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Abstract

Prussian blue analogues (PBAs) are model host compounds for the intercalation
of monovalent cations for electrochemical energy storage and separations. However, the
interactions among interstitial species and their effects on atomic arrangements therein
are understood mainly at a phenomenological level. Analyzing correlations between
electronic interactions and polyatomic arrangements in hydrated Prussian blue analogues
is complicated by the non-local hydrogen-bonding interactions between zeolitic water and
lattices. Here, we train machine-learning (ML) models to learn DFT-calculated energy
landscapes of NiFe-PBA lattices with various lattice hydration degrees, oxidation states,
and types of intercalated alkali cations based on various 3-particle feature parameters.
This ML approach is enabled by using gradient-boosted regression trees with features
that are rotationally invariant geometric parameters. ML model accuracy is shown to be
a cation-specific indicator of correlations between energy and polyatomic arrangements.
Overlap population analysis among correlated atoms further confirms that such
correlations are caused by the competition for dative bonding between Lewis-acid
intercalated cations and Lewis bases (cyanide and oxygen in H2O). Examination of
lowest-energy structures reveals that cation hydrophilicity and bare ionic radius determine
dative-bonding strength, resulting in cation-H20 ordering in interstitial space. We also
explore the projected energy landscapes of hydrated PBA lattices in sub-spaces spanned
by certain many-particle feature parameters inspired by ML analysis. The downhill traces
in such landscapes indicate that lattice distortion is accompanied by two kinds of

collective movements: (1) rearrangements in the hydration shells around small and



hydrophilic cations and (2) collective attack of H2O molecules on nickel-cyanide bonds

promoted by large, hydrophobic cations.
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|.  INTRODUCTION

Prussian blue analogues (PBAs) have been and are being used as redox-active
host materials in aqueous electrochemical devices [1], [2], including electrochemical
separations cells [3]-[6] and alkali-ion rechargeable batteries [7]-[10]. PBAs
intercalate/de-intercalate cations from/into solution when transition metal centers therein
are reduced/oxidized. Unlike typical Li-ion host materials, PBAs are hygroscopic as a
result of H.O sorption into defect sites where Fe(CN)4 units are missing [11] and within
interstitial vacancies [12] that are also accessible to cations at body-centered sites [13].
While water molecules at such Fe(CN), defect sites are relatively inert during
electrochemical cycling [11], [14], zeolitic H2O molecules in interstitial vacancies actively
interact with intercalated cations and the PBA framework itself [15], [16], resulting in lattice
distortion [17], [18] and disordered spatial arrangement of interstitial species [19]. These
effects are important because PBA framework distortion affects long-term cycling
performance [20], while the interstitial arrangement of water molecules influences cation
storage capacity and intercalation kinetics [21]. Therefore, mechanistic understanding of
the role that interstitial H2O plays in mediating cation intercalation is essential to the
development of PBA electrodes with simultaneously high capacity, long cycle life, and
high rate capability. Beyond these attributes that are especially important for energy
storage applications, PBAs exhibit cation-specific reduction potential [22], resulting in the
preferential intercalation of monovalent cations with smallest hydrated ionic radius [23].
This attribute of PBAs has enabled their application in selective electrochemical
separations for Cs* over Na* [24], [25], K" over Na* [26], and NH4* over Na* [27]. While

the hydration of intercalated cations is commonly believed to play a role in determining
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such selectivity preferences, understanding of bonding between and the arrangements of
H20, intercalated cations, and PBA frameworks is needed in order to enable the design
of future redox-active host materials with molecular recognition toward particular ions of
interest.

Past studies have attempted to characterize the interactions between zeolitic water
molecules and PBA frameworks using first-principles calculations [16], [28] and ex situ
experiments [29], [30]. The X-ray diffraction (XRD) pattern for nickel hexacyanoferrate
(NiFe-PBA) has shown evidence of water co-intercalation with Na-ions and of water’s
interactions with cyanide ligands that induce reversible cubic-monoclinic lattice
transformations [31]. Recent first-principles calculations have predicted the electronic
structure within PBA supercells having two distinct redox-active centers and have shown
that the affinity of water molecules to the framework dilates interstitial space, facilitating
low-strain cation intercalation [32]. Contrarily, others have found that the presence of
water in PBAs deteriorates cycling performance. Fourier-transform infrared spectroscopy
(FTIR) spectra has revealed that MNnCoNi-PBA alleviates water-induced capacity fading
by intercalating dehydrated Na* ions [18]. Also, strong Zn-water coordination in a ZnFe-
PBA causes the formation of Fe(CN), defects during PBA synthesis, exacerbating long-
term capacity fading [20]. In the MnCr-PBA lattice interstitial water distorts the orientations
of metal octahedra therein, making cation intercalation sluggish [21]. These conflicting
results indicate that water-lattice interactions alone are not sufficient to explain the effects
of interstitial H2O on the electrochemical activity of PBAs. Instead, we show here that
water-cation and cation-lattice interactions must be understood in concert due to the

confined environment of the interstitial space within PBAs.



Past work has also linked cation-water interactions to cation intercalation kinetics
at solid/electrolyte interfaces. Various PBAs show preference for intercalating potassium
ions [16], [33] over lithium ions [34] as K-ions are less coordinated by solvent molecules.
Aside from alkali cations, the selectivity of multi-valent cation intercalation into PBAs has
been characterized [35] with CuFe-PBA, in particular, showing selectivity for AlI*
intercalation over Mg?* due to the compact hydration shell around AI** [36]. Earlier
research using NiFe-PBA to intercalate Ca?* from both aqueous and non-aqueous
electrolytes showed that reversible capacity is only achievable when the Ca?* are
dehydrated [37], [38]. The suppressed activation energy of redox kinetics at
PBA/electrolyte also implicates interfacial dynamics to the intercalation preferences of
PBAs [39].

Bulk interactions between intercalated cations and zeolitic H20 inside PBA lattices
have also been implicated in their electrochemical behavior. H.O coabsorption has been
shown to increase reduction potential for intercalation of Li* and Na* into PBAs, while
intercalation of K* is not accompanied by H20O coabsorption [33]. Recent observations of
switchable thermal expansion in PBAs suggest that ordering of cations and water can
occur in the bulk of PBAs [40], [41]. thus differentiating the interactions between cations
and water in such interstitial environments from those in bulk liquid electrolytes. Since
the spatial confinement of HoO has recently been shown to suppress its dielectric
screening [42], confinement of co-absorbed H>O within the moderately sized interstitial
space of PBAs (~5 A) is likely to screen cation-framework interactions to a lesser extent
than H20 would in bulk form. H20 co-absorption has been studied in other electrosorption

materials, as well. Non-Faradaic MXene materials have shown ~1 H2O per Li* and ~0



H20 per Na* [43]. In contrast, poly(vinylferrocene) films have shown coabsorption of >9
H20O molecules per electron during electrosorption of organic anions [44], and after
electrosorption of ReOs poly(vinylferrocene) shows relatively weak ReOas/vinyl
interactions and no direct ReO4/Fc* interactions [45]. We posit here, and later
demonstrate in this work using first principles modeling, that cation-specific ordering of
interstitial H2O affects the cation-framework interactions that are responsible for ion
recognition by PBAs.

Previous atomistic modeling of PBAs has focused on linking cation-framework
interactions to macroscopic phenomena in the absence of water. Supported by the
Landau theory and XRD data, the magnetic ordering temperature of the MnMn-PBA
lattice has recently been shown to increase with the strength of cation-cyanide
interactions [46]. The tautomerism of Fe-CN-metal chains in PBAs has been used to
show that the active redox center switches from Fe to Mn when intercalated Rb* ions are
present to strengthen orbital interactions between Fe and Mn [47]. Building on DFT
calculations that revealed the mutual repulsion of interstitial vacancies, we used grand
canonical ensemble theory to predict the variation between equilibrium intercalation
potential with the degree of Na™ intercalation in an anhydrous NiFe-PBA, in agreement
with experiment [12].

To date atomistic modeling of hydrated PBA lattices has focused on particular
aspects of cation-water-framework interactions that largely neglect many-particle
correlations [41], [48] due to the challenge of disentangling polyatomic orbital overlap from
atom-specific interactions. To circumvent cumbersome analysis of atomic correlations,

ligand field stabilization energy (LFSE) and redox center ionization energy concepts have



been applied to PBAs [49], where zeolitic water has been shown to switch the redox
sequence of metal centers by increasing LFSE [49]. Lattice stiffness has also been
shown to increase by weakening the interaction between water molecules and metal-
nitrogen bonds [50]. However, LFSE has limited application to understanding the
interstitial interactions of PBAs that contain octahedral low-spin complexes [51] since only
half of metal centers therein are redox-active. Among the broader class of metal organic
frameworks (MOFs) the principles of Hard-Soft Acid-Base (HSAB) theory have been
applied to rationalize the interactions of interstitial cations with MOF ligands [52]. By
surveying the dissociation energies of different metal-ligand bonds, both hard-base/hard-
acid and soft-base/soft-acid framework-cation interactions were shown to promote MOF
stability, while simultaneously making cation-exchange processes reversible. However,
HSAB theory can only predict qualitative trends in the reversibility of cation absorption,
as its precise application depends heavily on ligand relaxation energy [53], an empirical
parameter that is material/ion specific.

