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Valley MT, Moore MG, Zhuang J, Mesa N, Castelli D, Sullivan
D, Reimers M, Waters J. Separation of hemodynamic signals from
GCaMP fluorescence measured with wide-field imaging. J Neuro-
physiol 123: 356–366, 2020. First published November 20, 2019;
doi:10.1152/jn.00304.2019.—Wide-field calcium imaging is often
used to measure brain dynamics in behaving mice. With a large field
of view and a high sampling rate, wide-field imaging can monitor
activity from several distant cortical areas simultaneously, revealing
cortical interactions. Interpretation of wide-field images is compli-
cated, however, by the absorption of light by hemoglobin, which can
substantially affect the measured fluorescence. One approach to sep-
arating hemodynamics and calcium signals is to use multiwavelength
backscatter recordings to measure light absorption by hemoglobin.
Following this approach, we develop a spatially detailed regression-
based method to estimate hemodynamics. This Spatial Model is based
on a linear form of the Beer–Lambert relationship but is fit at every
pixel in the image and does not rely on the estimation of physical
parameters. In awake mice of three transgenic lines, the Spatial Model
offers improved separation of hemodynamics and changes in GCaMP
fluorescence. The improvement is pronounced near blood vessels and,
in contrast with the Beer–Lambert equations, can remove vascular
artifacts along the sagittal midline and in general permits more
accurate fluorescence-based determination of neuronal activity across
the cortex.

NEW & NOTEWORTHY This paper addresses a well-known and
strong source of contamination in wide-field calcium-imaging data:
hemodynamics. To guide researchers toward the best method to
separate calcium signals from hemodynamics, we compare the per-
formance of several methods in three commonly used mouse lines and
present a novel regression model that outperforms the other tech-
niques we consider.

animal behavior; calcium imaging; hemodynamics; optical methods;
systems neuroscience

INTRODUCTION

Over the last few years, there has been a sharp increase in
the number of mouse lines with GCaMP expression throughout
much of neocortex (Bethge et al. 2017; Chen et al. 2012;
Daigle et al. 2018; Hasan et al. 2004; Madisen et al. 2015;
Wekselblatt et al. 2016; Zariwala et al. 2012), offering the

opportunity to image cortical activity with high signal to noise
and genetically targeted expression. As a result, there has been
a resurgence in the use of wide-field fluorescence calcium
imaging to monitor brain dynamics in vivo, especially in the
context of mouse behavior (Allen et al. 2017; Makino et al.
2017; Mitra et al. 2018; Mohajerani et al. 2013; Wekselblatt et
al. 2016). Wide-field imaging offers a large field of view (�10
mm), enabling simultaneous imaging of almost all of neocor-
tex, can be performed through intact skull (Silasi et al. 2016;
White et al. 2011), eliminating invasive craniotomies, and,
compared with laser-scanning techniques, can achieve a faster
sampling rate and is relatively simple and inexpensive to
implement.

Wide-field imaging also presents some challenges. It lacks
the optical sectioning of confocal and multiphoton micro-
scopes, with the result that fluorescence is typically an average
across cells and cellular compartments. Emission can originate
from intrinsic fluorophores such as flavoproteins (Zipfel et al.
2003), and fluorescence excitation and emission can be af-
fected by endogenous absorbers like hemoglobin. The effects
of intrinsic fluorophores can be negligible in mice with bright
and strongly expressed fluorophores (e.g., Zhuang et al. 2017).
In contrast, the absorption of fluorescence by hemoglobin
cannot be overcome with strong fluorophore expression due to
the multiplicative effect of absorption on fluorescence. Further-
more, hemoglobin is a strong, broad-spectrum absorber across
the excitation and emission wavelengths of GCaMP. Hence,
changes in hemoglobin absorption greatly complicate interpre-
tation of GCaMP fluorescence measurements, even in mice
with strong GCaMP expression.

Hemodynamics encompasses multiple processes, including
neurovascular coupling, in which neural and glial activity are
accompanied by dilation of blood vessels and changes in blood
oxygenation, resulting in changes in the total concentration of
hemoglobin and the ratio of oxygenated to deoxygenated
hemoglobin (Berwick et al. 2005; Bouchard et al. 2009; Hill-
man 2014; Hillman et al. 2007; Malonek and Grinvald 1996;
O’Herron et al. 2016; Sirotin et al. 2009; Stefanovic et al.
2008). Contraction of cardiac, pulmonary and postural muscles
can also drive changes in total hemoglobin concentration, via
changes in intracranial blood pressure (Gisolf et al. 2004; Huo
et al. 2015; Winder et al. 2017). Postural and locomotor
influences on hemodynamics are common in awake, behaving
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animals, making the separation of hemodynamics from activ-
ity-related changes in cellular calcium concentration a common
challenge in studies of sensory-motor processing in behaving
mice.

A common method to estimate hemodynamics during a
fluorescence measurement is to simultaneously make one or
more “backscatter” or diffuse reflectance measurements
(Bouchard et al. 2009; Wekselblatt et al. 2016) in which
photons illuminating the brain surface undergo multiple scat-
tering events within the tissue, and those that return to the
detector indicate the proportion that was absorbed by hemo-
globin. Backscatter need not interact with fluorescence mea-
surements, enabling continuous monitoring of hemodynamics
during fluorescence imaging. From backscatter measurements,
hemoglobin concentrations are often calculated using a modi-
fied Beer–Lambert relationship that relates the absorption of
light by oxygenated and deoxygenated hemoglobin to the
length of the mean scattering path through tissue (Ma et al.
2016a; White et al. 2011). A weakness of this technique is that
mean scattering path lengths are difficult to measure empiri-
cally, forcing the use of calculated mean path lengths that do
not account for local differences in scattering and absorption.
Local differences in path length can lead to substantial errors in
the estimated effects of hemodynamics on fluorescence mea-
sured with indicators such as GCaMP.

