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Solvable model of gas production decline from hydrofractured networks
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We address questions that arose from studying gas and oil production from hydrofractured wells. Does
past production predict the future? This depends on deducing from production as much as possible about the
plausible geometries of the fracture network. We address the problem through a solvable model and use kinetic
Monte Carlo and Green’s function techniques to solve it. We have three main findings. First, at sufficiently long
times, the production from all compact fracture networks is described by a universal function with two scaling
parameters, one of which is the diffusivity of unbroken rock « and the second of which is a parameter V., with
units of volume. Second, for fracture networks where the power-law distribution of fracture spacings falls below
a critical value (and this appears to be the case in practice), early-time production always scales as one over the
square root of time. Third, the diffusivity « that sets the scale for late-time production is inherently difficult to
estimate from production data, but the methods here provide the best hope of obtaining it and thus can determine
the physics that will govern the decline of unconventional gas and oil wells.
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I. INTRODUCTION

Hydrofracturing liberates gas and oil from mudstones, of-
ten called shales, that form layers hundreds or thousands of
meters deep and 30 to 100 m thick [1,2]. Hundreds of thou-
sands of these “unconventional” wells have now been drilled,
and the U.S. natural gas supply depends upon them [3,4].
The extraction process requires creating a fracture network
through a subsurface stimulation process involving explo-
sives, pressurized water, and sand [5]. The resulting fracture
networks extend over a distance on the order of a kilometer in
one direction, and on the order of 200 m in the perpendicular
horizontal direction. Gas diffusion in unfractured shales is
very slow; the diffusivity « is on the order of 1078 m?/s [6].
However, once gas reaches the fractures it travels rapidly to
a wellbore and from there up to the surface. We will mainly
refer to gas production throughout this article, but the same
physical picture and equations apply to oil as well [7].

The shapes and connectivity of fracture networks that lead
to production are poorly known. Microseismic imaging pro-
vides clues based upon acoustic emissions detected during the
fracturing process [8,9], but the sound emission is not likely to
provide an accurate map of the fractures. Rapidly moving brit-
tle fractures do not have to generate strong acoustic emissions,
and noise from the grinding of rock faces in shear does not
have to correspond to an opening crack. More clues have come
from diagnostic wells [10] and from ingenious new acoustic
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techniques [11]. These techniques are expensive, rarely em-
ployed, and provide only partial geometrical information.

Despite the inevitable complexity of fracture networks cre-
ated underground, one can make a great deal of progress by
imagining that the fracture network adopts the parallel plate
geometry shown in Fig. 1 [6]. Two important quantities char-
acterizing underground fracture networks can be extracted
from the time history of gas production. These two quantities
are M, the stimulated original gas in place, and the interfer-
ence time T = d?/a, where « is the diffusivity of gas and 2d
is the spacing between the plates. The stimulated original gas
in place is the original gas density py times the stimulated
reservoir volume V. One of our goals here is to understand
why this model performs so well given that the geometry on
which it is based is so simple.

Our larger goal, however, is to find if the time depen-
dence of gas production contains enough information that
it is possible to extract details about the geometry of the
fracture network. At first the answer appears to be yes. The
time dependence of gas production is given by a sum over
exponential terms from the solution of an eigenvalue problem.
This operation can in principle be inverted, the eigenvalues
in principle extracted, and these then in principle provide
detailed signatures of the geometry.

However, the inverse problem that moves from production
history to network geometry is ill-posed. Large changes in
the network produce almost no change in production. We
demonstrate this not through a strict mathematical method, but
through careful physically motivated analysis in two different
production regimes.

©2021 American Physical Society
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FIG. 1. The geometry of the parallel plate model [6] consists
of a horizontal well with a uniform array of planar hydrofractures.
The cuboid volume that contains the well and the hydrofractures
is known as the stimulated reservoir volume. Gas transport in this
model involves diffusion of gas pressure in the interior of the stim-
ulated volume and normal to the hydrofractures. Gas transport from
the exterior is neglected.

The first regime is the long-time regime. At sufficiently
long times, gas production for all compact fracture networks
is described to very high accuracy by two numbers. The first
of these is the diffusivity « of unfractured rock, which sets
the physical scale. The second number V. is the volume
within an equivalent absorbing square boundary; all details
about the network other than the volume of the square become
irrelevant.

The second regime is the early-time regime. Here the situ-
ation is a little more complicated. Suppose the probability of
finding a region where the spacing between nearby fractures is
d goes as P(d?) oc d~%* . For all networks where the exponent
B is less than the critical value of 1/2, the early-time behavior
is the same as the parallel plate model in Fig. 1. This condition
applies to all model systems we studied. Thus we obtain an
explanation for why the parallel plate geometry matches ex-
perimental data so well, but we also obtain discouraging news
about the prospects of deducing geometry from production.
At both early and late times information about all networks
collapses down into two early-time and two late-time param-
eters. It is only during the crossover period that some more
information can be extracted. We describe methods to do so,
although even in idealized theoretical settings we have not
gotten them to work as well as we originally hoped. We
show that by including the power law § in our models we
can improve their ability to fit production histories in ways
that improve the modeling accuracy according to standard
statistical criteria. This process may or may not withstand the
test of use with real noisy data. In any event, we believe our
methods point to how to extract the most possible physically
reliable information from production data.

An obvious and vexing sign that the inversion problem is
ill-posed appears in the parallel plate model. The first clue
about geometry one ever sees in production data is a cumu-
lative production curve bending below a line going as ¢!/2.
In the parallel plate model, this happens on the timescale
7 = d?/a (Fig. 1). The interference time 7 is the time it takes

the pressure from neighboring fracture planes to diffuse to the
halfway point between the fractures. The problem here is that
T is compatible with an infinite number of values of d? and
o, so long as their ratio is conserved. This degeneracy breaks
down at late times when flow is dominated by gas coming
from unbroken rock. But how long does one need to wait for
that late-time information? How clear is the signal?

The setting in which we address all these questions is an
exactly solvable model. The expectation, as for other sim-
ple models in physics, is that this will make it possible to
understand qualitative ideas, that the conclusions will have a
universal character, and that the hosts of details we omit turn
out not to make a large difference. The particular model we
define is similar to some that have been studied before. At
first it appears most similar to diffusion limited aggregation
[12], because it features diffusive motion on a lattice, where
walkers arrive at a surface. However, in our problem, the
absorbing surface is static and does not change as time pro-
gresses. Therefore, there is actually a greater formal affinity
with the problem of electron transport in disordered solids,
and we will draw on the methods developed for that context
throughout this paper. We present two methods to solve the
model. The first method is a kinetic Monte Carlo approach.
This was the first method we tried. Then we developed a sec-
ond method that draws on lattice Green’s functions to obtain
exact time-dependent solutions, at the cost of greater formal
complexity. We have published a preliminary account of the
second method [13]. Here we provide an improved formalism
that delivers answers around 100 times faster, we provide
many more details of how the method operates, and then we
use the method to answer the questions we have posed.

While our work here occurs in a completely idealized set-
ting, we were motivated by and will eventually return to the
application of these ideas to field data. A similar version of
this approach to long-time production behavior was already
applied to field data in [14,15]. The fact that using power-law
distributions of fractures can improve fits to data was found
previously [16]. To explore the implications of single-well
production models for field-wide production estimates see [4]
and references therein.

In Sec. IT we describe the kinetic Monte Carlo approach
and the conclusions we drew from it. In Sec. Il we sum-
marize results from Green’s function methods that permit
exact solutions. In Sec. IV we explore the relation between
fracture network geometry and production. In the course of
developing the applications, we demonstrate universality of
long-time production, show how to extract information about
the power-law structure of the fracture network, use it to
make predictions about future production, and show why this
procedure is ultimately unsatisfying. Section V summarizes
our conclusions. Details concerning the Green’s function for-
malism are found in four Appendixes.

II. KINETIC MONTE CARLO
A. Model

The fracture network in hydrofractured shales is contained
in a finite region around the well commonly referred to as the
stimulated reservoir volume. As sketched in Fig. 1, the length
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FIG. 2. Geometry of our Monte Carlo model, with a stimulated
reservoir volume (fractures in blue) embedded in a fracture-free
matrix (white). The precise structure of the fracture network comes
from a geologically constrained percolation model described in detail
in [17,18]. In the model, fracture length results from a power-law
probability distribution characterized by the exponent e. The density
of the fracture network is controlled by the filling fraction p, defined
as the ratio of the broken lattice bonds to the total number of bonds.

L of the well in the horizontal direction is kilometers, while
the height H of the shale layer is 30—100 m. This is why all
the models in this paper are defined in two dimensions. Some
qualitative phenomena might require a three-dimensional
explanation, but we focus here on what can be learned from
assuming that the essential phenomena are contained in two
dimensions.

Our first numerical experiments were carried out on sys-
tems such as a 25x25 square lattice with periodic boundaries
shown in Fig. 2. The bonds between adjacent lattice sites can
be broken or left intact, to mimic fracture or unbroken rock.
The blue lines depict fractures, and when gas located in the
white space diffuses to a fracture, it is absorbed and removed
from the system. The fractures are viewed as infinitely thin,
and the gas diffuses in a continuous plane.