Theories of many-particle correlations have been developed based on density
functional theory (DFT) calculations [32], [49], but have not yet been applied to PBAs.
Among them, the theory of many-body expansion (MBE) is often used to investigate the
interactions between molecular clusters [54]-[56], where a certain n-body interaction
energy is defined as total cluster energy minus the energies of independent n-atom
components [54]. Such n-body energies can be calculated using DFT, and each such
energy is a characteristic measure of the atomic/electronic interactions outside of nuclei
cores. Notably, MBE has been applied to investigate many-body effects in deformed

cluster structures [57], [58] and in non-covalent bonding among charged molecules [59].



Alternatively, other methods than MBE have used partitioning of DFT electron density
fields to analyze many-body interactions [60], including the DDEC6 method [61], [62] that
accounts for both itinerant and localized electrons. Here, the number of partitioned
electrons is used to calculate the electron overlap population (OP) and the bond order for
distinct pairs of atoms. Using this approach, bond orders have recently been calculated
on a wide range of organometallic lattices and have shown that the DDEC6 method
reproduces the chemically expected trend of electron transferability [63]. However, basis-
set superposition effects in MBE [64] and partitioning of each electron to a single nucleus
with DDECG [60] limit the effective application of both methods to understanding 3-body
interactions. Therefore, other methods are needed to analyze the many-particle
correlations between the structures of and interactions between interstitial cations, H20,
and PBA frameworks.

In the current study, we investigate the many-particle correlations in the hydrated
NiFe-PBA framework using a method that combines DFT calculation, overlap population
analysis, and a machine-learning (ML) model. We first perform lattice relaxation
calculations of NiFe-PBA unit cells by varying the types of intercalated cation, the
oxidation state of the PBA, and the number of zeolitic water molecules within the PBA.
Based on the atomic configurations obtained from DFT calculations, we prepare atomic
feature vectors to train an ensemble of regression trees using the Xgboost method [65].
We introduce an importance index (IMP) that enables us to rank the sensitivity of total
energy to many-body arrangements. This analysis reveals that the type of intercalated
cation, small/hydrophilic or large/hydrophobic, is a critical factor that affects the variation

of many-body structural correlations with the degree of hydration. We then use overlap



population analysis to link structural correlations between the PBA framework and
interstitial species to the extent of dative bonding between (1) intercalated cations and
framework ligands and (2) intercalated cations and oxygen in H20. Inspection of the
lowest-energy structures for a certain cation type, hydration number, and oxidation state
enables us to categorize cations of interest into three groups based on their bare ionic
radius and hydrophilicity. In particular, we show that bare ionic radius determines the
degree of cation-water coordination and that cation hydrophilicity dictates bonding within
clusters formed by multiple H2O molecules. Identification of the most important features
from analysis of machine learning results subsequently enables us to investigate the
corresponding DFT-calculated energy landscape of PBAs in sub-spaces defined by
many-body structural features. The downhill traces therein illustrate how atoms in two
different clusters move collectively and how zeolitic H.O’s orientation is affected by its

surrounding atoms.

Il. METHODOLOGY

In this section we first summarize the challenges of simulating hydrated PBA
materials using DFT, while also highlighting certain details of ML model training that relate
to DFT. Subsequently, we present details of our DFT calculations and ML modeling
methods. We focus our analysis on the NiFe-PBA that exhibits reversible intercalation of
alkali cations from aqueous solution [66], [67]. DFT calculations for hydrous PBA lattices
are particularly challenging for two reasons: (1) they require knowledge of positions for
interstitial H2O that are unknown prior to structural relaxation and (2) non-local dispersion

interaction energy functionals that capture hydrogen bonding converge slowly during self-
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consistent iteration sequences [68], [69]. We address the first challenge by sampling H20
positions over Voronoi tessellation points within the pristine PBA and by sampling
different random orientations for each H2O molecule at those points, as described in Sec.
A. However, the second challenge stems from the non-local nature of H-bonding
interactions. Because such bonding depends on electron densities and their gradients in
a complex fashion [70], DFT simulation of lattices filled with water molecules using
dispersion-corrected functionals is computationally expensive. As a result, relatively
permissive termination criteria have sometimes been used to relax such structures with
reduced computational time. As an alternative, ML models trained using DFT-calculated
data have been coupled to global minimizers to relax structures. Once adequately trained,
such ML models are used to predict energies rapidly. The artificial neural network (ANN)
has been used widely in simulating crystalline materials [71], biological molecules [72],
and amorphous materials [73]. The versatility of ANNs can be attributed to their network
structure that maps high-dimensional atomic features to target data, and little-to-no prior
knowledge is needed during model training process. We argue, however, that other ML
models are better suited to learning the energy landscape of hydrated PBAs for which
DFT’s computational expense prohibits collection of datasets large enough to train ANNs.
Also, the descriptors that prepare input vectors (i.e., feature vectors) for ANNs use kernel
functions to normalize vector elements [74], [75] that can cause non-unique mapping
between feature vectors and atomic configurations [76]. With small training datasets and
inaccurate descriptors, ANN-based models are likely to suffer from overfitting [77], which
is a problem that cannot be fixed easily by network regularization methods [78].

Compared to ANN-based models, we show here that training of an Xgboost-based model
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requires much smaller datasets (see Table V) with fewer hyperparameters that need to
be fine-tuned [65]. In the following sections, we exploit the unique qualities of the Xgboost
method to develop a simple, yet efficient, descriptor using physically interpretable many-

particle features to represent atomic configurations in hydrated, cation-intercalated PBAs.

A. DFT calculations for a hydrated NiFe-PBA

The unit-cell configurations that we adopt in all DFT calculations here have a
formula of A,NiFe(CN)¢ -nH,0 , where A is an intercalated alkali cation (A =
Li*,Na*,K*,Rb*, or Cs*). When electrochemically oxidized the NiFe-PBA unit cell is half
intercalated with cations (x = 1) and when reduced it is fully intercalated (x = 2), as
shown in Fig. 1(a). All DFT calculations were performed using the GGA+U approach
implemented in Quantum ESPRESSO(QE) package [79]. The strong on-site Coulombic
interactions on Fe and Ni atoms were corrected by setting their respective U parameters
to 1eV and 3eV to reproduce Na-intercalated lattice constants reported in previous
experiments [80] and to maintain the low-spin state of the Fe redox center [12], [81]. The
kinetic cutoff energy for wavefunctions was set to 600eV, and self-consistent iterations
were required to converge within 0.136 ueV. Vanderbilt ultrasoft pseudopotentials [82]
were adopted for all atoms except for Cs, for which we used a norm-conserving
pseudopotential [83] to avoid the negative charge density caused by the Ultrasoft density
interpolation scheme [82]. For all calculations we use the PBEsol+rVV10 functional to
approximate exchange-correlation effects and van der Waals interactions to make the

calculations of both anhydrous and hydrated configurations consistent. We note that,
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unlike local dispersion functionals [84]. the non-local functional rVV10 provides a better
correction to molecular binding energy while keeping computational cost modest [85].
We use a sequential scheme to add water molecules within a unit cell with certain
degree of intercalation x and cation type, A. We first assume body-center occupancy of
intercalated cations and subsequently perform variable-cell relaxation calculations on
anhydrous unit cells of A,NiFe(CN)q (i.e., n = 0) in the limit of vanishing solid pressure.
We then add H20 molecules to the relaxed anhydrous configurations to simulate hydrated
configurations, as described later. The resulting lattice constants of the anhydrous
systems with different kinds of cations and oxidation states are shown in Table I. The
FeNi-PBA lattice undergoes isotropic expansion when the bare ionic radius of the cation
increases from that of Li* to Cs*. For the Na*-intercalated configurations, switching from
half- to fully-intercalated unit cells has no effect on lattice constant, consistent with
previous experiments [22], [80]. For cations other than Na*, fully-intercalated
configurations have lattice constants that are slightly smaller than that of half-intercalated
configurations due to cation-framework interactions. Recent experiments have shown
that the lattice constant of a hydrated NiFe-PBA slightly increases or unaffected during
the potassium intercalation reaction [86]—[88]. Thus, the results in Table | indicate that the

cation-framework interaction is mitigated by interstitial H.O molecules.

TABLE . Predicted lattice constant a (in A) of anhydrous A, NiFe(CN)s.

