
Achievable error exponents for
the two-way parallel DMC

Kenneth Palacio-Baus∗†, Natasha Devroye∗
∗University of Illinois at Chicago, {kpalac2, devroye}@uic.edu

†University of Cuenca, Ecuador

Abstract—We investigate error exponent regions for the paral-
lel two-way DMC in which each terminal sends its own message
and provides feedback to the other terminal. Various error
exponents are presented in different rate-region regimes based on
the relative rates and zero-error capacities of both directions. The
schemes employed are extensions of error exponents for one-way
DMCs with noiseless, rate-limited and noisy feedback1.

I. INTRODUCTION

Shannon [1] introduced the two-way discrete memoryless
channel (DMC), and derived inner and outer bounds to its
capacity region. We focus on the two-way parallel DMC,
whose capacity region is a rectangle determined by the one-
way capacity of each link. Adaptation / interaction, or using
the feedback present in two-way channels, cannot increase this
capacity region, but may be exploited to attain larger error
exponents. We consider that either one or both directions have
a positive zero-error capacity C0, and improve the reliability
at rate-pairs in the small error regime. C0 > 0 also alleviates
synchronization issues in variable length coding (VLC), since
the beginning / end of a message is signaled without error2.

In the two-way setting, a terminal may transmit messages
with small error at all rates below the one-way capacity, with
zero-error at all rates below C0, provide noiseless feedback
for the other terminal limited to a certain rate below C0,
provide noisy feedback, or any combination of the above.
We present achievable schemes and error exponents for the
two-way parallel DMC based on coding schemes for the one-
way DMC with feedback using VLC. The one-way reliability
function is defined for VLC as:

E(R̄) = lim
E[∆]→∞

−1

E[∆]
logPe(R̄,∆),

for 0 ≤ R̄ ≤ C (for C the small error capacity), transmission
time ∆, and probability of error Pe(R̄,∆). Next we present
some fundamental results:

Burnashev’s reliability: for any DMC of capacity C, zero-
error capacity of zero, and noiseless output feedback using
VLC, Burnashev [4] demonstrated that E(R) ≤ EBurn(R̄):

EBurn(R̄) := C1

(
1− R̄

C

)
, for 0 ≤ R̄ ≤ C, (1)

1The work of N. Devroye and K. Palacio-Baus was partially supported
by NSF under award 1815428. The contents of this article are solely the
responsibility of the authors and do not necessarily represent the official views
of the NSF.

2Synchronization over channels with noisy feedback has been addressed in
[2], and extended to two-way channels in [3].

where C1 = maxx1,x2
D (p(y|x1)||p(y|x2)) is the Kullback-

Leibler divergence of the distributions induced by the two most
distinguishable symbols of the forward direction alphabet.

Yamamoto-Itoh’s scheme [5]: utilizes noiseless feedback
in a two-stage VLC scheme to achieve Burnashev’s upper
bound. In the message stage, a capacity achieving code is
used to send a message whose preliminary estimate is fed
back without error. In the control stage, the encoder indicates
whether the receiver should accept the decision (ACK), or
await a retransmission (NACK). The control message estimate
is also fed back to keep synchronization. Errors result from a
wrong preliminary decision and a missed NACK. Retransmis-
sions occur if the decoder declares a NACK, which happens
with an exponentially small probability and the expected
number of transmissions for a message tends to one.

Forney’s error exponent [6]: is attained by using a single
bit of noiseless feedback to request a retransmission when
decoding leads to an erasure. Then, E(R̄) ≥ EForn

(
R̄
)
, where:

EForn
(
R̄
)

:= Esp(R̄) + C − R̄, for R̄∞ ≤ R̄ ≤ C. (2)

Above, Esp(R̄) corresponds to the sphere packing bound for a
DMC without feedback, and R̄∞ to the smallest rate for which
the sphere packing upper bound tends to infinity [7, Sec. 5.8].

Rate-limited noiseless feedback: this interesting regime
has seen limited work – [8] characterized the noiseless feed-
back rate needed to attain Burnashev’s bound. In Section III,
we extend these results to obtain achievable error exponents
with noiseless rate-limited feedback.

Noisy feedback: this more complicated case, due to syn-
chronization issues, was studied for one-way DMCs using
VLC in [2], [9], and for the two-way parallel DMC in [3].

