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Abstract—We investigate error exponent regions for the paral-
lel two-way DMC in which each terminal sends its own message
and provides feedback to the other terminal. Various error
exponents are presented in different rate-region regimes based on
the relative rates and zero-error capacities of both directions. The
schemes employed are extensions of error exponents for one-way
DMCs with noiseless, rate-limited and noisy feedback'.

I. INTRODUCTION

Shannon [1] introduced the two-way discrete memoryless
channel (DMC), and derived inner and outer bounds to its
capacity region. We focus on the two-way parallel DMC,
whose capacity region is a rectangle determined by the one-
way capacity of each link. Adaptation / interaction, or using
the feedback present in two-way channels, cannot increase this
capacity region, but may be exploited to attain larger error
exponents. We consider that either one or both directions have
a positive zero-error capacity Cp, and improve the reliability
at rate-pairs in the small error regime. Cy > 0 also alleviates
synchronization issues in variable length coding (VLC), since
the beginning / end of a message is signaled without error’.

In the two-way setting, a terminal may transmit messages
with small error at all rates below the one-way capacity, with
zero-error at all rates below Cj, provide noiseless feedback
for the other terminal limited to a certain rate below Cy,
provide noisy feedback, or any combination of the above.
We present achievable schemes and error exponents for the
two-way parallel DMC based on coding schemes for the one-
way DMC with feedback using VLC. The one-way reliability
function is defined for VLC as:

E(R) = _lim 1

= log Pe(R, A),
E[A]—oo E[A] ogPe(R, A)

for 0 < R < C (for C the small error capacity), transmission
time A, and probability of error P.(R, A). Next we present
some fundamental results:

Burnashev’s reliability: for any DMC of capacity C, zero-
error capacity of zero, and noiseless output feedback using
VLC, Burnashev [4] demonstrated that E(R) < Egum(R):

Egum(R) == C, <1 — g) , for 0<K R<C, (1)
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2Synchronization over channels with noisy feedback has been addressed in
[2], and extended to two-way channels in [3].
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where C} = maxy, 4, D (p(y|z1)||p(y|z2)) is the Kullback-
Leibler divergence of the distributions induced by the two most
distinguishable symbols of the forward direction alphabet.
Yamamoto-Itoh’s scheme [5]: utilizes noiseless feedback
in a two-stage VLC scheme to achieve Burnashev’s upper
bound. In the message stage, a capacity achieving code is
used to send a message whose preliminary estimate is fed
back without error. In the control stage, the encoder indicates
whether the receiver should accept the decision (ACK), or
await a retransmission (NACK). The control message estimate
is also fed back to keep synchronization. Errors result from a
wrong preliminary decision and a missed NACK. Retransmis-
sions occur if the decoder declares a NACK, which happens
with an exponentially small probability and the expected
number of transmissions for a message tends to one.
Forney’s error exponent [6]: is attained by using a single
bit of noiseless feedback to request a retransmission when
decoding leads to an erasure. Then, E(R) > Egon (R) , where:

Efom (R) = E(R)+C — R, for Re <R<C. (2
Above, E,(R) corresponds to the sphere packing bound for a
DMC without feedback, and R to the smallest rate for which
the sphere packing upper bound tends to infinity [7, Sec. 5.8].

Rate-limited noiseless feedback: this interesting regime
has seen limited work — [8] characterized the noiseless feed-
back rate needed to attain Burnashev’s bound. In Section III,
we extend these results to obtain achievable error exponents
with noiseless rate-limited feedback.

Noisy feedback: this more complicated case, due to syn-
chronization issues, was studied for one-way DMCs using
VLC in [2], [9], and for the two-way parallel DMC in [3].