A=Li A=Na A=K A=Rb A=Cs
x=1 5.128 5.100 5.125 5.133 5.139
X=2 5.110 5.100 5.105 5.120 5.133
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After performing such variable-cell calculations, we use Voronoi tessellation based
on the coordinates of atoms in relaxed anhydrous configurations to define the candidate
locations for the oxygen atom of each H.O molecule to be added to create hydrated initial
configurations (red spheres in Fig. 1(b)). In practice, among all such candidate locations
we use those that are at least 0.84 away from anhydrous nuclei to limit the number of
potential locations for oxygen atoms. For a given configuration we randomly pick n
locations among all candidate locations, and we place a corresponding oxygen atom
there. We then attach two hydrogen atoms to each oxygen by setting O-H distances and
H-O-H angle to 0.9572 A and 104.5°, respectively. To do so we sample the orientations

of H20 about each oxygen using random quaternions (see Fig. 1(c)).

A awm
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FIG. 1. The three-step scheme used to generate initial configurations for DFT calculations.
The first step in (a) determines the number of A cations in the anhydrous unit cell. A
collection of potential locations for oxygen atoms shown in (b) is found by performing
Voronoi tessellation based on the nuclear coordinates of the relaxed anhydrous lattice.
In the last step (c), the locations for oxygen atoms are randomly picked from candidate
locations obtained in (b), and two hydrogen atoms are subsequently attached to each
oxygen atom.

Using such initial hydrated configurations we conduct fixed-cell relaxation
calculations to obtain relaxed coordinates and associated DFT energies for subsequent
Xgboost model training. We constrain unit cell shape and volume during such calculations
for two reasons. For the initial configurations that have H2O molecules in close proximity

to atoms on the NiFe-PBA lattice, variable-cell optimization can induce excessive lattice
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distortion during relaxation sequences. When initial configurations are assembled using
the approach already described, we find that such lattice distortion can produce
configurations that are potentially far away from equilibrium. Also, fixed-cell calculations
constrain the motion of metal centers, enabling the translation of interstitial cations and

H20 and the rotation of cyanide ligands.

We use the nomenclature Adn to denote unit cells based on the type of
intercalated cation A, the extent of cation intercalation § (either § = h for half intercalated
or § = f for fully intercalated), and the number of water molecules per formula unit n. For
example, Naf4 and Csh2 denote unit cells for Na,NiFe(CN ), - 4H,0 and CsNiFe(CN)g -
2H,0, respectively. DFT calculations were performed with as many as four water
molecules, resulting in 40 different types of hydrated NiFe-PBA configurations among the
five different intercalated cations tested. For each such configuration type, we sampled
50 random realizations of H2O on Voronoi sites, each of which was subjected to fixed-
cell relaxation using the methods already described. The resulting atomic coordinates
and self-consistent field energies obtained during the course of each fixed-cell relaxation
sequence were subsequently used to train the ML model (i.e., not only those of the

terminal relaxed structure itself).

B. The Xgboost model

We now summarize the gradient boosting ML method used here and subsequently
introduce the descriptor that we use to generate the feature vectors that serve as input to

our Xgboost ML model. In general, gradient-boosting ML methods train many
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independent weak regressors (or weak learners) using the same feature vectors, but
using different target data from those feature vectors. Such methods subsequently
combines such weaker learners to yield an ensemble of learners that spans all feature-
vector elements. Table Il shows the meta-algorithm of a gradient boosting method used
to train an ML model. The algorithm starts with a training dataset that is comprised of a
set of pairs of feature vectors x; and corresponding target data y; (i.e., (¥;,y;) at the first
line of Table Il). In the context of energy-landscape learning, each feature vector X;
represents the atomic structure of a certain unit-cell configuration, while y; is its
corresponding energy. The algorithm then trains the first weak learner F, that predicts
energies using the average of y; (i.e., Fy(¥;) =y in Table Il). Gradient boosting is
accomplished by using the gradient of an associated loss function to reduce error by
training new weak learners using on gradient values after performing training on its output
predictions. Accordingly for the m'" iteration at step 2 in the algorithm (see Table II), the
gradient r;,,, of a loss function L is calculated with respect to its prediction of the i

configuration’s output value F,,_,(¥;) obtained during the previous iteration: r;,, =

oL

mlpm_l(fi). Presently, we use a loss function defined by the sum of squared errors

(SSE). At the m! iteration we have:
1 )
Ly = ZE(}G - Fm—l(xi)) ) (1)
with an associated gradient r;,,, that is readily expressed analytically:

Tim = Vi — Fn—1(X). (2)
From Eq. (2), we observe that r;,, is equal to the error that results from use of the

ensemble of trained weak learners obtained at the (m — 1) iteration.
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After the values of r;,,, are computed, a new weak learner is trained by taking those
r;m Values as the targeted training dataset. Specifically, a regression tree is trained as a
new weak learner based on residual errors r;,, from the previously trained trees in steps
2b and 2c of the algorithm (Table Il). To illustrate, Fig. 2 shows an example regression
tree for the particular instance in which the m'" learner feeds on three features, a, b, and
c. In this example we choose the tree to have J,, = 5 different predicted output values
¥;m for the feature vectors that fall into the associated leaf regions, shown as green blocks
denoted by R;,, where j = 1,2, ... ], enumerates each such leaf. Each node on such a
tree subdivides the associated target r;,, values into two groups based on certain
conditions that are feature-specific (blue blocks). In this example, the targets that belong
to R,,, have corresponding feature vector values that satisfya <1, b <3, andc>7.
The morphology of each regression tree is defined by its maximum allowable tree depth
Dimax, its upper limit of leaf-region size ng, and its leaf algebra 0. During the training
process, a tree is allowed to grow D,,,,, nodes at most before it reaches a leaf region. The
tree in Fig. 2 has a depth of 3, which would be produced for D,,,, = 3. The number of
target r;,,, values that feed into a given leaf region defines its leaf region size. Thus, a
small ng value reduces leaf region size and forces the training algorithm to create more
leaf regions. The leaf algebra is the particular formula used for calculating the outputs y,,
based on the target r;,,, values. We presently use an average of target r;,, values to
determine yj,,: ¥jm = XiTim0z, (Rim)/ Xi 0z, (Rim). Here, the Kronecker delta 6z, (R;y,) is
unity when the vector X; belongs to the leaf region R;,, and is otherwise zero. Training
such a regression tree is accomplished by changing the threshold values at each node,

splitting new branches, and pruning redundant branches, so as to minimize the loss

17



function. We will not discuss the numerical details of tree fitting here as they can readily
be found elsewhere [65], [89]. In practice, we use the open-source Scikit-learn package

[90] to train our Xgboost model.

TABLE Il. The meta-algorithm of the gradient boosting training method

Input: {(%;,v,)}, and a differentiable loss function L(y;, F (X;))

Step 1: Initialize the model with the average energy value, F,(¥%;)

Step 2: form = 1to N:

. BLm - -
a. Compute residual r;,,, = ) | Fyy ) V% € {(Xi, ¥}

b. Fit a regression tree to the 3, values and create leaf regions R,

c. Forj=1,..,J,,, compute y;, = argmin Z,;iEij Loy (i, Fp_1 (X)) + 1)
Y

d. Update F,(%;) = Fp_1 (X)) + VX ¥Yjm0%,(Rjm)

Output: F(X;)

The gradient boosting method updates the tree ensemble for the m™" iteration by
appending the new leaf outcomes to the ensemble for the (m — 1) iteration. Accordingly
at step 2d of the algorithm, the values of y;,, are weighted by a learning rate parameter v
and the Kronecker delta 6¢,(R;n,) in updating leaf outcomes. A small v value increases
the accuracy of the ML model by reducing the importance of each tree relative to the
entire ensemble of regression trees. The final outcome of the algorithm is an ensemble
of N regression trees that yields predicted output values F(X) for a given feature vector

X.
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FIG. 2. lllustrative example of a regression tree.

The Xgboost method uses the gradient-boosting steps described above by
adopting the approximate greedy method [91] and a parallel learning scheme [92], [93] to
build regression trees efficiently. Here, the approximate greedy method grows a
regression tree iteratively by evaluating the accuracy gain of subdividing leaf regions at
each split-finding step [65]. A new leaf region is only created when it improves the
accuracy of the regression tree. Therefore, trees with a larger number of leaf regions
provide more accurate predictions of the associated target values. Parallel learning
schemes assemble all feature vectors for training into a feature matrix with each row
being a feature vector and each column containing the values of the same feature among
all feature vectors (see the top matrix in the right subplot of Fig. 3(c)). The scheme then
reproduces N sub-matrices by randomly sampling C% distinct columns from the feature
matrix (e.g., the matrix at the middle right of Fig. 3(c)). Each sub-matrix and its associated
targeted output values are later used to train a separate regression tree, while the highly

parallelized Xgboost method trains all the trees simultaneously. The final model is an
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ensemble of regression trees with different structures because they are trained on

different features.