Here, we describe and test a spatially detailed regression
model that allows for differences in optical properties across
the brain without requiring the estimation of scattering path
lengths. With this model, we quantify the correction in green
fluorescent protein (GFP) reporter mice and apply the regres-
sion model to GCaMP mice, finding that the spatially detailed
model provides improved separation of hemodynamics from
changes in GCaMP fluorescence, particularly in brain areas
where the separation is challenging with previous models.

METHODS

Animals and surgical preparation. We used four mouse lines, from
crossing three Cre driver lines with two reporter lines. Cre lines were
Rorb-IRES-Cre, RRID:IMSR_JAX:023526, Harris et al. (2014);
Cux2-CreERT2, RRID:MMRRC_031778-MU, Franco et al. (2012);
and Ntsr1-Cre_GN220, RRID:MMRRC_030648-UCD, Gong et al.
(2007). Reporter lines were Ai140, RRID:IMSR_JAX:030220, Daigle
et al. (2018), and Ai148, RRID:IMSR_JAX:030328, Daigle et al.
(2018).

Crosses were made between animals hemizygous for Ai140 or
Ai148 and animals that were either hemi- or homozygous for Cre. We
refer to these crosses using abbreviations Cux2-Ai140, Rorb-Ai140,
Ntsr1-Ai140, and Cux2-Ai148.

For Cux2-CreERT2 animals, tamoxifen was administered via oral
gavage (50 mg/mL in corn oil) at 0.2 mg/g body wt for 3–5 days. Mice
were used for experiments �2 wk following induction.

Fast imaging experiments to assess model performance on heart-
rate hemodynamics (Supplemental Fig. S3; all supplemental material
is available at https://github.com/MichaelGMoore/MultiChanHemo)
were performed on three 7-wk-old Ai140 mice with expression driven
by retro-orbital injection of a virus (AAV-PHP.eB-syn-Cre, 1011

genome copies). Animals were used for experiments 3 wk following
viral injection.

Wide-field imaging was performed on 7- to 30-wk-old male and
female mice through the intact skull using a modification of the
method of Silasi et al. (2016). Under isoflurane anesthesia, the skull
was exposed and cleared of periosteum, and a #1.5 borosilicate
coverslip (cat. no. 72204-01; Electron Microscopy Sciences) was

fixed to the skull surface with a layer of clear Metabond (Sun
Medical). A three-dimensionally printed light shield was fixed around
the coverslip using additional Metabond, and the outward-facing
surfaces were coated with an opaque resin (Lang Dental Jet liquid;
MediMark). A custom titanium headpost was fixed posterior to the
light shield/coverslip and dorsal to the cerebellum using Metabond.

Animal experiments were performed in accordance with the rec-
ommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. All animals were handled
according to approved institutional animal care and use committee
protocols at the Allen Institute for Brain Science, protocol numbers
1408, 1705, and 1806.

Image acquisition and initial image processing. Mice were head-
restrained and free to run on a 16.5-cm-diameter disk. With exception
of experiments with visual stimulation (Figs. 1 and 5), mice were in
the dark. During visual stimulation, stimuli were displayed on a 27-in.
liquid-crystal display monitor placed 13.5 cm from the right eye and
consisted of high-contrast Gabor gratings spanning 20° of the visual
field, positioned at the center of the visual field. Images were pre-
sented at 0.25 Hz, and averages were made from �50 stimulus
presentations.

Images were produced by a tandem-lens macroscope of custom
optomechanical design (Supplemental Fig. S7) built around a pair of
identical �1.0 lenses (Leica 10450028). Epifluorescence illumination
used a 470-nm light-emitting diode (LED; Thorlabs M470L3) filtered
(Semrock FF01-474/27-50) and reflected by a dichroic mirror (Sem-
rock FF495-Di03-50 � 70) through the objective lens. Backscatter
illumination in yellow used an LED (Thorlabs M565L3) and a
band-pass filter (Semrock F01-578/21), and backscatter illumination
in red used an unfiltered LED (Thorlabs 625L3). Yellow and red
illumination was focused onto a one-to-seven fan-out fiber bundle
(Thorlabs BF72HS01), and the termination of each of the seven fibers
was uniformly spaced circumferentially around a custom light shield
surrounding the imaging objective with each fiber terminating at 45°
incident to the brain surface. Fluorescence emission was separated
from the two backscatter wavelengths using a dichroic beamsplitter
(Semrock FF560-FDi01-50 � 70) and passed through an emission
filter (Semrock FF01-525/45-50) to a camera while backscatter passed
through a high-pass filter (Edmund Optics Y-50, 500 nm) to a second
camera.

For all experiments except those in Supplemental Fig. S3, image
acquisition used two Hamamatsu Flash4.0 V3 sCMOS cameras. One
camera used for detection of fluorescence operated with 10-ms rolling
shutter exposure (100 Hz), and the second, which detected backscat-
ter, received triggered exposures at 50 Hz. We used four illumination
and detection wavelength bands, fluorescence excitation, fluorescence
emission, backscatter at ~577 nm, and backscatter at ~630 nm, and the
spectrum of each band was measured with a spectroradiometer (Spec-
troCAL; Cambridge Research Systems) revealing mean wavelengths
of 472, 522, 577, and 630 nm. Backscatter measurements at 577 and
at 630 nm were interleaved with a blank frame (for calculation of
fluorescence bleed through), and thus the final sample rate for each
channel on the backscatter camera was 50/3 � 17 Hz.