Our fracture network comes from a lattice percolation
model based on observations of fractures in geological for-
mations [17]. Fractures in the model lie along two primary
orthogonal directions. In accord with a large body of ge-
ological research, the length of the fractures is distributed
according to a power law of exponent e, such that the cumu-
lative density function for length [ is given by [19,20]

F(l) = L= tmin (1)
lr;;x - ln:ii‘

Here i, and [« are the minimum and maximum lengths:
Imin 1S the same as the lattice spacing; [« is infinite. In ge-
ological fracture systems, e has been shown to vary typically
between 0.8 to 2.2, with a mode at 1.2. The geological data
are for rocks fractured by natural processes, which need not
produce the same power laws as hydrofracturing. However,
in the absence of better information we begin here. Fracture
density in the model is controlled by the filling fraction p,

defined as the ratio of broken lattice bonds to the total number
of bonds. Our fracture network is the spanning cluster for the
percolation problem fully defined by e and p [17].

Given the network in Fig. 2, we examine the diffusion
problem involving transport of ideal gas to an absorbing net-
work of infinitely conductive fractures. Initial gas saturation in
the model is uniform, and we assume homogeneous transport
properties for the unbroken lattice. We are interested in the
rate of mass transport to the fracture network.

We simulate diffusive transport using a Monte Carlo
scheme involving independent random walks. We populate
the lattice with a uniform initial density of random walkers
and let each walk continue until the walker is absorbed on
the fracture network. The probability density function for the
walker arrival time, which one can construct by considering
sufficient numbers of walks, gives the time history of the mass
transport rate.

We determine each hop by sampling the displacement
distribution ¢(x) and the waiting time distribution 1 (¢) for
Brownian motion:

_ 1 (x— py?
B0) = o exp (‘T) 2)

where o0 < lattice spacing and u = 0 (no drift), and

t—l —t 3
1ﬂ()—t—*fml)( F) 3)

In practice we set t* =1 and ¢ = 0.1. This corresponds to
a diffusion constant for the two-dimensional problem of D =
a?/(2t*) = 0.005.

B. Validation

We validated our Brownian walk simulation by comparing
with an analytical solution [6] for flow to parallel plates in
one dimension. The geometry is given in Fig. 3(a). We show
in Sec. III D 2 that the difference between the one-dimensional
solution for plates and two-dimensional solution for squares is
insignificant. Particles start at a randomly chosen point in the
interior and diffuse until they hit a boundary.

Starting with a uniform initial density of random walkers,
we simulate Brownian motion until all walkers are absorbed
on the fractures. Next, we fit the solution for flow into squares
to the probability density function for the walkers’ arrival
time and obtain the scaled rate vs time plot presented in
Fig. 3(b). There is a good agreement between the analytical
result [Egs. (28) and (29)] and Monte Carlo calculations.

C. Results

We now apply the Monte Carlo scheme of Sec. ITA to
several fracture networks. Figure 4 shows the production rate
for the fracture network presented in Fig. 2. At early times,
the rate declines in accord with the parallel plate solution
[6]: the rate initially declines as 1/ A/t and transitions to an
exponential at about 7 = 1. The 1/+/¢ decline emerges from
the diffusion of low gas pressure from the fractures through
what appears to be a semi-infinite reservoir at early times.
Next, the rate begins to decline as a power law and maintains
this behavior over approximately a decade in scaled time. The
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FIG. 3. Validation of our Brownian motion code. To construct
the scaled rate vs time plot, we fit the parallel plate solution (29) to
the probability density function for arrival time, which we get from
the simulation. The fitting procedure yields a timescale t and a mass
scale M, which we then use to scale time and rate: scaled time 7 is
defined by 1/7; scaled rate, by Q/(M /). (a) Validation geometry,
a fractured (blue) 5x5 lattice. (b) Simulation (jagged6 line) matches
the theory from the parallel plate model (smooth line).

emergence of this power law is the most striking feature of
Fig. 4. It suggests that the rate vs time plot might contain
information about the geometry of the underlying fracture
network and in particular about the power-law distribution
of fractures forming the network. The exponent here for the
decline of gas production is D = —1.7.

To examine the relationship between the power-law decline
and fracture network geometry, we compared production de-
cline for numerous fracture networks with different fracture
length exponents e and/or filling fractions p. The fracture
length exponent e controls the structure of the fracture net-
work, such that small values result in networks made up of
a few long fractures and large values lead to networks with
numerous short fractures. (In the limit of e — 00, one recov-
ers the classic bond percolation problem in which the size of
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FIG. 4. Production decline for the fracture network in Fig. 2
(jagged line). The rate initially declines according to the solution for
the parallel plate geometry, Eq. (29) (smooth curving line), but then
transitions to a power-law decline (straight line).

every fracture is one lattice spacing.) The filling fraction p
controls the density of the fracture network.

As an example, Fig. 5 presents the geometry and rate for a
network with e = 2 and p & 40%. The exponent for the power
decline here is D = —1.4, which is smaller in magnitude than
the exponent for the network with e = 1.2 and p =~ 40%.

Thus our Monte Carlo simulations suggested that the struc-
ture and density of fracture networks manifested themselves
through a power-law decline in the time history of production
rate. If the correspondence between fracture network geome-
try and production decline were one to one and could precisely
be identified, we would be able to arrive at conclusions about
fractal network geometry from the production decline. The
concern with this method was that it was being applied in
a relatively small, finite domain. We decided that limitations
on precision and computational efficiency in the Monte Carlo
method would make it worthwhile to develop an analytical
approach capable of solving the problem exactly in an infinite
external domain.

We developed such an approach and proceed to discuss
it in detail. The methods were first described in [13], but
the brevity of that discussion, as well as numerous technical
improvements leading to a hundred-fold increase in solution
speed justify a revised description, to which we now turn.

III. EXACTLY SOLVABLE DISCRETE MODEL
A. Model definition

We define an exactly solvable model on a square lattice.
Every site of the lattice has a binary index associated with
it and a continuous variable. The binary index determines
whether the site is rock or an absorber. The continuous vari-
able represents a density of gas. If the site is rock, then gas
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FIG. 5. Geometry and decline rate for structure with e = 2 and
p =~ 40%. (a) Fracture network with e =2 and p ~ 40%. (b) Pro-
duction rate (jagged line) initially declines according to the solution
for the parallel plate geometry (smooth curve), Eq. (29), but then
transitions to a power-law decline (straight line).

diffuses through it as a conserved quantity. If the site is an
absorber, any gas that arrives at it immediately disappears
from the system. One can think of the absorbers as sites
along a fracture network that conducts gas rapidly to the
surface.

This model differs from the one in the previous section
in a subtle way. In the previous section as well as here, the
fracture network is defined on a square lattice. However, in the
previous section the fractures were viewed as infinitely thin
and gas density was defined everywhere in a two-dimensional
plane. Here the gas density is defined only on the (countably
infinite) sites of the lattice. Therefore the two models give
different results at short times ¢ < a2 /o =1, where a is the
lattice spacing and « is the diffusivity. On long timescales,
equivalently over large distance scales, the models are the
same.

Sites of the square lattice are denoted by R j» or more simply
just by j. Sites j and j’ on the lattice are connected by links of
strength k; = kj ;. We restrict ourselves to nearest-neighbor

coupling

kij =

4)

1 if j and j are nearest neighbors
0 otherwise.

Each site is either intact rock, or an absorber, which we indi-
cate through a variable 6; by

1
o=t

On every site j there lives at every time a density of gas
p;(t). We denote the state vector of densities by |o(¢)), and
the density at site j by

pi(t) = {jlp@)).

We use dimensionless variables, where distance is in units
of a lattice spacing a, time is in units of a”/a, and « is the
diffusivity of gas. The time evolution of p is given by

i) = Zejkjj’[pj’(t)ej/ — p;(0)]. (6)
7

if j is rock, not an absorber
if j is an absorber.

®)

Whenever a site j is an absorber (0; = 0), the density of gas
located there does not change. At a rock site j (6; = 1) that
has as neighbor j’ an absorber (9, = 0), gas flows from j
to j' as if the density at j' is 0. Since the density at j* does
not change, the gas that flows in this way exits the system;
conceptually it is transported to the surface out of the rock.
The time evolution can be written more compactly as

1p(t)) = Hlp(t)), (7)
where
(jIH|j') = Hj; = 0,lk;y — BS;;10;; B= kjj =4.
j/
(8)

We choose an initial density given by

o) =lp),  (jlei) = p;(0) = 1. ®

We want to know the total amount of gas Q that has exited
from the lattice by time ¢. This is given by summing over j:

@) = Z [p;j(0) — pj ()] = (pilpi) — (pilp(®)),  (10)
j

where (p;| is the transpose of |p;).

Because Eq. (6) is an infinite set of coupled equations, it
is impossible to solve directly by any elementary means. We
divide the solution into two phases. In most of our example
problems, the system has one or more enclosed interior re-
gions, all finite, and then an exterior region which is infinite.
Intuitively it is clear that the solutions of disconnected interior
regions are completely independent from each other, and in-
dependent of the solution of the exterior problem. Therefore,
we solved these problems separately.

To do so, we modified the time evolution matrix of Eq. (8)
twice, first to address the interior problems, and second to
address the exterior problem. The modification for the inte-
rior problems is straightforward, since it is accomplished by
limiting the equation of motion to a subspace. To address the
exterior problem, the equation of motion has to be thought
through in a new way. The solution of the problem once it
is recast is so technically elaborate that we relegate most of
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FIG. 6. Illustration of the interior of a fractured network. The ab-
sorbers are the black squares, and these are indicated by the condition
0; = 0. The space L is the space of all sites interior to the absorbers
but not absorbers themselves: light blue (or gray), indexed by /.

it to a set of Appendixes. The remainder of this section is
devoted to the two sets of solutions and to presentations of
test problems as a prelude to applying the solutions to address
physical questions.