1. Descriptor for atomic configurations

We now introduce the descriptor that we use to generate atomic feature vector
values on the basis of atomic numbers and polyatomic arrangements. Figs. 3(a) and 3(b)
show the workflow for assembling feature vectors using the descriptor that we adopt here.
For the i!" atom in an atomic configuration, the descriptor builds a neighbor list by
including the atomic number of each neighbor Z! and its corresponding distance d!,
where the integer [ ranges from 1 to a prespecifed value k (e.g. the two neighbor lists
shown at the top of Fig. 3(a)). These Z;-d} pairs are subsequently sorted in ascending
sequence of d!, where d! is the distance from the it atom to its nearest neighbor. The
descriptor then sorts the neighbor lists for the same atom type in an element list based
on the values of d¢. In Fig. 3(a), the neighbor list of i" atom is appended behind that of
(i + 1) atom because of the condition di*! < d!. The descriptor then assembles element
lists to prepare a base vector based on each element's type. For the NiFe-PBA unit-cell
configuration in Fig. 3(a), the lists for Fe and Ni (brown block) are followed by the lists for
N (navy), C (grey), O (red), H (white), and intercalated cations (pink).

The use of such base vectors has a number of beneficial attributes. Such base
vectors contain the single-particle (i.e., atomic numbers) and two-particle (i.e., atomic
distance) information around each atom in an atomic configuration. The size of each

neighbor list, 2k, determines the length of the base vector. The computational cost of

20



preparing base vectors grows linearly with k, which is much cheaper scaling than that
produced by the neighboring matrix method that is widely used in ANN-based models
[94], [95]. The descriptor used here introduces different sorting algorithms for neighbor
lists, element lists, and the whole base vector to avoid non-unique mapping between
feature vectors and atomic configurations. The preparation of both base and modified
vectors does not require any normalization, such that finding a suitable set of kernel
functions to make each feature differentiable is unnecessary. This convenience is
attributed to the fact that we can train a regression tree on both discrete and continuous

features.
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FIG. 3. Schematic of descriptor preparing (a) base and (b) modified feature vectors, and
of the training processfor the present Xgboost-based model(c).

To prepare modified feature vectors we add certain many-particle features in front
of base vectors, as shown in Fig. 3(b). Specifically, we consider modified feature vectors
here that include 3-particle and 4-particle polyatomic structural features, in addition to

base vector features. We define 3-particle features for a cluster comprised of atoms X,
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Y, and Z atoms,F(XYZ), in two different ways: (1) the cosine of the bond angle 2XYZ
formed at atom Y or (2) the product of dyydy, (1 — cos (£XYZ)) where dyy is the distance
between atom X and Y. We ultimately use the particular 3-particle feature definition that
leads to a lower MAE of our Xgboost-based models, as described in the Results and
Discussion section. We define a 4-particle feature for a G-X-Y-Z cluster, F(GXYZ), using
the tangent of half of the solid angle subtended by X-Y-Z cluster that emanates from atom
G:

| GX -(GY xGZ)

= 3
R e e R e R

)

F(GXYZ) = tan(Q

In our subsequent analysis of 4-particle features, we only consider Ni and intercalated
cations as the G atoms of interest in Eq. (3), and almost exclusively we consider HOH as
XYZ in GXYZ clusters. These choices for G atoms are made with inspiration from hard-
soft acid-base (HSAB) theory [52], since Ni?* and A" are Lewis acids that exhibit
different affinities to basic oxygen in H20. For this reason, H20 plays a role of electron
donor in such clusters and causes the formation of dative bonds [96], [97] among
interstitial species. Indeed, our charge distribution analysis in Results and Discussion
section shows that cations and zeolitic H2O share electrons in interstitial space. For each
such polyatomic cluster of the same kind in a given configuration, the associated ML
descriptor calculates a separate many-particle feature and sorts the corresponding
values of all such features in a many-particle feature list (e.g., the feature list at the middle
of Fig. 3(b)). If a modified feature vector contains multiple many-particle feature lists, the

descriptor assembles them alphabetically based on their associated polyatomic clusters'
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atomic symbols. In Fig. 3(b), the descriptor appends feature lists of ABC and ABCD
clusters before the list of XYZ cluster to give an ascending alphabetical order. By
considering different polyatomic arrangements, we use the descriptor to prepare different
feature matrices that contain different many-particle feature columns, while fixing the total

number of feature vectors (i.e., the row number of feature matrices shown in Fig. 3(c)).

2. Fine-tuning hyperparameters of Xgboost-based models

Compared to ANN-based models, the present Xgboost model requires only a small
set of hyperparameters whose values must be chosen in order to perform training: (1) the
total number of regression trees in the Xgboost ensemble N, (2) the maximum depth of
each regression tree D,,,,, (3) the percentage of sampled columns from the total feature
matrix for training each regression tree C%, (4) the learning rate v, (5) the size of neighbor
lists k, and (6) the maximum allowable size of each leaf region n,. However, different
choices of hyperparameters also affect the minimum level of error that can be achieved.
Thus, we fine-tune hyperparameters to optimize the accuracy of our Xgboost-based
model by using a grid search method [90] to find the combination of hyperparameters that
minimizes the mean absolute error (MAE) of a separately trained model for a given
configuration type. Starting from a coordinate grid in the space spanned by all
hyperparameters, the grid search method optimizes changes a certain hyperparameter
incrementally by applying the steepest descent algorithm while keeping other
hyperparameters fixed. Presently, we optimize hyperparameters in the sequence of k, v,

N, C%, D,,.x, and ni because we find that the sensitivity of MAE to each such parameter

23



decreases with the same sequence. At each iteration step, the method follows an 80-20
rule [89] to split base vectors and their associated targets into two datasets for training
and testing, respectively. After training a different Xgboost ensemble for each
configuration type, we evaluate MAE based on the testing dataset. We terminate the
search and confirm the best hyperparameter combination when the MAE difference
between two consecutive iteration steps is less than 0.001 eVV/atom. The optimal values
for N, Dy, C%, v, and ny found for the all configuration types are the same (Table Ill), but

their optimal k-values are specific to each configuration type (Table IV).

TABLE Illl. Fine-tuned values of hyperparameters.

C% v N Dpax ng
60% 0.05 900 6 2

TABLE IV. Fine-tuned k-values for all kinds of unit-cell configurations.

A=Li" A= Na"* A=K"* A = Rb* A=Cs*
Ah1l 9 8 9 9 8
Ah2 7 6 10 10 12
Ah3 11 9 10 9 9
Ah4 11 9 9 12 8
Afl 9 11 9 6 7
Af2 10 8 9 6 10
Af3 8 10 7 9 7
Af4 9 11 9 6 7

Two factors affect the magnitude of k-values in Table IV. For half-intercalated
configurations, the optimal k-value generally increases with increasing number of water
molecules n. For example, compare the variation of k-values from Lih1 to Lih4 with their
variation from Nah1 to Nah4. Such correlation of k with n is not observed for fully-

intercalated configurations, however. The number of base vectors in different training
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datasets also affects the k-values determined by finite-tuning. For Af1 configurations, the

fine-tuned k-value decreases from 11 for Naf1 to 6 for Rbf1, while the total number of

base vectors decreases from 1538 to 836. The descriptor used here prepares modified

vectors by appending many-particle features to their corresponding base vectors that

have their lengths defined by the k-values listed in Table IV.

TABLE V. Qualitative survey of attributes for different ML models used for energy

landscape regression.

Model type

Type of
atomic
systems

Typical MAE
(eV/atom)

Number of feature
vectors or matrices
for training

Input format

Kernel regression

Organic
molecules
[94], [98] and
alloys [99],
[100]

0.006 [100] ~ 0.043
[94]

1000 [94] ~ 26500

[100] Vectors/Matrices

Artificial neural
network

Molecules
[101], [102],
crystals
[101], [103]
and
interfaces
[104]

0.02 [103] ~ 0.075
[101]

10000 [101] ~

5500000 [102] Vectors/Matrices

Xgboost

Molecules
[92] and
PBAs
[present]

0.016 [present]

1300 [present] Vectors

We now briefly compare and contrast the use of Xgboost for learning energy

landscapes with other kernel regression and ANN methods. Table V shows the results

of a qualitative survey of the typical MAE levels that have been demonstrated in the past

using such methods, revealing that Xgboost is able to achieve similar MAE to such
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methods while using a smaller dataset to train without overfitting or underfitting. However,
we acknowledge that such methods were used in the past for variety of atomic systems
that are different from the focus of the present study, namely hydrated PBAs. Kernel
regression methods, such as kernel ridge regression and support vector regression (SVR),
have been applied to learn the energy landscapes of organic molecules [98] and
amorphous alloys [99]. To achieve sufficient accuracy using kernel regression, atomic
features have been constructed in the past using smoothed basis functions [100], which
is a practice that can lead to non-unique mapping between feature parameters and atomic
configurations. On the other hand, the intricate networks of ANN-based models have
yielded accurate energy predictions for small organic molecules [102], metal oxide lattices
[75], and amorphous glassy systems [73], but in general a large pool of feature vectors
or feature matrices is required to train ANNs properly relative to other methods. Recent
work has also shown that supplementation of certain potentials with ANNs has yielded
improved accuracy of energy prediction for systems with nonlocal interactions [105]. To
directly benchmark the performance of Xgboost against SVR and ANN models we also
trained such models using data from each of the 40 different hydrated PBA unit cells
investigated here by incorporating the same base features as with our Xgboost models.
To do so the hyperparameters of each SVR model were fined-tuned using the grid search
method, while we adopted the structure of each ANN based on its recent application to
heterogeneous crystalline materials [106], [107]. Among all unit cells for which ML
models were created, the MAEs of SVR and ANN models on average were respectively
0.174 eV/atom and 0.132 eV/atom, while Xgboost achieved 0.016 eV/atom on average.