Contributions: We present achievable error exponents of
the one-way DMC with limited-rate noiseless feedback in
Section III. We use these results in Section IV for two-way sys-
tems, where either direction may have Cj > 0. Depending on
the availability and amount of Cj, a terminal may provide rate-
limited noiseless feedback to the other direction in addition to
the transmission of its own messages (either with zero or small
error). The operating rate-pair determines if this noiseless
feedback can be exploited to either exceed Forney’s reliability,
achieve Burnashev’s bound, or attain infinite reliability. Due
to space constraints, all proofs are relegated to the Appendix
of the extended version of this manuscript, available at [10].
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II. PROBLEM STATEMENT

Let (X, W,)) denote a DMC characterized by finite input
and output alphabets X', ) and transition probability W (y|z),
for the transmission of equally likely messages from set M.
Let W™ denote n uses of the channel, then W™ (y™|z"™) =
[Tie; W(yk|zk) for 2™ € X™ and y™ € Y™. For systems
with active noiseless feedback, let Rgg € Rt be the available
rate of the feedback channel. For two-way channels, each
terminal is denoted by 7; for ¢ = 1,2. Let a two-way
(X1, V1, W (y1y2|x122), Va, X2) DMC be characterized by a
set of transition probability mass functions W (yiys|zi22),
finite input and output alphabets X, );, and message sets
M and M. In the two-way parallel DMC, W (y1ya|z122) =
Wia(ye|z1)-Wai (y1|22), where subscripts denote the commu-
nication direction from 7; to 75_;. This is equivalent to two
independent links operating in parallel and opposite directions.

A. The one-way DMC

The concepts of small-error capacity C, and zero-error
capacity Cy, for a one-way (X', W,)) DMC were introduced
by Shannon in [11] and [12] respectively.

Definition 1: A variable length block code C(M, Rgg, N)
for a one-way (X, W, Y) DMC with noiseless rate-limited Rpp
active feedback and block length N, comprises:

o A set of equally likely messages M.
o A set of forward channel encoding functions:

Tyt M x ZP1 5 X, where Z™ is the sequence received

through the rate-limited noiseless feedback link to produce

channel inputs X,, = x, (M, Z"~1).
o A set of feedback channel encoding functions:

zn : Y1 — Z which produce feedback inputs Z,, =

2, (Y1), with |ZN| < 2NBm per block of length N.
e A set of forward decoding functions: ¢,, : V" — M,
for n = 1,2,...,A, where A corresponds to the transmis-
sion time (a random variable), and is a stopping time for
which E[A] < N. Let R = 105[%” define the average
transmission rate, and let PG(R,A,RFB) (argument Rpp is
present according to the availability of feedback) be the
maximum error probability attained among all messages at
rate R and decoding (not erasure) occurring at time A, with
a noiseless feedback of rate Rpp. Then, P.(R, A, Rpg) =
max e Ploa(Y2) # m|M = m sent].

Definition 2: An error exponent is achievable at an expected
rate R over a one-way DMC with rate-limited feedback if there
exists a sequence of VLC codes such that:

_ —1 _
E(R, RFB) Z E[A]glli\fr,nN—wo E[A] log PS(R, A, RFB)7
for Cy < R <C. E(R7 RFB) =o0 for 0 < R < Co,VRFB.
B. The two-way parallel DMC

A parallel two-way DMC is formed by terminals T; for
i = 1,2, and channels (Xi,Wi,(3_i)(y3_i|xi),y3_i). Let
R; (3—s) be the expected rate in the 7 — (3 — i) direction, and
Aj (3—i) the transmission time®> at which decoding decision

about message M; is made at T5_;.

3Each direction has its own transmission time.

Definition 3: Terminals T} and T interact if their corre-
sponding channel inputs at time n adapt to past outputs as
Xi,n = Tin (Mi7 y?71>'

Definition 4: A two-way variable
code C(M;j,My,N) for a  two-way
(X1, V1, W (y1y2|z122), V2, X2) DMC comprises:
o Two sets of equally likely messages M.

« Two sets of encoding functions z; ,, : M; x y;H — Xin,
producing channel inputs X; , = 2, (M;, V"™ "),

« Two sets of decoding functions ¢;,, : V' = M,

for n = 1,2,...,A; (3_;), where A; 3_;) corresponds to the

transmission time in which a message is decoded at T5_; (as

in one-way case, a random variable with E[A; 3_5] < N.