To assist presentation of the two modified time evolu-
tion problems, we illustrate various subsets of lattice sites in
Figs. 6 and 7.

B. Solution for enclosed interior region

Consider a region of the two-dimensional lattice sur-
rounded by absorbers, and focus only on gas absorption in
this interior region (Fig. 6). Project down onto the finite-
dimensional space L of sites j where 6; = 1, (Fig. 6). Index
this space with /. Then the solution of the interior problem is
given by Eq. (7) with

(LWH|I'y = Hyp = ki — B&yyr. (11)

The matrix (I|H|l') has —B down the diagonal, and every
row and every column has between zero and four off-diagonal
entries equal to 1. Any row or column with fewer than four

FIG. 7. Illustration of the exterior of a fractured network. Space
M is the set of all absorbers in contact with the exterior: black
squares, indexed by m. Space M’ is the set of all nearest neighbors of
absorbers that are not themselves absorbers and in contact with the
exterior: orange (or gray), indexed by m’. Space N is the union of M
and M': black and orange (or gray) squares, indexed by v. Space O is
the set of absorbers in contact with the exterior and all exterior sites:
black squares plus everything outside them.

nonzero off-diagonal entries represents a lattice site with one
or more neighboring absorbers. The factors 6; from Eq. (8) are
gone because only sites where 6; = 1 are left in the system. In
this space L, H has a complete set of eigenvectors |o) so that

1= "la)e| and Hle) = Eye). (12)

One can write the solution of Eq. (7) as

lp@) = e |a)(alp). (13)

Clearly all the eigenvalues E, must be negative, or else there
would exist initial conditions for which the amount of gas
in the lattice increases, and that is impossible. At time ¢ the
amount of gas that has been produced is

Q) = (pilps) — Y _ ™' (el o), (14)

and the production rate is (note again that all eigenvalues are
negative)

0 =—) Eye™|(alp)|. (15)

These expressions are practical so long as finding all the
eigenvalues is practical. By way of reference, for a 100 x 100
two-dimensional lattice, such as the interior region depicted in
Fig. 2(b), for which the matrix A is on the order of 10000 x
10000, standard eigenvalue solvers can find all eigenvalues
and eigenvectors in a few seconds on a desktop computer. The
matrix is sparse, but for a problem of the scale just mentioned,
the sparse matrix eigenvalue solvers are much slower, less
accurate, and find only a subset of the eigenvalues rather than
all of them as we require. For the largest systems considered in
this paper (Sec. IV F) the interior region was partitioned into
disconnected subregions, the eigenvalue problem was solved
in each of them, and the results summed at the end to give
total interior production. Finding all the disconnected interior
regions is an easy numerical problem since one simply needs
to place a boundary around all the absorbers and then run
through all the sites inside this boundary, checking for regions
connected to each other.

We did not pursue the formal inverse mathematical prob-
lem of deducing the fracture network from the production
curves. Based on the physically motivated analyses that follow
it seems certain that the mathematical problem is ill-posed, for
variations in the initial conditions are amplified exponentially
by the diffusion operator, Eq. (6), when time is reversed.

C. Solution for infinite system

Any collection of absorbers in contact with an infinite two-
dimensional lattice must have some absorbers that draw on
an unbounded amount of gas. While formally one can still
employ Eq. (13), the number of eigenvalues and eigenvectors
is infinite, and a direct approach to diagonalizing the diffusion
operator fails. This requires a completely different and more
elaborate formal approach.

While the formalism is necessary to achieve our aims,
the main purpose of this paper is to employ this formalism
to answer questions about collection networks. Therefore we
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develop the formalism in a series of Appendixes. Here we only
describe the purpose of each Appendix.

Appendix A Obtain an equation of motion that is identical to
Eq. (6) in the exterior region O (Fig. 7) but keeps all gas
in the interior regions from ever changing if the interior
begins with uniform density py.

Appendix B Present expressions for lattice Green’s func-
tions in the infinite square lattice and find methods for the
computation of the matrix elements for large distances.
This task does not appear to have been achieved previ-
ously, but is necessary for the ensuing results.

Appendix C Use a T matrix formalism to reduce the so-
lution of the infinite exterior problem to a finite matrix
problem defined on the domain N (Fig. 7).

Appendix D Compute gas production Q from the solution
of the finite matrix problem.

We summarize the net result of the whole procedure. In
the Appendixes we use standard bra and ket notation from
the Green’s function literature, while here we repeat key ex-
pressions in matrix form. Let H° be the matrix corresponding
to a diffusion problem on an infinite square lattice without
absorbers,

HY, = k;jp — 485, (16)

and let G’(E) be a matrix that solves the equation, for E in
the complex plane, G°(E) (E — H®) = 1. Define a matrix H'
on the space N with the following matrix elements: consider
a site m that is an absorber bordering the exterior (space M in
Fig. 7), and suppose it has n,, neighboring exterior rock sites.
Then H'! has diagonal elements

H!' =n,. (17)

mm

The off-diagonal elements, for each m’ that is a neighboring
exterior rock site of m (space M’ in Fig. 7), are

H)., =H, =-1. (18)
Define the vector 7 with components

H,=> H),. (19)

Here v lives in space N of Fig. 7. Then find the vector T(E)
that solves the following matrix equation

[1—H'GENT(E)=H. (20)

This matrix equation is finite dimensional, since the matrix
H'! and the vectors ’T(E ) and # have indices that run over the
finite space N. The matrix G is defined on the infinite square
lattice, but here one uses only the matrix elements G° ,(E) for
v and v’ in space N.

Then the gas production rate is given by an integral over
the argument E of T(E) through

0
0= —/ d—’\e*fImZTv()\). (21)

87'[)\,

D. Solutions of test problems
1. One absorber

The simplest possible problem that makes use of this for-
malism is a single absorber in an infinite square lattice. |7)
has five components. The first corresponds to the absorber at
t = 0, and the remaining five correspond to the four neighbors
of the absorber. Only 7y has a nonzero imaginary part; the

remaining values are 7, = —1, wherev =1, ..., 4,
Gio(A) Goo(A)
To) = 42020 _ 5 g J0ON (22)
° Goo(1) |Goo (32
and G, (A) is the complex conjugate of Ggo(1). So
1
Im 75(A) = —Im . (23)
’ Goo(»)

This is the only contributor to gas production, as shown in
Eq. (D5). As in Eq. (D7), define

Gho(f) = Goo(—e™);  T(f) = rlli_r)r%)ImZTV(—e*f —in).

We find the spectrum and production rate shown in Fig. 8:

. * d f * d - -1
Q:/ _fe—tefy(f):/ _fe—feflm Z )

—8 T —8 T Goo(f)

(24)

For the integral to converge, one has to take values of f up to
around 2000, which correspond to values of A on the order of
e~20%  Asymptotic values of the lattice Green’s function are
available [21]. In the limitas A — 0,

1 1
lim Im G()() =—-, Re Goo()») =—In|{——]). (25)
A—0- 4 4

Therefore, for f < 300, we compute Géo( f) directly, while
for f > 300 we use the asymptotic expression

1
1/4 +1/472[f — In(1/32)]*

T ()~ (26)

An asymptotic procedure of this sort works in the general
case, as we discuss below. That is, for large enough f, every
finite collection of absorbers leads to an integrand of this form,
but with different values in place of 1/32.

A good way to check whether the procedure has been
carried out correctly is to check a sum rule that applies when
t = 0. The rate of gas production at t = 0 always equals the
number of external nearest neighbors of the sites belonging
to N. The reason for this is that at time r = O the gas density
is uniform and equals 1 everywhere, and it flows into every
absorber at rate 1. In this particular case, the sum rule is
obeyed and takes the form

: © dgf -1
4 = 0) = . . 27
o) /M T Gho(f) @7

Given the definition of Gyy(A) in terms of elliptic function
Eq. (B14), this is not at all self-evident and could not be

obeyed unless both the theoretical results and numerical im-
plementation are correct.
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FIG. 8. Spectrum and production for a single absorber. (a) Con-
tinuous spectrum on the negative real axis for single absorber. (b) Gas
production, single absorber.

2. Square

We now turn to a case whose solution we will employ
repeatedly in what follows. It is a square shown in Fig. 9(a).
The interior problem for region L (Fig. 6) is of size 642 x64°.
The sum rule for initial production from the interior gives
0(0) = 256 = 4x 64, which serves as check on the compu-
tations. Gas production from the interior region comes from
Eq. (15), and the result appears in Fig. 9(b).

We can compare this with an analytical solution. It is the
solution Qplates(t), which is the rate of diffusive flow to two
absorbing plates separated by distance 2 [6]:

o0
Optates (1) = 2 e~ Crmiu/t, (28)
n=0

The comparison of this solution with the solution for the
square is performed in the following way. The flow rate for
the interior of the square is

Qim(?) = ;Qplates(t/f)- (29)

(b) 10*
I Qintcrior

S — O
E
§ 100_
=
=]
8
A 1072_

107! 10 10°%

Time ¢

FIG. 9. (a) Square with interior of size 64x64. (b) Interior
production from the square, comparing exact computation Qimerio,,
Eq. (15), with approximate analytical expression Qj,, Eq. (29),
scaled as described in the text.

