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Abstract—We present achievable error exponent regions for
the Two-Way AWGN channel under an expected block power
constraint and variable-length coding (VLC). We propose an
achievability scheme that allows terminals to cooperate via in-
teraction to detect decoding errors and request re-transmissions.
Under this scheme, in certain rate-pair regimes both directions
are able to simultaneously attain error exponent pairs larger than
the feedback-free point-to-point random coding error exponents1.

A full version of this paper is accessible at: [1].

I. INTRODUCTION

Shannon [2] introduced the two-way channel, consisting of
two terminals, Ti for i ∈ {1, 2}, that exchange messages.
For the Two-way AWGN memoryless channel, the capacity
region corresponds to a rectangular region [3], [4] determined
by the interference-free AWGN capacities at signal-to-noise
ratio SNR, C = 1

2 log (1 + SNR) of each direction (denoted
by C12 and C21, respectively).

The reliability function (or error exponent) E(R) =
lim supN→∞

− lnPe

N provides a more refined yet still asymp-
totic characterization of the communication limits, where Pe
is the probability of error of a blocklength-N code. For
one-way channels, E(R) has been studied with and without
feedback. In memoryless channels, while feedback cannot
increase capacity, it may simplify coding schemes and enlarge
the error exponent [5].

In the presence of noiseless feedback in one-way AWGN
channels, error exponents can be greatly improved as shown
in [6]–[10]. When noisy feedback is used, error exponent
improvements over non-feedback channels are still possible, in
particular when the feedback channel is stronger (less noisy)
than the forward channel. A generalization of the Yamamoto-
Itoh coding scheme under VLC with perfect feedback [10] to
noisy feedback was presented by Sato-Yamamoto [11], and
this scheme’s reliability tends to Schalkwikj-Barron’s [9] as
the feedback noise approaches zero.

For two-way parallel memoryless channels (such as the
Two-way AWGN channel), terminals send messages and
(noisy) feedback over the same channels. This interaction
(noisy feedback) does not increase the capacity region of the
Two-way AWGN channel. Whether interaction in the Two-way

1The work of N. Devroye was partially supported by NSF under award
1815428. The contents of this article are solely the responsibility of the authors
and do not necessarily represent the official views of the NSF.

AWGN channel can increase error exponents is addressed in
[12] at zero-rate; here we focus on positive rate-pairs.

Apart from the authors’ prior work on two-way channels
[12], the most related prior work is that for error exponents
for one-way channels with noisy feedback in the positive rate
regime [11], [13]. In the one-way noisy feedback setting,
error exponent gains have mainly been attained when the
feedback channel is much stronger than the direct channel, as
in [14] where the sphere packing bound is exceeded for a wide
rate regime. This works considers an expected block power
constraint, as that used in [15] for the zero-rate regime (trans-
mission of two messages). Interestingly, in the two-way setting
for positive rate, we are able to attain error exponent gains
even when the channels in the two directions are symmetric
– one direction need not be much stronger than the other. In
fact, the scheme presented here exploits this symmetry, and
is hence useful in a wider range of settings, including for
example full duplex two-way communications with channel
reciprocity. This scheme does rely on the flexibility provided
by an expected power constraint.

II. PROBLEM STATEMENT AND MAIN RESULT

Consider a two-way AWGN channel as in Figure 1, for
the transmission of |W1| = 2{nR12} and |W2| = 2{nR21}

equally likely messages in the 1 → 2 and 1 ← 2 directions
respectively. The output of this channel at the i-th terminal at
the k-th channel use is modeled as in (1):

Yi,k = Xi,k + ai,kX3−i,k +Ni,k, for k = 1, 2, ... (1)

where, ai,k is a constant, Xi,k ∈ R the channel input
satisfying a block power constraint, Yi,k ∈ R the output, and
Ni,k ∼ N (0, σ2

i ) zero-mean AWGN, each independent and
identically distributed across channel uses. Since each terminal
may subtract its own input, and setting ai,k = 1, (1) simplifies
to: Yi,k = X3−i,k +Ni,k.