Thus, we contend that Xgboost is highly suitable for learning the energy landscapes of
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hydrated PBAs and other condensed-matter systems, though its past use was limited to

organic molecules [92].

|. RESULTS AND DISCUSSION

The aim of this work is to discover and elucidate the electronic and atomic
interactions that affect the energetics and interstitial structures formed within hydrated
FeNi-PBAs that are intercalated with alkali cations. To that end we have sampled the
configurational space for FeNi-PBAs with varying degrees of hydration, oxidation state,
and intercalated cation type. We then trained a gradient-boosted machine learning model
to identify the particular many-body structural features with highest correlation to DFT-
predicted energy using that model. Descent paths in the corresponding DFT-energy
landscapes are subsequently analyzed using such many-body structural feature
parameters. We use overlap population analysis in tandem to characterize the
competition for dative bonding between intercalated cations and framework ligands and

between intercalated cations and H2O.

We also note that, subsequently, we use the nomenclature Aén to denote unit cells
using a certain intercalated alkali cation A, a certain extent of cation intercalation § (either
6 = h for half or § = f for fully intercalated), and a certain number of water molecules per

formula unit n.
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A. Correlating DFT energy with 3-particle features

We now analyze the correlation between the many-body structural features of
different polyatomic arrangements within a hydrated PBA and DFT-predicted energy by
introducing an importance index (IMP), defined as the relative change in mean absolute
error (MAE) of an Xgboost model trained on modified feature vectors incorporating a base
vector and certain many-body features from that of an Xgboost model solely trained on a

base feature vector:

MAE, — MAE,,
MAE, (4)

IMP,, =

Here, MAE,, and MAE, respectively correspond to Xgboost models trained using
modified feature vectors with many-body feature m appended and using a base feature
vector. Subsequently, we rank the correlation between energy and certain many-body
feature parameters based on the magnitude of their corresponding IMP,, values, where

the polyatomic arrangements of certain m-clusters are important if IMP,, is positive.

We select candidate 3-particle clusters that could be important in either half- or
fully-intercalated configurations as pairs of Lewis acid cations (Ni?* > A*=Li*, Na*, K*, Rb*,
or Cs*) and Lewis base atoms (O > N > C) that have varying degrees of chemical
hardness. These clusters can contain either two basic atoms and one acidic atom or one
basic atom and two acidic atoms: Ni-N-C, Ni-A-O, A-O-A, N-A-N, and O-A-O. This
approach enables us to later interpret the structural correlations observed on the basis of
HSAB theory [52]. We analyze the polyatomic arrangements of half- and fully-intercalated

configurations separately in the next two subsections because the many-body feature
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parameters that correlate with energy most depend on the degree of cation intercalation,

as we now show.

1. Half-intercalated configurations

Figs. 4(a)-4(c) show the IMP values for different cation types, arranged in
ascending order of the number of H2O molecules used. Among the 3-body feature
parameters tested (NINC, NIiAO, NAN, AOA, and OAO), most half-intercalated
configurations only showed positive IMP,, values for NINC and NiAO (Figs. 4(a) and 4(b)),
indicating high sensitivity of DFT-calculated energy to 3-body features of F(NiNC) =
cos £NiNC and F(NiAO) = dy;sdao cos £NiAO. In the configurations with the same water
number (i.e., bars with the same color in Figs. 4(a)-4(c)), the influence of cation type on
the importance of NiINC and NiAO cluster features is not evident, as IMPy;nc and IMPy; 40
fluctuate between negative and positive values when the intercalated cation type changes
from Li* to Cs*. While Rb-intercalated configurations show IMPy;y. that increases
monotonically with increasing H20 number n, no other intercalated cations show
monotonic trends of IMPy;yc or of IMPy; 40 With n. The lack of clear trends for IMPy;yc
and IMPy;,o With n and A* suggests that the correlation between the corresponding 3-
particle features and DFT energy is affected not only by lattice hydration degree and
cation types, but also by other polyatomic features. In order to study the correlation
between DFT energy and multiple many-particle features simultaneously, we use the
present ML approach to incorporate feature parameters for NINC and NiAO clusters in a

single model.
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Fig. 4(c) shows the difference between the corresponding IMP values obtained
using both 3-body features IMPy;nc+niao @NAIM Pyinc, Where IMPyinciniao Values were
obtained from training and testing of an Xgboost model using 3-particle features for NiNC
and NiAO clusters. We argue here and later demonstrate by examining DFT energy
landscapes that a positive value of IMPy;nciniao — IMPyinc iMmplies that combining the
features of both such clusters improves ML accuracy to a greater extent than including
only the feature of NiNC clusters. A positive IMPy;nc+niao — IMPyinc Value also indicates

possible correlation between the polyatomic arrangements of NiNC and NiAO clusters.

The value of IMPy;nciniao — IMPyinc increases with hydration degree for Na- and
Li-intercalated PBA lattices (Fig. 4(c)), suggesting increasing correlation between the
arrangements of NiNC clusters and the NiAO clusters with increasing n. For K- and Rb-
intercalated lattices, however, such correlation is only significant with intermediate water
content, i.e., n =2 and 3. Cs-intercalated PBA lattices show no apparent trend of
IMPyinceniao — IMPyine With n, fluctuating between positive and negative values with
increasing n. On the basis of these observations we group these five cations into three
distinct categories: light cations Li* and Na*, intermediate cations K* and Rb*, and
heavy cations Cs*. We show later that such behavior is caused by two factors that vary

these categories: cation hydrophilicity and bare ionic radius.

The cation-dependent correlation between the feature parameters for NINC and
NiAO clusters suggests that cation type affect lattice distortion (e.g., tilting of metal-ligand
octahedra [108]) and cation-water arrangement in half-intercalated configurations. On this
basis we assert that the dominant physiochemical interactions within both clusters are
cation specific. Accordingly, we now investigate the relationships between cation type
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and dative bonding (i.e., electron sharing) between Lewis acid and base atoms in PBAs
by calculating electronic overlap population (OP), which is a measure of the shared
electronic density between two kinds of atoms [60] and is defined for a pair of atoms or
clusters, P and Q:
0Py = z f%%(ﬁ)d?. (5)
ieP,jEQ

Here, p(#) and p(7}) are respectively the total charge density and the charge density
assigned to the (" P-atom at # using the DDEC6 charge density partition method [63].
For example, dative bonding between intercalated cations and oxygen atoms in H2O is
quantified by OP, , and between intercalated cations and cyanide ligands is quantified by
OP,cy. Figs. 4(d) and 4(e) show the corresponding results of OP,, and OP, ¢y for the
lowest-energy configurations for each half-intercalated unit cell with certain hydration
degree n. In the anhydrous configuration (i.e., n = 0), the values of OP, .y follow a
sequence of OPy;cy = OPygcn < OPxcny = OPrp oy < OPcscn, Which groups the cations
into three distinct categories that coincide with the results of our more exhaustive IMP
analysis. From n=0 to n=1, the OP,cy, OPygcn , @nd OPg ¢y increases while
OPgy, cn,and OP¢; oy remain nearly unchanged. This observation implies that zeolitic H20
in less hydrated framework intensifies cation-framework interaction for Li- and Na- and K-
intercalated lattices, but it has negligible effect on heavy ions. Compared with results
withn <1, OPk cy, OPrpcn, OPk o, and OPg, o rise to larger values at higher hydration
degrees. We thus conclude that adding zeolitic water molecules to a PBA intercalated
with either K* or Rb* -- in contrast with Li* and Na* as we subsequently show -- enhances

dative bonding between intercalated cations and framework ligands. In contrast, OP;; cy
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and OPy, ¢y either decrease or are practically constant with increasing n (Fig. 4(e)), while
OP,; o and OPy, o increase with increasing hydration degree n (Fig. 4(d)). These results
indicate that the ascending NiNC-NIiAO correlation observed in Fig. 4(c) for Li- and Na-
intercalated configurations therefore results both from enhanced cation-water interactions
and from diminishing cation-octahedron ligand interactions as zeolitic water content
increases. For Cs-intercalated configurations, however, the trends of OP¢;, and OP¢; ¢y

are not correlated with the variations of IMPy;ncinicso — IMPyinc With n.
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FIG. 4. (a-c) Importance index values using 3-body feature parameters for Ni-N-C and Ni-

A-O clusters to train Xgboost models for half-intercalated systems. (d-f) Results of overlap
population analysis for A-O, A-CN, and Ni-N.