Let an average rate-pair (Rja, Ro1) be defined by the
communication rates: Ri7(3_i) = E%f‘igﬁ‘)] for : = 1,2,
and let the error probability in each direction be denoted as
Pe, sy (Ra2, Ra1, Ai 3-4))- o

Definition 5: An error exponent pair E; 3_;) (R12, Rgl) is
achievable for a rate-pair (Ri2, Ra1), over a two-way parallel
DMC if there exists a sequence of two-way variable length
codes such that E[A; 3_;] < N for i = 1,2, and for very
large N simultaneously:

—logPe, ,_, (Ri2, Ra1, A (3-1))
E[A; 3-4)]
Definition 6: The achievable error exponent region (EER) is

the union over all achievable error exponent pairs at rate-pair
(a2, Ro1).

length
parallel

> E; 3-i) (Ri2, Ra1) .

III. MAIN RESULTS: ONE-WAY

Consider a one-way DMC with Cy = 0 and noiseless
active feedback with rate-limited to Rpg*. Let any attainable
error exponent for this channel at rate R in the absence
of feedback be F1,(R). When noiseless feedback is used,
improvements on the achievable error exponents depend on
how Rpp compares to the forward expected rate R, and how
feedback is used to detect and correct errors. With Yamamoto-
Itoh’s [5] scheme, Burnashev’s reliability is attained by feeding
back the message decoding decision made at the receiver.
However, the rate of the noiseless feedback transmission must
equal that of the forward link only up to a critical rate
R*, beyond which, as shown in [8], compressed noiseless
feedback may be transmitted instead in the message mode of
the Yamamoto-Itoh scheme in two forms: i) random-hashing:
independently and uniformly assigning each of the messages
into 2N bins, whose index is fed back to the transmitter
as a hash; and, ii) a joint channel-code / hash-function design
where an erasure decoding rule takes into account the bins
containing messages and is used to form a lower rate code.
These approaches result in the following two propositions, as
extensions of [8] that characterize achievable error exponents
for a given noiseless feedback rate>:

4The noiseless feedback link has a capacity of Copg» thus Rpg < Copg -

SError exponents are defined for the regime Roo < R < C'if they depend
on Eg(-). In the regime Cp < R < Roo, E1.(R) is achievable without
feedback using block codes. The reliability is unbounded for rates below C.
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Proposition 1: An achievable error exponent for a one-
way DMC with rate-limited Rpg noiseless active feedback,
utilizing random hashing and VLC is given by E(R, Rpg) >
ERM 2 (R, Rep), for Ry, < R < C, where:

ERR{I-FB(R Ryp) =
MAXR< Ry, <C T e Ftorn(Raa)
+ min {RFB, (1 - W) Cl}, if Reg < R, (3)
Egun(R), it R > R,

where FEgom(-) corresponds to (2), and Egyy(-) to (1). The
maximization above applies for R < R} = CC+CC ; when R >
R} then Ry = C.

Proof: See Appendix A in [10].

When the joint channel-coding / hashing-function method
from [8, Sections 3.4-5] is used instead, we have the following:

Proposition 2: An achievable error exponent for a one-
way DMC with rate-limited Rpp noiseless feedback, and joint
design channel-coding / hashing-function and VLC is given
by: E(R, Rgp) > B (R, Rpg) for Roe < R < C as:

Bt (R, Rrg) =
min {RFB + ;Egp (Q(R Rep), Q*, W) ;

(1 _ f) 01} if Reg < R, @
B (). if Ren > 7,

where Eg, (R, Q, W) corresponds to the sphere packing® error
exponent for rate R, input distribution () and channel law W,
and Q* is the capacity achieving input distribution.

Proof: Equation (4) results from [8, Equations (21-22)]. See
Appendix B in [10].

