms. 

 

II. METHODOLOGY 

In this section we first summarize the challenges of simulating hydrated PBA 

materials using DFT, while also highlighting certain details of ML model training that relate 

to DFT.  Subsequently, we present details of our DFT calculations and ML modeling 

methods.  We focus our analysis on the NiFe-PBA that exhibits reversible intercalation of 

alkali cations from aqueous solution [66], [67].   DFT calculations for hydrous PBA lattices 

are particularly challenging for two reasons:  (1) they require knowledge of positions for 

interstitial H2O that are unknown prior to structural relaxation and (2) non-local dispersion 

interaction energy functionals that capture hydrogen bonding converge slowly during self-
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consistent iteration sequences [68], [69].  We address the first challenge by sampling H2O 

positions over Voronoi tessellation points within the pristine PBA and by sampling 

different random orientations for each H2O molecule at those points, as described in Sec. 

A. However, the second challenge stems from the non-local nature of H-bonding 

interactions.  Because such bonding depends on electron densities and their gradients in 

a complex fashion [70], DFT simulation of lattices filled with water molecules using 

dispersion-corrected functionals is computationally expensive.  As a result, relatively 

permissive termination criteria have sometimes been used to relax such structures with 

reduced computational time.  As an alternative, ML models trained using DFT-calculated 

data have been coupled to global minimizers to relax structures.  Once adequately trained, 

such ML models are used to predict energies rapidly.  The artificial neural network (ANN) 

has been used widely in simulating crystalline materials [71], biological molecules [72], 

and amorphous materials [73]. The versatility of ANNs can be attributed to their network 

structure that maps high-dimensional atomic features to target data, and little-to-no prior 

knowledge is needed during model training process. We argue, however, that other ML 

models are better suited to learning the energy landscape of hydrated PBAs for which 

DFT’s computational expense prohibits collection of datasets large enough to train ANNs.  

Also, the descriptors that prepare input vectors (i.e., feature vectors) for ANNs use kernel 

functions to normalize vector elements [74], [75] that can cause non-unique mapping 

between feature vectors and atomic configurations [76]. With small training datasets and 

inaccurate descriptors, ANN-based models are likely to suffer from overfitting [77], which 

is a problem that cannot be fixed easily by network regularization methods [78]. 

Compared to ANN-based models, we show here that training of an Xgboost-based model 
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requires much smaller datasets (see Table V) with fewer hyperparameters that need to 

be fine-tuned [65]. In the following sections, we exploit the unique qualities of the Xgboost 

method to develop a simple, yet efficient, descriptor using physically interpretable many-

particle features to represent atomic configurations in hydrated, cation-intercalated PBAs.  

 

A. DFT calculations for a hydrated NiFe-PBA 

The unit-cell configurations that we adopt in all DFT calculations here have a 

formula of 𝐴"𝑁𝑖𝐹𝑒(𝐶𝑁)!	 ⋅ 𝑛𝐻#𝑂 , where 𝐴  is an intercalated alkali cation ( 𝐴 =

𝐿𝑖$, 𝑁𝑎$, 𝐾$, 𝑅𝑏$, or 𝐶𝑠$).  When electrochemically oxidized the NiFe-PBA unit cell is half 

intercalated with cations (𝑥 = 1) and when reduced it is fully intercalated (𝑥 = 2), as 

shown in Fig. 1(a).  All DFT calculations were performed using the GGA+U approach 

implemented in Quantum ESPRESSO(QE) package [79].  The strong on-site Coulombic 

interactions on Fe and Ni atoms were corrected by setting their respective 𝑈 parameters 

to 1eV and 3eV to reproduce Na-intercalated lattice constants reported in previous 

experiments [80] and to maintain the low-spin state of the Fe redox center [12], [81]. The 

kinetic cutoff energy for wavefunctions was set to 600eV, and self-consistent iterations 

were required to converge within 0.136	𝜇𝑒𝑉. Vanderbilt ultrasoft pseudopotentials [82] 

were adopted for all atoms except for Cs, for which we used a norm-conserving 

pseudopotential [83] to avoid the negative charge density caused by the Ultrasoft density 

interpolation scheme [82]. For all calculations we use the PBEsol+rVV10 functional to 

approximate exchange-correlation effects and van der Waals interactions to make the 

calculations of both anhydrous and hydrated configurations consistent. We note that, 
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unlike local dispersion functionals [84]. the non-local functional rVV10 provides a better 

correction to molecular binding energy while keeping computational cost modest [85]. 

We use a sequential scheme to add water molecules within a unit cell with certain 

degree of intercalation 𝑥 and cation type, 𝐴.  We first assume body-center occupancy of 

intercalated cations and subsequently perform variable-cell relaxation calculations on 

anhydrous unit cells of 𝐴"𝑁𝑖𝐹𝑒(𝐶𝑁)! (i.e., 𝑛 = 0) in the limit of vanishing solid pressure.   

We then add H2O molecules to the relaxed anhydrous configurations to simulate hydrated 

configurations, as described later. The resulting lattice constants of the anhydrous 

systems with different kinds of cations and oxidation states are shown in Table I.  The 

FeNi-PBA lattice undergoes isotropic expansion when the bare ionic radius of the cation 

increases from that of Li+ to Cs+. For the Na+-intercalated configurations, switching from 

half- to fully-intercalated unit cells has no effect on lattice constant, consistent with 

previous experiments [22], [80]. For cations other than Na+, fully-intercalated 

configurations have lattice constants that are slightly smaller than that of half-intercalated 

configurations due to cation-framework interactions. Recent experiments have shown 

that the lattice constant of a hydrated NiFe-PBA slightly increases or unaffected  during 

the potassium intercalation reaction [86]–[88]. Thus, the results in Table I indicate that the 

cation-framework interaction is mitigated by interstitial H2O molecules.  

TABLE I. Predicted lattice constant 𝑎 (in Å) of anhydrous 𝐴"𝑁𝑖𝐹𝑒(𝐶𝑁)!. 

 A=Li A=Na A=K A=Rb A=Cs 
x=1 5.128 5.100 5.125 5.133 5.139 
x=2 5.110 5.100 5.105 5.120 5.133 
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After performing such variable-cell calculations, we use Voronoi tessellation based 

on the coordinates of atoms in relaxed anhydrous configurations to define the candidate 

locations for the oxygen atom of each H2O molecule to be added to create hydrated initial 

configurations (red spheres in Fig. 1(b)).  In practice, among all such candidate locations 

we use those that are at least 0.8Å away from anhydrous nuclei to limit the number of 

potential locations for oxygen atoms.  For a given configuration we randomly pick 𝑛 

locations among all candidate locations, and we place a corresponding oxygen atom 

there.  We then attach two hydrogen atoms to each oxygen by setting O-H distances and 

H-O-H angle to 0.9572	Å and 104.5%, respectively.  To do so we sample the orientations 

of H2O about each oxygen using random quaternions (see Fig. 1(c)). 

 
FIG. 1. The three-step scheme used to generate initial configurations for DFT calculations. 
The first step in (a) determines the number of 𝐴 cations in the anhydrous unit cell. A 
collection of potential locations for oxygen atoms shown in (b) is found by performing 
Voronoi tessellation based on the nuclear coordinates of the relaxed anhydrous lattice. 
In the last step (c), the locations for oxygen atoms are randomly picked from candidate 
locations obtained in (b), and two hydrogen atoms are subsequently attached to each 
oxygen atom.  
 Using such initial hydrated configurations we conduct fixed-cell relaxation 

calculations to obtain relaxed coordinates and associated DFT energies for subsequent 

Xgboost model training. We constrain unit cell shape and volume during such calculations 

for two reasons.  For the initial configurations that have H2O molecules in close proximity 

to atoms on the NiFe-PBA lattice, variable-cell optimization can induce excessive lattice 
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distortion during relaxation sequences.  When initial configurations are assembled using 

the approach already described, we find that such lattice distortion can produce 

configurations that are potentially far away from equilibrium. Also, fixed-cell calculations 

constrain the motion of metal centers, enabling the translation of interstitial cations and 

H2O and the rotation of cyanide ligands.  