For experiments in Supplemental Fig. S3, a single Hamamatsu
Flash4.0 V3 camera was triggered at 200 Hz using the middle 512
lines of the sensor, and LED illumination of 477-, 577-, or 630-nm
illumination was sequentially timed relative to each camera frame
exposure, producing a frame rate of ~66 Hz per channel. Emission
was filtered using a 500-nm high-pass filter.

Analysis was performed using MATLAB (R2018a; MathWorks) or
Python 2.7. Images were spatially downsampled from 2,048 � 2,048
to 128 � 128 pixels by averaging. A camera offset of 100 counts was
subtracted, and camera counts were converted to photoelectrons (2.19
counts per photoelectron). Backscatter signals, acquired at 17 Hz,
were filtered with a 5-Hz Butterworth low-pass filter to prevent
aliasing of the heartbeat and were then upsampled to 100 Hz and
spatially and temporally aligned to the 100-Hz fluorescence signal. No
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preprocessing, other than spatial downsampling, was applied to the
fluorescence image.

Calculation of remaining variance was made with pixelwise nor-
malization to initial variance. To account for its skewness, we took the
median of the distribution of remaining variance across pixels to
represent the remaining variance in each mouse and averaged across
all mice of a genetic background. In GFP mice, the shot noise floor
was substantially reduced by the spatial averaging and was 0.5% of
the initial variance.

Beer–Lambert model. For Beer–Lambert calculations, we obtained
extinction coefficients from tabulated hemoglobin spectra (https://
omlc.org/spectra/hemoglobin/summary.html) and path lengths from
Monte Carlo simulations (Ma et al. 2016a). For each wavelength
band, we numerically solved the integral of the path lengths, using the
measured spectra of the fluorescence and backscatter wavelength
bands (Supplemental Appendix, Eq. 11), and tabulated GFP excitation
and emission spectra (http://www.tsienlab.ucsd.edu/Documents.htm).
The approximations used in what we term the Beer–Lambert and
Simplified Beer–Lambert models are described in detail in the Sup-
plemental Appendix.

Regression model. We used 577-nm, 630-nm, or both channels of
backscatter data and calculated the weights at each pixel that best fit
fluorescence from a GFP-expressing animal using ordinary least
squares. When applied to the primary regression problem (estimating
fluorescence using 577 � 630-nm backscatter), regularization (L2) had
negligible impact on weights or the least-squares error. Generalized
cross-validation (using scikit-learn RidgeCV method) predicted a regu-
larization strength parameter (�) � 0.0001 at all pixels in the image.

Alternatively, primary regression weights were estimated using the
Spatial Model, which consists of 19 � 2 secondary weights (Supple-
mental Table S1) generated by separately fitting 19 statistical projec-

tions of backscatter and fluorescence data (see Supplemental Fig. S6)
onto the 577- and 630-nm primary weightings. In our data, Tikhonov
(L2) regularization was not used to generate Spatial Model coeffi-
cients, but in our code it can optionally be applied, and its strength can
be optimized for each Cre line to minimize remaining variance during
cross-validation.

A detailed examination of the relationship between the Beer–
Lambert and regression models is given in the Supplemental
Appendix.

MATLAB code to train and test Spatial Models and perform all
variants of regression and Beer–Lambert demixing is available in the
online supplement.

RESULTS

Hemodynamics affect fluorescence in GCaMP- and GFP-
expressing mice. We used wide-field imaging to monitor flu-
orescence across neocortex in awake mice expressing GCaMP
in neocortical pyramidal neurons. Vasculature was prominent
in fluorescence images, and changes in fluorescence near blood
vessels were commonplace (Fig. 1). We observed three types
of putative hemodynamic effects, defined by their spatial and
temporal characteristics. First, we observed stimulus-linked
changes in fluorescence that were localized within cortex (Fig.
1A). Fluorescence in visual cortex increased rapidly after the
onset of visual stimulation and was followed by a prolonged
sag, often to �50% peak amplitude. Following stimulus offset,
fluorescence typically decreased below the prestimulus base-
line and recovered after ~2 s. The fluorescence increase is a
GCaMP-mediated signal. The time course of the sag and
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Fig. 1. Hemodynamics in GCaMP and green fluorescent protein (GFP) mice. A: fluorescence (F) during a 5-s presentation of a drifting grating. Left: fluorescence
through time from a pixel in visual cortex (red marker in image). Right: image of peak fluorescence at each location. B, left: time series from a Cux2-Ai140 (GFP)
mouse showing mixed GCaMP and hemodynamic responses following the same stimulus (stim.). Right: fluorescence in a GFP animal 150–200 ms after
stimulation. C, left: time course of spontaneous activity in a GCaMP6f mouse highlighting 2 pixels on and off the midline vasculature. Right: image of the signal
from the time indicated (red dots, left). D: same as C, for a GFP mouse. Image scale bars in A–D � 2 mm. E: example trace (left) and power-spectral density
(PSD; right) of heart-rate oscillations from a GCaMP6f mouse. F: example trace (left) and power-spectral density (right) of heart-rate oscillations from a GFP
mouse.
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overshoot are consistent with the ~1-s delayed onset and 4- to
5-s decay of local vessel dilation during neurovascular cou-
pling following neural activity (Berwick et al. 2005; Ma et al.
2016b; Malonek and Grinvald 1996; Sirotin et al. 2009).
Second, we observed large amplitude (�10%) fluctuations that
were restricted mainly to the midline vasculature (Fig. 1C) and
typically included fast transient spikes in fluorescence, some-
times in bouts lasting 1–10 s. These fluctuations may result
from changes in venous blood volume along the superior
sagittal sinus that relate to movements or postural changes
(Gilad et al. 2018; Huo et al. 2015; Qvarlander et al. 2013).
Finally, we observed low-amplitude (~1%), global oscillations
in the 10- to 14-Hz frequency range of the heart rate (Fig. 1E).
As expected, our results suggest that changes in fluorescence
measured from GCaMP-expressing mice are a mixture of
changes in GCaMP fluorescence and hemodynamics. In many
instances, the hemodynamic effects were in the same ampli-
tude range as changes in GCaMP fluorescence.