The two-dimensional interior volume V of the region is 642,
The interference time for parallel plates separated by distance
2d in a medium of diffusivity « is d*>/a [6]. For our square
with unit diffusivity we have instead T = %(64 /2)?. The lead-
ing factor of 1/2 is due to the fact that there is twice the
surface area at which gas can be collected as in for the parallel
plates, so one should expect the interference time to be cut in
half. This is indeed an exact result in the continuum limit, and
one sees from Fig. 9(b) that the solution of the discrete lattice
model agrees with it well apart from small deviations at early
times.

We now turn to solution of the exterior problem for the
square. When employing Eq. (D8) we find that our procedures
to compute the integrand are stable up to f &~ 2000 and be-
come unstable and inaccurate for larger values. Therefore it is
advantageous to see if the function .7 (f) defined in Eq. (D7)
can adequately be represented by an asymptotic expression for
large f. The form suggested by Eq. (26) is

[ 2
Wf)’\u%-i-%(f fo)

as [ — oo. (30)
In the range f < [1200,3000], this asymptotic expression
reproduces direct calculation of 7 (f) up to nine decimal
places. The coefficients 7] and .7 that enable this fit are
identical to their values in Eq. (26). Indeed, we find they never
vary for any structure we have examined. It seems clear this
could be proved, but we have not sought the proof. We replace
fo with In(o /og)—we will choose oy to give o geometrical
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FIG. 10. Cumulative production for flow to network shown in
Fig. 9(a). From top to bottom, total, exterior, and interior production.

meaning—and write

. 1 8
o=1 f df exp(—1e )T (f)
T J_In8

1 00 exp(—le_‘f)
T /g Va5 1) —n o Joo)?

For most cases we studied, the separation parameter g = 300
is large enough, although for the structure in Sec. IVF it
needed to be raised to 1000, as indicated by residuals of the fit
in Eq. (31). In the current instance we find o /oy = 1205, and
define op—for all fracture networks—as

o0 = 3.506. (32)

€2y

We will allow o to vary from structure to structure, and in the
current case we find

o = 4225 = 65°. (33)

The reason for this definition looks forward to scal-
ing properties of Q(t) and Q(t) which we will discuss in
Sec. IV A. We choose oy so that ¢ is identical to the exterior
volume V. = 652 of the fracture network. We will show that
since for this one structure o equals the exterior volume,
o obtained using Eq. (31) for other squares will give their
volumes to high precision. For more complicated structures,
this procedure gives a definition of the exterior volume, a
constant that determines the universal form of their production
at late times (Sec. IV C).

The exterior problem produces a matrix for Eq. (20) of
size 532x532. Initial production from the exterior is 0(0) =
260, and we recover this value from Eq. (31). This sum
rule could not be obeyed if the asymptotic approximation in
Eq. (30) were not accurate. The sum of interior and exte-
rior production rates and cumulative production from 0.1 to
10% time units appear in Figs. 9(b) and 10. Note that for times
up to around 10 the interior and exterior production are nearly
identical. This makes sense because the fracture network is a
thin closed circuit, and the inside and outside of it are locally
the same except at the corners.

- ]

7 -%”w%
=)

FIG. 11. Network of absorbers used as example.

TI

il

3. Fractal fracture network

As a final test case, consider a network generated from
Eq. (1) with e = 1.2 and p = 25% and shown in Fig. 11.
The interior space L has 3080 sites, and therefore the interior
solution has 3080 eigenvalues and eigenvectors in Eq. (15).
The sum rule for the interior gives 0(0) = 3264. There are
more neighbors of absorbers than absorbers because each
absorber can have as many as four neighbors. The produc-
tion rate and cumulative production from the interior of this
network are depicted in Fig. 13 below. The interior produc-
tion was found by finding all the 195 disconnected closed
regions inside the network, ranging in size from 1 site to
1417 sites, and applying Eq. (15) to each of them in turn. The
process of finding all the disconnected regions is numerically
quite fast as the algorithm is linear in the overall size of the
structure.

Computation of the external flow to this network was
at first challenging. It was in the attempt to calculate pro-
duction for this structure that we developed the integration
contour of Fig. 23 in Appendix D. If one tries to compute
the integral of Eq. (31) by integrating along the negative real
axis, it means integrating the function shown in Fig. 12(a).
There are hundreds of peaks of width on the order of
1073 and heights up to 10°. By contrast, integrating along
the contour shown in Fig. 23 produces the integrand of
Fig. 12(b). This is relatively smooth, has no peaks, and is
fast to integrate. The sum rule Q(O) = 4820 is satisfied to
seven decimal places at + = 0, and this provides assurance
that the computation is technically correct. For the asymp-
totic expression of Eq. (30), o = 2419. Despite geometrical
complexity of the network, and complexity of the solu-
tion in the complex plane seen in Fig. 12(a), the solutions
shown in Fig. 13 are somewhat anticlimactic in their smooth
behavior.
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FIG. 12. Continuous spectrum from network of Fig. 11. (a) Con-
tinuous spectrum along negative real axis for network in Fig. 11.
(b) Real part of continuous spectrum along contour in complex plane
in Fig. 23, as function of real part of contour variable.

IV. APPLICATIONS AND INTERPRETATION
OF EXACT SOLUTIONS

A. Dimensional form and scaling

We now apply this formalism to settle questions about
production from fracture networks.

To find scaling laws to relate solutions to each other, we
put our results in dimensional form. Suppose that unit lat-
tice spacing corresponds to the physical distance a, that unit
dimensionless time corresponds to the time interval #y, that
dimensionless gas density corresponds to mass density py and
that the diffusivity is o. Let Q(7) give dimensional production
versus dimensional time where the unit of production is mass,
and time 7 =1 X fy also carries units. The evolution equation
for gas is

d _ a® H e
d_f"O(t» = E;lp(f))- (34)

(a) .

104 e — Qtotal
< 1 3 o Qexterior
fb) 4 .

g . Qintcrior
£ 107

g

= 10" 5

2

A 100_

107! . - —

101 10° 10" 102 103

Time t

.
e}
.8
+
&)
=
el
=
o - Qtotal
- Qexterior
777777777 Qinterior
107! 10° 10! 102 10°

Time ¢

FIG. 13. (a) Gas production rate for network in Fig. 11. (b) Cu-
mulative gas production from interior of network in Fig. 11.

In the continuum limit, H /a® becomes the Laplacian operator
V2. Therefore we identify the diffusivity as

a=—. (35)

We can generalize this expression. Suppose we refine the
lattice spacing by a factor s, replacing a by a/s, but that
otherwise we are describing the same physical phenomenon
and in particular keep o fixed. Let p; be the dimensional
solution for the problem defined on the lattice refined by factor
s. Then

~

Y :
Z71Ps () = as™—51ps(0)). (36)

Therefore p,(7) describes the same problem in time as p(f)
if one replaces 7 by 7s>. Since the number of lattice squares
corresponding to any particular physical region goes up by
52, one has to divide the gas concentration p, by this value;
that is,

572 ps(s°F) = p(@). (37)

We can now return to the dimensionless production func-
tion. We have found that if one refines the lattice by a factor s,
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the new solution Q,(¢) obeys
s720(s%) = 0(1); = Os(s’) = Q(1). (38)

The expressions in Egs. (37) and (38) are approximate at early
times when lattice effects are important and become exact in
the limit of late times when only large scales matter. We will
use this scaling result frequently in what follows.

It may be helpful to mention typical values of a few vari-
ables [6,14]. The diffusivity « is on the order of 1078 m?/s.
The spacing between fractures d after well stimulation is
around 1 m. This means that the characteristic time to drain
the interior of a structure is 10® s or around three years.

B. Apparent power law seen in Monte Carlo
is not present in exact solutions

We apply these scaling ideas as we return to examine the
results of Sec. II again. From the Monte Carlo simulations
it appears that gas production from a complex fractured net-
work might reveal a signature of the network complexity in
its late-time behavior through a power-law decay. It is also
possible that the power law is an artifact of the finite region in
which the simulations have been performed. We return to this
question using the Green’s function formalism of Sec. III.

Each of the numerical methods has its strengths and weak-
nesses. The kinetic Monte Carlo solutions have a stochastic
element and can be performed only in a finite domain. The
Green’s function calculations are exact in an infinite domain,
but they are performed on a lattice, and the behavior at short
times is unrealistic. The extent of lattice effects depends on
precisely how the lattice model is implemented. Figure 14
shows three separate realizations of the fracture network of
Fig. 5. The fracture network was defined in a space of size
25x25. The first realization represents the network on a
25x%25 lattice. The next realizations refine the network by
factors s of 2 and 6 respectively. Thus, in Fig. 14(c), there is a
minimum of five empty lattice sites between the most closely
spaced fractures.

We noted in the previous subsection that when a lattice is
refined by scale factor s, the time needed for any diffusion
process increases by the square of the scaling factor. We verify
the scaling of Eq. (38) explicitly in Fig. 15(a). We want to
reach the continuum limit, and rescaling by a factor of 6 is
adequate to achieve this goal for times as little as 1072, while
the unscaled network shows lattice effects up to a time of
10. At late times production all comes from large distances,
and only the rough external contour of the fracture network
matters for production.