Contributions: We present achievable error exponents of
the one-way DMC with limited-rate noiseless feedback in
Section III. We use these results in Section IV for two-way sys-
tems, where either direction may have C0 > 0. Depending on
the availability and amount of C0, a terminal may provide rate-
limited noiseless feedback to the other direction in addition to
the transmission of its own messages (either with zero or small
error). The operating rate-pair determines if this noiseless
feedback can be exploited to either exceed Forney’s reliability,
achieve Burnashev’s bound, or attain infinite reliability. Due
to space constraints, all proofs are relegated to the Appendix
of the extended version of this manuscript, available at [10].
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II. PROBLEM STATEMENT

Let (X ,W,Y) denote a DMC characterized by finite input
and output alphabets X ,Y and transition probability W (y|x),
for the transmission of equally likely messages from set M.
Let Wn denote n uses of the channel, then Wn(yn|xn) =∏n
k=1W (yk|xk) for xn ∈ Xn and yn ∈ Yn. For systems

with active noiseless feedback, let RFB ∈ R+ be the available
rate of the feedback channel. For two-way channels, each
terminal is denoted by Ti for i = 1, 2. Let a two-way
(X1,Y1,W (y1y2|x1x2),Y2,X2) DMC be characterized by a
set of transition probability mass functions W (y1y2|x1x2),
finite input and output alphabets Xi, Yi, and message sets
M1 andM2. In the two-way parallel DMC, W (y1y2|x1x2) =
W12(y2|x1)·W21(y1|x2), where subscripts denote the commu-
nication direction from Ti to T3−i. This is equivalent to two
independent links operating in parallel and opposite directions.
A. The one-way DMC

The concepts of small-error capacity C, and zero-error
capacity C0, for a one-way (X ,W,Y) DMC were introduced
by Shannon in [11] and [12] respectively.

Definition 1: A variable length block code C(M, RFB, N)
for a one-way (X ,W,Y) DMC with noiseless rate-limited RFB
active feedback and block length N , comprises:
• A set of equally likely messages M.
• A set of forward channel encoding functions:
xn :M×Zn−1 → Xn, where Zn is the sequence received
through the rate-limited noiseless feedback link to produce
channel inputs Xn = xn(M,Zn−1).

• A set of feedback channel encoding functions:
zn : Yn−1 → Z , which produce feedback inputs Zn =
zn(Y n−1), with |ZN | ≤ 2NRFB per block of length N .

• A set of forward decoding functions: φn : Yn →M,
for n = 1, 2, ...,∆, where ∆ corresponds to the transmis-
sion time (a random variable), and is a stopping time for
which E[∆] ≤ N . Let R̄ = log |M|

E[∆] define the average
transmission rate, and let Pe(R̄,∆, RFB) (argument RFB is
present according to the availability of feedback) be the
maximum error probability attained among all messages at
rate R̄ and decoding (not erasure) occurring at time ∆, with
a noiseless feedback of rate RFB. Then, Pe(R̄,∆, RFB) =
maxM∈M P [φ∆(Y ∆) 6= m|M = m sent].

Definition 2: An error exponent is achievable at an expected
rate R̄ over a one-way DMC with rate-limited feedback if there
exists a sequence of VLC codes such that:

E(R̄, RFB) ≥ lim
E[∆]≤N,N→∞

−1

E[∆]
logPe(R̄,∆, RFB),

for C0 < R̄ ≤ C. E(R̄, RFB) =∞ for 0 ≤ R̄ ≤ C0,∀RFB.
B. The two-way parallel DMC

A parallel two-way DMC is formed by terminals Ti for
i = 1, 2, and channels

(
Xi,Wi,(3−i)(y3−i|xi),Y3−i

)
. Let

R̄i,(3−i) be the expected rate in the i→ (3− i) direction, and
∆i,(3−i) the transmission time3 at which decoding decision
about message Mi is made at T3−i.

3Each direction has its own transmission time.

Definition 3: Terminals T1 and T2 interact if their corre-
sponding channel inputs at time n adapt to past outputs as
Xi,n = xi,n

(
Mi, y

n−1
i

)
.

