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Summary:

Molecular profiles of neurons influence information processing, but bridging the gap
between genes, circuits, and behavior has been very difficult. Furthermore, the
behavioral state of an animal continuously changes across development and as a result
of sensory experience. How behavioral state influences molecular cell state is poorly
understood. Here we present a complete atlas of the Drosophila larval central nervous
system composed of over 200,000 single cells across four developmental stages. We
develop polyseq, a python package, to perform cell-type analyses. We use single-
molecule RNA-FISH to validate our scRNAseq findings. To investigate how internal
state affects cell state, we optogentically altered internal state with high-throughput
behavior protocols designed to mimic wasp sting and over activation of the memory
system. We found nervous system-wide and neuron-specific gene expression changes.
This resource is valuable for developmental biology and neuroscience, and it advances

our understanding of how genes, neurons, and circuits generate behavior.
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Introduction:

Making sense of any complex system involves identifying constituent elements and
understanding their individual functions and interactions. Neural circuits are no
exception. While recent advances in connectomics (White et al., 1986; Jarrell et al.,
2012, Helmstaedter et al., 2013; Takemura et al., 2013; Ohyama et al., 2015; Berck et
al., 2016; Eichler et al., 2017; Hildebrand et al., 2017; Eschbach et al., 2019) and live
imaging techniques (Ahrens et al., 2013; Prevedel et al., 2014; Chhetri et al., 2015;
Lemon et al., 2015; Grimm et al., 2017; Vladimirov et al., 2018) offer unprecedented
information about neural connectivity and activity, the task of identifying cell types has
traditionally relied on painstaking morphological, functional, or single gene
histochemical taxonomy. High-throughput single-cell RNA sequencing (scRNAseq)
offers a new way forward by providing a molecular-level identity for each cell via its
transcriptomic profile. Importantly, it is also scalable to populations of millions of cells
without incurring exorbitant costs. These techniques have already revealed striking
heterogeneity in cell populations that is lost in bulk samples. In the fruit fly, efforts are
already well underway to produce connectomic (Takemura et al., 2013; Ohyama et al.,
2015; Berck et al., 2016; Eichler et al., 2017; Eschbach et al., 2019), activity (Chhetri et
al., 2015; Lemon et al., 2015; Grimm et al., 2017; Vladimirov et al., 2018), and behavior
atlases (Vogelstein et al., 2014; Robie et al., 2017) of the nervous system. Much work
has separately revealed the role that genes (Konopka and Benzer, 1971; Sokolowski
2001) and circuits (Garcia-Campmay et al., 2010, Borst 2014) play in behavior; a major
challenge is to combine genes, circuits, and behavior all at once. Single-cell analyses
have been performed in parts of adult (Croset et al., 2018; Davie et al., 2018;
Konstantinides et al., 2018) Drosophila central brain and optic lobe. One study has
investigated a small sample of the larval central brain (Alvalos et al., 2019). A
comprehensive transcriptomic atlas of the complete central nervous system is the
missing piece to the connectivity, activity, and behavior maps that would create the
required resource necessary to understand the complex interplay between genes,

circuits, and behavior.
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To this end, we developed a protocol to capture, sequence, and transcriptionally classify
the molecular cell types and cell states of the entire central nervous system of the
Drosophila larva. We did this across 4 different life stages, providing a developmental
profile of gene expression. Given that the Drosophila larva has a nervous system of
approximately 10,000-15,000 neurons (Hartenstein and Campos-Ortega, 1984;
Hartenstein et al., 1987; Truman et al., 1993; Scott et al., 2001), our atlas of 202,107
cells has up to 20X coverage of the entire nervous system and is the largest sequencing
effort in Drosophila to date. All previously identified cell types were recognizable in our
atlas, including motor neurons, Kenyon cells of the mushroom body, insulin-producing

cells, brain dopaminergic and serotonergic cells, and all glial subtypes.