Propositions 1 and 2 are based on the Yamamoto-Itoh
scheme but using compressed noiseless feedback and allowing
erasure decoding. Feedback is also exploited to maintain
synchronization: the error-free control message informs the
transmitter of whether the preliminary decision was accepted
or not, regardless of correctness. The largest error exponent is
attained by a hybrid system that chooses the scheme to use
based on the rate-pair (R, Rpg):

ERL FB (R RFB) > max {ERL FB (R RFB) Jomt

Figure 1 shows this error exponent (vertical axis) for different
values of forward and feedback rate-pairs (mapped on the
horizontal plane). Note that for a fixed R, as 0 < Rpg < R
the first line in the expressions of either Proposition 1 (green
area) or 2 (gray area) are achievable. Once Rpp reaches R,
the reliability jumps to Burnashev’s, which for low R occurs
at an edge.

If the forward channel has Cy > 0, the operation of the
Yamamoto-Itoh scheme is simplified since the control stage is
free of errors in both directions, thus we have:

Proposition 3: An achievable error exponent for a one-way
DMC with rate-limited Rppg noiseless active feedback, using

6Esp(R, Q, W) is used under the assumption of totally symmetric channels.
See the discussion in [8, Equation (20), Sec. 3.4].

xits (R, Res) } -

Burnashev's outer bound.

0| Proposition 1

g| Proposition 2

Fig. 1. Achievable Error exponent with rate-limited noiseless feedback and
forward Cp = 0. We evaluated all rate pairs satisfying 0 < R < C and
0 < Rpp < C for a BSC(0.215).

random hashing, VLC, and satisfying 0 < Cy < R, is given
by E(R, Rpg) > ERLO(R, Reg), where:

Exirs (R, Reg) =

Reg + Erom(R), if Rpg < R,

for Roo < R < C, 5)
o0, if RFB > R,

for 0< R<C.

Note that E1,,(R) is achievable in the regime Cy < R < R,
and recall that infinite reliability is attainable for 0 < R < C,.

This proposition illustrates how Cy > 0 in the forward
channel may be exploited to boost reliability in the small error
regime as a consequence of having perfect knowledge of the
receiver’s control mode decisions.

Proof: See Appendix C in [10].

For channels with noisy feedback, VLC strategies must use
additional synchronization recovery techniques. In Yamamoto-
Itoh like schemes, feedback control messages may be incor-
rectly decoded at the encoder, causing terminals to lose track
of what message is being transmitted. In contrast, a single
bit transmitted with zero-error in either direction suffices to
maintain synchronization: i.e. a terminal may use this bit to
signal the termination of its own message, or alternatively, that
it accepted the current message sent from the other terminal.

IV. MAIN RESUSLTS: TWO-WAY

1. Non-interacting terminals: Any error exponent achiev-
able for a one-way DMC without feedback, Fi,(R), is
attainable in each direction of a two-way parallel DMC:
ie, Ei2(Ri2, Ro1) > Eiw (Ri2) and Epi(Ri2, Ro1) >
E1y (Ra1).

2. Interacting terminals: when terminals employ feedback/
interaction, this affects the error exponents:

Proposition 4: An achievable error exponent pair for the
two-way parallel DMC, in the rate-pair regime 0 < Cp,, <
ng < (Ci2 and 0 < 0021 < Rgl < (o, using VLC is:

E13(Ri2, Ro1) = Erom (R12)
E1(R12, R21) = Erom (R21)
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Proof: When Cj,, = Cp,, = 0, this is shown in [3, Prop.
3@1)]. Alternatively when Cp,, > 0 and Cp,, > 0, each
terminal has access to at least a zero-rate noiseless feedback
link, and Forney’s (2) reliability can be directly achieved.