To understand such anomalous behavior for Cs-intercalated configurations, we
also calculated OPy; y values to reveal changes in Ni-N bonding in the PBA lattice as a

function of water number n (Fig. 4(f)). When n < 1, OPy; y reduces with hydration degree
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noticeably for all the cases except for Cs-intercalated lattice. Starting fromn = 1, OPy;
varies synchronously with IMPy;nciniao — IMPyinc In Fig. 4(c) for Cs-intercalated
configurations, both of which are linked to Ni-N bonding that stretches and contracts in
an alternating manner depending on hydration degree. For K- and Rb-intercalated
configurations, in contrast, the single local minimum observed for OPy; y varies opposite
to the variations of IMPyinc+niao — IMPyinc In Fig. 4(c), where the minimum value of
OPy;y coincides with positive values of IMPy;yciniao — IMPyinc . For light cations,
however, OPy; y varies weakly for n < 3, while for n = 4 OPy; y decreases. Because the
correlations between NiINC and NiAO clusters are most significant at n = 4 for both Li-
and Na-intercalated configurations (see Fig. 4(c)), the drop in OPy; y at n = 4 implies that
sufficiently large cation-water clusters act to stretch Ni-N bonds and cause lattice

distortion in half-intercalated configurations.
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FIG. 5. Lowest-energy structures for Lih3, Lih4, Kh3, Kh4, Csh3, and Csh4 configurations.

To explain the different variations of OPy; y for different cation types at high water
content, we now analyze the structures of lowest-energy configurations for Lih3, Lih4,
Kh3, Kh4, Csh3, and Csh4 unit-cell types in Fig. 5. Observation of the arrangement of
interstitial cations and water in Fig. 5 enables us to reconcile the contrasting results
deduced for different intercalation cations from variations OPy; y with n by considering a
competition between two factors: cation bare ionic radius and hydrophilicity. Because
light cations are relatively small and hydrophilic, Li- and Na-ions are firmly coordinated by
zeolitic water molecules (e.g., Lih3 and Lih4 configurations in Fig. 5). As hydration degree

increases, a given cation-H2O cluster grows in apparent size, so as to cause stronger
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interactions between that cluster and the surrounding framework’s lattice. For this reason,
a monotonically increasing trend of IMPyinciniao — IMPyinc With increasing n is
observed for light cations. From Lih3 to Lih4 in Fig. 5, we observe that H2.O molecules
form hydration shells around Li*, causing the Ni-N bond to stretch from 2.02A to 2.06A
while the average value of ZNiNC (i.e., («¢NiNC)) reduces from 173° to 169°. These
observations are consistent with previous experiments that confirm hydration of Li* in the
interstitial space of ternary PBA frameworks [109]. In contrast, K* and Rb* are
hydrophobic, and Fig. 5 reveals that these ions are displaced to body centers to adjacent
sites with minimal energic costs. In the Kh3 configuration, water molecules and nitrogen
both closely coordinate to potassium ions with average values of dy, = 2.444A and dyy =
3.094, resulting in enhanced NiNC-NiKO structural correlation. In the Kh4 configuration,
K-O coordination becomes weaker with dy, = 2.93A, while («NiNC) shifts from 170.9° in
Kh3 to 171.2° in Kh4. Therefore, the suppressed NiNC-NiKO structural correlation for n =
4 in K- and Rb-intercalated lattices results both from interstitial water molecules detaching
from intercalated cations and from enhanced cation-ligand coordination. We also note
that the Kh4 configuration exhibits K-N coordination in the same plane as Ni-N
coordination (i.e., purple plane in Fig. 5), resulting in off body-center occupation by K*.
For Cs-intercalated configurations, both cation-water and cation-cyanide interactions
become stronger as hydration degree increases. Because Cs* has a large bare ionic
radius and is hydrophobic, it pushes all zeolitic water molecules into the vacant body-
center site while still retaining coordination to those molecules. The average distance of
dcso is 2.874 in Csh3 and 2.984 in Csh4 configurations shown in Fig. 5, both of which are

shorter than the distance between Cs-ion and its first hydration shell in aqueous solution
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[110]. The zeolitic water molecules in the Cs-intercalated lattice interact strongly with each
other through hydrogen bonding, indicated using blue-dashed lines in Fig. 5. Notably, the
characteristic diameter of 3-water clusters is significantly smaller than that of 4-water
clusters in Cs-intercalated systems (i.e., 2.61A vs. 3.194). The concomitant reduction of
(£NiNC) reduces from 179.3° in Csh3 to 173.8° in Csh4 suggests that the fluctuating
nature of NiINC-NiCsO correlation results from the formation of a kind of amorphous
phase transition of water clusters [111] with increasing hydration degree.

Our analysis of overlap population shows that NiNC-NiAO structural correlation is
linked to the competition for dative bonding between intercalated Lewis-acid cations and
the Lewis-base groups surrounding them (O in H2O and N in CN). In addition, analysis
of the correlation between the associated 3-body feature parameters and DFT energy,
quantified using the accuracy of ML models incorporating such features, reveals three
distinct categories of cations. Further, inspection of lowest-energy structures reveals that
the bare ionic size and hydrophilicity of different cations determine how cations are
classified. While these results point to the key bonding interactions that occur among
different classes of cations at equilibrium positions, we next seek to interpret how the
concerted motions of atoms occur in the vicinity of those local minima on energy

landscapes.
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FIG. 6. 2D projections of DFT-predicted energy landscapes for half-intercalated
configurations near local minima. Color bars indicate DFT energy in eV per formula unit,
relative to that of the lowest-energy structure for a given configuration type.

We now attempt to investigate the implicit dynamics occurring during the collective
motions of polyatomic clusters in the vicinity of local minima. To do this we project high-
dimensional DFT-predicted energy landscape into a 2D sub-space spanned by the most
important 3-particle feature parameters, as determined from our preceding analysis. In

particular, the values of IMPy;y. and IMPy; 4, Were found to be positive for most unit-cell
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types. Therefore, we project the energy landscapes using the sub-space spanned by the
average values of cos(£NiNC) and dyy;da0[1 — cos(2NiAO)] for a given structure. Each
such projected landscape in Fig. 6 is shown with data from the 100 structures with lowest
energy for a given unit-cell type. The hue of each data point represents the energy
difference AE between a given configuration and the lowest-energy configuration in the
unit of eV. By following the downhill traces on these projections, we can infer the collective

movements of the NiINC and NiAO clusters in the quasi-static limit.

Based on the three categories of different cations that we defined earlier, we group
the different DFT energy landscapes, as shown in Fig. 6. For small, hydrophilic cations
(red rectangle: Li- and Na-intercalated configurations), the labeled downhill traces start
from an energy with AE~0.3eV and descend toward certain local minima. By connecting
the tail to the head of each such trace using a straight line, we calculate the secant slope
of each such trace |Ay/Ax|. We identify two kinds of traces based on such secant slope
values. Steep traces with |Ay/Ax| > 0.05 are red, and they indicate significant that
changes in the degree of Ni octahedron tilting are accompanied by mild changes in cation-
water coordination along the corresponding trace. In contrast, shallow traces with
|Ay/Ax| < 0.01 are black, and they indicate that water molecules rearrange themselves
within a given cation-water cluster without causing significant octahedral tilting. As water
content increases in Li- and Na-intercalated configurations (i.e., by traversing from the
left to the right side of cases in the red rectangle), we observe that shallow (black) traces
vanish at certain n. In contrast, the evolution of octahedral tilting along steep traces
involves virtually no rearrangements of cation-H2O clusters for a sufficiently large

hydration degree (n > 3).
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For intermediate-size, hydrophobic cations (green rectangle: K- and Rb-
intercalated configurations), downhill traces start from energies with AE~0.08eV and
follow more circuitous paths than those on the landscapes for Li- and Na-intercalated
configurations. The mild variations of (cos(«NiNC)) along such traces show that
interactions between the framework and interstitial speces in K- and Rb-intercalated
configurations do not cause significant lattice distortion during relaxation toward local
minima. The shallow (black) traces in the landscapes of K-intercalated configurations
demonstrate that lattice distortion evolves in concert with K-H2O coordination. The steep
(red) traces in the landscapes of Rb-intercalated configurations indicate that Rb-H>O
coordination remains unaffected during relaxation toward local minima. At n = 4, the
landscapes of Kh4 and Rbh4 are absent of downhill traces, however. Instead, all
configurations are concentrated near certain local minima, indicating that the motion of

interstitial species is impeded by crowding of H20 in the PBA framework.