While scRNAseq provides nearly complete information about the transcriptional
program being used by a cell at the time of collection, a drawback to the technique is a
loss of spatial information. We therefore used a recently developed RNA fluorescent in
situ hybridization (RNA-FISH) protocol to resolve the anatomical location of molecular
cell types in the whole larval brain (Long et al., 2017). We combined RNA-FISH with
high-resolution Bessel beam structured illumination microscopy to detect and count
individual mRNAs within newly identified cells. This technique provides ground truth for
the absolute number of a particular RNA in a given molecular cell type at a particular
time point. It also provides an opportunity to assess the quantitative capability of our

scRNAseq approach.

Larval behavior after hatching is dominated by feeding; when a critical weight is
achieved, this behavior switches to “wandering” in preparation for pupation (Bakker et
al., 1953). Endocrine and neuroendocrine pathways responsible for this switch have
been well characterized (Truman, 2005), but the extent of molecular changes in defined
cell types across the nervous system that respond to this neuroendocrine signaling are
not known. To investigate such nervous system-wide changes during development, we

sequenced the nervous system at four time points in development.
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Previous sensory experience alters the behavioral state of an animal. Flies that are
hungry form food-associated memories more easily (Krashes et al., 2009) and flies that
are intoxicated court more frequently (Lee et al., 2008). Male flies that lose fights are
more likely to subsequently exhibit submissive behaviors and to lose second contests
while male flies that win exhibit aggressive behavior and are more likely to win later
fights (Trannoy et al., 2017). Are internal states controlled transcriptionally at the level of
identified cell types and circuits and, if so, how? It is an open question whether memory

or internal state will affect gene expression globally or only in restricted cell populations.

In order to discover the nervous system-wide gene expression changes induced by
previous experience, we examined gene expression profiles from the nervous systems
of animals exposed to two experimental protocols. The first protocol involved presenting
repeated pain and fear, by mimicking repeated wasp sting. Fictive stings were induced
using optogenetic activation of a small population of well-described interneurons
(Ohyama et al., 2015). Of note, no mechanical damage to the animal’s surface occurred
with this protocol. The second protocol involved repeated activation of higher-order
central brain neurons involved in learning. Using behavioral assays before and after the
stimulation, we showed that each of these protocols cause a long-lasting change in the
animals’ behavioral state. We then analyzed the effect of fictive sting and repeated
activation of the learning center to search for changes in gene expression related to cell
state during behavioral learning. We consider these “cell state” genes and find that both

entire cell populations and individual neuron types can exhibit cell state changes.

Taken together, these results suggest the powerful role that transcriptomic atlases can

play in probing the complex interplay between cell state, circuit function, and behavior.

Results:

Polyseq software performs cell type discovery

A complete transcriptomic atlas of 202,107 single cells from the larval central nervous
system was built (Figure 1; Table S1). Nervous systems were captured at four time

points in development (1 hour, 24 hours, 48 hours, and 96 hours after larval hatching)
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and for three nervous system dissections (full CNS, brain only, and ventral nerve cord
only). These developmental timepoints and anatomical regions were analyzed
separately and in combination. Four non-neuronal and non-glial tissues, including ring
gland cells, hemocytes, imaginal disc cells, and salivary gland cells, were also captured

and analyzed as outgroups.

We developed polyseq (github.com/jwittenbach/polyseq), an open source Python
package, to perform cell type analyses. polyseq performs functions of many popular R
packages such as Seurat or Monocle (Trapnell et al., 2014; Satija et al., 2015; Qui et
al., 2017; Cao et al., 2019) with significantly improved runtime and the extensibility and
modularity of Python. polyseq starts with a gene by cell matrix, which is then filtered for
high quality cells, normalized, regressed, reduced, and clustered. Visualization can then
be performed with tSNE or umap for the full dataset (Maaten and Hinton, 2008; Mclnnis
et al., 2018). The software also includes inbuilt functionality for violin plots and
heatmaps. The data remain in a form that is easy to integrate with the vast community
of Python packages for further visualization and analysis (full details and analysis

examples on github: github.com/jwittenbach/polyseq).