Next, we consider special cases where Proposition 4 can be
further improved when noiseless feedback at positive rate is
used in either direction depending on the zero-error capacity
of each link. We first recall that Shannon [13] showed that
in DMCs R, > 0 if and only if every output cannot be
reached from at least one channel input. Moreover, 0 < Cy <
Roo < C. Thus, depending on the transition probability matrix
of a DMC, the following four cases (denoted by c; for j =
1,2, 3,4) are possible in the two-way parallel DMC:

Cli(COZO,ROOZO), CQZ(COZO7RQO>O),

c3: (CO >0,Ry > Co), cq: (CO =Ry > 0) (6)

There exist channels satisfying R, = C, though we focus on
the cases above. Thus, a two-way parallel DMC may result
from the 1 — 2 link satisfying c;, and the 1 < 2, ¢;. We
denote this by (c;; cx) for j, k € {1,--- ,4}. There are ten pos-
sible scenarios resulting from combinations of (6), two shown
in Figure 2. Each may employ distinct schemes in different
rate-pair regimes. We do not enumerate all possible cases;
rather we present three examples that show how propositions
of Section III can be used in the two-way setting.

In the first example, we show how the direction with Cy = 0
benefits when the other has positive zero-error capacity. In the
second and third examples, both channels have positive zero-
error capacity. In the former the zero error capacities are equal
and both directions benefit from it, exceeding Forney’s relia-
bility in subregion I1I. In the latter, zero-error capacities are
different, yielding a small region outside rectangular regime
Cop,, x Cp,, where infinite reliability is attainable.

Example 1. (c1;¢4): Consider that direction 1 — 2 is a
symmetric channel with all probability entries strictly positive,
(i.e. a row of the matrix is [1 —¢, §, §] for € > 0) and Cp,,
R, = 0. Direction 1 <— 2 is a noisy typewriter channel [12]
of 4 inputs with Cp,, = R~,, = 1, and crossover probability
€ < 1/2. Thus (c1; ¢q) results in the rate-pair regimes /17 and
V' as shown in Figure 2 (right). Regime V' is further divided

R21
Coy
oot i 1

Co Coyy = Rooyy =1

A Vvl Il

C wlu v Vv,

I |V Ry
Con R Cra v, Q
‘ Ri»
Co, =0; Roo,, =0 R‘:, 7, Coar C1y

Fig. 2. Regimes in the capacity region of the two-way parallel DMC. Left:
channels (c3;c3), Right: channels (c1;cq) ~Example 1-.

into two sub-regimes, V; and Vi (see [10, Eq. (10)]), and a
small portion labeled 2. Region € is included in V; or Vg
depending on whether Proposition 1 or 2 is used for the 1 — 2
direction. For all rate-pairs in V/, the 1 < 2 direction attains
infinite reliability, thus we focus next on the 1 — 2 direction
and illustrate how to take advantage of Cp,, > 0. We formalize
this in the following:

Proposition 5: An achievable error exponent region for the
two-way parallel DMC with Cp,;, = Roo,, > 0 and Cy,, =
Ro,, = 0 is determined for the following rate-pair regimes:

a. Y(Ry2, Ro1) € Vi
E12(Ri2, Ra1) = Epum(R12),
Ea1(Ry2, Ra1) = o0,

b. V(Ri2, Ra1) € Vir:

F12(Ry2, Ro1) > ER™e(Ry2, Co,, — Ra1),
E>1(Ry2, Ra1) = o0,

when Proposition 2 is used, and if Proposition 1 is used:
E15(Ria, Ro1) > Egltpg(Ri2, Co,y — Rov),
Es1(R12, Ra1) = o0,
c. V(Rya, Roy) € III:
E13(Ri2, Ry1) =

_ Ry
maxg,,< Raata;5 SC12 Ry, Efom (Rdata12 )

+nin {0, (1-782) (1 i) &1
if Co,, (1 — ) < R,
EBurn(R12)7
if Co,, (1 - Rﬁ;) > Ry
RQI

_ max
Ro1 < Raaay; <C21 Rdatazl

Es1 (Ri2, Ra1) > Erom (Rdatay, ) -
Proof: See Appendix D in [10].

Example 2. (c4;cq): Consider a two-way parallel DMC
formed by two identical channels with positive zero error
capacity. Each direction corresponds to a noisy typewriter
channel of 4 inputs, with Cp,, = Reo,, = Co,y = Rooy, =1
and crossover probability € < 1/2. The resulting rate-regimes
are subregions I, V, V' and II1, from Figure 2 (left). Error
exponent for regions V' and V' follow similarly.