Consistent with the suggestion that fluorescence in GCaMP
animals includes a substantial hemodynamic component, we
observed events with similar spatial and temporal characteris-
tics in GFP mice (Fig. 1, B, D, and F), in which fluorescence
does not change with intracellular calcium concentration.

Optical strategy for simultaneous measurement of fluores-
cence and hemodynamics. Hemodynamics alter wide-field flu-
orescence by absorbing light during excitation or emission
(Fig. 2A). Absorption can be measured using backscatter (Fig.
2B). Hemoglobin absorption extends over a broad spectrum
that includes wavelengths beyond the excitation and emission
bands of GFP and GCaMP, enabling the measurement of
hemoglobin concentrations using wavelengths different from
those used for fluorescence. Furthermore, oxy- and deoxyhe-
moglobin absorption spectra differ substantially across the
visible spectrum (Fig. 2A), enabling one to distinguish changes
in the concentrations of oxy- (HbO) and of deoxyhemoglobin
(HbR) using backscatter measurements at two wavelengths
with different HbO and HbR absorption, such as 577 and 630
nm (Frostig et al. 1990). We chose these two wavelengths
because they are separable from GFP emission and because
they sample different parts of the hemoglobin absorption spec-
tra: 577 nm is isosbestic (absorbed equally well by HbO and
HbR), whereas 630-nm absorption is heavily weighted toward
HbR (see Fig. 2A). Thus the combination of these two wave-
lengths contains information related to total hemoglobin con-
centration as well as hemoglobin oxygenation. With the use of
two cameras, we simultaneously acquired fluorescence at 100
Hz and two backscatter wavelengths (577 and 630 nm) at ~17
Hz (Fig. 2C). We were unable to adequately sample approxi-
mately 8- to 12-Hz heart-rate hemodynamic signals with 17-Hz
sampling and used a low-pass filter to remove fluctuations at
�5 Hz.

Beer–Lambert model. The Beer–Lambert law has often been
employed to estimate light absorption by oxy- and deoxyhe-
moglobin and thereby separate hemodynamics from changes in
indicator fluorescence (Bouchard et al. 2009; Ma et al. 2016a;
White et al. 2011). The Beer–Lambert law relates absorption of
light to the concentration of the absorbing species, and with the
addition of a scattering term it can calculate hemodynamic
effects in brain tissue. The basic form of the Beer–Lambert law
is I � I0 e�x(�)·c(t)·�(�), where I is the measured light intensity
returning from source I0, �(�) is the wavelength-dependent

extinction coefficient of the absorbing species, c(t) is the
time-varying concentration of the absorbing species, and x(�)
is mean path length, the wavelength-dependent distance trav-
eled by scattering light.

We calculated and removed the changes in fluorescence
resulting from absorption by oxy- and deoxyhemoglobin, as
described previously (Ma et al. 2016a), and quantified the
remaining variance. Quantifying performance in a GCaMP
mouse is challenging since hemodynamics and changes in
indicator fluorescence can each drive changes in measured
fluorescence. Consequently, we quantified the performance of
hemodynamic correction strategies in GFP-expressing Ai140
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mice (Daigle et al. 2018) crossed with three Cre lines, driving
GFP expression enriched in different cortical layers: Cux2-Cre
(layer 2/3), Rorb-Cre (layer 4), and Ntsr1-Cre (layer 6; Fig.
3C). In these three lines, GFP fluorescence accounts for ~95%
of the photons emitted from the preparation (97.9% Cux2-
Ai140, 93.7% Rorb-Ai140, and 94.4% Ntsr1-Ai140; Supple-
mental Fig. S1); thus we expect nearly all changes in fluores-
cence to result from hemodynamics with a negligible contri-
bution from endogenous fluorophores. Complete separation of
hemodynamics from changes in indicator fluorescence would
reduce the variance (normalized to initial variance) to ~0.05.

The mean initial variance of the GFP fluorescence (using the
median variance of all pixels per mouse) was 5.61 � 10�4%

	F/F in Cux2-Ai140 mice, 7.85 � 10�4% 	F/F in Rorb-Ai140
mice, and 12.52 � 10�3% 	F/F in Ntsr1-Ai140 mice (Fig. 3D).
Initial variance was not spatially uniform and was approxi-
mately three to five times greater along the midline and over

large vessels than over the center of each hemisphere (Fig. 3A),
consistent with a strong influence of movement- or posture-
related hemodynamics.