Definition 4: A two-way variable length
code C(M1,M2, N) for a two-way parallel
(X1,Y1,W (y1y2|x1x2),Y2,X2) DMC comprises:
• Two sets of equally likely messages Mi.
• Two sets of encoding functions xi,n :Mi ×Yn−1

i → Xi,n,
producing channel inputs Xi,n = xi,n

(
Mi, Y

n−1
i

)
,

• Two sets of decoding functions φi,n : Yni →Mi,
for n = 1, 2, ...,∆i,(3−i), where ∆i,(3−i) corresponds to the
transmission time in which a message is decoded at T3−i (as
in one-way case, a random variable with E[∆i,(3−i)] ≤ N .

Let an average rate-pair (R̄12, R̄21) be defined by the
communication rates: R̄i,(3−i) = log |Mi|

E[∆i,(3−i)]
for i = 1, 2,

and let the error probability in each direction be denoted as
Pei,(3−i)

(
R̄12, R̄21,∆i,(3−i)

)
.

Definition 5: An error exponent pair Ei,(3−i)
(
R̄12, R̄21

)
is

achievable for a rate-pair
(
R̄12, R̄21

)
, over a two-way parallel

DMC if there exists a sequence of two-way variable length
codes such that E[∆i,(3−i)] ≤ N for i = 1, 2, and for very
large N simultaneously:

− logPei,(3−i)

(
R̄12, R̄21,∆i,(3−i)

)
E[∆i,(3−i)]

≥ Ei,(3−i)
(
R̄12, R̄21

)
.

Definition 6: The achievable error exponent region (EER) is
the union over all achievable error exponent pairs at rate-pair
(R̄12, R̄21).

III. MAIN RESULTS: ONE-WAY

Consider a one-way DMC with C0 = 0 and noiseless
active feedback with rate-limited to RFB

4. Let any attainable
error exponent for this channel at rate R in the absence
of feedback be E1w(R). When noiseless feedback is used,
improvements on the achievable error exponents depend on
how RFB compares to the forward expected rate R̄, and how
feedback is used to detect and correct errors. With Yamamoto-
Itoh’s [5] scheme, Burnashev’s reliability is attained by feeding
back the message decoding decision made at the receiver.
However, the rate of the noiseless feedback transmission must
equal that of the forward link only up to a critical rate
R̄∗, beyond which, as shown in [8], compressed noiseless
feedback may be transmitted instead in the message mode of
the Yamamoto-Itoh scheme in two forms: i) random-hashing:
independently and uniformly assigning each of the messages
into 2NRFB bins, whose index is fed back to the transmitter
as a hash; and, ii) a joint channel-code / hash-function design
where an erasure decoding rule takes into account the bins
containing messages and is used to form a lower rate code.
These approaches result in the following two propositions, as
extensions of [8] that characterize achievable error exponents
for a given noiseless feedback rate5:

4The noiseless feedback link has a capacity of C0FB , thus RFB ≤ C0FB .
5Error exponents are defined for the regime R∞ < R̄ ≤ C if they depend

on Esp(·). In the regime C0 < R̄ ≤ R∞, E1w(R) is achievable without
feedback using block codes. The reliability is unbounded for rates below C0.
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Proposition 1: An achievable error exponent for a one-
way DMC with rate-limited RFB noiseless active feedback,
utilizing random hashing and VLC is given by E(R̄, RFB) ≥
ERH

RL-FB(R̄, RFB), for R̄∞ ≤ R̄ ≤ C, where:

ERH
RL-FB(R̄, RFB) :=
maxR̄≤Rdata≤C

R̄
Rdata

EForn(Rdata)

+ min
{
RFB,

(
1− R̄

Rdata

)
C1

}
, if RFB < R̄,

EBurn(R̄), if RFB ≥ R̄,
(3)

where EForn(·) corresponds to (2), and EBurn(·) to (1). The
maximization above applies for R̄ < R̄∗c = CC1

C+C1
; when R̄ ≥

R∗c then Rdata = C.
Proof: See Appendix A in [10].
When the joint channel-coding / hashing-function method

from [8, Sections 3.4-5] is used instead, we have the following:
Proposition 2: An achievable error exponent for a one-

way DMC with rate-limited RFB noiseless feedback, and joint
design channel-coding / hashing-function and VLC is given
by: E(R̄, RFB) ≥ EJoint

RL-FB(R̄, RFB) for R̄∞ ≤ R̄ ≤ C as:

EJoint
RL-FB(R̄, RFB) :=
min

{
RFB + R̄

CEsp
(
C
R̄

(R̄−RFB), Q∗,W
)
,(

1− R̄
C

)
C1

}
, if RFB < R̄,

EBurn(R̄), if RFB ≥ R̄,

(4)

where Esp(R,Q,W ) corresponds to the sphere packing6 error
exponent for rate R, input distribution Q and channel law W ,
and Q∗ is the capacity achieving input distribution.