 We use the nomenclature 𝐴𝛿𝑛  to denote unit cells based on the type of  

intercalated cation 𝐴, the extent of cation intercalation 𝛿 (either 𝛿 = ℎ for half intercalated 

or 𝛿 = 𝑓 for fully intercalated), and the number of water molecules per formula unit 𝑛.  For 

example, Naf4 and Csh2 denote unit cells for 𝑁𝑎#𝑁𝑖𝐹𝑒(𝐶𝑁)! ⋅ 4𝐻#𝑂 and 𝐶𝑠𝑁𝑖𝐹𝑒(𝐶𝑁)! ⋅

2𝐻#𝑂 , respectively.  DFT calculations were performed with as many as four water 

molecules, resulting in 40 different types of hydrated NiFe-PBA configurations among the 

five different intercalated cations tested.  For each such configuration type, we sampled 

50 random realizations of H2O on Voronoi sites, each of which was subjected to fixed-

cell relaxation using the methods already described.  The resulting atomic coordinates 

and self-consistent field energies obtained during the course of each fixed-cell relaxation 

sequence were subsequently used to train the ML model (i.e., not only those of the 

terminal relaxed structure itself).   

 

B. The Xgboost model 

We now summarize the gradient boosting ML method used here and subsequently 

introduce the descriptor that we use to generate the feature vectors that serve as input to 

our Xgboost ML model. In general, gradient-boosting ML methods train many 
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independent weak regressors (or weak learners) using the same feature vectors, but 

using different target data from those feature vectors.  Such methods subsequently 

combines such weaker learners to yield an ensemble of learners that spans all feature-

vector elements. Table II shows the meta-algorithm of a gradient boosting method used 

to train an ML model. The algorithm starts with a training dataset that is comprised of a 

set of pairs of feature vectors 𝑥& and corresponding target data 𝑦& (i.e., (𝑥⃗& , 𝑦&) at the first 

line of Table II). In the context of energy-landscape learning, each feature vector 𝑥⃗& 

represents the atomic structure of a certain unit-cell configuration, while 𝑦&  is its 

corresponding energy.   The algorithm then trains the first weak learner 𝐹' that predicts 

energies using the average of 𝑦&  (i.e., 𝐹'(𝑥⃗&) = 𝑦K  in Table II).  Gradient boosting is 

accomplished by using the gradient of an associated loss function to reduce error by 

training new weak learners using on gradient values after performing training on its output 

predictions.  Accordingly for the 𝑚th iteration at step 2 in the algorithm (see Table II), the 

gradient 𝑟&(  of a loss function 𝐿  is calculated with respect to its prediction of the 𝑖 th 

configuration’s output value 𝐹()*(𝑥⃗&)  obtained during the previous iteration: 𝑟&( =

+,
+-("⃗!)

|-"#$("⃗!).  Presently, we use a loss function defined by the sum of squared errors 

(SSE).  At the 𝑚th iteration we have:  

 
𝐿( =P

1
2Q𝑦& − 𝐹()*

(𝑥⃗&)S
#,

&

 (1) 

with an associated gradient 𝑟&( that is readily expressed analytically: 

 𝑟&( = 𝑦& − 𝐹()*(𝑥&). (2) 

From Eq. (2), we observe that 𝑟&(  is equal to the error that results from use of the 

ensemble of trained weak learners obtained at the (𝑚 − 1)th iteration.   
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After the values of 𝑟&( are computed, a new weak learner is trained by taking those 

𝑟&( values as the targeted training dataset.  Specifically, a regression tree is trained as a 

new weak learner based on residual errors 𝑟&( from the previously trained trees in steps 

2b and 2c of the algorithm (Table II).  To illustrate, Fig. 2 shows an example regression 

tree for the particular instance in which the 𝑚th learner feeds on three features, 𝑎, 𝑏, and 

𝑐.  In this example we choose the tree to have 𝐽( = 5 different predicted output values 

𝛾1( for the feature vectors that fall into the associated leaf regions, shown as green blocks 

denoted by 𝑅1( where 𝑗 = 1,2, … 𝐽( enumerates each such leaf.  Each node on such a 

tree subdivides the associated target 𝑟&(  values into two groups based on certain 

conditions that are feature-specific (blue blocks). In this example, the targets that belong 

to 𝑅#(  have corresponding feature vector values that satisfy 𝑎 < 1, 𝑏 ≤ 3, and 𝑐 ≥ 7.  

The morphology of each regression tree is defined by its maximum allowable tree depth 

𝐷(2", its upper limit of leaf-region size 𝑛3, and its leaf algebra Θ.  During the training 

process, a tree is allowed to grow 𝐷(2" nodes at most before it reaches a leaf region. The 

tree in Fig. 2 has a depth of 3, which would be produced for 𝐷(2" ≥ 3.  The number of 

target	𝑟&( values that feed into a given leaf region defines its leaf region size.  Thus, a 

small 𝑛3 value reduces leaf region size and forces the training algorithm to create more 

leaf regions. The leaf algebra is the particular formula used for calculating the outputs 𝛾1( 

based on the target 𝑟&(  values.  We presently use an average of target 𝑟&(  values to 

determine 𝛾1(: 𝛾1( = ∑ 𝑟&(𝛿"⃗!& (𝑅1()/∑ 𝛿"⃗!& (𝑅1().  Here, the Kronecker delta 𝛿"⃗!(𝑅1() is 

unity when the vector 𝑥⃗& belongs to the leaf region 𝑅1( and is otherwise zero.  Training 

such a regression tree is accomplished by changing the threshold values at each node, 

splitting new branches, and pruning redundant branches, so as to minimize the loss 
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function. We will not discuss the numerical details of tree fitting here as they can readily 

be found elsewhere [65], [89]. In practice, we use the open-source Scikit-learn package 

[90] to train our Xgboost model. 

 

TABLE II. The meta-algorithm of the gradient boosting training method 

Input: {(𝑥⃗& , 𝑦&)}, and a differentiable loss function 𝐿(𝑦& , 𝐹(𝑥⃗&)) 

Step 1: Initialize the model with the average energy value, 𝐹'(𝑥&) 

Step 2: for 𝑚 = 1	𝑡𝑜	𝑁: 

a. Compute residual 𝑟&( = +,"
+-("⃗!)

|-"#$("⃗!)	∀𝑥⃗& ∈ {(𝑥& , 𝑦&)} 

b. Fit a regression tree to the 𝑟&( values and create leaf regions 𝑅1( 

c. For 𝑗 = 1,… , 𝐽(, compute 𝛾1( = argmin
4

∑ 𝐿((𝑦& , 𝐹()*(𝑥&) + 𝛾)"⃗!∈3%"  

d. Update 𝐹((𝑥⃗&) = 𝐹()*(𝑥&) + 𝜈 ∑ 𝛾1(𝛿"⃗!(𝑅1()1  

Output: 𝐹(𝑥⃗&) 

 

The gradient boosting method updates the tree ensemble for the 𝑚th iteration by 

appending the new leaf outcomes to the ensemble for the (𝑚 − 1)th iteration.  Accordingly 

at step 2d of the algorithm, the values of 𝛾1( are weighted by a learning rate parameter 𝜈 

and the Kronecker delta 𝛿"⃗!(𝑅1() in updating leaf outcomes.  A small 𝜈 value increases 

the accuracy of the ML model by reducing the importance of each tree relative to the 

entire ensemble of regression trees.  The final outcome of the algorithm is an ensemble 

of 𝑁 regression trees that yields predicted output values 𝐹(𝑥) for a given feature vector 

𝑥⃗. 
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FIG. 2. Illustrative example of a regression tree. 

The Xgboost method uses the gradient-boosting steps described above by 

adopting the approximate greedy method [91] and a parallel learning scheme [92], [93] to 

build regression trees efficiently. Here, the approximate greedy method grows a 

regression tree iteratively by evaluating the accuracy gain of subdividing leaf regions at 

each split-finding step [65].  A new leaf region is only created when it improves the 

accuracy of the regression tree.  Therefore, trees with a larger number of leaf regions 

provide more accurate predictions of the associated target values. Parallel learning 

schemes assemble all feature vectors for training into a feature matrix with each row 

being a feature vector and each column containing the values of the same feature among 

all feature vectors (see the top matrix in the right subplot of Fig. 3(c)).  The scheme then 

reproduces 𝑁 sub-matrices by randomly sampling 𝐶% distinct columns from the feature 

matrix (e.g., the matrix at the middle right of Fig. 3(c)).  Each sub-matrix and its associated 

targeted output values are later used to train a separate regression tree, while the highly 

parallelized Xgboost method trains all the trees simultaneously. The final model is an 
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ensemble of regression trees with different structures because they are trained on 

different features.  

 

1. Descriptor for atomic configurations 

We now introduce the descriptor that we use to generate atomic feature vector 

values on the basis of atomic numbers and polyatomic arrangements.  Figs. 3(a) and 3(b) 

show the workflow for assembling feature vectors using the descriptor that we adopt here.  