After Beer–Lambert correction, the variance was reduced in
all locations across the brain. The median remaining variance
across pixels (normalized to initial variance at each pixel),
averaged across mice, was 0.19 
 0.05 in three Cux2-Ai140
mice, 0.14 
 0.03 in three Rorb-Ai140 mice, and 0.36 
 0.03
in five Ntsr1-Ai140 mice (Fig. 3E). However, remaining vari-
ance differed substantially with location. Normalized remain-
ing variance was generally �0.1 in the center of each hemi-
sphere, over anterior visual cortex, and across much of somato-
sensory cortex (Fig. 3A). Performance of the correction
declined toward the edges of the image, over large vessels, and
along the midline, where remaining variance was commonly
�0.3. In these areas, hemodynamic transients remained largely
uncorrected, leaving fluorescence from midline cortical regions
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of cortex (top), and the ventral white-matter border of cortex. D: initial GFP variance (median variance from all pixels in the brain) for each mouse in the study.
E: summary of variance remaining after correction (averaged across cortical surface) from three Cre lines. Bars represent means 
 SD. Three Cux2-Ai140 mice,
three Rorb-Ai140 mice, and five Ntsr1-Ai140 mice were used. F: distribution of regression coefficients (S) for Ai140 mice, fit with 577- and 640-nm backscatter
data. With the use of estimated parameters (path length and extinction coefficients), similar but spatially uniform coefficients can be calculated using the
Beer–Lambert relationship (gray cross; see Supplemental Appendix for details). Points and error bars represent medians 
 quartiles from all pixels in the image.
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such as retrosplenial and cingulate cortex contaminated by
hemodynamics.

One common simplification of the Beer–Lambert model is to
choose a single extinction coefficient and path length for each
wavelength band (rather than integrating over the spectrum of
wavelengths; see Supplemental Appendix). When applied to
our data, using the extinction coefficients and estimated path
lengths of the mean of each wavelength band, average
remaining variance was �40% greater than with the full
Beer–Lambert model (remaining variance 0.24 
 0.03 in 3
Cux2-Ai140 mice, 0.23 
 0.04 in 3 Rorb-Ai140 mice, and
0.45 
 0.03 in 5 Ntsr1-Ai140 mice; Supplemental Fig. S5, A
and D). Using a single extinction coefficient and path length
for each wavelength band substantially impairs performance of
the Beer–Lambert model and is best avoided.

Pixelwise regression as an alternative to the Beer–Lambert
model. For our Beer–Lambert calculations, we used the same
path length estimates at every pixel, a necessary simplification.
Naturally, performance of the model is sensitive to the choice
of path lengths, particularly the 577-nm path length (Supple-
mental Fig. S4). We hypothesized that the poor performance of
the Beer–Lambert model in some locations results from our
inability to account for local variations in optical properties of
the tissue, such as mean path length. Consistent with this
hypothesis, the two backscatter measurements covaried in
midline regions and were typically inversely correlated in other
cortical areas (Supplemental Fig. S2), suggesting that a spa-
tially detailed model is needed to most effectively use these
two backscatter measurements.

Pixelwise regression using two backscatter measurements is
a promising alternative to the Beer–Lambert model because it
may account for optical differences across the cortical surface.
If done without constraints, the additional spatial degrees of
freedom in the regression model should always produce results
that are equivalent to or better than the Beer–Lambert model.
Conversely, if we assume that path length is the main free
parameter in the Beer–Lambert model, and if the true path
lengths are identical at all locations in the tissue, then the
Beer–Lambert and regression models should converge on the
same solution.

We begin by establishing that, in principle, linear regression
with two variables can account for hemodynamics indepen-
dently for each pixel. Measured fluorescence, IF(x,y,t), can be
related to two backscatter intensities, I1(x,y,t) and I2(x,y,t),
using two assumptions: that the absorbance at each wavelength
depends only on two hidden fluctuating variables, CHbO(x,y,t)
and CHbR(x,y,t), representing the molar concentrations of oxy-
and deoxy-hemoglobin, respectively; and that the absorbance
of the fluorescence channel is multiplicative with the true
fluorescence, F(x,y,t) (the fluorescence that would be measured
in the absence of absorption by hemoglobin). Hence:

IF�x, y, t� � F�x, y, t�TF�CHbO�x, y, t�,
CHbR�x, y, t��IF

�ex��x, y� (1)

I1�x, y, t� � T1�CHbO�x, y, t�, CHbR�x, y, t��I1
�ex��x, y� (2)

I2�x, y, t� � T2�CHbO�x, y, t�, CHbR�x, y, t��I2
�ex��x, y� , (3)

where TF, T1, and T2 are transmittance functions that depend on
HbO and HbR concentrations and IF

�ex�, I1
�ex�, and I2

�ex� are
incident intensities. The dynamic quantities relating to light

intensity and hemoglobin concentration can be expressed in
terms of their mean values and deviations:

I��x, y, t� � I���x, y� � �I��x, y, t� (4)

F�x, y, t� � F��x, y� � �F�x, y, t� (5)

CHb��x, y, t� � C�Hb��x, y� � �CHb��x, y, t� . (6)

In our results, the amplitude of the fluorescence signal is
large relative to its dynamic range. Under these conditions,
Eqs. 1–3 can be linearized in terms of the deviations, permit-
ting elimination of the hemoglobin concentration terms and
enabling derivation of the regression problem (see Supplemen-
tal Appendix for derivation):

�IF�x, y, t�
I�F�x, y�

�
�F�x, y, t�

F��x, y�
� S1�x, y�

�I1�x, y, t�
I�1�x, y�

� S2�x, y�
�I2�x, y, t�

I�2�x, y�
. (7)

S1(x,y) and S2(x,y) are coefficient maps (Fig. 4C). Just as path
lengths are the key unknown parameters in the Beer–Lambert
model, regression coefficients are the key to separating hemo-
dynamics from changes in indicator fluorescence using the
regression model. As a result of the linearization, regression
coefficients can be calculated from path lengths (Fig. 3F, and
see Supplemental Appendix), although the inverse problem
(using regression weights to estimate path length) is underde-
termined and cannot be solved without additional constraints.