Proof: Equation (4) results from [8, Equations (21-22)]. See
Appendix B in [10].

Propositions 1 and 2 are based on the Yamamoto-Itoh
scheme but using compressed noiseless feedback and allowing
erasure decoding. Feedback is also exploited to maintain
synchronization: the error-free control message informs the
transmitter of whether the preliminary decision was accepted
or not, regardless of correctness. The largest error exponent is
attained by a hybrid system that chooses the scheme to use
based on the rate-pair (R̄, RFB):
ERL-FB

(
R̄, RFB

)
≥ max

{
ERH

RL-FB

(
R̄, RFB

)
, EJoint

RL-FB

(
R̄, RFB

)}
.

Figure 1 shows this error exponent (vertical axis) for different
values of forward and feedback rate-pairs (mapped on the
horizontal plane). Note that for a fixed R̄, as 0 ≤ RFB < R̄
the first line in the expressions of either Proposition 1 (green
area) or 2 (gray area) are achievable. Once RFB reaches R̄,
the reliability jumps to Burnashev’s, which for low R̄ occurs
at an edge.

If the forward channel has C0 > 0, the operation of the
Yamamoto-Itoh scheme is simplified since the control stage is
free of errors in both directions, thus we have:

Proposition 3: An achievable error exponent for a one-way
DMC with rate-limited RFB noiseless active feedback, using

6Esp(R,Q,W ) is used under the assumption of totally symmetric channels.
See the discussion in [8, Equation (20), Sec. 3.4].

Burnashev's outer bound

Proposition 1

Proposition 2
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Fig. 1. Achievable Error exponent with rate-limited noiseless feedback and
forward C0 = 0. We evaluated all rate pairs satisfying 0 ≤ R̄ ≤ C and
0 ≤ RFB ≤ C for a BSC(0.215).

random hashing, VLC, and satisfying 0 < C0 < R̄, is given
by E(R̄, RFB) ≥ ERH-C0

RL-FB (R̄, RFB), where:

ERH-C0
RL-FB (R̄, RFB) :=

RFB + EForn(R̄), if RFB < R̄,

for R̄∞ ≤ R̄ ≤ C,
∞, if RFB ≥ R̄,

for 0 ≤ R̄ ≤ C.

(5)

Note that E1w(R) is achievable in the regime C0 < R̄ < R∞,
and recall that infinite reliability is attainable for 0 ≤ R̄ ≤ C0.

This proposition illustrates how C0 > 0 in the forward
channel may be exploited to boost reliability in the small error
regime as a consequence of having perfect knowledge of the
receiver’s control mode decisions.

Proof: See Appendix C in [10].
For channels with noisy feedback, VLC strategies must use

additional synchronization recovery techniques. In Yamamoto-
Itoh like schemes, feedback control messages may be incor-
rectly decoded at the encoder, causing terminals to lose track
of what message is being transmitted. In contrast, a single
bit transmitted with zero-error in either direction suffices to
maintain synchronization: i.e. a terminal may use this bit to
signal the termination of its own message, or alternatively, that
it accepted the current message sent from the other terminal.

IV. MAIN RESUSLTS: TWO-WAY

1. Non-interacting terminals: Any error exponent achiev-
able for a one-way DMC without feedback, E1w(R), is
attainable in each direction of a two-way parallel DMC:
i.e., E12(R12, R21) ≥ E1w (R12) and E21(R12, R21) ≥
E1w (R21).