The energy landscapes of large, hydrophobic cations (blue rectangle: Cs-
intercalated configurations) also show negligible octahedral tilting (i.e., {(cos(£NiN(C)) <
—0.98). However, large changes of cation-water coordination occur along traces. These
changes are consistent with the atomic structures of Cs-intercalated configurations (Fig.
5), where cation-water coordination is coupled to the amorphous ordering of water
clusters in adjacent interstitial sites. These results therefore confirm that bare ionic radius
and the hydrophilicity of intercalated cations not only affect bonding at local minima, they

also affect the collective movement of interstitial species in the vicinity of local minima.
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2. Fully intercalated configurations

As we now show, cations in fully intercalated configurations occupy the two body-
center sites of the PBA lattice, irrespective of intercalated-cation type or the degree of
hydration. This effect occurs because much less space is available for the occupation of
interstitial species when two cations per formula unit are intercalated. While for half-
intercalated configurations we found that the NiNC and NiAO were the 3-body clusters
showing most significant correlation to DFT energy, for fully intercalated configurations
we find that NINC and AOA clusters show most significant correlation. This change in
correlation for fully intercalated configurations arises from increased confinement
experienced by cations and zeolitic water molecules that enhances interactions between
the framework and those interstitial species. Accordingly, we use IMP values for NiNC
clusters to analyze the effects of hydration degree and cation types on octahedral tilting.
Fig. 7(a) shows that the IMP value obtained using the feature F(NiNC) =
cos 2NiNC decreases with increasing hydration degree for Li- and Na-intercalated
configurations, whereas it increases with n for K- and Cs-intercalated cells. The
increasing trend of IM Py, for Rb-intercalated cells does not persist for all n, as the value
of IMPy;nc for Rbf1 cell is much larger than those of Rbf2, Rbf3, and Rbf4 cells. Our
earlier findings for the half-intercalated configurations showed that K- and Rb-ion belong
to the same category of intermediate cations. However, the difference in the trends of
IMPy;nc between K- and Rb-intercalated configurations that we observe here is
inconsistent with such classification.

To examine whether the presence of an additional Rb-ion makes Rb-water-

framework interactions patently different from K-water-framework interactions, we
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calculated the corresponding values of OP, , and OP, .y for the associated lowest-energy
configurations. Comparing between Rb- and K-intercalated configurations, we observe
that both 0Py , and OPg,, o increase monotonically with increasing n (Fig. 7(d)). Also, the
values of OPg .y and OPg,cy both decrease significantly for n > 3 (Fig. 7(e)). The
lowest-energy configurations whose structures are shown in Fig. 8, also show similar
cation-water and cation-nitrogen coordination among both cation types with similar
(£NiNC) values of 169.7° for Rbf1 and 170.3° for Kf1. Therefore, we attribute the
abnormal value of IM Py for Rbf1 cell to the insufficient data of Rbf1 configurations for
ML model training (690 trajectory images) compared to other configuration types
(approximately 1300 trajectory images), rather than to K- and Rb-intercalated

configurations experiencing patently different interactions.
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FIG. 7. (a-c) Importance index values using 3-body feature parameters for Ni-N-C and A-
O-A clusters to train Xgboost models for fully intercalated systems. (d-f) Results of overlap
population analysis for A-O, A-CN, and Ni-N.

The cation-dependent IMPy;y trends for light, intermediate, and heavy cations
are consistent with the results based on the values of 0P, ¢y (Fig. 7(e)). Atn =0, 0P,y
follows a sequence of Li* ~ Na* < K* ~ Rb* < Cs*, identical to the results in half-

intercalated lattices. From n = 0 to n = 1, OP, ¢y is weakened only for the Cs-intercalated
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lattice. When either Li* or Na* are fully intercalated in a framework, cation-ligand
interactions are screened by zeolitic water molecules, as evidenced by decreases in
OP,; cy and OPy, oy With increasing n (Fig. 7(e)). When heavier cations are intercalated,
large hydration degrees promote cation-ligand interactions. Further, our analysis shows
that the Ni-N bond is stretched at n = 4 irrespective of which cation is intercalated (Fig.
7(f)). In particular, we find that Ni-N bonds are broken in the lowest-energy configuration
of Csf4 cases, resulting in the Ni atom coordinating only to 5 nitrogen atoms and to one
oxygen atom (i.e., “O3” in Fig. 8). The results in Figs. 7(e) and 7(f) have important
implications regarding cation intercalation processes in PBAs. On the one hand, the PBA
framework, like other metal-organic frameworks [112], is likely to experience bond
breakage at high degrees of hydration because intercalated cations force zeolitic water
to attack weak bonds near metal centers, such as Ni-N bonds here. On the other hand,
to accommodate the large size of heavy ions, such cations are likely expel water
molecules from the PBA lattice during cation intercalation, as a result of the energetic
cost associated with extreme confinement of both the interstitial cation and H20. This
conclusion is consistent with recent neutron powder diffraction and extended X-ray
absorption fine-structure spectroscopy experiments that have revealed that K*
intercalation induces the expulsion of zeolitic water molecules from the CuFe-PBA lattice

[16].

By following the same method elaborated in the previous subsection, we find that
atomic arrangements of AOA clusters are also important for predicting energies of fully-
intercalated configurations (Fig. 7(b)). We also evaluate the differences of IMPy;nc+a04 —

IMPy;nc 1o investigate correlations between cation-water coordination and octahedral
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tilting (Fig. 7(c)). We observe an increasing trend of IMPy;nciLioni — IMPyine With
increasing n, while the value of IMPy;nc+csocs — IMPyinc decreases monotonically with
increasing hydration degree (Fig. 7(c)). Similar to our results for half-intercalated
configurations, the increasing trend of IMPyinc+rioi — IMPyinc COrresponds to the
enhanced correlation between NINC clusters and Li-water coordination due to the
growing size of Li-water clusters with increasing hydration degree. In the lowest-energy
configurations of fully Li-intercalated cells, we further find that large Li-water clusters
exacerbate octahedral tilting, as («NiNC) reduces from 177¢ for Lif1 to 167° for Lif4 (Fig.
8). Meanwhile, the arrangement of CsOCs clusters decouples from NiNC arrangement at
large n (Fig. 7(c)) because Cs* ions, which persistently occupy body-center sites, confine
water molecules in such a way that they attack Ni-N bonds. However, we observe no
clear trends of IMPyincia0a — IMPyine With n for A = Na, K, and Rb, indicating that
structural correlations in these systems involve more clusters than NiNC and AOA

clusters.
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FIG. 8. Lowest-energy structures for Kf1, Rbf1, Lif1, Lif4, Csf1, and Csf4 configurations.

Because the arrangement of AOA clusters is essential to understanding energetics
in most of the present cases (Fig. 7(b)), we define the energy landscape subspace for
fully-intercalated configurations using (d,od, /(1 — cos(2AOA"))) and (cos («NiNC)) as
coordinates. We use the same conditions as for half-intercalated configurations to
classify steep (red) and shallow (black) downhill traces. For the landscapes of

configurations intercalated with light cations (red rectangle: Li- and Na-intercalated
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configurations), most steep traces are nearly perpendicular to the horizontal axis, implying
that total energy relaxes by lattice distortion via Ni-octahedron tilting while maintaining
cation-water coordination. Unlike the results for half-intercalated configurations (see Fig.
6 and discussion thereof), the downhill traces of fully intercalated configurations are
accompanied by increases in the tilting angle of metal octahedra (i.e., decreases in the
angle of 2NiN(), indicating that the addition of a light cation destabilizes the pristine NiFe-

PBA lattice to a certain degree.

The landscapes of K- and Rb-intercalated configurations contain downhill traces
similar to those of Li- and Na-intercalated cells, except in the case of Kf1(see Fig. 9). The
landscapes of all K-intercalated show downhill traces that are concentrated around
several distinct local minima, indicating that atomic movements are confined in interstitial
space. For Rb-intercalated cells, however, extended downhill traces with |Ay|~0.01 are
found even when hydration degree is large (n = 3). Furthermore, most steep traces for
Rb-intercalated configurations show an increase in the angle of ZNiNC, implying that the
addition of Rb™* stabilizes the PBA lattice by decreasing octahedral tilting. Because Cs*
is especially large and hydrophobic, the fully Cs-intercalated lattice has limited interstitial
space for cations and zeolitic H2O molecules to move collectively. As a result, the
corresponding landscapes of Cs* (blue rectangle) are concentrated around distinct local

minima.
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FIG. 9. 2D projections of DFT-predicted energy landscapes for fully intercalated

configurations near local minima. Color bars indicate DFT energy in eV per formula unit,
relative to that of the lowest-energy structure for a given configuration type.