In GFP mice, where we assume changes in measured fluo-
rescence result from only hemodynamics, 	F(t) � 0, permit-
ting simplification of Eq. 7:

�IF�x, y, t�
IF�x, y�

� S1�x, y�
�I1�x, y, t�

I1�x, y�
� S2�x, y�

�I2�x, y, t�
I2�x, y� .

(8)

From Eq. 8, we can solve for the coefficients (S1 and S2) by

pixelwise linear regression of 	IF/I�F onto 	I1/I�1 and 	I2/I�2. The
effectiveness of this approach is evaluated via the remaining
fluorescence intensity:

f�x, y, t� �
�IF�x, y, t�

I�F�x, y�
	 S1�x, y�

�I1�x, y, t�
I1�x, y�

	 S2�x, y�
�I2�x, y, t�

I�2�x, y�
. (9)

f(x,y,t) Is expected to approximate 	F(x,y,t)/F
�

(x,y) so that for
GFP mice, f � 0. Hence, linear regression with two variables
can account for fluorescence variance due to hemodynamics
independently for each pixel, in the absence of calcium-
dependent variance. Changes in the corrected fluorescence
decline toward 0 as performance of the regression model
approaches the limit of complete separation.

When applied to GFP fluorescence, the regression model
improved on the performance of the Beer–Lambert model. The
median remaining variance across all pixels, averaged across
mice, was 0.08 
 0.03 in three Cux2-Ai140 mice, 0.05 
 0.02
in three Rorb-Ai140 mice, and 0.10 
 0.05 in five Ntsr1-Ai140
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mice (Fig. 3E), approximately 60–70% reduction in remaining
variance relative to the Beer–Lambert model. Regression pro-
duced uniformly good correction across most of the brain, with
the improved performance being particularly noticeable over
large vessels, along the midline, and toward the edges of the
brain, where the Beer–Lambert correction was poor (Fig. 3A).
The large, fast putative movement- or posture-related hemo-
dynamic transients along the midline were largely eliminated
by spatially detailed regression (Fig. 3B). We conclude that
pixelwise regression using two backscatter measurements of-
fers improved separation of hemodynamics from changes in
indicator fluorescence, likely because regression enables the
model to account for differences in optical properties across the
brain.

Interestingly, the mean regression coefficients required for
optimal correction differed between mouse lines. Regression
coefficients for Cux2-Ai140 and Rorb-Ai140 were clustered
(Fig. 3F), perhaps because of their common GFP expression in
pyramidal apical dendrites that ramify through layers 1–3.
Coefficients were noticeably different for Ntsr1-Ai140 mice,
with expression in layer 6 pyramidal neurons and dendrites that
do not extend beyond layer 4 (Fig. 3C). These differences are

consistent with the idea that optical properties such as mean
scattering path length differ between mouse lines and must to
be adjusted for optimal correction.

The regression model is effective in removing many of the
effects of hemodynamics at �5 Hz, but is it equally effective
in eliminating heart-rate-related hemodynamics, which occur
on a faster time scale? We imaged at higher frame rates using
a single camera (~66 Hz per channel while multiplexing
fluorescence at 520 nm and backscatter at 577 and 630 nm on
1/4 of our camera sensor; Supplemental Fig. S3A). Fluores-
cence traces showed heart-rate oscillations that were corrected
by pixelwise regression with the 2 backscatter measurements
(Supplemental Fig. S3, C and D). This alternate experimental
approach may be useful for experimentalists who seek a
simplified experimental apparatus or for experiments that re-
quire faster imaging.

Single-wavelength linear regression. Single-wavelength re-
gression can also be used to separate hemodynamics from
changes in indicator fluorescence. Generally, single-wave-
length regression employs backscatter at an isosbestic wave-
length such as 530 or 577 nm. Consequently, one might expect
single-wavelength regression to best account for changes in
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total hemoglobin concentration (Frostig et al. 1990) but not
changes in blood oxygenation. Again, we used the same data
set to compare the performance of single- and two-wavelength
regression.

We regressed the 577-nm backscatter measurement against
GFP fluorescence, pixelwise:

�IF�x, y, t�
I�F�x, y�

� S1�x, y�
�I1�x, y, t�

I�1�x, y�
. (10)

The remaining variance after 577-nm single-wavelength
regression was 0.15 
 0.05 in three Cux2-Ai140 mice,
0.09 
 0.03 in three Rorb-Ai140 mice, and 0.23 
 0.09 in five
Ntsr1-Ai140 mice (Supplemental Fig. S5), approximately two
to three times more remaining variance than two-wavelength
regression and comparable with the Beer–Lambert model.
Unlike the Beer–Lambert model, 577-nm single-wavelength
regression performed reasonably well across most pixels (Sup-
plemental Fig. S5A), underlining the importance of allowing
for differences in optical properties by tuning the model at each
pixel. Overall, the performance of 577-nm single-wavelength
regression was intermediate between that of the Beer–Lambert
and two-wavelength regression models.

A simplified 577-nm single-wavelength regression model
using a coefficient of 1 at all pixels (Xiao et al. 2017) left
remaining variance of 0.23 
 0.06 in three Cux2-Ai140 mice,
0.21 
 0.03 in three Rorb-Ai140 mice, and 0.43 
 0.03 in five
Ntsr1-Ai140 mice (Supplemental Fig. S5, 577-nm ratiometric
demixing). Like other models not tuned pixelwise, correction
was particularly poor over large vessels, along the midline, and
toward the edges of the hemispheres. However, pixelwise
regression is no guarantee of performance: 630-nm single-
wavelength pixelwise regression offered poor performance
with remaining variance of 0.84 
 0.10 in three Cux2-Ai140
mice, 0.61 
 0.04 in three Rorb-Ai140 mice, and 0.68 
 0.15
in five Ntsr1-Ai140 mice (Supplemental Fig. S5).