For the 𝑖 th atom in an atomic configuration, the descriptor builds a neighbor list by 

including the atomic number of each neighbor 𝑍6&  and its corresponding distance 𝑑6& , 

where the integer 𝑙 ranges from 1 to a prespecifed value 𝑘 (e.g. the two neighbor lists 

shown at the top of Fig. 3(a)). These 𝑍6&-𝑑6& pairs are subsequently sorted in ascending 

sequence of 𝑑6&, where 𝑑*&  is the distance from the 𝑖th atom to its nearest neighbor.  The 

descriptor then sorts the neighbor lists for the same atom type in an element list based 

on the values of 𝑑*& . In Fig. 3(a), the neighbor list of 𝑖th atom is appended behind that of 

(𝑖 + 1)th atom because of the condition 𝑑*&$* < 𝑑*& . The descriptor then assembles element 

lists to prepare a base vector based on each element's type.  For the NiFe-PBA unit-cell 

configuration in Fig. 3(a), the lists for Fe and Ni (brown block) are followed by the lists for 

N (navy), C (grey), O (red), H (white), and intercalated cations (pink).   

The use of such base vectors has a number of beneficial attributes.  Such base 

vectors contain the single-particle (i.e., atomic numbers) and two-particle (i.e., atomic 

distance) information around each atom in an atomic configuration. The size of each 

neighbor list, 2𝑘, determines the length of the base vector.  The computational cost of 
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preparing base vectors grows linearly with 𝑘, which is much cheaper scaling than that 

produced by the neighboring matrix method that is widely used in ANN-based models 

[94], [95]. The descriptor used here introduces different sorting algorithms for neighbor 

lists, element lists, and the whole base vector to avoid non-unique mapping between 

feature vectors and atomic configurations. The preparation of both base and modified 

vectors does not require any normalization, such that finding a suitable set of kernel 

functions to make each feature differentiable is unnecessary. This convenience is 

attributed to the fact that we can train a regression tree on both discrete and continuous 

features.  

 
FIG. 3. Schematic of descriptor preparing (a) base and (b) modified feature vectors, and 
of the training processfor the present Xgboost-based model(c). 

 
 To prepare modified feature vectors we add certain many-particle features in front 

of base vectors, as shown in Fig. 3(b).  Specifically, we consider modified feature vectors 

here that include 3-particle and 4-particle polyatomic structural features, in addition to 

base vector features.  We define 3-particle features for a cluster comprised of atoms X, 
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Y, and Z atoms,𝐹(𝑋𝑌𝑍), in two different ways: (1) the cosine of the bond angle ∠𝑋𝑌𝑍 

formed at atom Y or (2) the product of 𝑑78𝑑89(1 − cos	(∠𝑋𝑌𝑍)) where 𝑑78 is the distance 

between atom X and Y.  We ultimately use the particular 3-particle feature definition that 

leads to a lower MAE of our Xgboost-based models, as described in the Results and 

Discussion section.  We define a 4-particle feature for a G-X-Y-Z cluster, 𝐹(𝐺𝑋𝑌𝑍), using 

the tangent of half of the solid angle subtended by X-Y-Z cluster that emanates from atom 

G: 

 . 

(3

) 

In our subsequent analysis of 4-particle features, we only consider Ni and intercalated 

cations as the G atoms of interest in Eq. (3), and almost exclusively we consider HOH as 

XYZ in GXYZ clusters.  These choices for G atoms are made with inspiration from hard-

soft acid-base (HSAB) theory [52], since 𝑁𝑖#$  and 𝐴$  are Lewis acids that exhibit 

different affinities to basic oxygen in H2O. For this reason, H2O plays a role of electron 

donor in such clusters and causes the formation of dative bonds [96], [97] among 

interstitial species. Indeed, our charge distribution analysis in Results and Discussion 

section shows that cations and zeolitic H2O share electrons in interstitial space.  For each 

such polyatomic cluster of the same kind in a given configuration, the associated ML 

descriptor calculates a separate many-particle feature and sorts the corresponding 

values of all such features in a many-particle feature list (e.g., the feature list at the middle 

of Fig. 3(b)).  If a modified feature vector contains multiple many-particle feature lists, the 

descriptor assembles them alphabetically based on their associated polyatomic clusters' 

( )
( ) ( ) ( )

( ) tan( / 2)GXYZ
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F GXYZ

GX GY GZ GX GY GZ GX GZ GY GY GZ GX

× ´
= W =

× × + × + × + ×

!!!" !!!" !!!"

!!!" !!!" !!!" !!!" !!!" !!!" !!!" !!!" !!!" !!!" !!!" !!!"



23 
 

atomic symbols. In Fig. 3(b), the descriptor appends feature lists of ABC and ABCD 

clusters before the list of XYZ cluster to give an ascending alphabetical order.  By 

considering different polyatomic arrangements, we use the descriptor to prepare different 

feature matrices that contain different many-particle feature columns, while fixing the total 

number of feature vectors (i.e., the row number of feature matrices shown in Fig. 3(c)). 

 

2. Fine-tuning hyperparameters of Xgboost-based models 

 Compared to ANN-based models, the present Xgboost model requires only a small 

set of hyperparameters whose values must be chosen in order to perform training: (1) the 

total number of regression trees in the Xgboost ensemble 𝑁, (2) the maximum depth of 

each regression tree 𝐷(2", (3) the percentage of sampled columns from the total feature 

matrix for training each regression tree 𝐶%, (4) the learning rate 𝜈, (5) the size of neighbor 

lists 𝑘, and (6) the maximum allowable size of each leaf region 𝑛3.  However, different 

choices of hyperparameters also affect the minimum level of error that can be achieved. 

Thus, we fine-tune hyperparameters to optimize the accuracy of our Xgboost-based 

model by using a grid search method [90] to find the combination of hyperparameters that 

minimizes the mean absolute error (MAE) of a separately trained model for a given 

configuration type.  Starting from a coordinate grid in the space spanned by all 

hyperparameters, the grid search method optimizes changes a certain hyperparameter 

incrementally by applying the steepest descent algorithm while keeping other 

hyperparameters fixed.  Presently, we optimize hyperparameters in the sequence of 𝑘, 𝜈, 

𝑁, 𝐶%, 𝐷(2", and 𝑛3 because we find that the sensitivity of MAE to each such parameter 
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decreases with the same sequence.  At each iteration step, the method follows an 80-20 

rule [89] to split base vectors and their associated targets into two datasets for training 

and testing, respectively. After training a different Xgboost ensemble for each 

configuration type, we evaluate MAE based on the testing dataset. We terminate the 

search and confirm the best hyperparameter combination when the MAE difference 

between two consecutive iteration steps is less than 0.001	eV/atom. The optimal values 

for 𝑁,𝐷(2" , 𝐶%, 𝜈,	and 𝑛3 found for the all configuration types are the same (Table III), but 

their optimal 𝑘-values are specific to each configuration type (Table IV).  

TABLE III. Fine-tuned values of hyperparameters. 

𝐶% 𝜈 𝑁 𝐷(2" 𝑛3 
60% 0.05 900 6 2 

 TABLE IV. Fine-tuned 𝑘-values for all kinds of unit-cell configurations. 

	 𝐴 = 𝐿𝑖!	 𝐴 = 𝑁𝑎! 𝐴 = 𝐾! 𝐴 = 𝑅𝑏! 𝐴 = 𝐶𝑠! 
Ah1	 9 8 9 9 8 
Ah2 7 6 10 10 12 
Ah3 11 9 10 9 9 
Ah4 11 9 9 12 8 
Af1 9 11 9 6 7 
Af2 10 8 9 6 10 
Af3 8 10 7 9 7 
Af4 9 11 9 6 7 

 

Two factors affect the magnitude of 𝑘-values in Table IV. For half-intercalated 

configurations, the optimal 𝑘-value generally increases with increasing number of water 

molecules 𝑛.  For example, compare the variation of 𝑘-values from Lih1 to Lih4 with their 

variation from Nah1 to Nah4.  Such correlation of 𝑘  with 𝑛  is not observed for fully-

intercalated configurations, however. The number of base vectors in different training 
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datasets also affects the 𝑘-values determined by finite-tuning.  For Af1 configurations, the 

fine-tuned 𝑘-value decreases from 11 for Naf1 to 6 for Rbf1, while the total number of 

base vectors decreases from 1538 to 836.  The descriptor used here prepares modified 

vectors by appending many-particle features to their corresponding base vectors that 

have their lengths defined by the 𝑘-values listed in Table IV.   

 

TABLE V. Qualitative survey of attributes for different ML models used for energy 

landscape regression. 