We first used polyseq to discover cell type clusters and confirmed that our findings were
in agreement with current state of the art analysis methods (Figure 2). In two separate
early third instar samples, we found the same cell types when analyzing the data in
Seurat, Monocle, and polyseq (Figure 2A). In these samples, the cells separated into
seven groups of developing neurons (which included subtypes of adult developing
neurons, neuroblasts, and ganglion mother cells), four groups of glia, immune cells, and
three groups of larval functional neurons (including distinct motor neuron and Kenyon

cell groupings).

To correct for batch effects, both the align function used in the monocle R package
(Haghverdi et al., 2018) and our own linear regression method in polyseq were tested
(Figure 2B,C). Both methods removed the visible batch effects in the umap plots (i.e.,

clusters that were made entirely of a single sample due to signal from separate batches
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collapsed into a single co-mingled population). As additional validation of cell type
discovery, we used Garnett, a newly developed machine learning software package in
R, to build a classifier based on cell type markers (Pliner et al., 2019). We found
consistent results with our own annotation of known and newly discovered markers for
larval functional neurons, neural stem cells, motor neurons, kenyon cells, and glia
(Figure 2D,E). Using more specific markers for known cells which are small in overall
number (such as insulin-producing cells, dopaminergic cells, octopaminergic cells, etc.)
led to overfitting of the data. These known gene markers could be used to extract cells

of interest without unsupervised methods.

Developmental profile of gene expression across four life stages

Given that the analysis in polyseq met the standards of current state of the art methods,
we moved forward with an analysis of developmental timepoints. We built atlases of the
entire nervous system at 1 hour, 24 hours, 48 hours, and 96 hours. Within these
atlases, it was clear that during development, the cellular composition of the nervous
system changes (Figure S1). At 1 hour, the nervous system is primarily larval functional
neurons. As development proceeds, the absolute number of larval functional neurons

remains relatively constant while the proportion of developing neurons greatly expands.

Having identified the main classes of cells, we investigated developmental trajectories
of 12,448 neural progenitor cells (NPCs) (Figure 3). We extracted and combined NPCs
cells from three stages of development (1 hour, 24 hours, and 48 hours) and performed
an analysis in Monocle (Trapnell et al., 2014; Qiu et al., 2017; Cao et al., 2019) (Figure
3). Garnett was used to predict cell types (Pliner et al., 2019). Known cell ages were
used to anchor a psuedotime analysis, which aligned the data from early to late NPCs.
Gene expression in these populations revealed known markers (such as insensible
(insb) in Ganglion Mother Cells) and unexpected markers, including long non-coding
RNA (CR31386 in early NBs). IGF-Il mRNA-binding protein (/mp) and Syncrip (Syp)
form important gradients that mark NB age (Liu et al., 2015). Imp levels decrease with
age while Syp increases with age — young NBs have high levels of Imp and low levels of

Syp, intermediate NBs have intermediate levels of Imp and Syp, and older NBs have
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219 low Imp and high Syp. These waves are evident in our data and provide an opportunity
220 to investigate further temporal gene expression gradients.

221

222  Gene modules were discovered, which characterized populations of early, intermediate,
223  and late NPCs (Figure 3D,E; Table S2). Early NPCs were characterized by the

224 expression of genes important for genome organization, chromatin remodeling, and
225 gene splicing. This allows for a future diversity of cell function and identity. Intermediate
226  NPC gene modules were characterized by genes necessary to build neurons — these
227 included expression of genes important for protein targeting and transport and

228  neurotransmitter synthesis. Late NPCs were enriched for genes which are critical for
229  newly differentiated neurons and circuit construction; significant GO terms included

230 genes required for connecting circuits, such as axon guidance molecules and synapse
231 organization genes, and genes important for circuit function, such as genes involved in
232 memory storage.