Spatial Model to predict regression coefficients in GCaMP
mice. Tuning a regression model at each pixel improves per-
formance in many brain areas, but how can we generate
pixelwise coefficient maps in GCaMP mice? In GFP mice, we
found coefficients by regressing changes in backscatter inten-
sity against changes in fluorescence at each pixel, under the
assumption that changes in fluorescence were due to hemody-
namics. This assumption is not valid for GCaMP mice because
hemodynamics correlate with neuronal activity, so direct re-
gression is not an option. Instead, we developed a Spatial
Model that predicts regression coefficients at each pixel using
common features of backscatter and fluorescence images that
are shared by GFP and GCaMP mice. We trained and validated
the performance of this Spatial Model on movies from GFP
mice and applied the model to GCaMP mice.

The Spatial Model uses several statistical projections (e.g.,
stdev, skew, or kurtosis) of backscatter and fluorescence im-
ages to predict coefficient maps (Fig. 4C). We regressed
primary coefficient maps from GFP animals onto 19 statistical
projections (Supplemental Fig. S6) to determine the weighting
of features that best predicted the primary regression coeffi-
cients (Supplemental Table S1). We tested the performance of
the Spatial Model in two stages. First, we trained and tested
spatial weights using the same GFP mouse to reveal the
performance limit of the Spatial Model. Remaining variance,

averaged across all pixels, was 0.10 
 0.03 in three Cux2-
Ai140 mice, 0.06 
 0.02 in three Rorb-Ai140 mice, and
0.12 
 0.05 in five Ntsr1-Ai140 mice (Fig. 4A), close to the
performance of the primary regression model. Second, we used
leave-one-animal-out cross-validation to generate mean spatial
weights for each mouse line (Supplemental Table S1) and
applied these mean spatial weights to generate coefficient maps
and separate hemodynamics and changes in indicator fluores-
cence in the left-out (test) mouse. Cross-validation also indi-
cates the expected Spatial Model performance in GCaMP
mice. The median remaining variance of all pixels in this
second test, averaged across animals, was 0.13 
 0.04 in three
Cux2-Ai140 mice, 0.08 
 0.03 in three Rorb-Ai140 mice, and
0.21 
 0.09 in five Ntsr1-Ai140 mice. Hence, in all three
mouse lines, the remaining variance was greater than with the
two-wavelength regression model (that cannot be directly ap-
plied to GCaMP mice) but less than the remaining variance of
the Beer–Lambert model. Much of the improvement in perfor-
mance of the Spatial Model over the Beer–Lambert model is
near vessels and along the midline. Hence, we expect the
Spatial Model to offer improved separation of hemodynamics
and changes in indicator fluorescence versus the Beer–Lambert
model when applied to GCaMP mice, particularly for cortical
areas along the midline and near large vessels.

Separation of hemodynamics from changes in indicator
fluorescence in GCaMP mice. We used the spatially detailed
regression model to separate hemodynamics from changes in
indicator fluorescence in Cux2-Ai148 mice, with GCaMP6f in
superficial pyramidal neurons. We trained the Spatial Model on
GFP mice and then applied the resulting coefficient maps to
genetically matched GCaMP6 mice (Cux2-Ai140 vs. Cux2-
Ai148 mice, etc.). During spontaneous activity, GCaMP vari-
ance was sometimes increased and at other times reduced,
especially during fast changes in fluorescence during events
along the midline (Fig. 5A). During presentation of a visual
stimulus, the vasodilatory sag was reduced, in GFP (Fig. 5B)
and in GCaMP mice (Fig. 5C), and the baseline overshoot was
eliminated. In the GCaMP results, the difference between
original and corrected traces was similar in amplitude and time
course to the change in measured fluorescence in GFP mice,
consistent with successful separation of hemodynamics and
changes in indicator fluorescence in GCaMP mice.

DISCUSSION

We quantified the effects of hemodynamics on fluorescence
measured from GFP mice with wide-field fluorescence imaging
and found that changes in fluorescence can equal or exceed
those found in mice that express the calcium-dependent fluo-
rescent indicator GCaMP. As a result, we evaluated the per-
formance of several models in separating hemodynamics from
changes in indicator fluorescence, including a new Spatial
Model that provided the best demixing performance.

Previous methods have used physical models of light scat-
tering and absorption (Berwick et al. 2005; Devor et al. 2012;
Hillman et al. 2007; Malonek and Grinvald 1996), leveraging
research on tissue absorbance spectra (Takatani and Graham
1979; Wray et al. 1988), endogenous fluorophores (Zipfel et al.
2003), and models of scattering in tissue (Kohl et al. 2000).
Correction strategies based on physical parameters, such as the
Beer–Lambert model, may overgeneralize and not account for
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unique features in cranial windows or tissue heterogeneities
such as surface vasculature. One might expect separation
models based on physical parameterization to perform poorly
in some locations.

Regression models can account for pixelwise differences in
optical properties across the cortical surface. We found that the
Beer–Lambert model removed most, but not all, hemodynamic
effects and poor separation was common near surface blood
vessels. In contrast, regression against two backscatter wave-
lengths outperformed the Beer–Lambert model and performed
particularly well near blood vessels. Pixelwise tuning of the
model was likely the basis for this outperformance as can be
seen from maps of regression coefficients (Fig. 4C), which
vary substantially across pixels and highlight vasculature, par-
ticularly along the sagittal midline.