2. Interacting terminals: when terminals employ feedback/
interaction, this affects the error exponents:

Proposition 4: An achievable error exponent pair for the
two-way parallel DMC, in the rate-pair regime 0 < C012

<
R̄12 < C12 and 0 < C021

< R̄21 < C21, using VLC is:

E12(R̄12, R̄21) = EForn
(
R̄12

)
E21(R̄12, R̄21) = EForn

(
R̄21

)
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Proof: When C012
= C021

= 0, this is shown in [3, Prop.
3(i)]. Alternatively when C012

> 0 and C021
> 0, each

terminal has access to at least a zero-rate noiseless feedback
link, and Forney’s (2) reliability can be directly achieved.

Next, we consider special cases where Proposition 4 can be
further improved when noiseless feedback at positive rate is
used in either direction depending on the zero-error capacity
of each link. We first recall that Shannon [13] showed that
in DMCs R∞ > 0 if and only if every output cannot be
reached from at least one channel input. Moreover, 0 ≤ C0 ≤
R∞ ≤ C. Thus, depending on the transition probability matrix
of a DMC, the following four cases (denoted by cj for j =
1, 2, 3, 4) are possible in the two-way parallel DMC:

c1 : (C0 = 0, R∞ = 0), c2 : (C0 = 0, R∞ > 0),

c3 : (C0 > 0, R∞ > C0), c4 : (C0 = R∞ > 0). (6)

There exist channels satisfying R∞ = C, though we focus on
the cases above. Thus, a two-way parallel DMC may result
from the 1 → 2 link satisfying cj , and the 1 ← 2, ck. We
denote this by (cj ; ck) for j, k ∈ {1, · · · , 4}. There are ten pos-
sible scenarios resulting from combinations of (6), two shown
in Figure 2. Each may employ distinct schemes in different
rate-pair regimes. We do not enumerate all possible cases;
rather we present three examples that show how propositions
of Section III can be used in the two-way setting.

In the first example, we show how the direction with C0 = 0
benefits when the other has positive zero-error capacity. In the
second and third examples, both channels have positive zero-
error capacity. In the former the zero error capacities are equal
and both directions benefit from it, exceeding Forney’s relia-
bility in subregion III . In the latter, zero-error capacities are
different, yielding a small region outside rectangular regime
C012

× C021
where infinite reliability is attainable.

Example 1. (c1; c4): Consider that direction 1 → 2 is a
symmetric channel with all probability entries strictly positive,
(i.e. a row of the matrix is [1− ε, ε2 ,

ε
2 ] for ε > 0) and C012 =

R∞12 = 0. Direction 1← 2 is a noisy typewriter channel [12]
of 4 inputs with C021

= R∞21
= 1, and crossover probability

ε < 1/2. Thus (c1; c4) results in the rate-pair regimes III and
V as shown in Figure 2 (right). Regime V is further divided

VI

VII

III

I

II

III

V

VI

IV

IV'

V' VI'

Fig. 2. Regimes in the capacity region of the two-way parallel DMC. Left:
channels (c3; c3), Right: channels (c1; c4) –Example 1–.

into two sub-regimes, VI and VII (see [10, Eq. (10)]), and a
small portion labeled Ω. Region Ω is included in VI or VII
depending on whether Proposition 1 or 2 is used for the 1→ 2
direction. For all rate-pairs in V , the 1 ← 2 direction attains
infinite reliability, thus we focus next on the 1→ 2 direction
and illustrate how to take advantage of C021

> 0. We formalize
this in the following:

Proposition 5: An achievable error exponent region for the
two-way parallel DMC with C021 = R∞21 > 0 and C012 =
R∞12

= 0 is determined for the following rate-pair regimes:
a. ∀(R̄12, R̄21) ∈ VI :

E12(R̄12, R̄21) = EBurn(R̄12),

E21(R̄12, R̄21) =∞,

b. ∀(R̄12, R̄21) ∈ VII :

E12(R̄12, R̄21) ≥ EJoint
RL-FB(R̄12, C021

− R̄21),

E21(R̄12, R̄21) =∞,

when Proposition 2 is used, and if Proposition 1 is used:

E12(R̄12, R̄21) ≥ ERH
RL-FB(R̄12, C021 − R̄21),

E21(R̄12, R̄21) =∞,

c. ∀(R̄12, R̄21) ∈ III:

E12(R̄12, R̄21) =

maxR̄12≤Rdata12
≤C12

R̄12

Rdata12
EForn(Rdata12)

+ min
{
C021

(
1− R̄21

Rdata21

)
,
(

1− R̄12

Rdata12

)
C1

}
,

if C021

(
1− R̄21

Rdata21

)
< R̄12,

EBurn(R̄12),

if C021

(
1− R̄21

Rdata21

)
≥ R̄12.