Model type 
Type of 
atomic 
systems 

Typical MAE 
(eV/atom) 

Number of feature 
vectors or matrices 

for training 
Input format 

Kernel regression 

Organic 
molecules 
[94], [98] and 
alloys [99], 
[100] 

0.006 [100] ~  0.043 
[94] 

1000 [94] ~ 26500 
[100] Vectors/Matrices 

Artificial neural 
network 

Molecules 
[101], [102], 
crystals 

[101], [103] 
and 

interfaces 
[104] 

0.02 [103] ~ 0.075 
[101] 

10000 [101] ~ 
5500000 [102] Vectors/Matrices 

Xgboost 

Molecules 
[92] and 
PBAs 
[present] 

0.016 [present] 1300 [present] Vectors 

 

We now briefly compare and contrast the use of Xgboost for learning energy 

landscapes with other kernel regression and ANN methods.  Table V shows the results 

of a qualitative survey of the typical MAE levels that have been demonstrated in the past 

using such methods, revealing that Xgboost is able to achieve similar MAE to such 



26 
 

methods while using a smaller dataset to train without overfitting or underfitting. However, 

we acknowledge that such methods were used in the past for variety of atomic systems 

that are different from the focus of the present study, namely hydrated PBAs. Kernel 

regression methods, such as kernel ridge regression and support vector regression (SVR), 

have been applied to learn the energy landscapes of organic molecules [98] and 

amorphous alloys [99]. To achieve sufficient accuracy using kernel regression, atomic 

features have been constructed in the past using smoothed basis functions [100], which 

is a practice that can lead to non-unique mapping between feature parameters and atomic 

configurations.  On the other hand, the intricate networks of ANN-based models have 

yielded accurate energy predictions for small organic molecules [102], metal oxide lattices 

[75], and amorphous glassy systems [73], but in general a large pool of feature vectors 

or feature matrices is required to train ANNs properly relative to other methods. Recent 

work has also shown that supplementation of certain potentials with ANNs has yielded 

improved accuracy of energy prediction for systems with nonlocal interactions [105]. To 

directly benchmark the performance of Xgboost against SVR and ANN models we also 

trained such models using data from each of the 40 different hydrated PBA unit cells 

investigated here by incorporating the same base features as with our Xgboost models. 

To do so the hyperparameters of each SVR model were fined-tuned using the grid search 

method, while we adopted the structure of each ANN based on its recent application to 

heterogeneous crystalline materials [106], [107].  Among all unit cells for which ML 

models were created, the MAEs of SVR and ANN models on average were respectively 

0.174 eV/atom and 0.132 eV/atom, while Xgboost achieved 0.016 eV/atom on average. 

Thus, we contend that Xgboost is highly suitable for learning the energy landscapes of 
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hydrated PBAs and other condensed-matter systems, though its past use was limited to 

organic molecules [92]. 

I. RESULTS AND DISCUSSION 

The aim of this work is to discover and elucidate the electronic and atomic 

interactions that affect the energetics and interstitial structures formed within hydrated 

FeNi-PBAs that are intercalated with alkali cations.  To that end we have sampled the 

configurational space for FeNi-PBAs with varying degrees of hydration, oxidation state, 

and intercalated cation type.  We then trained a gradient-boosted machine learning model 

to identify the particular many-body structural features with highest correlation to DFT-

predicted energy using that model.  Descent paths in the corresponding DFT-energy 

landscapes are subsequently analyzed using such many-body structural feature 

parameters.  We use overlap population analysis in tandem to characterize the 

competition for dative bonding between intercalated cations and framework ligands and 

between intercalated cations and H2O.  

We also note that, subsequently, we use the nomenclature 𝐴𝛿𝑛 to denote unit cells 

using a certain intercalated alkali cation 𝐴, a certain extent of cation intercalation 𝛿 (either 

𝛿 = ℎ for half or 𝛿 = 𝑓 for fully intercalated), and a certain number of water molecules per 

formula unit 𝑛.   
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A. Correlating DFT energy with 3-particle features 

We now analyze the correlation between the many-body structural features of 

different polyatomic arrangements within a hydrated PBA and DFT-predicted energy by 

introducing an importance index (IMP), defined as the relative change in mean absolute 

error (MAE) of an Xgboost model trained on modified feature vectors incorporating a base 

vector and certain many-body features from that of an Xgboost model solely trained on a 

base feature vector:  

 
𝐼𝑀𝑃( =	

𝑀𝐴𝐸' −𝑀𝐴𝐸(
𝑀𝐴𝐸'

. (4) 

Here, 𝑀𝐴𝐸(  and 𝑀𝐴𝐸'  respectively correspond to Xgboost models trained using 

modified feature vectors with many-body feature 𝑚 appended and using a base feature 

vector.  Subsequently, we rank the correlation between energy and certain many-body 

feature parameters based on the magnitude of their corresponding 𝐼𝑀𝑃( values, where 

the polyatomic arrangements of certain 𝑚-clusters are important if 𝐼𝑀𝑃( is positive. 

We select candidate 3-particle clusters that could be important in either half- or 

fully-intercalated configurations as pairs of Lewis acid cations (Ni2+ > A+=Li+, Na+, K+, Rb+, 

or Cs+) and Lewis base atoms (O > N > C) that have varying degrees of chemical 

hardness.  These clusters can contain either two basic atoms and one acidic atom or one 

basic atom and two acidic atoms:  Ni-N-C, Ni-A-O, A-O-A, N-A-N, and O-A-O.  This 

approach enables us to later interpret the structural correlations observed on the basis of 

HSAB theory [52]. We analyze the polyatomic arrangements of half- and fully-intercalated 

configurations separately in the next two subsections because the many-body feature 
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parameters that correlate with energy most depend on the degree of cation intercalation, 

as we now show. 

 

1. Half-intercalated configurations 

Figs. 4(a)-4(c) show the IMP values for different cation types, arranged in 

ascending order of the number of H2O molecules used.  Among the 3-body feature 

parameters tested (NiNC, NiAO, NAN, AOA, and OAO), most half-intercalated 

configurations only showed positive 𝐼𝑀𝑃( values for NiNC and NiAO (Figs. 4(a) and 4(b)), 

indicating high sensitivity of DFT-calculated energy to 3-body features of 𝐹(𝑁𝑖𝑁𝐶) =

cos∠𝑁𝑖𝑁𝐶 and 𝐹(𝑁𝑖𝐴𝑂) = 𝑑:&;𝑑;< cos∠𝑁𝑖𝐴𝑂.  In the configurations with the same water 

number (i.e., bars with the same color in Figs. 4(a)-4(c)), the influence of cation type on 

the importance of NiNC and NiAO cluster features is not evident, as 𝐼𝑀𝑃:&:= and 𝐼𝑀𝑃:&;< 

fluctuate between negative and positive values when the intercalated cation type changes 

from 𝐿𝑖$  to 𝐶𝑠$ . While Rb-intercalated configurations show 𝐼𝑀𝑃:&:=  that increases 

monotonically with increasing H2O number 𝑛 , no other intercalated cations show 

monotonic trends of 𝐼𝑀𝑃:&:= or of 𝐼𝑀𝑃:&;< with 𝑛.  The lack of clear trends for 𝐼𝑀𝑃:&:= 

and 𝐼𝑀𝑃:&;< with 𝑛 and 𝐴$ suggests that the correlation between the corresponding 3-

particle features and DFT energy is affected not only by lattice hydration degree and 

cation types, but also by other polyatomic features.  In order to study the correlation 

between DFT energy and multiple many-particle features simultaneously, we use the 

present ML approach to incorporate feature parameters for NiNC and NiAO clusters in a 

single model. 
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Fig. 4(c) shows the difference between the corresponding IMP values obtained 

using both 3-body features 𝐼𝑀𝑃:&:=$:&;< and𝐼𝑀𝑃:&:=, where 𝐼𝑀𝑃:&:=$:&;< values were 

obtained from training and testing of an Xgboost model using 3-particle features for NiNC 

and NiAO clusters.  We argue here and later demonstrate by examining DFT energy 

landscapes that a positive value of 𝐼𝑀𝑃:&:=$:&;< − 𝐼𝑀𝑃:&:= implies that combining the 

features of both such clusters improves ML accuracy to a greater extent than including 

only the feature of NiNC clusters.  A positive 𝐼𝑀𝑃:&:=$:&;< − 𝐼𝑀𝑃:&:= value also indicates 

possible correlation between the polyatomic arrangements of NiNC and NiAO clusters.   