Central to our approach is linearization of the Beer–Lambert
equation. The resulting linear model cuts through the complex-
ity of trying to estimate the path lengths and extinction coef-
ficients of the Beer Lambert equation by simplifying the
problem to a linear estimation of two variables. Regression
against two backscatter wavelengths outperformed other mod-
els, eliminating �90% of variance in most GFP mice. In GFP

mice, using the Spatial Model, residual variance was approx-
imately 0.1–0.2. Hence, correction is not perfect but is close to
the expected limit of ~0.05 remaining variance after removal of
all hemodynamic effects. Residual variance ~0.1 above the
expected limit corresponds to ~95% reduction in the amplitude
of the mean hemodynamic transient (0.91/2), meaning that a
large midline hemodynamic artifact that initially caused a 10%
change in apparent 	F/F in a GFP or GCaMP mouse would be
attenuated to ~0.5% 	F/F after application of the Spatial
Model. The Spatial Model does not completely remove hemo-
dynamic effects from fluorescence traces but typically reduces
the amplitudes of apparent changes in fluorescence to close to
noise. The performance of single-wavelength regression was
similar in some respects to that of the Beer–Lambert model.
Both performed adequate correction at many pixels but poorly
near blood vessels.

Methods to build statistical maps of backscatter data in the
Spatial Model might be improved in several ways. Spatial
features could be extracted using deep-learning techniques
trained on the primary coefficient maps. Alternatively, simply
adding data will add confidence to the Spatial Model’s estimate
of the primary regression problem, and thus training on more
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Right: raw trace (black) and trace after Spatial Model correction (purple) extracted from a pixel in V1 (red dot, left). C, left: map of mean 	F/F 1.5–2 s after
stimulus. One hundred-millisecond flashed visual stimulus to the right eye and Cux2-Ai148 (GCaMP6f) mouse were used. Right: raw trace (black) and trace after
Spatial Model correction (purple) extracted from a pixel in V1 (red dot, left). Shaded regions in B and C represent SE around the mean (n � 50 trials). CV,
cross-validation; stim., stimulus.

364 SEPARATING HEMODYNAMICS FROM CALCIUM SIGNALS

J Neurophysiol • doi:10.1152/jn.00304.2019 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (073.145.139.232) on December 9, 2021.



animals is likely to result in a more robust Spatial Model. It is
also possible that nonlinearities, such as fitting time-varying
regression coefficients, could form the basis for future im-
provements in hemodynamic demixing, but the margin for
further improvement appears small since the Spatial Model
accounts for most hemodynamic effects on fluorescence. Fi-
nally, the only hyperparameter in the Spatial Model that can be
optimized is the strength of L2 regularization, which in this
paper we chose to equal 0 so that the Spatial Model would not
penalize fitting infrequent midline transients. In other data,
regularization may improve model fit and should be considered
by investigators during model training.

An alternative to using backscatter measurements is to
stimulate GCaMP with ultraviolet light (~410 nm) where
GCaMP fluorescence is not calcium-dependent (Allen et al.
2017). This approach directly measures and corrects for
changes in GCaMP emission (but not excitation), presumably
caused by hemodynamics. Four hundred ten-nanometer correc-
tion can use pixelwise regression of the non-calcium-depen-
dent UV measurement to eliminate hemodynamics from the
GCaMP measurement. We found this strategy to be effective
over short time periods, but phototoxicity is a concern with
prolonged ultraviolet illumination. In addition, the very shal-
low penetration of 410-nm light (estimated mean scattering
path length is ~8 
m) may limit the performance of this
approach if applied to fluorescence deep in tissue. Finally,
correctly scaling the 410-nm measurement is necessary to
avoid removing calcium dynamics that correlate with hemo-
dynamics. We view our Spatial Model as an alternative to this
technique for experiments that require nontoxic long-term
imaging, although our model is more laborious to construct
because it is trained on a separate cohort of GFP animals.

There are several ways to make simultaneous backscatter
and fluorescence measurements. Our approach was to use two
cameras to maximize fluorescence signal collection. Although
this produces excellent signal quality, the microscope and
analysis procedures are complicated by the need to compare
images from two cameras. Alternatively, we show results using
a regression-based correction strategy and temporal multiplex-
ing of both backscatter and fluorescence on a single camera
(Supplemental Fig. S3; see also Ma et al. 2016b). This strategy
is technically simple and enables the use of a wider range of
backscatter wavelengths (including the isosbestic wavelengths
around 530 nm); however, at faster frame rates, temporal noise
correlations within the sensor may degrade demixing perfor-
mance (see Supplemental Fig. S3D) and can be avoided with
independent cameras.

We propose that experimenters consider different strategies
for minimizing the effects of hemodynamics on wide-field
fluorescence measurements. The use of longer-wavelength in-
dicators, such as RCaMPs, will reduce the effects of hemody-
namics, but GCaMP indicators are in more widespread use.
With blue-green indicators, options include the Beer–Lambert
model, single-wavelength regression, isosbestic UV illumina-
tion, and our Spatial Model. Finding the optimal balance of
performance and experimental complexity will depend on
several factors, including the proximity of the cortical areas of
interest to blood vessels, the extent to which animal behavior
and hemodynamic effects on fluorescence are coupled (best
measured in GFP mice), the frequency band in which the
fluorescence signals of interest occur, and the availability of

transgenic or viral resources to produce matched GFP and
GCaMP expression.
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