Thus far, our analysis of correlation between energy and the arrangement of
polyatomic clusters has focused on atoms other than hydrogen atoms. However, we have
observed that hydrogen bonding determines the morphology of cation-water clusters in
both half- and fully-intercalated configurations (Figs. 5 and 8), as a result of which the

nature of framework-interstitials interactions is affected indirectly. In the subsequent
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subsection we explore these effects in more detail by analyzing the orientation of H.O

molecules in the interstitial space of cation-intercalated FeNi-PBAs.

B. Correlating DFT energy with 4-Particle features

We now use certain 4-particle feature parameters based on the solid angles

subtended by zeolitic H,O molecules that extend either from Ni?* (Qyi—n,0) Or A" (Qu_p,0)

cations to characterize the effect of H2O’s orientation on DFT energy.

We identify

downhill traces in the energy landscapes of Li- and Cs-intercalated configurations with

n < 2 using (tan(Q,_y,0/2)) and (tan(Qy;_u,0/2)) to define an associated subspace. In

the landscapes shown in Fig. 10, shallow traces (black) have secant slopes with

|Ay/Ax| < 0.01 that are rendered only if |Ax| > 0.1.
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The definition of the solid angle (Eq. (5)) shows that its tangent for a G-XYZ cluster

can only be zero if @L(@?x@f) is satisfied, in which case G, X, Y, and Z must be

coplanar. When water content is low either in small or in large cation-intercalated
configurations (n = 1), shallow traces indicate dramatic changes in H2>O’s orientation
relative to an observer at each Ni?* center. However, along such a trace H-O’s orientation
does not change significantly relative to an observer at each A* center. When water
content is high however (n = 4), the associated energy landscapes are concentrated
around certain local minima because confined interstitial space constrains the librational
movement of each H2O molecule. The local minima that appear in the landscapes of Cs-
intercalated configurations are found with [(tan(Qcs_n,0/2))| ~ 0.03 , whereas
|(tan(Qi_n,0/2))| values at local minima vary from 0.4 for Lih1 to 0.005 for Lif4 for Li-
intercalated configurations. Differences in the values of |(tan(ﬂA_H20/2))| are evident
from the structures of Lif1, Lif4, Csf1, and Csf4 (Fig. 8). Cs-O coordination in the lowest-
energy Csf1 configuration forms a 90° angle with the lattice plane on which the
corresponding water molecule and Ni atom reside, indicated by the purple plane for Csf1
in Fig. 8. In the Lif1 configuration, however, such coordination is frustrated. Repeating
the unit cell of Csf1 in 3D space, we recognize that an extended cation-water network
exists in its interstitial space, where an H-O molecule bridges between each pair of
adjacent Cs-ions. In contrast, due to the small size and the hydrophilicity of Li*, the
formation of a hydration shell around Li* prohibits such ordering of cation-water clusters.
Further, when hydration degree is large (n > 3), cation-water ordering is frustrated for all

configuration types.
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Il.  CONCLUSIONS

The present investigation reveals that the interactions between PBA lattices and
interstitial species significantly affect lattice stability and the hydration degree of cations
in interstitial space. To elucidate the associated correlations between polyatomic
arrangements and atomic interactions in PBA frameworks, we performed DFT
calculations of hydrated NiFe-PBA lattices with various oxidation states, hydration
degrees, and types of intercalated cations, using Voronoi tessellation to sample the
configurational space of H-O occupation. We used a simple descriptor to extract many-
particle features from polyatomic arrangements in DFT-calculated configurations. These
features were then incorporated into different datasets to train machine-learning models,
resulting in different model accuracy. Based on the accuracy of ML models using different
features, we ranked the sensitivity of DFT-calculated energy to various many-particle
features. The correlation between two features is identified when including both features
in training data improves ML accuracy to a greater extent than including only one of the
two features. Because the many-particle features are generated from their associated
polyatomic arrangements, statistical correlations in the feature space bijectively map to
polyatomic correlations in configurational space.

Using this technique we found significant correlation between NiINC and NiAO
clusters for most of the half-intercalated lattices. The variation of these ML model
correlations with hydration degree indicates that correlation between NINC and NiAO
arrangements depends on the type of intercalated cation. Inspired by these results from

ML model training, we analyzed the overlap population between intercalated cations and
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their surrounding atoms in the lowest-energy configurations to determine which atomic
interactions were responsible for such cation-dependent correlation. This overlap
population analysis showed that the strong dative bonds between intercalated cations
and H20 molecules are accompanied by weaker dative bonding between cations and
cyanide ligands, and vice versa. This analysis therefore demonstrates that NiNC-NiAO
correlation results from the competition between two kinds of dative bonds around
intercalated cations. By studying the arrangement of interstitial species within lowest-
energy structures in conjunction with overlap population analysis, we deduced that the
bias toward dative bonding of cations with either H20 or cyanide ligands is dependent on
the bare ionic radius and hydrophilicity of intercalated cations. We thus group Na*, Li*,
K*, Rb*, and Cs" ions into three categories. When light, hydrophilic cations (Li* and Na*)
intercalate into PBA lattices, zeolitic water molecules firmly coordinate to cations and form
a hydration shell, albeit with a hydration shell structure that is confined relative to that of
cations in bulk H20. For K* and Rb" ions that are hydrophobic with intermediate ionic
size, zeolitic water molecules push them off of body-center sites, such that those ions
coordinate to cyanide ligands to an increasing degree. If intercalated cations are large
and hydrophobic, such as Cs*, they displace zeolitic water molecules into adjacent vacant
sites, where water clusters form an amorphous phase that is more dense than bulk H2O.

We used a similar method to analyze polyatomic correlations in fully-intercalated
lattices and found that the extent of Ni-octahedron tilting is cation-specific, as analyzed
using feature parameters for NiNC clusters. The variation of IMPy;nc+a04 — IMPyinc With
increasing degree of hydration, where IMP is an importance index associated with certain

3-body features, further suggests that zeolitic water promotes correlation between NiNC
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and AOA clusters in Li- and Na-intercalated lattices. In contrast, such correlation
disappears at high hydration degrees in K-, Rb-, and Cs-intercalated lattices. A
corresponding sharp decrease in the overlap population between nickel and cyanide
ligands at the highest hydration degree occurs for all kinds of lattices. This result suggests
that Ni-N bonds stretch due to confinement of interstitial space. We also showed that the
dative bonding between zeolitic water molecules and cyanide ligands is strengthened at
high hydration degree in the lowest-energy structures. At the highest hydration degree,
we even discovered the breakage of such bonds in Cs-intercalated lattices. We thus
conclude that the NiFe-PBA lattice is likely to expel zeolitic water molecules during the
intercalation of large and hydrophobic cations.

To explore features of DFT-calculated energy landscapes, we projected these
landscapes onto subspaces spanned using two different 3-particle feature parameters
found using ML analysis to have highest correlation to energy. The downhill traces in
such landscapes reveal the correlations between collective movements in interstitial
space in the vicinity of local minima in energy. When PBA lattices are half-intercalated
with Li* or Na* ions, such downhill traces indicate two patterns of collective movement:
(1) the tilting of Ni-octahedra accompanied by minimal rearrangement of cation-H20
clusters and (2) significant rearrangement of cation-H2O clusters without distorting the
PBA lattice. Pattern (1) prevails for fully-intercalated lattices, however. For K- and Rb-
intercalated lattices, downhill traces show that both patterns still coexist on the
landscapes of half-intercalated lattices. In lattices that are intercalated fully with K* or Rb*
ions, the tilting of metal octahedra is constrained and even reversed. Intercalation of Cs*

ions also suppresses lattice distortion in both half- and fully-intercalated lattices. For Cs*
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intercalated configurations the collective movements of H2O clusters are evidenced by
landscapes projected using 4-particle feature parameters. Downhill traces on those
landscapes also suggest a coplanar arrangement of water molecules with Ni-metal
centers at low hydration degrees. The zeolitic water molecules in Cs-intercalated lattices
bridge between adjacent Cs* ions to form a Cs-H20 network in interstitial space. Such a
network is frustrated in Li-intercalated lattices because hydration shells separate adjacent
Li* cations.

While the present investigation focuses on PBAs, we note that the ML model and
analytical method used in this study can be applied to other crystalline solids. The
descriptor proposed here effectively maps atomic configurations to feature space
spanned by both discrete and continuous features. Therefore, the present method does
not require normalization or differentiable features for ML model training and is suitable
for fast prototyping of accurate ML models. Despite these benefits, we note that the
training data used here was obtained not only from terminal relaxed structures, but also
from the structures obtained along relaxation trajectories. Here, leaf regions are assigned
to the feature values of configurations near local minima only at the deepest levels of
each regression tree. Along those lines we envision using the present ML model as an
estimator of DFT-calculated energy in the search for global optima by introducing bias

towards near-minimal structures in training datasets.
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