The value of 𝐼𝑀𝑃:&:=$:&;< − 𝐼𝑀𝑃:&:= increases with hydration degree for Na- and 

Li-intercalated PBA lattices (Fig. 4(c)), suggesting increasing correlation between the 

arrangements of NiNC clusters and the NiAO clusters with increasing 𝑛.  For K- and Rb-

intercalated lattices, however, such correlation is only significant with intermediate water 

content, i.e., 𝑛 = 2  and 3 . Cs-intercalated PBA lattices show no apparent trend of 

𝐼𝑀𝑃:&:=$:&;< − 𝐼𝑀𝑃:&:=  with 𝑛, fluctuating between positive and negative values with 

increasing 𝑛. On the basis of these observations we group these five cations into three 

distinct categories: light cations 𝐿𝑖$  and 𝑁𝑎$ , intermediate cations 𝐾$  and 𝑅𝑏$ , and 

heavy cations 𝐶𝑠$.  We show later that such behavior is caused by two factors that vary 

these categories: cation hydrophilicity and bare ionic radius. 

The cation-dependent correlation between the feature parameters for NiNC and 

NiAO clusters suggests that cation type affect lattice distortion (e.g., tilting of metal-ligand 

octahedra [108]) and cation-water arrangement in half-intercalated configurations. On this 

basis we assert that the dominant physiochemical interactions within both clusters are 

cation specific.  Accordingly, we now investigate the relationships between cation type 
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and dative bonding (i.e., electron sharing) between Lewis acid and base atoms in PBAs 

by calculating electronic overlap population (OP), which is a measure of the shared 

electronic density between two kinds of atoms [60] and is defined for a pair of atoms or 

clusters, 𝑃 and 	𝑄: 

 
𝑂𝑃>,@ = P 

𝜌(𝑟&)𝜌Q𝑟1S
𝜌(𝑟) 𝑑𝑟

&∈>,1∈@

.	 (5) 

Here, 𝜌(𝑟) and 𝜌(𝑟&) are respectively the total charge density and the charge density 

assigned to the 𝑖th P-atom at 𝑟 using the DDEC6 charge density partition method [63].  

For example, dative bonding between intercalated cations and oxygen atoms in H2O is 

quantified by 𝑂𝑃;,< and between intercalated cations and cyanide ligands is quantified by 

𝑂𝑃;,=:.  Figs. 4(d) and 4(e) show the corresponding results of 𝑂𝑃;,< and 𝑂𝑃;,=: for the 

lowest-energy configurations for each half-intercalated unit cell with certain hydration 

degree 𝑛 . In the anhydrous configuration (i.e., 𝑛 = 0 ), the values of 𝑂𝑃;,=:  follow a 

sequence of 𝑂𝑃,&,=: ≈ 𝑂𝑃:2,=: < 𝑂𝑃A,=: ≈ 𝑂𝑃3B,=: < 𝑂𝑃=C,=:, which groups the cations 

into three distinct categories that coincide with the results of our more exhaustive IMP 

analysis. From 𝑛 = 0  to 𝑛 = 1 , the 𝑂𝑃,&,=: , 	𝑂𝑃:2,=: , and 𝑂𝑃A,=:  increases while 

𝑂𝑃3B,=: ,and 𝑂𝑃=C,=: remain nearly unchanged. This observation implies that zeolitic H2O 

in less hydrated framework intensifies cation-framework interaction for Li- and Na- and K-

intercalated lattices, but it has negligible effect on heavy ions.   Compared with results 

with 𝑛 ≤ 1, 𝑂𝑃A,=: , 𝑂𝑃3B,=: , 𝑂𝑃A,< , and 𝑂𝑃3B,<  rise to larger values at higher hydration 

degrees.  We thus conclude that adding zeolitic water molecules to a PBA intercalated 

with either K+ or Rb+ -- in contrast with Li+ and Na+ as we subsequently show -- enhances 

dative bonding between intercalated cations and framework ligands.  In contrast, 𝑂𝑃,&,=: 
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and 𝑂𝑃:2,=: either decrease or are practically constant with increasing 𝑛 (Fig. 4(e)), while 

𝑂𝑃,&,< and 𝑂𝑃:2,< increase with increasing hydration degree 𝑛 (Fig. 4(d)).  These results 

indicate that the ascending NiNC-NiAO correlation observed in Fig. 4(c) for Li- and Na-

intercalated configurations therefore results both from enhanced cation-water interactions 

and from diminishing cation-octahedron ligand interactions as zeolitic water content 

increases.  For Cs-intercalated configurations, however, the trends of 𝑂𝑃=C,< and 𝑂𝑃=C,=: 

are not correlated with the variations of 𝐼𝑀𝑃:&:=$:&=C< − 𝐼𝑀𝑃:&:= with 𝑛. 
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FIG. 4. (a-c) Importance index values using 3-body feature parameters for Ni-N-C and Ni-
A-O clusters to train Xgboost models for half-intercalated systems. (d-f) Results of overlap 
population analysis for A-O, A-CN, and Ni-N. 

 

To understand such anomalous behavior for Cs-intercalated configurations, we 

also calculated 𝑂𝑃:&,: values to reveal changes in Ni-N bonding in the PBA lattice as a 

function of water number 𝑛 (Fig. 4(f)). When 𝑛 ≤ 1, 𝑂𝑃:&,: reduces with hydration degree 
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noticeably for all the cases except for Cs-intercalated lattice. Starting from 𝑛 = 1, 𝑂𝑃:&,: 

varies synchronously with 𝐼𝑀𝑃:&:=$:&;< − 𝐼𝑀𝑃:&:=  in Fig. 4(c) for Cs-intercalated 

configurations, both of which are linked to Ni-N bonding that stretches and contracts in 

an alternating manner depending on hydration degree. For K- and Rb-intercalated 

configurations, in contrast, the single local minimum observed for 𝑂𝑃:&,: varies opposite 

to the variations of 𝐼𝑀𝑃:&:=$:&;< − 𝐼𝑀𝑃:&:=  in Fig. 4(c), where the minimum value of 

𝑂𝑃:&,:   coincides with positive values of 𝐼𝑀𝑃:&:=$:&;< − 𝐼𝑀𝑃:&:= . For light cations, 

however, 𝑂𝑃:&,: varies weakly for 𝑛 ≤ 3, while for 𝑛 = 4 𝑂𝑃:&,: decreases. Because the 

correlations between NiNC and NiAO clusters are most significant at 𝑛 = 4 for both Li- 

and Na-intercalated configurations (see Fig. 4(c)), the drop in 𝑂𝑃:&,:  at 𝑛 = 4 implies that 

sufficiently large cation-water clusters act to stretch Ni-N bonds and cause lattice 

distortion in half-intercalated configurations. 
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FIG. 5. Lowest-energy structures for Lih3, Lih4, Kh3, Kh4, Csh3, and Csh4 configurations. 

 

To explain the different variations of 𝑂𝑃:&,: for different cation types at high water 

content, we now analyze the structures of lowest-energy configurations for Lih3, Lih4, 

Kh3, Kh4, Csh3, and Csh4 unit-cell types in Fig. 5.  Observation of the arrangement of 

interstitial cations and water in Fig. 5 enables us to reconcile the contrasting results 

deduced for different intercalation cations from variations 𝑂𝑃:&,: with 𝑛 by considering a 

competition between two factors: cation bare ionic radius and hydrophilicity.  Because 

light cations are relatively small and hydrophilic, Li- and Na-ions are firmly coordinated by 

zeolitic water molecules (e.g., Lih3 and Lih4 configurations in Fig. 5). As hydration degree 

increases, a given cation-H2O cluster grows in apparent size, so as to cause stronger 
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interactions between that cluster and the surrounding framework’s lattice. For this reason, 

a monotonically increasing trend of 𝐼𝑀𝑃:&:=$:&;< − 𝐼𝑀𝑃:&:=  with increasing 𝑛  is 

observed for light cations. From Lih3 to Lih4 in Fig. 5, we observe that H2O molecules 

form hydration shells around Li+, causing the Ni-N bond to stretch from 2.02Å to 2.06Å 

while the average value of ∠𝑁𝑖𝑁𝐶  (i.e., ⟨∠𝑁𝑖𝑁𝐶⟩) reduces from 173%  to 169% . These 

observations are consistent with previous experiments that confirm hydration of Li+ in the 

interstitial space of ternary PBA frameworks [109]. In contrast, K+ and Rb+ are 

hydrophobic, and Fig. 5 reveals that these ions are displaced to body centers to adjacent 

sites with minimal energic costs.  In the Kh3 configuration, water molecules and nitrogen 

both closely coordinate to potassium ions with average values of 𝑑A< = 2.44Å and 𝑑A: =

3.09Å, resulting in enhanced NiNC-NiKO structural correlation. In the Kh4 configuration, 

K-O coordination becomes weaker with 𝑑A< = 2.93Å, while ⟨∠𝑁𝑖𝑁𝐶⟩ shifts from 170.9% in 

Kh3 to 171.2% in Kh4. Therefore, the suppressed NiNC-NiKO structural correlation for 𝑛 =

4 in K- and Rb-intercalated lattices results both from interstitial water molecules detaching 

from intercalated cations and from enhanced cation-ligand coordination. We also note 

that the Kh4 configuration exhibits K-N coordination in the same plane as Ni-N 

coordination (i.e., purple plane in Fig. 5), resulting in off body-center occupation by K+.  