233

234  Complete transcriptomic atlas of the larval central nervous system

235  Next we built an atlas of all cells captured at all stages (Figure 4). Transcriptomic cell
236  types split into seventy clusters (Table S1). These seventy cell types could be grouped
237  into many recognizable groups of cells, including: (1) adult developing brain neurons,
238  (2) adult developing VNC neurons, (3) larval functional brain neurons, (4) larval

239  functional VNC neurons, (5) motor neurons, (6) kenyon cells, (7) brain neuroblasts, (8)
240  VNC neuroblasts, (9) brain ganglion mother cells, (10) VNC ganglion mother cells, (11)
241 (glia, (12) hemocytes, (13) imaginal disc cells, (14) salivary gland cells, and (15) ring
242  gland cells.

243

244  Larvae spend much of their life feeding and growing. From initial hatching to pupation,
245  larvae grow significantly in length and mass (Truman et al., 2005). During this growth
246  period, the larval nervous system grows and adds developing adult neurons which

247  remain quiescent during larval life but grow and elaborate their axonal and dendritic
248  arbors during pupation into adult functional neurons (Li et al., 2014). In the atlas, we can

249  identify adult developing neurons through high expression neuronal markers (nSyb,
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elav) and a lack of synaptic and neurotransmitter genes (e.g., VChAT, VGlut). Recent
work in the first instar brain showed that adult developing neurons (or undifferentiated
neurons) express headcase (hdc) and unkempt (unk) (Avalos et al., 2019). We see this
expression continues in adult developing neurons at 24 and 48 hours. Furthermore, we
find this group is marked by many more genes, including the actin-binding protein
singed (sn), the zinc finger transcription factor jim, and the transcriptional repressor

pleiohomeotic (pho).

Larval functional neurons participate in neural circuits which control sensation and
behavior. At larval hatching, embryonic neurons are born, and all the neurons
necessary for larval life are functional (Truman and Bate, 1988). These neurons will
continue to grow and some populations, such as the Kenyon cells of the mushroom
body, will add more neurons throughout development. Identifiable cells at the top level
include motor neurons, Kenyon cells, excitatory and inhibitory interneurons,
monoaminergic neurons, and neuropeptidergic neurons. A unifying feature of these
cells includes expression of classical Drosophila neuronal markers (nSyb, elav),
however, we also find many other genes that mark the larval functional neuron group
robustly. These markers include the transmembrane receptor protein tyrosine kinase
activator jelly belly (jeb), the protein tyrosine phosphatase /A-2, the ligand gated
chloride channel Resistant to dieldrin (Rdl), and one of the beta subunits of sodium-

potassium pump (nirvana3; nrv3).

Monoaminergic neurons play a key role in learning in the fly (Schwaerzel et al., 2003;
Selcho et al., 2009). A single top-level cluster was identified with the expression of key
monoaminergic synthetic enzymes (Trh, ple) and transporters (DAT, SerT).
Subclustering of this top-level cluster revealed three strong groups, corresponding to
serotonergic, dopaminergic, and octopaminergic clusters, identifying previously
undescribed markers of these populations of cells which separate one monoamine type

from another (Figure S7).
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Jhl-21, a solute carrier 7-family amino acid transporter, is an example of a novel marker
found here in 5-HT neurons. This gene encodes for a protein necessary for protein
nutrition signaling, which was recently described (Ro et al. 2016; Ziegler et al., 2016;
Ziegler et al., 2018). However, these reports describe the importance of the Jhi-21
protein peripherally, with no mechanism for the transmitting of nutritional information to
the nervous system. Here we see that Jhl-21 is expressed in the serotonin neuron itself,
suggesting that serotonin neurons act directly as sensors for the amino acid nutritional

state.