Now that lattice effects are under control, we compare the
Green’s function solution for the network on a lattice (scaled
up by a factor of 6) with the kinetic Monte Carlo result.
Figure 15 shows the comparison. We rescale time both for
the Green’s function solution and for the kinetic Monte Carlo
solution so as to match the function Q;,, from Eq. (29) at early
times. The portion of the kinetic Monte Carlo solution we
previously thought might describe a power law we now see
results from the finite domain in which the solution was found.
The Green’s function solution, which is exact in an infinite
domain, does not show a trace of such a power law, and we
therefore conclude that fractal features of the fracture geome-

FIG. 14. Lattice realizations of the fracture network of Fig. 5 at
three separate resolutions. (a) Fracture network of Fig. 5 on lattice
whose spacing equals minimum distance between fractures. (b) Frac-
ture network of Fig. 5 on lattice whose spacing equals half the
minimum distance between fractures (c) Fracture network of Fig. 5
on lattice whose spacing equals one sixth the minimum distance
between fractures.

try cannot be obtained from analysis of production decline in
this way. In Sec. IVE we provide an analytical examination
of the relation between power-law fracture networks and pro-
duction power laws. We will show that the fractal structure of
the collection network does reveal itself in production curves,
but not in the way we originally thought.

C. Very late-time behavior is universal
In this section we show that at late times, all wells fall on a
single production curve scaled by two variables. We return to
Eq. (31) and write
O~ 1 /°° i exp(—te/)
7)o " 1/4+ 1/(@4r)[f —In(o /oo)*
This motivates the definition, sending f — f + In(o /0yp),

O — dr f‘” expl—(toy/o)e ]
t — .

(39)

d
S

There is a more transparent but less accurate expression at
very late times (vlt) given by

(40)

4 4t

InGto0/o) and Oy~ ——— (41)

Que ™ In(too/o)’

What one sees from Eq. (39) is that the late-time behav-
jor of O depends on the single parameter o, which sets a
timescale. This late-time behavior describes production of
all structures, including structures of different sizes. As we
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FIG. 15. Comparison of kinetic Monte Carlo and lattice Green’s
function result for fracture network of Fig. 5. (a) Convergence of
Green’s function solution as lattice of Fig. 5 is scaled by factors
s (from lowest curve to highest curve) of 1, 2, 4, and 6, and thus
approaching a continuum limit where the early-time behavior is a
t~12 power law. The scaled time is time divided by the scaling factor
squared, leading the curves to lie on top of one another. (b) Compar-
ison of Green’s function solution scaled by factor of 6 with kinetic
Monte Carlo solution in Fig. 5(b).

showed in Sec. IV A, the late-time cumulative production of
two structures must be unchanged when distances are rescaled
by a factor s and time is rescaled by s>. How is this compatible
with the dependence of Eq. (39) on a single parameter?

To answer this question, we examine cumulative produc-
tion at late times, Qy, which is given by

Qu(t,0) = 4x / " / g SR 00/ )]

f2 + 77.'2
- , expl—(t'o)e /]
_4710/ df/ dt f2+712
=oQu(t/o,1). (42)

Therefore, late-time production is unchanged if time is di-
vided by o and production is multiplied by . This is the same
scaling property displayed in Eq. (38) if we take o = s~2.

[

S
[
1

10" 5

Production rate Qy

—
<
L

10-° 1072 10! 10* 107
Time t

FIG. 16. Late-time and very-late-time production functions
Qll(z) and Q'vll for ¢ = 0y. The late-time expression produces a value
of 47 for + « 1, but this is not meaningful; only ¢ > 1 provides
information about production rates.

In Fig. 16 we show Qlt(t). It drops less than two orders
of magnitude over thirteen orders of magnitude in time. This
means that the late-time production is almost linear, but with
a coefficient of the linear relation that decreases slowly over
exponentially long timescales. We also show the very late-
time production function O (), illustrating that behavior is
essentially one over the log of time.

Because Eq. (40) describes the late-time behavior of all
compact fracture networks, all of them can be described by
an overall scale (pg) and the parameter . While o is defined
to be dimensionless, it is connected to two important dimen-
sional parameters. Note that oy was defined in Eq. (32) so that
with lattice spacing a and for a square of size Ve = 65%a?,
a?0 = V.y. Therefore o can be considered either to define
the external volumeV., = a*c or a timescale we call the
external time Texy = Vext/e. The late-time behavior of flow
to the fracture networks is like a black hole. All geometrical
details drop away, and only the effective volume Ve remains.

D. Grid model

We now set out to find simple functional forms to charac-
terize collection networks with complicated geometries. The
basic strategy is to solve some simple geometries exactly, and
then use the scaling law in Eq. (38) to apply them to a broad
range of other cases.

The idea we have in mind is illustrated in Fig. 17. We
represent the stimulated volume V as a rectangular region
subdivided into N? squares of side length d. It is clear that V
and d? can be chosen completely independently. When their
ratio is large, the network is highly ramified.

We assemble the functions needed to carry this out. For the
interior, we need the interior production from a square.

The rate equation for flow to parallel plates was recorded
in Eq. (28). Now we need the cumulative production, which is

7(2n+1)27r2t/4). (43)

O =3 — 21—
plates = A~ 122\
—nt1)’7
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N =12

d

FIG. 17. Grid geometry with N = 12.

According to the discussion in Sec. IIID 2, the interior
production of a unit square is given by

Qint @)= Qplates(gt)- (44)

The reason for the factor of 8 is that the solution was produced
for plates at distance 2 from each other while here they are at
distance 1, and the fact that there are top and bottom bound-
aries doubles the rate at which gas is depleted. As shown in
Fig. 9(b), deviations of the two-dimensional solution from the
one-dimensional solution once it is sped up by 2 are negligi-
ble; indeed, the analytical solution for plates in Eq. (43) is also
the analytical solution for interior production of a square once
it has been scaled as described here.

In addition to a scaling function describing interior pro-
duction, we need a scaling function describing exterior
production. For this we use the exterior production function
of the unit square, which is

1
53 Qi (65°1). (43)

we mean the exterior solution for the

Qext(t) =
Here by Q squ

65x65 square in Fig. 10. The factor 65 rescales the solution
to describe a unit square. While using a square to represent
flow into the exterior of all structures is evidently a simple
choice, without even taking into account aspect ratio, we have
been guided in this direction by the fact that all geometric
information but a single scale becomes irrelevant in the long-
time limit.

We set down the quantities we will need to connect to
dimensional version of the expressions:

(1) The diffusivity of the unperturbed background material
is a.

(i) The exterior volume, exterior time, and exterior mass
in place are

Mext = pOVext' (46)
(iii) The stimulated gas in place is

M =Vpy = pod®N,N,. 47)

2
Vext =00°,  Texg = Vext/,

(iv) The interference time is
T =d*/a. (43)

The total gas production, from N2 copies of production
from interior squares, plus exterior, for the grid model is

therefore (t =7/71)
Qgrid (f) =M Qint (f/l') + Mexl Qext (f/fext ) (49)

In the particular case of a 65x65 square, our definitions
of oy and o in Eq. (33) ensure that M and M.y, are exactly
equal. This exact equality will not hold for general structures,
but the mass in place M and exterior mass in place My
should always be of the same order of magnitude. When
equality holds, Eq. (49) is essentially the same as Eq. (14)
in [14].

In short, the grid geometry, which we propose as a canon-
ical form to capture complex fracture collection structures,
has four parameters: stimulated original gas in place M and
interference time 7, which scale the interior solution along
the horizontal and vertical axes, and the exterior mass in place
exterior mass in place M and exterior time Tey . (gas density
po is assumed known). The exterior mass in place cannot vary
far from the stimulated original gas in place, and thus most
of the uncertainty about late times lies in the determination of
Text- Finding this is equivalent to determining the unstimulated
diffusivity o.

In the next section we will explore a generalization of Qjy
that accounts for a power-law distribution of interior squares,
and we will then address the question of whether this consti-
tutes an improvement.

E. Why early-time production decay as t~!/2

for complex geometries

persists

We address the question of whether fractal fracture net-
works might have power-law behavior at early times that
differs from ¢ ~!/2. Consider the following simple approxima-
tion to a decline curve; here 6(¢) is a Heaviside function in
time:

0(t)0(t — 1)
Vit

This has the same behavior for small ¢ as the internal collec-
tion rate %Qp1ates (t/7) in Eq. (28) and can therefore be used to
examine how a probability distribution of interference times
modifies the power laws of decline curves. Suppose that there
is some probability distribution P(7) that leads the early-time
power law to change; that is,

Qearly(t, ) = (50)

I 0()0(t —1)
= [oodrP(r)—ﬁ (28

1 o0
= o = e(z)/t dr P(1)/\/T. (52)

Restricting attention to positive ¢, differentiate with respect to
time. Then

1
B —1/2) 5 = P(t)//t. (53)

Note that since a probability distribution must be positive,
there only exists a way to obtain the power law t ~# if 8 > 1/2.
In this case, one has a normalized distribution

P(t)=(1-pf 't Po(r, — 1), (54)
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where t,, = 27 is the maximum value allowed for the distri-
bution. This corresponds to a collection network of finite size,
which must present an upper bound on 7.

‘We have that

T . 1 T th-!
/(; dTP(T)Qea.r]y(tv T) = E[ dt(l _lg)Tﬂ‘H/z

— p—1
-

(35)

Thus if 1 > B > 1/2, the short-time behavior goes as 1B,
while if B < 1/2 the short-time behavior continues to go as
1/4/t. In other words, when a fracture network is fractal with
a distribution of interference times t going as ~# then the
fractal geometry changes the observed power law of gas pro-
duction when 8 > 1/2, but for 8 < 1/2 the early-time power
law for production of gas is unaffected by the fractal geometry.
What happens if we now return to Eq. (28) and integrate
over this distribution with the power-law distribution of inter-
ference times T we just obtained? We obtain a new family of
decline curves depending upon the additional parameter j:

Qint(ts T, ,3) = /tm dt P(z, IS)M
0

=2(1—ﬂ>2r,€‘1(6nr>—f’r(ﬁ, ?) (56)

n=0

where
8p = (2n + 1)*7%/4.