For Cs-intercalated configurations, both cation-water and cation-cyanide interactions 

become stronger as hydration degree increases. Because Cs+ has a large bare ionic 

radius and is hydrophobic, it pushes all zeolitic water molecules into the vacant body-

center site while still retaining coordination to those molecules. The average distance of 

𝑑=C< is 2.87Å in Csh3 and 2.98Å in Csh4 configurations shown in Fig. 5, both of which are 

shorter than the distance between Cs-ion and its first hydration shell in aqueous solution 
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[110]. The zeolitic water molecules in the Cs-intercalated lattice interact strongly with each 

other through hydrogen bonding, indicated using blue-dashed lines in Fig. 5.  Notably, the 

characteristic diameter of 3-water clusters is significantly smaller than that of 4-water 

clusters in Cs-intercalated systems (i.e., 2.61Å vs. 3.19Å).  The concomitant reduction of 

⟨∠𝑁𝑖𝑁𝐶⟩ reduces from 179.3%  in Csh3 to 173.8%  in Csh4 suggests that the fluctuating 

nature of NiNC-NiCsO correlation results from the formation of a kind of amorphous 

phase transition of water clusters [111] with increasing hydration degree. 

 Our analysis of overlap population shows that NiNC-NiAO structural correlation is 

linked to the competition for dative bonding between intercalated Lewis-acid cations and 

the Lewis-base groups surrounding them (O in H2O and N in CN).  In addition, analysis 

of the correlation between the associated 3-body feature parameters and DFT energy, 

quantified using the accuracy of ML models incorporating such features, reveals three 

distinct categories of cations.  Further, inspection of lowest-energy structures reveals that 

the bare ionic size and hydrophilicity of different cations determine how cations are 

classified.  While these results point to the key bonding interactions that occur among 

different classes of cations at equilibrium positions, we next seek to interpret how the 

concerted motions of atoms occur in the vicinity of those local minima on energy 

landscapes. 
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FIG. 6. 2D projections of DFT-predicted energy landscapes for half-intercalated 
configurations near local minima.  Color bars indicate DFT energy in eV per formula unit, 
relative to that of the lowest-energy structure for a given configuration type. 

 

We now attempt to investigate the implicit dynamics occurring during the collective 

motions of polyatomic clusters in the vicinity of local minima. To do this we project high-

dimensional DFT-predicted energy landscape into a 2D sub-space spanned by the most 

important 3-particle feature parameters, as determined from our preceding analysis. In 

particular, the values of 𝐼𝑀𝑃:&:= and 𝐼𝑀𝑃:&;< were found to be positive for most unit-cell 
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types. Therefore, we project the energy landscapes using the sub-space spanned by the 

average values of cos(∠𝑁𝑖𝑁𝐶) and 𝑑;:&𝑑;<[1 − cos(∠𝑁𝑖𝐴𝑂)] for a given structure. Each 

such projected landscape in Fig. 6 is shown with data from the 100 structures with lowest 

energy for a given unit-cell type. The hue of each data point represents the energy 

difference Δ𝐸 between a given configuration and the lowest-energy configuration in the 

unit of eV. By following the downhill traces on these projections, we can infer the collective 

movements of the NiNC and NiAO clusters in the quasi-static limit. 

Based on the three categories of different cations that we defined earlier, we group 

the different DFT energy landscapes, as shown in Fig. 6.  For small, hydrophilic cations 

(red rectangle: Li- and Na-intercalated configurations), the labeled downhill traces start 

from an energy with Δ𝐸~0.3𝑒𝑉 and descend toward certain local minima. By connecting 

the tail to the head of each such trace using a straight line, we calculate the secant slope 

of each such trace |Δ𝑦/Δ𝑥|.  We identify two kinds of traces based on such secant slope 

values.  Steep traces with |Δ𝑦/Δ𝑥| > 0.05  are red, and they indicate significant that 

changes in the degree of Ni octahedron tilting are accompanied by mild changes in cation-

water coordination along the corresponding trace.  In contrast, shallow traces with 

|Δ𝑦/Δ𝑥| < 0.01 are black, and they indicate that water molecules rearrange themselves 

within a given cation-water cluster without causing significant octahedral tilting.  As water 

content increases in Li- and Na-intercalated configurations (i.e., by traversing from the 

left to the right side of cases in the red rectangle), we observe that shallow (black) traces 

vanish at certain 𝑛. In contrast, the evolution of octahedral tilting along steep traces 

involves virtually no rearrangements of cation-H2O clusters for a sufficiently large 

hydration degree (𝑛 ≥ 3).  
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For intermediate-size, hydrophobic cations (green rectangle: K- and Rb-

intercalated configurations), downhill traces start from energies with Δ𝐸~0.08𝑒𝑉  and 

follow more circuitous paths than those on the landscapes for Li- and Na-intercalated 

configurations. The mild variations of ⟨cos(∠𝑁𝑖𝑁𝐶)⟩  along such traces show that 

interactions between the framework and interstitial speces in K- and Rb-intercalated 

configurations do not cause significant lattice distortion during relaxation toward local 

minima. The shallow (black) traces in the landscapes of K-intercalated configurations 

demonstrate that lattice distortion evolves in concert with K-H2O coordination. The steep 

(red) traces in the landscapes of Rb-intercalated configurations indicate that Rb-H2O 

coordination remains unaffected during relaxation toward local minima. At 𝑛 = 4, the 

landscapes of Kh4 and Rbh4 are absent of downhill traces, however. Instead, all 

configurations are concentrated near certain local minima, indicating that the motion of 

interstitial species is impeded by crowding of H2O in the PBA framework.  

The energy landscapes of large, hydrophobic cations (blue rectangle: Cs-

intercalated configurations) also show negligible octahedral tilting (i.e., ⟨cos(∠𝑁𝑖𝑁𝐶)⟩ ≤

−0.98).  However, large changes of cation-water coordination occur along traces. These 

changes are consistent with the atomic structures of Cs-intercalated configurations (Fig. 

5), where cation-water coordination is coupled to the amorphous ordering of water 

clusters in adjacent interstitial sites.  These results therefore confirm that bare ionic radius 

and the hydrophilicity of intercalated cations not only affect bonding at local minima, they 

also affect the collective movement of interstitial species in the vicinity of local minima. 
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2. Fully intercalated configurations 

As we now show, cations in fully intercalated configurations occupy the two body-

center sites of the PBA lattice, irrespective of intercalated-cation type or the degree of 

hydration. This effect occurs because much less space is available for the occupation of 

interstitial species when two cations per formula unit are intercalated.  While for half-

intercalated configurations we found that the NiNC and NiAO were the 3-body clusters 

showing most significant correlation to DFT energy, for fully intercalated configurations 

we find that NiNC and AOA clusters show most significant correlation.  This change in 

correlation for fully intercalated configurations arises from increased confinement 

experienced by cations and zeolitic water molecules that enhances interactions between 

the framework and those interstitial species.  Accordingly, we use IMP values for NiNC 

clusters to analyze the effects of hydration degree and cation types on octahedral tilting.  

Fig. 7(a) shows that the IMP value obtained using the feature 𝐹(𝑁𝑖𝑁𝐶) =

cos∠𝑁𝑖𝑁𝐶	 decreases with increasing hydration degree for Li- and Na-intercalated 

configurations, whereas it increases with 𝑛  for K- and Cs-intercalated cells. The 

increasing trend of 𝐼𝑀𝑃:&:= for Rb-intercalated cells does not persist for all 𝑛, as the value 

of 𝐼𝑀𝑃:&:= for Rbf1 cell is much larger than those of Rbf2, Rbf3, and Rbf4 cells. Our 

earlier findings for the half-intercalated configurations showed that K- and Rb-ion belong 

to the same category of intermediate cations. However, the difference in the trends of 

𝐼𝑀𝑃:&:=  between K- and Rb-intercalated configurations that we observe here is 

inconsistent with such classification.  