Fig. 1. Two-way AWGN channel.
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Let X1,Y1,X2,Y2 be the set of reals. A variable-length
two-way code Cvl

(
|W1|, |W2|, P1, P2, σ

2
1 , σ

2
2 , N

)
for the trans-

mission of messages Mi uniformly selected from Wi in the
i → (3 − i) directions for i = 1, 2 over a two-way AWGN
channel with average transmitter power Pi, and noise variances
σ2
i respectively, consists of:
1. Two encoding functions: fi,k : Wi × Yk−1

i → Xi for
i = 1, 2 and k = 1, 2, ... leading to channel inputs Xi,k =
fi,k

(
Mi, Y

k−1
i

)
satisfying an expected block power constraint

for each block of length N (where E[·] denotes expectation):

E

[
N∑
k=1

X2
i,k

]
≤ NPi. (2)

2. Two decoding functions: φi,k : Yki →W3−i.
3. A non-negative transmission time ∆ (a random variable)

satisfying E[∆] ≤ N , defined as the slot at which both
messages are decoded (and transmitters can move on to the
next message).

Let the average rate in the i → (3 − i) direction be:
R̄i,(3−i) = log |Wi|

E[∆] . Next, let the signal-to-noise ratio for
each direction be SNRi,(3−i) = Pi/σ

2
3−i, and the maximum

error probability attained in each direction by a two-way
Cvl
(
|W1|, |W2|, P1, P2, σ

2
1 , σ

2
2 , N

)
variable length code at an

average rate-pair (R̄12, R̄21) under power constraint (2) be:

Pi→(3−i)
error

(
R̄12, R̄21, SNR12, SNR21,∆

)
:= max

mi∈Wi

P
(
φ∆
i 6= m3−i |Mi = mi,M3−i = m3−i

)
The two-way capacity region is known [16] to equal all rate-

pairs (R1, R2) inside the rectangle bounded by R1 ≤ C12 =
1
2 log

(
1 + P1

σ2
2

)
and R2 ≤ C21 = 1

2 log
(

1 + P2

σ2
1

)
.

Definition 1: An error exponent pair, (E12, E21), is achiev-
able if simultaneously, for E[∆] ≤ N :

E12

(
R̄12, R̄21,SNR12,SNR21

)
≥

− lnP1→2
error

(
R̄12, R̄21,SNR12,SNR21, N

)
E[∆]

E21

(
R̄12, R̄21,SNR12,SNR21

)
≥

− lnP1←2
error

(
R̄12, R̄21,SNR12,SNR21, N

)
E[∆]

Definition 2: The error exponent region (EER) of
a two-way AWGN channel transmitting at an aver-
age rate-pair (R̄12, R̄21) under an expected block power
constraint corresponds to the union of all achievable
error exponent pairs E12

(
R̄12, R̄21,SNR12,SNR21

)
and

E21

(
R̄12, R̄21,SNR12,SNR21

)
.

We first present a proposition that involves the use of block
codes under an average power constraint

∑N
k=1Xi,k ≤ NP

in the absence of terminal interaction / feedback (i.e. the
encoding functions are functions of the messages alone):

Proposition 1: An achievable error exponent pair for the
two-way AWGN channel for the rate pair (R12, R21) under
an average power constraint is:

E12(R12, R21,SNR12,SNR21) ≥ Erc
AWGN(R12,SNR12),

E21(R12, R21,SNR12,SNR21) ≥ Erc
AWGN(R21,SNR21),

where Erc
AWGN(R,SNR) corresponds to the random coding

error exponent lower bound for a one-way AWGN channel
of signal to noise ratio SNR at rate R, see [17, Section 7.4].

Our main results correspond to two achievable EERs defined
for any average rate-pair in the capacity region. One uses com-
pression to send the feedback signals and the other does not.
The former is useful for rates close to capacity, whereas the
latter for lower rates. Our results are both based on a variable
length coding scheme under power constraint (2) that exploits
interaction to facilitate error detection and correction. We will
show how the scheme operates for the case with compression
(the one without compression can be easily obtained from
the one with compression). Let R := max{R̄12, R̄21} and
C := min{C12, C21}.

Theorem 1: Uncompressed feedback: An achievable error
exponent pair for the two-way AWGN channel under variable-
length coding and an expected block power constraint at an
average rate-pair (R̄12, R̄21), for 0 < R < 0.5C is determined
as the union over all 0 ≤ λ ≤ 1, RFB = R, and satisfying
R̄12/λ ≤ C12, R̄21/λ ≤ C21 and RFB/(1− λ) ≤ C, of

E12(R̄12, R̄21,SNR12,SNR21, N) ≥ (3)

E21

(
R̄12, R̄21,SNR12,SNR21, N

)
≥ (4).