Here I'(8, x) is the upper incomplete Gamma function. Inte-
grating over time yields a cumulative production curve

Qinl(t/fv :B)

_ Z 3(1 _ /2t + (Snt/ZT)lﬁF(,B, %)) 57
e 5n 2‘L’

In this last expression we replaced t,, with 2t. This has the
effect of making the extended scaling function with g close to
the old one without 8 for those 8 < 1/2 for which the early-
time behavior is similar. The production rate and cumulative
production of the curves defined in Eq. (57) are displayed
in Fig. 18. For 1/2 < 8 < 1, the decline curve in Eq. (56)
decays for early times as ¢ # and the cumulative production
curve grows for early times as t'~#. However, for 8 < 1/2,
the decline curve goes as t~!/? and the cumulative production
curve increases as ¢!/2. It turns out that this latter case is what
is needed to account for the behavior of the model systems.
In fact, the production of our multiscale systems is best fit for
—1 < B < 0. This, we suggest, is the fundamental reason that
the measured decline curves from stimulated wells display
the +~!/2 power law so universally, despite the fact that the
true collection geometry is much more complicated than the
models where the computations are usually done.

Note that since our calculations in this section rely only
on a distribution of interference times t, they are not limited
to two dimensions. They will apply equally well to cases

(a) 10°
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FIG. 18. Plots of cumulative production when the probability
of interference time T goes as t# up to a maximum interference
time t,,. Curves are ordered with 8 = 0.9 on top and 8 = —0.7 on
bottom. (a) As B drops below 0.5 the early-time asymptotic behavior
of Qi (f, B) stops depending upon S. (b) However, the detailed
shape of the cumulative production curve in the vicinity of ¢t ~ 1,
does depend upon B, and this does affect attempts to provide good
phenomenological fits to exact solutions of model systems.

where three-dimensional fracture networks divide space up
into orthorhombic regions

It would be interesting to inquire into the relationship be-
tween a distribution of fracture lengths and the distribution of
interference times. We have carried out a preliminary analysis
of this topic, but do not report on it here.

F. Multiscale model

Figure 19 shows a rectangular region with a power-law
distribution of fractures. We use this as a test of the methods

:L_

l_ e

i

i

=
=

FIG. 19. Multiscale rectangular network used as test case.
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developed to this point, in an instance where we can com-
pute the solution for production exactly, and we also know
the geometry exactly, but the geometry differs from the grid
model in Fig. 17. The lengths of the fractures are chosen from
a power-law distribution with e = 1.2 as in Eq. (1). The struc-
ture deliberately is constructed without a fine scale and thus
is not very refined. The smallest distance between fractures is
10 lattice spacings (achieved because after construction, the
network was scaled up by a factor of 10). This is done to
limit the lattice effects so that they are evident only for times
shorter than a tenth of the dominant interference time. While
the resulting network is irregular, it is not ramified enough for
one to say it is a good realization of a power-law distribution.
It was as large as was feasible, however, for the exploratory
analyses of this study. Several other statistically equivalent
structures were studied as well to ensure that the results are
robust, but this is the only one we will discuss in detail.

The convex hull of the fracture network has a (two-
dimensional) volume of 6.54x10*. From the exact solution
for gas flow we extract the external time Tey = a*o o by fit-
ting to the asymptotic form on the right-hand side of Eq. (31).
The relation a’c = V. gives the external volume of the struc-
ture, and we obtain Ve, = 6.39x 10*. It is reassuring that the
completely geometrical value from the convex hull is the same
within around 10% as a value obtained from fitting long-time
behavior.

We compute gas production of this fracture network, and
then examine it in two phases. In the first phase we examine
the complete production history, up to arbitrarily large times,
and fit this using ideas from the previous sections. In addition
to the form in Eq. (49) we also examine the following scaling
form:

Qgrid ﬁ(f) = MQint(f/Tv ﬂ) + Mext Qext(f/fexl)' (58)

This is the same as Eq. (49) except that the internal solu-
tion for the stimulated volume now involves the generalized
function from Eq. (57) depending upon 8. We introduce f8
reluctantly because each new parameter carries with it the
possibility of better fits that come at the cost of reduced
robustness in the procedure. We find that the quality of the
fit without taking B into account is worse, and a formal cri-
terion (Akaike Information Criterion) says that the models
with B are better. We illustrate the accuracy of the model
fit in Figs. 20 and 21. The first of these figures shows the
production rate Q and cumulative production Q comparing the
exact result with the best model fit. As we did in Fig. 13(b),
we use the subscript “total” to indicate the sum of interior and
exterior solutions to obtain the complete exact result. The only
visible deviations occur at early times where lattice effects are
present. In order to obtain a more precise sense of the quality
of the fit, in Fig. 21 we compute the slope of the log-log cumu-
lative production depicted in Fig. 20(b). This means plotting
dInQ/dInt, and it appears in Fig. 21. Figure 21(b) compares
the exact result with the parametrization that excludes the
fractal dimension 8, while Fig. 21(a) shows the improvement
in the fit when g is included as a fitting parameter.

Nevertheless, our final judgment is that including the frac-
tal dimension S is not helpful enough to justify inclusion. This
is based on two observations. The first is that we asked if
the geometrical distribution of collection regions for networks
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FIG. 20. Fits of the model in Eq. (58) to the exact production rate
and cumulative production for the structure in Fig. 19. (a) Production
rate, comparing the exact result QToml to the parameterized Qgﬁd 8-
(b) Cumulative production, comparing the exact result Oy to the
parameterized Qg g-

such as the one in Fig. 19 corresponds to the value of §
that comes from a fit. The answer is that while the two are
not incompatible, we are not in a position to say that the
power-law distribution of internal collection regions correlates
well with the exponent 8 obtained from the fitting procedure.
For example, based on a geometric count of the numbers of
gas molecules diffusing distance d (note T = d?/a) to reach a
fracture, we estimate 8 ~ 0 & (.25, while the fitting process
gives best-fit 8 = 0.4 for the fits in Figs. 20 and 21.

A second approach to deciding whether or not to include
B comes when one tries to mimic the process of fitting to
data that occurs in real life as time unfolds. We graph this
process in Fig. 22. To prepare this figure, we truncate the
exact solution Qg at a value f,, and fit over this limited
time interval to the model in Eq. (58). We let #, advance
and carry out the fits as it gets larger and larger. We carry
out this process both for the parameterized form Qgq that
does not include the power-law exponent 8 and the form in
Eq. (58) that does. In the test cases we have examined, there
are instances where including 8 gives more accurate estimates
of the parameters at earlier times. Yet this is not always the
case. As shown in Fig. 22(b), when the system has reached
the age of the interference time 7 (a fact that would not in
reality be known at the time) the estimate of the diffusivity
o without using S is too high by a factor of 10. By contrast,
at this point the model employing S is too high by a factor
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FIG. 21. Slope of log-log production plot, comparing models
with parameterized fits. (a) Slope of log-log cumulative production
including fractal exponent § from Eq. (58). (b) Slope of log-log
cumulative production without fractal exponent § in Eq. (49).

of 2. When the time reaches 5t (about as far in time as any
profitable wells in the real world have proceeded) the model
without 8 provides an estimate of diffusivity « that is high by
a factor of 2, while the model with § is within 90% of the
correct answer. But this is fortuitous, since the estimate of «
then drops to 70% of the true value before eventually con-
verging to an accurate final estimate when #,, & 100t (taking
a typical value of T =3 years, we would have to wait for the
year 2300 to check this prediction thoroughly with field data).
Furthermore, the estimate of 7 is better in the model without
B and the estimate of M is comparable in the two cases.

These estimates will be degraded further if stochastic val-
ues are added to the production measurements, and these are
present in all real data sets. On the other hand, the estimates
will improve if « is treated as a field-wide physical constant,
rather than a parameter to be determined well by well. Thus
further effort is appropriate if these methods are to turn into a
practical tool.

V. DISCUSSION

When we began this work, our motivation was to learn the
extent to which the time history of gas coming from a well
could be used to infer the geometry of the transport network
feeding the well.

To address this question, we constructed and solved model
systems. Our geometry consists of an infinite square lattice
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FIG. 22. Comparison of fits obtained to production data as
maximum available time increases. The bands around each line
show one-o uncertainties obtained from the statistical routine
conf_interval in the package Imfit [22]. The uncertainties are
almost always underestimates. (a) Estimates of model parameters,
including long-time behavior, making use of fractal exponent .
(b) Estimates of model parameters, including long-time behavior,
without making use of fractal exponent S.

with uniform initial gas saturation, populated with a network
of absorbing sites. The formalism we described in this work
makes it possible to obtain an analytical solution for the time
behavior of the rate of mass transport into the absorbers and
out of the domain. The solution can be obtained for any finite
network of absorbers on a square lattice and is valid over very
long times.

Our main contributions are the following:

(1) We implemented two separate methods to solve the
model problem. The first of these is a kinetic Monte Carlo
method that has the advantage of treating short distances as a
continuum, but has the disadvantage of providing a solution
with a stochastic component and subject to finite-size effects
at large scales. The second of these is a Green’s function
method that has the advantage of providing an exact solution
without finite-size effects at large scales, but the disadvantage
of lattice effects at short scales.