To examine whether the presence of an additional Rb-ion makes Rb-water-

framework interactions patently different from K-water-framework interactions, we 
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calculated the corresponding values of 𝑂𝑃;,< and 𝑂𝑃;,=: for the associated lowest-energy 

configurations.  Comparing between Rb- and K-intercalated configurations, we observe 

that both 𝑂𝑃A,< and 𝑂𝑃3B,< increase monotonically with increasing 𝑛 (Fig. 7(d)).  Also, the 

values of 𝑂𝑃A,=:  and 𝑂𝑃3B,=:  both decrease significantly for 𝑛 ≥ 3  (Fig. 7(e)).  The 

lowest-energy configurations whose structures are shown in Fig. 8, also show similar 

cation-water and cation-nitrogen coordination among both cation types with similar 

⟨∠𝑁𝑖𝑁𝐶⟩  values of 169.7%  for Rbf1 and 170.3%  for Kf1.  Therefore, we attribute the 

abnormal value of 𝐼𝑀𝑃:&:= for Rbf1 cell to the insufficient data of Rbf1 configurations for 

ML model training (690 trajectory images) compared to other configuration types 

(approximately 1300 trajectory images), rather than to K- and Rb-intercalated 

configurations experiencing patently different interactions. 
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FIG. 7. (a-c) Importance index values using 3-body feature parameters for Ni-N-C and A-
O-A clusters to train Xgboost models for fully intercalated systems. (d-f) Results of overlap 
population analysis for A-O, A-CN, and Ni-N. 

 

The cation-dependent 𝐼𝑀𝑃:&:=  trends for light, intermediate, and heavy cations 

are consistent with the results based on the values of 𝑂𝑃;,=: (Fig. 7(e)).  At 𝑛 = 0, 𝑂𝑃;,=: 

follows a sequence of 𝐿𝑖$ ≈ 𝑁𝑎$ < 𝐾$ ≈ 𝑅𝑏$ < 𝐶𝑠$ , identical to the results in half-

intercalated lattices. From 𝑛 = 0 to 𝑛 = 1, 𝑂𝑃;,=: is weakened only for the Cs-intercalated 
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lattice. When either Li+ or Na+ are fully intercalated in a framework, cation-ligand 

interactions are screened by zeolitic water molecules, as evidenced by decreases in 

𝑂𝑃,&,=: and 𝑂𝑃:2,=: with increasing 𝑛 (Fig. 7(e)).  When heavier cations are intercalated, 

large hydration degrees promote cation-ligand interactions.  Further, our analysis shows 

that the Ni-N bond is stretched at 𝑛 = 4 irrespective of which cation is intercalated (Fig. 

7(f)).  In particular, we find that Ni-N bonds are broken in the lowest-energy configuration 

of Csf4 cases, resulting in the Ni atom coordinating only to 5 nitrogen atoms and to one 

oxygen atom (i.e., “O3” in Fig. 8). The results in Figs. 7(e) and 7(f) have important 

implications regarding cation intercalation processes in PBAs. On the one hand, the PBA 

framework, like other metal-organic frameworks [112], is likely to experience bond 

breakage at high degrees of hydration because intercalated cations force zeolitic water 

to attack weak bonds near metal centers, such as Ni-N bonds here.  On the other hand, 

to accommodate the large size of heavy ions, such cations are likely expel water 

molecules from the PBA lattice during cation intercalation, as a result of the energetic 

cost associated with extreme confinement of both the interstitial cation and H2O. This 

conclusion is consistent with recent neutron powder diffraction and extended X-ray 

absorption fine-structure spectroscopy experiments that have revealed that K+ 

intercalation induces the expulsion of zeolitic water molecules from the CuFe-PBA lattice 

[16]. 

By following the same method elaborated in the previous subsection, we find that 

atomic arrangements of AOA clusters are also important for predicting energies of fully-

intercalated configurations (Fig. 7(b)). We also evaluate the differences of 𝐼𝑀𝑃:&:=$;<; −

𝐼𝑀𝑃:&:=  to investigate correlations between cation-water coordination and octahedral 
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tilting (Fig. 7(c)).  We observe an increasing trend of 𝐼𝑀𝑃:&:=$,&<,& − 𝐼𝑀𝑃:&:=  with 

increasing 𝑛, while the value of 𝐼𝑀𝑃:&:=$=C<=C − 𝐼𝑀𝑃:&:= decreases monotonically with 

increasing hydration degree (Fig. 7(c)). Similar to our results for half-intercalated 

configurations, the increasing trend of 𝐼𝑀𝑃:&:=$,&<,& − 𝐼𝑀𝑃:&:=  corresponds to the 

enhanced correlation between NiNC clusters and Li-water coordination due to the 

growing size of Li-water clusters with increasing hydration degree.  In the lowest-energy 

configurations of fully Li-intercalated cells, we further find that large Li-water clusters 

exacerbate octahedral tilting, as ⟨∠𝑁𝑖𝑁𝐶⟩ reduces from 177% for Lif1 to 167% for Lif4 (Fig. 

8). Meanwhile, the arrangement of CsOCs clusters decouples from NiNC arrangement at 

large 𝑛 (Fig. 7(c)) because Cs+ ions, which persistently occupy body-center sites, confine 

water molecules in such a way that they attack Ni-N bonds.  However, we observe no 

clear trends of 𝐼𝑀𝑃:&:=$;<; − 𝐼𝑀𝑃:&:=  with 𝑛  for 𝐴 = 𝑁𝑎,𝐾 , and 𝑅𝑏 , indicating that 

structural correlations in these systems involve more clusters than NiNC and AOA 

clusters.  
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FIG. 8. Lowest-energy structures for Kf1, Rbf1, Lif1, Lif4, Csf1, and Csf4 configurations. 

 

Because the arrangement of AOA clusters is essential to understanding energetics 

in most of the present cases (Fig. 7(b)), we define the energy landscape subspace for 

fully-intercalated configurations using ⟨𝑑;<𝑑<;&(1 − cos(∠AOAD))⟩ and ⟨cos	(∠𝑁𝑖𝑁𝐶)⟩ as 

coordinates.  We use the same conditions as for half-intercalated configurations to 

classify steep (red) and shallow (black) downhill traces.  For the landscapes of 

configurations intercalated with light cations (red rectangle: Li- and Na-intercalated 
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configurations), most steep traces are nearly perpendicular to the horizontal axis, implying 

that total energy relaxes by lattice distortion via Ni-octahedron tilting while maintaining 

cation-water coordination.  Unlike the results for half-intercalated configurations (see Fig. 

6 and discussion thereof), the downhill traces of fully intercalated configurations are 

accompanied by increases in the tilting angle of metal octahedra (i.e., decreases in the 

angle of ∠𝑁𝑖𝑁𝐶), indicating that the addition of a light cation destabilizes the pristine NiFe-

PBA lattice to a certain degree.  

The landscapes of K- and Rb-intercalated configurations contain downhill traces 

similar to those of Li- and Na-intercalated cells, except in the case of Kf1(see Fig. 9).  The 

landscapes of all K-intercalated show downhill traces that are concentrated around 

several distinct local minima, indicating that atomic movements are confined in interstitial 

space.  For Rb-intercalated cells, however, extended downhill traces with |Δ𝑦|~0.01 are 

found even when hydration degree is large (𝑛 ≥ 3).  Furthermore, most steep traces for 

Rb-intercalated configurations show an increase in the angle of ∠𝑁𝑖𝑁𝐶, implying that the 

addition of Rb+ stabilizes the PBA lattice by decreasing octahedral tilting.  Because Cs+ 

is especially large and hydrophobic, the fully Cs-intercalated lattice has limited interstitial 

space for cations and zeolitic H2O molecules to move collectively.  As a result, the 

corresponding landscapes of Cs+ (blue rectangle) are concentrated around distinct local 

minima. 
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FIG. 9. 2D projections of DFT-predicted energy landscapes for fully intercalated 
configurations near local minima.  Color bars indicate DFT energy in eV per formula unit, 
relative to that of the lowest-energy structure for a given configuration type. 

 

Thus far, our analysis of correlation between energy and the arrangement of 

polyatomic clusters has focused on atoms other than hydrogen atoms.  However, we have 

observed that hydrogen bonding determines the morphology of cation-water clusters in 

both half- and fully-intercalated configurations (Figs. 5 and 8), as a result of which the 

nature of framework-interstitials interactions is affected indirectly.  In the subsequent 
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subsection we explore these effects in more detail by analyzing the orientation of H2O 

molecules in the interstitial space of cation-intercalated FeNi-PBAs. 

 

B. Correlating DFT energy with 4-Particle features 

We now use certain 4-particle feature parameters based on the solid angles 

subtended by zeolitic H2O molecules that extend either from Ni2+ (Ω:&)E'<) or A+ (Ω;)E'<) 

cations to characterize the effect of H2O’s orientation on DFT energy.   We identify 

downhill traces in the energy landscapes of Li- and Cs-intercalated configurations with 

𝑛 ≤ 2 using 〈tanQΩ;)E'</2S〉 and 〈tanQΩ:&)E'</2S〉 to define an associated subspace. In 

the landscapes shown in Fig. 10, shallow traces (black) have secant slopes with 

|Δ𝑦/Δ𝑥| ≤ 0.01 that are rendered only if |Δ𝑥| ≥ 0.1. 