Theorem 2: Compressed feedback: An achievable error
exponent pair for the two-way AWGN channel under variable-
length coding and an expected block power constraint at an
average rate-pair (R̄12, R̄21), is determined as the union over
all λ and RFB in 0 ≤ λ ≤ 1, R̄12/λ ≤ C12, R̄21/λ ≤ C21,
0 ≤ R̄FB < min {(1− λ)C,R} of

E12(R̄12, R̄21,SNR12,SNR21, N)

≥ min

{
(3), RFBln 2 + λErc

AWGN

(
R̄12

λ
,SNR12

)}
E21

(
R̄12, R̄21,SNR12,SNR21, N

)
≥ min

{
(4), RFBln 2 + λErc

AWGN

(
R̄21

λ
,SNR21

)}
.

Note that we have excluded the zero-rate regime, since this
scheme is outperformed by the one derived in [18], which
results from a generalization of a one-way scheme with noisy
feedback [15] to the two-way AWGN channel under the same
power constraint.

The following section presents a coding scheme that
achieves Theorems 1 and 2.

III. TWO-WAY INTERACTIVE CODING SCHEME

Both Theorems employ a coding scheme in which terminals
first exchange their messages, and then initiate a cooperative
feedback stage aiming to detect errors at both receivers. The
only difference between the two coding schemes is that one
sends feedback uncompressed, which can only be done for
small enough rates, and the other uses hashing to compress the
feedback signal, which allows transmission at higher rates. If
an error is detected at any terminal, an alarm signal is triggered
during the final stage, otherwise both transmitters remain
silent. The occurrence of an alarm forces both terminals to
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E12(R̄12, R̄21,SNR12,SNR21, N) ≥ min

{
(1− λ)Erc

AWGN

(
RFB

1− λ
,SNR12

)
(3)

+(1− λ)Erc
AWGN

(
RFB

1− λ
,SNR21

)
+ λErc

AWGN

(
R̄12

λ
,SNR12

)
, λErc

AWGN

(
R̄12

λ
,SNR12

)
+ λErc

AWGN

(
R̄21

λ
,SNR21

)}
.

E21(R̄12, R̄21,SNR12,SNR21, N) ≥ min

{
(1− λ)Erc

AWGN

(
RFB

1− λ
,SNR21

)
(4)

+(1− λ)Erc
AWGN

(
RFB

1− λ
,SNR12

)
+ λErc

AWGN

(
R̄21

λ
,SNR21

)
, λErc

AWGN

(
R̄21

λ
,SNR21

)
+ λErc

AWGN

(
R̄12

λ
,SNR12

)}
.

retransmit their messages using a new block of length N .
Since alarm events occur with exponentially small probability,
retransmissions are very rare and thus the power constraint (2)
is satisfied. If no alarm is triggered, both transmitters move to
the transmission of a new message.

During the feedback stage terminals exchange a special
message that is a function of the true message sent out in
the first stage and the one received from the other terminal.
This message should be the same for both directions. Once
this message is exchanged, both terminals can compare the
decoded special message and trigger an alarm if they are
not equal. By means of this cooperation each terminal may
become aware of decoding errors made locally or at the other
end during the first stage. As we will see, we may still have
decoding errors in which no alarm is triggered.

A. Scheme operation

We present the coding scheme which employs compression
(Theorem 2), but note that the no compression Theorem 1 may
be easily obtained from this scheme by simply omitting the
hashing function used to reduce the feedback rate. We first
introduce some notation that will be useful in the upcoming
sections. Let CRC(2NR, P,N) denote a randomly generated
code for the transmission for 2NR messages using a block
of length N under average power P . An achievable error
exponent for this code is determined by the random coding
error exponent lower bound ERC

AWGN(R,SNR) as shown in [17].
Figure 2 shows a block diagram of our scheme comprising

three stages whose durations are parameterized by λ ∈ [0, 1]:

Message M1
(l) Feedback g1

(l)

A
L

A
R

M

Message M2
(l) Feedback g2

(l)

A
L

A
R

M

Message M1
(l+1) Feedback g1

(l+1)

A
L

A
R

M

Message M2
(l+1) Feedback g2

(l+1)

A
L

A
R

M

A
L

A
R

M
A

L
A

R
M

Feedback g1
(l+1)

Feedback g2
(l+1)Message M2

(l+1)

Message M1
(l+1)

Fig. 2. Block diagram for the two-way coding scheme under a expected block
power constraint. Note that the special message gi or its corresponding hash
ḡi is fed back depending on whether compression is used or not.