Proposition 6: An achievable error exponent region for the
two way-parallel DMC with both directions having the same
ZEro-error capacity is:

a. Y(Ri2, Ro1) € It E1a(Ri2, Ra1) = 00, Ea1(Ri2, Ra1) = oo,
b. V(R12, Ro1) € I11: See Proposition 7e in Example 3.
C. V(ng,Rgl) eV:

FE12(Ri2, Ro1) > Erom(Ri2) + (Co,, — Ra1),
Es1(Ry2, Ro1) = 0.

Proof: See Appendix E in [10]. Note that analogous results
apply V(ng, Rgl) eV’
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Example 3. (c3;c4): Consider a two-way parallel DMC,
both directions with positive zero-error capacity, one larger
than the other. Let the 1 — 2 direction be a 4 input noisy
typewriter channel with Cp,, = Ro = 1 and crossover
probability ¢ < 1/2; and let the 1 + 2 direction to be
a pentagon channel [14] with Cy,, = log\/g ~ 1.16, and
Ry =log (g) Figure 3 shows the capacity region and rate-
pair regimes. The small triangle I" achieves the same reliability
as in I. Error exponents for V' result by flipping those of V,
but I.

Ry
Coy .
R V': (oo, Prop. 3) E III: Prop. 7e.
IV': (00, Eq.(7)) U VI: Prop. 7f.
0021 )
1I: (00,00) i V: (Prop. 3,00)
i
i Ry,

R0012: CE)u C(le Cha
Fig. 3. Two-way parallel DMC of channel combination (c4; c3).
Proposition 7: An achievable error exponent region for the

two-way parallel DMC satisfying: 0 < Cp21 < Roo,, < Coi,
and 0 < 0012 = R0012 < (12 and 0021 > 0012 is:

a. Y(Ri2, R21) € I: E1a(Ri2, Ro1) = 00, Eo1(Ri2, Ro1) = oc.

b. V(Rlz,]:—le) eIV’

E12(Ry2, Ra1) = 00
E21(Ry2, Ra1) > E.(Ra1) + (Cop, — Ri2), (1)

where (7) results from Proposition 3 with the random
coding error exponent F,(R) instead of Forney’s.

C. V(Rlz,Rgl) ev:
El?(R127R21) > EFOm(R12) + (0021 — R21),
E31(Ri2, Ra1) = oo.
d. Y(Ri2, Ro1) € I': E1a(Ri2, Ro1) = 00, Eo1(Ri2, Ra1) = oo.
e. V(Ry2, Ro1) € III: An achievable error exponent region
results as Figure 4 (refer to Appendix F).
f. V(Ry2, Ry1) € VI: This regime is essentially similar to

111, with the distinction that the 1 < 2 direction cannot
achieve Forney’s reliability, thus, a general E1,,(-) error
exponent should be used instead of Epom(-) since ML
decoding is used.

Proof: See Appendix F in [10].

Ezl(Rlz-, RZl)

<

Ry _
C—”) Co,, + EForn (R21))
/12

(Erom(R12), Brom(R21))

Equations (16)-(17
in [10]

Equations (18)-(19) in [10]

0.0

((1 - %) Coy, + Eror (Ra1) ‘0)4122‘131%1321)
12

Fig. 4. Achievable EER for the subregion I of Proposition 7.

V. DISCUSSION AND OPEN PROBLEMS

There exist multiple open problems in two-way channels,
including a) the two-way variable length zero-error capacity
region; b) outer bounds for the two-way DMC EER for all
rate-pair regimes; and c¢) how messages and feedback can
be transmitted without invoking a time-sharing argument.
Our initial characterization of EER aims to illustrate how
a positive zero-error capacity can be exploited to not only
resolve synchronization but also simplify coding schemes and
increase reliability in the small error regime.
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