 

 
FIG. 10. The 2D landscape projections spanned by solid angles for H2O with respect to 
intercalated cation A+ (y-axes) and to lattice cation Ni2+ (x-axes). Such landscapes are 
shown for eight different Li- and Cs-intercalated configurations. 
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The definition of the solid angle (Eq. (5)) shows that its tangent for a G-XYZ cluster 

can only be zero if  is satisfied, in which case G, X, Y, and Z must be 

coplanar.  When water content is low either in small or in large cation-intercalated 

configurations (𝑛 = 1), shallow traces indicate dramatic changes in H2O’s orientation 

relative to an observer at each Ni2+ center.  However, along such a trace H2O’s orientation 

does not change significantly relative to an observer at each A+ center.  When water 

content is high however (𝑛 = 4), the associated energy landscapes are concentrated 

around certain local minima because confined interstitial space constrains the librational 

movement of each H2O molecule.  The local minima that appear in the landscapes of Cs-

intercalated configurations are found with è⟨tanQΩFG)H'I/2S⟩è ∼ 0.03 , whereas  

è⟨tanQΩJK)H'I/2S⟩è values at local minima vary from 0.4 for Lih1 to 0.005 for Lif4 for Li-

intercalated configurations.  Differences in the values of è⟨tanQΩL)H'I/2S⟩è are evident 

from the structures of Lif1, Lif4, Csf1, and Csf4 (Fig. 8). Cs-O coordination in the lowest-

energy Csf1 configuration forms a 90' angle with the lattice plane on which the 

corresponding water molecule and Ni atom reside, indicated by the purple plane for Csf1 

in Fig. 8.  In the Lif1 configuration, however, such coordination is frustrated.  Repeating 

the unit cell of Csf1 in 3D space, we recognize that an extended cation-water network 

exists in its interstitial space, where an H2O molecule bridges between each pair of 

adjacent Cs-ions.  In contrast, due to the small size and the hydrophilicity of Li+, the 

formation of a hydration shell around Li+ prohibits such ordering of cation-water clusters. 

Further, when hydration degree is large (𝑛 ≥ 3), cation-water ordering is frustrated for all 

configuration types. 

( )GX GY GZ^ ´
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II. CONCLUSIONS 

The present investigation reveals that the interactions between PBA lattices and 

interstitial species significantly affect lattice stability and the hydration degree of cations 

in interstitial space. To elucidate the associated correlations between polyatomic 

arrangements and atomic interactions in PBA frameworks, we performed DFT 

calculations of hydrated NiFe-PBA lattices with various oxidation states, hydration 

degrees, and types of intercalated cations, using Voronoi tessellation to sample the 

configurational space of H2O occupation.  We used a simple descriptor to extract many-

particle features from polyatomic arrangements in DFT-calculated configurations. These 

features were then incorporated into different datasets to train machine-learning models, 

resulting in different model accuracy. Based on the accuracy of ML models using different 

features, we ranked the sensitivity of DFT-calculated energy to various many-particle 

features.  The correlation between two features is identified when including both features 

in training data improves ML accuracy to a greater extent than including only one of the 

two features. Because the many-particle features are generated from their associated 

polyatomic arrangements, statistical correlations in the feature space bijectively map to 

polyatomic correlations in configurational space.  

Using this technique we found significant correlation between NiNC and NiAO 

clusters for most of the half-intercalated lattices. The variation of these ML model 

correlations with hydration degree indicates that correlation between NiNC and NiAO 

arrangements depends on the type of intercalated cation.  Inspired by these results from 

ML model training, we analyzed the overlap population between intercalated cations and 



52 
 

their surrounding atoms in the lowest-energy configurations to determine which atomic 

interactions were responsible for such cation-dependent correlation. This overlap 

population analysis showed that the strong dative bonds between intercalated cations 

and H2O molecules are accompanied by weaker dative bonding between cations and 

cyanide ligands, and vice versa.  This analysis therefore demonstrates that NiNC-NiAO 

correlation results from the competition between two kinds of dative bonds around 

intercalated cations. By studying the arrangement of interstitial species within lowest-

energy structures in conjunction with overlap population analysis, we deduced that the 

bias toward dative bonding of cations with either H2O or cyanide ligands is dependent on 

the bare ionic radius and hydrophilicity of intercalated cations.  We thus group Na+, Li+, 

K+, Rb+, and Cs+ ions into three categories. When light, hydrophilic cations (Li+ and Na+) 

intercalate into PBA lattices, zeolitic water molecules firmly coordinate to cations and form 

a hydration shell, albeit with a hydration shell structure that is confined relative to that of 

cations in bulk H2O.  For K+ and Rb+ ions that are hydrophobic with intermediate ionic 

size, zeolitic water molecules push them off of body-center sites, such that those ions 

coordinate to cyanide ligands to an increasing degree.  If intercalated cations are large 

and hydrophobic, such as Cs+, they displace zeolitic water molecules into adjacent vacant 

sites, where water clusters form an amorphous phase that is more dense than bulk H2O. 

We used a similar method to analyze polyatomic correlations in fully-intercalated 

lattices and found that the extent of Ni-octahedron tilting is cation-specific, as analyzed 

using feature parameters for NiNC clusters. The variation of 𝐼𝑀𝑃:&:=$;<; − 𝐼𝑀𝑃:&:= with 

increasing degree of hydration, where IMP is an importance index associated with certain 

3-body features, further suggests that zeolitic water promotes correlation between NiNC 
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and AOA clusters in Li- and Na-intercalated lattices. In contrast, such correlation 

disappears at high hydration degrees in K-, Rb-, and Cs-intercalated lattices. A 

corresponding sharp decrease in the overlap population between nickel and cyanide 

ligands at the highest hydration degree occurs for all kinds of lattices. This result suggests 

that Ni-N bonds stretch due to confinement of interstitial space.  We also showed that the 

dative bonding between zeolitic water molecules and cyanide ligands is strengthened at 

high hydration degree in the lowest-energy structures. At the highest hydration degree, 

we even discovered the breakage of such bonds in Cs-intercalated lattices. We thus 

conclude that the NiFe-PBA lattice is likely to expel zeolitic water molecules during the 

intercalation of large and hydrophobic cations.  

To explore features of DFT-calculated energy landscapes, we projected these 

landscapes onto subspaces spanned using two different 3-particle feature parameters 

found using ML analysis to have highest correlation to energy.  The downhill traces in 

such landscapes reveal the correlations between collective movements in interstitial 

space in the vicinity of local minima in energy.  When PBA lattices are half-intercalated 

with Li+ or Na+ ions, such downhill traces indicate two patterns of collective movement: 

(1) the tilting of Ni-octahedra accompanied by minimal rearrangement of cation-H2O 

clusters and (2) significant rearrangement of cation-H2O clusters without distorting the 

PBA lattice.  Pattern (1) prevails for fully-intercalated lattices, however.  For K- and Rb-

intercalated lattices, downhill traces show that both patterns still coexist on the 

landscapes of half-intercalated lattices. In lattices that are intercalated fully with K+ or Rb+ 

ions, the tilting of metal octahedra is constrained and even reversed. Intercalation of Cs+ 

ions also suppresses lattice distortion in both half- and fully-intercalated lattices.  For Cs+ 



54 
 

intercalated configurations the collective movements of H2O clusters are evidenced by 

landscapes projected using 4-particle feature parameters. Downhill traces on those 

landscapes also suggest a coplanar arrangement of water molecules with Ni-metal 

centers at low hydration degrees. The zeolitic water molecules in Cs-intercalated lattices 

bridge between adjacent Cs+ ions to form a Cs-H2O network in interstitial space. Such a 

network is frustrated in Li-intercalated lattices because hydration shells separate adjacent 

Li+ cations. 

While the present investigation focuses on PBAs, we note that the ML model and 

analytical method used in this study can be applied to other crystalline solids. The 

descriptor proposed here effectively maps atomic configurations to feature space 

spanned by both discrete and continuous features. Therefore, the present method does 

not require normalization or differentiable features for ML model training and is suitable 

for fast prototyping of accurate ML models.  Despite these benefits, we note that the 

training data used here was obtained not only from terminal relaxed structures, but also 

from the structures obtained along relaxation trajectories.  Here, leaf regions are assigned 

to the feature values of configurations near local minima only at the deepest levels of 

each regression tree.  Along those lines we envision using the present ML model as an 

estimator of DFT-calculated energy in the search for global optima by introducing bias 

towards near-minimal structures in training datasets.  
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