1. Transmission: This stage lasts for λ(N−1) channel uses,
where terminal Ti transmits message Mi = mi, uniformly

selected from Wi utilizing a random code in each direction,
which are respectively denoted by CRC(2NR̄12 , P1, λN) and
CRC(2NR̄21 , P2, λN). By the end of this stage, each terminal
has a preliminary estimate of the received message M̂3−i.

2. Feedback: This stage lasts for (1 − λ)(N − 1) channel
uses. Here, each terminal Ti generates a special feedback
message we denote by gi that are exchanged during this
stage and used later to detect errors. To generate gi, the
i-th encoder combines the true known message mi and
the estimate M̂3−i as follows: Let FNq be a finite field
of size qN , where q is chosen as the smallest prime for
which qN > max

{
d2NR̄12e, d2NR̄21e

}
, where dxe denotes

to the smallest integer larger than x. Next, let ui(mi) be
an injective mapping mi 7→ FNq where mi ∈ Wi. Then,
for terminal T1, g1 = u1(m1) ⊕ u2(M̂2), whereas for T2,
g2 = u1(M̂1) ⊕ u2(m2), where ⊕ denotes modulo addition
over the finite field FNq . Message gi is an element of the set
G = {0, 1, ...,max{2NR̄12 , 2NR̄21} − 1} , whose cardinality
is determined by the direction transmitting at a higher rate.
Note that in the absence of errors during the first stage, the
messages decoded at each terminal T3−i are M̂i = mi for
i = 1, 2, and we must have g1 = g2.

Since both directions transmit at the same rate and only
(1 − λ)(N − 1) channel uses remain from the first stage,
we consider the compression method introduced in [19] in
which the |G| = max{2NR̄12 , 2NR̄21} messages are randomly
assigned to 2NRFB bins, where RFB is a design parameter.
Thus, the feedback message becomes the bin number (or hash)
that contains gi, which we denote by ḡi ∈ {1, ..., 2NR̄FB}.
It follows that R̄FB ≤ (1 − λ) min{C12, C21}. If R̄FB =
max{2NR̄12 , 2NR̄21} then each bin contains exactly one mes-
sage, and ḡi = gi. Messages ḡi are exchanged using a
CRC

(
2NR̄FB , Pi, (1− λ)N

)
code in each direction and respec-

tively decoded as ˆ̄G3−i. Observe as well that the compression
following the generation of messages gi, may cause binning
(or hash) collisions in which a gi containing an error may
result in the same bin as the gi of an error free transmission.
We consider this and other possibilities when we analyze the
probability of error of the scheme in Section IV.

3. Alarm: For this stage, each terminal compares the
locally generated message bin index ḡi with the estimate ˆ̄G3−i
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obtained in the second stage. An alarm event is declared in
case of a mismatch. The result of this operation is sent to the
other terminal using the single channel use signaling (5):

Xi,N =

0, if ḡi = ˆ̄G3−i,√
Pi

P(Alarm) , otherwise.
(5)

Thus, an alarm corresponds to a very high amplitude transmis-
sion since, as we show later in the Appendix of [1], P(Alarm)
is exponentially small (and also corresponds to the probability
of a retransmission P(Rtx)). This transmission is decoded at
the (3−i)-th terminal by comparing the received signal Y3−i,N
with a threshold Υ = N , as in [15], where this signaling is
introduced for the AWGN channel with active noisy feedback
and the transmission of two messages. Moreover, it can be
shown that the probability of error in decoding Y3−i,N decays
to zero faster than any exponential.