E21

(
R̄12, R̄21

)
≥ max
R̄21≤Rdata21

≤C21

R̄21

Rdata21

EForn (Rdata21
) .

Proof: See Appendix D in [10].
Example 2. (c4; c4): Consider a two-way parallel DMC

formed by two identical channels with positive zero error
capacity. Each direction corresponds to a noisy typewriter
channel of 4 inputs, with C012

= R∞12
= C021

= R∞21
= 1

and crossover probability ε < 1/2. The resulting rate-regimes
are subregions I , V , V ′ and III , from Figure 2 (left). Error
exponent for regions V and V ′ follow similarly.

Proposition 6: An achievable error exponent region for the
two way-parallel DMC with both directions having the same
zero-error capacity is:
a. ∀(R̄12, R̄21) ∈ I: E12(R̄12, R̄21) =∞, E21(R̄12, R̄21) =∞.
b. ∀(R̄12, R̄21) ∈ III: See Proposition 7e in Example 3.
c. ∀(R̄12, R̄21) ∈ V :

E12(R̄12, R̄21) ≥ EForn(R̄12) + (C021
− R̄21),

E21(R̄12, R̄21) =∞.

Proof: See Appendix E in [10]. Note that analogous results
apply ∀(R̄12, R̄21) ∈ V ′.
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Example 3. (c3; c4): Consider a two-way parallel DMC,
both directions with positive zero-error capacity, one larger
than the other. Let the 1 → 2 direction be a 4 input noisy
typewriter channel with C012 = R∞ = 1 and crossover
probability ε < 1/2; and let the 1 ← 2 direction to be
a pentagon channel [14] with C021

= log
√

5 ≈ 1.16, and
R∞ = log

(
5
2

)
. Figure 3 shows the capacity region and rate-

pair regimes. The small triangle Γ achieves the same reliability
as in I . Error exponents for V ′ result by flipping those of V ,
but Γ.

III:

I: V:

V':

IV': VI:

=

Prop. 7e.

Prop. 7f.

Fig. 3. Two-way parallel DMC of channel combination (c4; c3).

Proposition 7: An achievable error exponent region for the
two-way parallel DMC satisfying: 0 < C021 < R∞21

< C21,
and 0 < C012

= R∞12
< C12 and C021

> C012
is:

a. ∀(R̄12, R̄21) ∈ I: E12(R̄12, R̄21) =∞, E21(R̄12, R̄21) =∞.

b. ∀(R̄12, R̄21) ∈ IV ′:

E12(R̄12, R̄21) =∞
E21(R̄12, R̄21) ≥ Er(R̄21) + (C012

− R̄12), (7)

where (7) results from Proposition 3 with the random
coding error exponent Er(R) instead of Forney’s.

c. ∀(R̄12, R̄21) ∈ V :

E12(R̄12, R̄21) ≥ EForn(R̄12) + (C021
− R̄21),

E21(R̄12, R̄21) =∞.

d. ∀(R̄12, R̄21) ∈ Γ: E12(R̄12, R̄21) =∞, E21(R̄12, R̄21) =∞.
e. ∀(R̄12, R̄21) ∈ III: An achievable error exponent region

results as Figure 4 (refer to Appendix F).

f. ∀(R̄12, R̄21) ∈ V I: This regime is essentially similar to
III , with the distinction that the 1← 2 direction cannot
achieve Forney’s reliability, thus, a general E1w(·) error
exponent should be used instead of EForn(·) since ML
decoding is used.

Proof: See Appendix F in [10].

Fig. 4. Achievable EER for the subregion III of Proposition 7.

V. DISCUSSION AND OPEN PROBLEMS

There exist multiple open problems in two-way channels,
including a) the two-way variable length zero-error capacity
region; b) outer bounds for the two-way DMC EER for all
rate-pair regimes; and c) how messages and feedback can
be transmitted without invoking a time-sharing argument.
Our initial characterization of EER aims to illustrate how
a positive zero-error capacity can be exploited to not only
resolve synchronization but also simplify coding schemes and
increase reliability in the small error regime.
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