(2) To implement the Green’s function method we had to
find a numerical procedure capable of computing unperturbed
lattice Green’s functions for ranges of arguments that appear
not to have been achieved previously.

(3) By comparing our two methods, we determined that
an apparent power law visible in the solutions obtained from
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kinetic Monte Carlo is a finite-size effect. We also determined
that early-time results from the Green’s function method
showed unrealistic lattice effects unless we expanded struc-
tures so that the smallest structures of interest were separated
by many lattice spacings.

(4) Late-time gas production takes a universal form scaled
by two parameters that corresponds to radial diffusion of gas
from far away towards an absorbing square. One of the param-
eters is a timescale, and the other parameter is the diffusivity
of the unperturbed medium.

(5) Fractal geometry of the collection network affects
early-time production. The nature of the effect depends on the
power law governing interference times. In one regime, the
gas production rate at early times goes as t —#, where > 1/2.
In the other regime, which is the one that describes realistic
structures, the production rate at early times goes as t~!/2,
independent of the power law describing the fractal fracture
network.

(6) In establishing a practical method to fit both early- and
late-time production for our model systems from production
data obtained as early as possible, we found it best to use
four parameters: a timescale and a volume characterizing late-
time production (together these yield the diffusivity of the
unfractured rock), and a timescale and volume characterizing
early-time production. If the diffusivity of unfractured rock
can be treated as a known physical quantity, the fitting task
drops down to finding three parameters.

In [14] we described the practical implications of deter-
mining the long-time production of hydrofractured wells. The
assumptions of that paper we now see have been borne out,
although they were based on intuition rather than on the
derivations we have just provided. It is worth summarizing
some of the previous results because they explain the prac-
tical significance of the current results. The amount of gas
coming from a single well in 30 years can be 30%-50%
greater than is predicted by fits to the early-time solution. The
distance around the well from which this gas comes impacts
the economics of filling in the field with additional wells. This
distance (Fig. 15 in [14]) is estimated to be 50 to 100 m. That
is, the return over 30 years comes from the depletion of a
region that is quite close to the well.

Hydrofracturing is such a recent process that no data are
available to check whether theoretical expectations about late-
time behavior are correct, and whether fitting procedures are
accurate. The model systems in this paper provide a the-
oretical laboratory where all these points can be checked.
Actual field conditions introduce many elements that go be-
yond the models; three-dimensional structures, production
fluctuations, and multiphase flow are some of the most impor-
tant. But learning to make predictions correctly for the ideal
two-dimensional models explored here is a critical first step
towards a physically accurate description of the decline of
unconventional gas and oil wells.
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APPENDIX A: EQUATION OF MOTION
FOR EXTERIOR PROBLEM

Our goal is to find an equation of motion for |p(¢)) that is
identical to Eq. (6) in the exterior region O (Fig. 7), but that
leaves the gas density for all interior sites always unchanged.
This solution can then be added to the solution for the interior
to obtain the total gas flow.

In order to accomplish this task, let us return to the equa-
tion of motion in Eq. (6) and modify it. When there are no
absorbers we have

pit) =" kiploy®) = pi)] =Y Hpy (A
i J

with

HY, = kjp —48) . (A2)

Here j ranges over the entire infinite square lattice. Next
suppose there is a set of absorbers indexed by m that forms the
outer boundary of a fracture network (space M in Fig. 7) and
that the neighbors of these sinks on the outside of the network
are labeled with m” (space M’ in Fig. 7). Then the drainage
from a site m” to its neighboring absorber m can be described
by adding a term to the right hand side of Eq. (A1):

P (8) = k[ (£) = pur (1))
-

— > kmpm(0).

meM

(A3)

The last term produces the same effect as if the gas density at
all the absorbers were zero, because it cancels any nonzero o,
out of the equation for p,,. If this were the only term added
to the equation of motion, then gas density at the absorber m
would change, and this would in turn cause gas flow to com-
mence from the interior of the structure. This can be prevented
by adding an additional term to the equation of motion for
density at the absorber m which precisely cancels any flow
along the bond connecting m and its exterior neighbors m’:

() =Y k[0 (6) = p(D)]
]‘/

_ Z Kot Lo () — ()]

m'eM’

(A4)

Putting together these terms produce the desired effect. All
the sites in the interior are ringed around by absorbers on
the boundary. Their densities cannot change because the gas
density on the absorbers does not change, and the density on
the absorbers cannot change because the term that couples
them to the exterior is zeroed out in Eq. (A4). However, the
external neighbors of the absorbers send gas to them as if
the absorbers are empty, according to Eq. (A3), and as all the
external sites are coupled together, gas flows into the boundary
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according to the solution to the exterior problem. Returning
to operator notation, the Hamiltonian governing the exterior
problem is given by

A-H=H"=Y" kyw(m)(m| — |m')(m| — |m)(m')).

meM
m'eM’

(AS5)

Note that H' is symmetric and is nonzero only in the space

N (Fig. 7) spanned by absorbers and their nearest neighbors

connected to the exterior. Equation (A5) can be interpreted as

a discrete operator for flux into the boundary of the collection

network. The sum contains a term for every bond connecting
an absorber to a site on the exterior.

APPENDIX B: GREEN’S FUNCTION SOLUTION
1. Green’s function definition

We intend to find an exact solution of Eq. (6) for the
Hamiltonian in Eq. (AS5). Note that the full Hamiltonian is
the sum of two pieces. The first of them, AY is defined over
an infinite-dimensional space but is analytically tractable. The
second of them, A is not analytically tractable in the same
way but is defined on a finite-dimensional space. The method
of Green’s functions lets us turn the whole problem into a
matrix problem on a finite-dimensional space.

Adopt the convention that

(@) = /0 drep@) =} -

For t > 0 @ must have some negative imaginary component
for the integral to converge. Then we have

o _E. la) (| pi). (BI)

lp(w)) = G(io)|pi), (B2)
with
n 1
GE) = —— (B3)
and
®dw . A o dE . .
lp(t)) = / 2—“’e’w’G(iw>|pi> = f — "' G(E)|ps).
—o0 <7 —ico 2mi
(B4)

G(E) as defined in Eq. (B3) is Green’s function, and the
solution for p(t) is obtained by integrating on a contour that
traces out the imaginary axis.

2. Unperturbed Green’s function

Consider the Hamiltonian H®, Eq. (A2) for gas diffusion
on an infinite two-dimensional lattice without any absorbers.
Green’s functions for this problem are extremely well known
and described in many textbooks [21], although to the best
of our knowledge they have not previously been computed in
the general cases we will need. We briefly review the solution
as we will need several of the expressions for the formal
development that follows. The definition of the unperturbed
Green’s function is

GYE-H% =1. (B3)

What are the eigenfunctions and eigenvalues of H°? They are
just Fourier modes: Choose k in the first Brillouin zone for

a Bravais lattice R. For the unit square lattice used here, k=
27 (ny, np)/N, where N is the number of lattice sites and n;
and n, are integers ranging fromOto N — 1,

N 1 BT o
k) = — ) FHR). (B6)
L
Let § be the nearest neighbor vectors of each lattice site. Then
the eigenvalue Ej is
E; = —Z(l —cosk-8) (B7)
5
and
HOK) = Eg|k). (B8)
Therefore for any initial condition p(0)

lo(0) =Y €5 k) (k| p(0)). (BY)
k
Green’s function is given by

o KK
G _ZE—E;{

(B10)

When the lattice is uniformly filled with gas, it is in a state that
is proportional to |k = 0). Because the energy E; vanishes for
k= 0),

(il

_ |oi) A0 _ \eil
(pilG(E) = T

GU(E)|pi) = = and (B11)
Expressions for matrix elements (I_é |GO|R") in one, two, and
three dimensions for various Bravais lattices are available
in the literature [21]. An explicit although computationally
impractical expression for the square lattice with unit lattice
spacing is

(0, 0)|GO(E)|(x, y))

eikxerikyy

1 T b
=—— [ dk [ dk ,
(2 )> /_,, "/_ﬂ " E + B —2cosk, — 2cosk,
(B12)

where B = 4 is the number of nearest neighbors of each lattice
site.

3. Numerical method to compute unperturbed
Green’s functions

Solution of the gas flow problem requires computation
of the unperturbed lattice Green’s function between arbitrary
sites x, y. These are the matrix elements (here A < 0)

Gry(3) = lim (0, 0)IG"(h — im)]|(x, ). (B13)

The fastest numerical procedure uses recursion relations [23].
First find Gy and G which are given by

z=A1+4,

k = z/4,

K=v1—k2,

065001-18



SOLVABLE MODEL OF GAS PRODUCTION DECLINE ...

PHYSICAL REVIEW E 104, 065001 (2021)

1
Im Goo = EK(k/)’

1
Re Gyp = sgn(z)EK(k). (B14)

Note that many numerical routines take the square of the
argument given here for the complete elliptic integral of the
first kind, K. For Gy, with E the complete elliptic integral of
the second kind,

K = kK (K),

Kr = kK(k)’

E — %[—E(k’) +REW)],
E, = %[E(k) — K*E(Kk)],

Im Gy, = —[(2k*> — DK; — 2K°E/],

2
Tz
2

[(2k*> — DK, — 2k°E,].
7 |z|

RGGH = (BlS)

From these two matrix elements all the rest can be obtained
by recursion. It is convenient to define

g; = Gy+s,y; Gx.y = g/;—y.