When an alarm occurs, both terminals discard their pre-
liminary estimates and initiate a retransmission, which means
a repetition of the three stages using a new block of length
N for the same message. Figure 2 illustrates three of these
consecutive blocks. Stages have been colored to identify what
message they are associated with and for which direction.
We have depicted the transmission of a stream of messages
indexed by (l). The first block corresponds to the l-th messages
being sent from both terminals and successfully decoded since
no alarms are triggered. The second block corresponds to the
transmission of the (l+ 1)-th messages. Note that terminal T1

triggers an alarm (colored in red), therefore, a retransmission
is necessary for both directions and occurs in the next block,
where the three stages are repeated for messages (l+ 1). This
time, transmission is successful since no alarms are triggered,
and both terminals can move to message (l + 2) in the next
block (not shown).

Decoding rule: Once the three stages have concluded, the i-
th receiver declares that the message sent by the other terminal
corresponds to the preliminary decision M̂3−i if no alarm is
detected, otherwise, it awaits until the end of a new block of
length N that conveys a retransmission. The final decoding
decision occurs only in the absence of alarms, hence, multiple
retransmissions may happen until both terminals can move to
a new message.

IV. PROOF OF THEOREM 2

This section presents a short version of the proof of Theo-
rem 2. We refer the reader to the Appendix A for the complete
analysis. The proof consists of three parts: the analysis of
the probability of error, the expected transmission time, and
the error exponents. Here, we consider compressed feedback,
since as we show in the Appendix of the extended version [1],
this is related to the uncompressed one by the inclusion of an
extra term in the overall probability of error.

A. Probability of error analysis
In the following, the feedback stage uses compression. We

analyze the 1 → 2 direction only, since the other follows by
symmetry. Let the probability of error of the first and second

stages, meaning that a message sent (without feedback) is
incorrectly decoded, be denoted as

−→
Pe1 for the first stage,

and
−→
Pe2 for the second stage, where arrows indicate the

communication direction. Compression in the feedback stage
is performed by randomly assigning messages into 2NRFB

bins whose index number / hash is transmitted instead. The
probability of a hash-collision is ph = 1

2NRFB
. Note that when

no compression is used, ph = 0. Then,

P1→2
error = P

(
M̂1 6= m1,No-Alarm |M1 = m1,M2 = m2

)
= P

(
No-Alarm; M̂1 6= m1; M̂2 = m2 |M1 = m1,M2 = m2

)
+ P

(
No-Alarm; M̂1 6= m1; M̂2 6= m2 |M1 = m1,M2 = m2

)
(6)

The event {No-Alarm} ≡ {( ˆ̄G1 = ḡ2) ∩ ( ˆ̄G2 = ḡ1)},
means that no alarm occurs if both terminals declare that their
feedback message ḡi matches the one received from the other
terminal. As shown in the Appendix of [1], this probability
can be upper bounded as:

P1→2
err ≤ max

{−→
Pe2
←−
Pe2
−→
Pe1 , ph

−→
Pe1 ,
−→
Pe1
←−
Pe1

}
(7)

P1←2
err ≤ max

{←−
Pe2
−→
Pe2
←−
Pe1 , ph

←−
Pe1 ,
←−
Pe1
−→
Pe1

}
(8)

B. Expected transmission time:
Recalling that a retrasmission occurs when an alarm is

declared at either terminal, the alarm event corresponds to:
{Alarm} = {( ˆ̄G2 6= ḡ1)∪( ˆ̄G1 6= ḡ2)}. Hence, a retransmission
happens with probability P(Rtx) = P (Alarm):

P(Rtx) = P
(

( ˆ̄G2 6= ḡ1) ∪ ( ˆ̄G1 6= ḡ2) |M1 = m1,M2 = m2

)
≤ P

(
ˆ̄G2 6= ḡ1 |M1 = m1,M2 = m2

)
+ P

(
ˆ̄G1 6= ḡ2 |M1 = m1,M2 = m2

)
As we show in the Appendix of [1], P(Rtx)→ 0 as the block
length N →∞. It follows that the expected transmission time
is determined by the probability of retransmission, given as:

E[∆] = N ·
∞∑
k=0

·P(Rtx)k = N · 1

1− P(Rtx)

Thus, E[∆] ≈ N when P(Rtx)→ 0.

C. Error exponents

Equations (7) and (8) describe the probability of error in
terms of the following probabilities.
−→
Pe1 ≤ exp

{
−(N − 1)λErc

AWGN

(
R̄12

λ ,SNR12

)}
,

−→
Pe2 ≤ exp

{
−(N − 1)(1− λ)Erc

AWGN

(
R̄12

1−λ ,SNR12

)}
,

←−
Pe1 ≤ exp

{
−(N − 1)λErc

AWGN

(
R̄21

λ ,SNR21

)}
,

←−
Pe2 ≤ exp

{
−(N − 1)(1− λ)Erc

AWGN

(
R̄21

1−λ ,SNR21

)}
.

Note that in each of the probability of error terms shown
above, the error exponent is scaled down by either λ or (1−
λ) depending on whether the term corresponds to the first
or second stage of the scheme. Moreover, the instantaneous
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(a)

(b)

rate-pair point (a)                                                                                       rate-pair point (b)

Fig. 3. Consider a two-way channel with SNR12 = SNR21 = 5dB. Left: Capacity region, where blue dots represent rate-pairs for which the random coding
error exponent can be achieved. The red dots represent rate-pair for which the random coding error exponent can be exceeded for both directions. Center-Right:
EER for the rate-pair point (a) (0.9C12, 0.8C21), and rate-pair point (b) (0.02C12, 0.08C21).

transmission rate is scaled up in order to compensate for the
shorter block length (determined by duration of each stage)
and to guarantee that the target operating rate-pair is achieved.
Finally, from (7) and an expected transmission time E[∆] ≈
N , we have that for very large N :
−1

E[∆]
lnP1→2

error ≥

−1

E[∆]
min

{
ln
(−→
Pe2
←−
Pe2
−→
Pe1

)
, ln
(
ph
←−
Pe1

)
, ln
(−→
Pe1
←−
Pe1

)}
,

from which (3) is obtained. The result for the other direction
follows by symmetry.

V. NUMERICAL SIMULATIONS

This section presents numerical evaluations of our results.
Figure 3-left presents the capacity region of a two-way AWGN
channel where red color denotes the rate-pair regimes in which
our schemes outperform the random coding error exponent
simultaneously in both directions. In the center/right plots,
we present the achievable error exponent regions for the rate-
pair points marked as (a) and (b) in the capacity region. As
a comparison reference, these plots also show the achiev-
able EER by means of point-to-point transmissions and no
cooperation, corresponding to the darker rectangle resulting
from Proposition 1. Observe an interesting trade off between
the error exponents of both directions. This is more dramatic
for point (a), which is in the higher rate-pair regime. Also,
note that for both points (a) and (b) it is possible to attain
error exponents larger than Proposition 1 in both directions
simultaneously. Next, we evaluate Theorems 1 and 2 for the
rate-pairs along the line that connects the points (0, 0) and
(C12, C21) of the capacity region of the two-way AWGN
channel (as shown in Figure 3-left with a solid black line).
We considered a symmetric two-way channel in which both
directions are of similar SNR. Figure 4 shows the largest error
exponent achieved by the scheme in the 1 → 2 direction. A
similar plot would result for the opposite direction. The solid
blue line presents the random coding error exponent lower
bound, achievable when terminals do not interact. The dashed
red line results by evaluating both theorems and choosing
the largest achievable error exponent. There exists important
error exponent gains in two regimes: lower (close to zero) and

higher (close to capacity) rate regimes. In the remaining rate-
pairs the scheme achieves the random coding error exponent.

Fig. 4. Achievable error exponents for the 1 → 2 direction for rates 0 <
R̄12 ≤ C12 for a Two-Way AWGN channel with SNR12 = SNR21 = 5dB.
Error exponents are normalized over the SNR and evaluated for rate-pairs
along the line connecting points (0, 0) and (C12, C21), see Figure 3 (left).

VI. CONCLUSION

The coding scheme we presented suggests that in a two-way
AWGN channel, interaction may be exploited to improve (over
non-feedback one-way error exponents under block coding)
error exponents in both directions simultaneously – even when
both directions have similar channel strength. Our feedback
strategy correlates the errors in the two directions, and any
terminal may trigger an alarm when the received feedback
message does not match the one sent. This cooperation
increases the error detection capabilities in both terminals.
Moreover since we use variable length coding, a detected error
can be corrected by the message retransmission that follows
the occurrence of an alarm.

The expressions in Theorems 1 and 2 are mathematically
involved. We have left analytically optimizing the parameters
λ and RFB for future work.
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