Then all the diagonal elements of G can be obtained from

(B16)

Q= 4_y<£ _ 1)82 2y &
2y4+1\ 8 2y +1°7
Next use the recursion relation
(E—H"G’ =12 (L + 4Gy — Ger1y — Gaoty = Gy
(B13)

B17)

— Uxy—1 = 8x,08y,0~

From this one can deduce the following:

g = zg) — 1
0 4 ?
Z
g =58 — g fory>1,
g =28y — gyt —2g *fors > 2,

g = Zg;_l — & —g;_z —g”;fl fors >2andy > 1.
(B19)

The papers introducing these recursion relations employ
them for values on the order of s < 5. The reason larger
values do not appear is that the recursions are exponentially
unstable. The instability is particularly severe as A approaches
the band edge A = 0. We found reports of effective methods
for computation of the unperturbed lattice Green’s function
for large imaginary A [24], but those methods do not func-
tion for A approaching the band edge along the real axis.
Integral formulations derived from Eq. (B12) are slow and
inaccurate, particularly for lattice numbers x and y on the
order of 100, and A close to the band edge. Because the
Green’s functions behave as logarithms near the band edge,
values as small as A &~ 1072° are needed in order to carry out
the integral in Eq. (D5). The solution we adopted is to employ
Eq. (B19) with high-precision arithmetic. For example, when

A = 10720 the computation is performed with 4000 places
of precision. For x and y on the order of 100, the recursions
require a minimum of 100 places of precision almost every-
where in the band. Once the Green’s function matrix elements
have been obtained, the rest of the computation can be carried
out with ordinary double precision floating point numbers.

So far as we can tell, despite the fact that the Green’s func-
tions employed here have been studied for decades, this is the
first occasion where they have actually been computed near
the band edge for lattice hops larger than 10. We provide a
few remarks on numerical implementation. We used mpmath
[25], SciPy [26], and Python [27]. We were concerned that the
computation of Green’s functions was very slow, and therefore
rewrote the arbitrary precision Green’s functions routines in
C using arb [28], which we then linked to Python and SciPy
using SWIG [29]. While this did speed up the computation of
Green’s functions by a factor of 100, that turned out not to be
the rate-limiting step. The unexpectedly time-consuming step
was loading the matrix (v'|G°|v) after all necessary matrix el-
ements had been computed. For example, consider a problem
in a 100x 100 spatial domain. All Green’s functions G, need
to be computed where 0 < x < y < 100. This means finding
around 5000 values making use of Eq. (B19). By contrast the
state vectors v range over 10 000 values, and therefore the
matrix (v'|G°|v) has 108 entries. Each of these is drawn from
the 5000 Green’s functions that were previously computed,
but simply looking them up and inserting them turned out to
take much more time in Python than computing them to begin
with. No rapid way to perform this task in SciPy was found
so this portion of the code was also rewritten in C. Once this
was done, the rate-limiting step became finding |7) from the
linear system in Eqs. (C7). SciPy does this efficiently using
routines from LINPACK [30].

APPENDIX C: T MATRIX SOLUTION

Let G be Green’s function for the full Hamiltonian for
the exterior problem H = H° + A' in Eq. (AS5). We now
can compute the Green’s function G° that corresponds to the
unperturbed Hamiltonian H° and starting with this we want to
find an expression that relates it to the full problem.

The T matrix corresponding to a Green’s function is de-
fined by the following formal relation between G and G°:

G=G6"+GT6. (C1)

Standard manipulations found for example in [21] give an
expression for the 7" matrix as an infinite series:

T=A"+A'G’H' + A'G°A'G°A'--- . (C2)

This makes clear that 7' like H' is nonzero only in the
space N of absorbers and their exterior neighbors (Fig. 7). The
essential point is this: we have a diffusion problem defined
on an infinite two-dimensional lattice. Its solution can be
expressed in terms of the unperturbed Green’s function G°
which is defined on the infinite lattice, and 7', which is defined
in a finite-dimensional space specified by the finite collection
of absorbers. This turns an infinite-dimensional problem into
a finite-dimensional one.
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One can write for the 7 matrix
T=A"+H'GT. (C3)
Thus 7" is determined by solving the matrix equation
D Wl =BG YW T ) = WAY).  (C4)

Here the indices v, v/, and v” belong to N. To compute gas
production from Eq. (14) one does not need the complete 7
matrix, but just sums over all its matrix elements. As we will
see, it suffices to find

7o =) If ) = i) (C5)

Also define
M, =Y (WH'Y) = (v[H). (C6)

NG

Then the equation satisfied by the relevant part of the 7 matrix
is

> w1 = A'GOHW) Ty = H,, (C7)
which can be written as

1=A'GT) =H). (C8)

APPENDIX D: GAS PRODUCTION

1. Derivation from Green’s functions

The relation between the full Green’s function and the
amount of gas produced at time ¢ is

“dw iot A
o) = (pilpi) —/ 5.¢ (AlGUw)lp). (DD
o0 2T
Use Eq. (C1) to eliminate G. It gives
“dw Al
@) = (pilpi) —/ 2—6"" (pillG°(iw)
—o0 2T
+ GO T (i)G (1)) (D2)

Using Eq. (B11) (and recalling that the Fourier transform of
1/iw is 2 fort > 0) the first two terms cancel, so that the gas
produced is

*dw iwt 1 7. l
o0y = [ = ITG).  (D3)
oo 2T WP —
We indicate the sum over v explicitly to emphasize that we are
now working in the finite-dimensional space N, rather than
the infinite two-dimensional lattice on which [p;) is defined.
Taking the time derivative, gas production Q is

: o dE |1 " ,
o) = —f_m %e’f [E D WITE) >}. (D4)

vy’

All the poles of T are on the negative real axis, starting
just a little bit below 0, and proceeding down to —8. One
can perform the integral by deforming the contour to run just
below the real axis from —oo up to zero, crossing over the
top and running down the real axis for positive imaginary part

-8 N\ Ao 0

A/ + ai

Legs 1, 2,3,4,5

FIG. 23. Integration contour used for Eq. (D5). The values used
in computation were A; = —8 + 107>, o = —0.1, Ay = —1075,

from 0 to —oo. This leads to an expression for energies with
vanishing negative imaginary part n:

: _Cadx R o
O=-lim [ —=e'Im| ) (WITG—iml)

vy’

O dx
=—1lim [ —¢& ImZTv(A —in)

n—0 -8 TA

0
__ / 9 i (o T 0. (D)
-8 JT)x

When 7, () has a real argument, it will be understood to be
lim,_,o 7, (A — in). Eq. (D5) provides an explicit expression
relating the remaining gas to a computation performed only
within the subspace of absorbers and their nearest neighbors.

The numerical strategy we followed at first was to com-
pute the contributions from the discrete spectrum (the interior
sites) from Eq. (15) and the contributions from the continuous
spectrum (external sites) from Eq. (D5). The integrals were
extremely slow to converge because as shown in Fig. 12(a)
the integrand consists of thousands of narrow peaks. These
are produced by cavities in the structure that are nearly, but
not completely, closed regions with discrete levels. It proved
greatly preferable to deform the integration contour as shown
in Fig. 23. With this contour, integrals converge much more
rapidly. The numerical values in the caption of Fig. 23 were
obtained by optimizing convergence time for some simple test
cases.

In our previous publication [13] we had to conduct a
complicated process to deal with discrete modes we found
during the solution of this exterior problem. These problems
were eliminated once we defined the perturbing Hamiltonian
through Eq. (A5) rather than a Hamiltonian used in the previ-
ous publication.

A final definition and change of variables puts the gas
production rate into the most numerically tractable form for
the portion of the contour where X lies on the real axis. Define

= —In(—-X), (D6)

T(f) = %ii%lmZTv(—e*f —in). (D7)

Then the fifth leg of the contour in Fig. 23, which requires
caution to compute accurately and completely dominates the
integral at large times, is

o9 =1L / T df exp—te (). (DY)
v 711’1)@
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2. Additional comments on numerical method

For any given time the integral in Eq. (D5) is performed
with the SciPy routine quad [31], which evaluates the inte-
grand at a set of quadrature points. Almost all the numerical
time is spent computing |7). For the computation at t = 0
on the order of 2000 function evaluations are necessary. It
appears that to carry out the computation for successive values
of time ¢ will require repeating this computation from scratch,
but that is not the case. The quadrature routine selects mainly
the same evaluation points as ¢ increases. Therefore the strat-
egy is to store Im{p;|7 (1)) every time it is evaluated in a
dictionary keyed to the complex argument A. As the quadra-
ture proceeds for increasing values of ¢, most of the time it
terminates without needing any new function evaluations at
all. If the quadrature decides it needs new points, it selects
them, they are computed, and added to the dictionary. The

result is that the most time-consuming step is to compute the
production rate at t = O (where the exact answer is known in
advance), and the computation time for all remaining times
put together is less. In general we computed the production
rate for around 600 different times equally spaced on a log
scale (apart from ¢ = 0) up to t = 10'°. It turns out that the
value of time ¢ for which the computations are most numeri-
cally challenging is around # = 1000. At this point there are
very rapid oscillations of the integrand on the fourth leg of
the integration contour in Fig. 23. The integration routine
has difficulty converging, and some very slight glitches are
visible in some of the plots of production rate versus time.
For example, there are slight wobbles in the black curves in
Fig. 21. For much larger values of ¢ only the fifth leg of the
contour is important, and as on this portion of the path the
integrand is well behaved the integration difficulties go away
when ¢ is large enough.
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