Neural progenitor cells include neuroblasts (NBs), intermediate neural progenitors, and
ganglion mother cells (GMCs) (Doe, 2017). NBs divide asymmetrically in three ways to
produce progeny: type 0 NBs divide into one self-renewing NB and one neuron; type 1
NBs divide into one NB and one GMC; type 2 NBs divide into one neuroblast and one
intermediate neural progenitor which then itself divides into a GMC (Doe, 2017). Each
GMC then divides terminally to form two neurons or one neuron and one glial cell.
Precisely timed patterns of temporal transcription factors guide this development. We
are able to investigate these patterns over space and time by collecting the brain and
VNC separately and collecting multiple stages of larval development (Figure 3). The
mushroom body continues to grow and develop during larval life. We were able to
identify mushroom body neuroblasts in our dataset, which were found in brain NB
clusters and characterized by high expression of the late neuroblast marker Syp, genes
for cell cycling, including pendulin (Pen) and cyclin E (CycE), and by the long noncoding
RNA pncr002:3R (Figure 4).

Five glial subtypes were recognizable in our atlas, including midline/cortex, astrocyte-
like, chiasm, peripheral/surface, and longitudinal body glia (Figure 4) (Freeman, 2015).
These glia were identified based on the expression of well-characterized markers, such
as wrapper and slit (sli) expression in midline/cortex glia, alrm expression in astrocyte-
like glia, hoe1 expression in chiasm glia, swim in surface glia, and vir-1 in longitudinal

body glia. In addition, we find CG5955, which codes for an L-threonine 3-

10
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dehydrogenase, is highly expressed and found specifically in all glia other than

longitudinal body glia.

Hemocytes, imaginal disc, salivary gland, and ring gland cells were also captured and
sequenced. Hemocytes form the immune system in Drosophila. Hemocytes expressed
serpent (srp), the canonical marker of embryonic hemocytes (Fossett and Schulz,

2001). Hemocytes also had a very high expression of neuropeptide-like precursor 2
(Nplp2).

Imaginal discs are embryonic tissues that become adult tissues, such as wings and
legs, after metamorphosis. We dissected these cells and sequenced them separately.
We found high and specific expression of many uncharacterized genes, including
CG43679, CG14850, CG44956, and CG31698, among others (Table S1).

Unlike the imaginal disc, which had few genes in common with neurons, salivary gland
cells, surprisingly, formed a homogenous group characterized by expression of many
genes shared with neurons, such as the nucleo-cytoplasmic shuttling protein
hephaestus (heph), the RNA-binding protein Syncrip (Syp), the cadherin molecule
Shotgun (shg), and the cell adhesion molecule Fasciclin 3 (Fas3). Given the secretory
nature of the salivary gland, it would be interesting to further investigate the evolutionary
and developmental relationship between the salivary gland and neurons, especially
given that in other animals, such as molluscs, salivary gland cells are secretory and

have action potentials (Kater et al., 1978a,b).

The ring gland is critical for transitions in development. The ring gland was
characterized by expression of the well-described Halloween genes, including members
of the cytochrome P450 family required for ecdysteroid biosynthesis, including phantom
(phm), spook (spo), spookier (spok), disembodied (dib), shadow (sad) and shade (shd)
(Gilbert, 2004). The ring gland also has a high expression of the NADP/NADPH
phosphatase curled (cu).

11
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341 Validating transcriptomic predictions

342 Here, we used Insulin-producing cells (IPCs) as illustrative examples to validate scRNA-
343  seq data. IPCs consist of just fourteen neurons in the larval brain (Figure 5A) (Schlegel
344  etal., 2016). These cells participate in circuits which monitor the nutritional status of the
345 larva and function as the larval equivalent of the mammalian pancreas. If IPCs are

346  ablated, larvae and adults are smaller and have a diabetic phenotype, including

347 increased hemolymph trehalose and glucose levels (Rulifson et al., 2002). IPCs secrete
348 insulin-like peptides which regulate hemolymph sugar levels. Graph-based clustering
349 revealed a cluster defined by the strong expression of insulin-like peptide 2 (/lp2) and
350 insulin-like peptide 5 (/[p5) expression, which are canonical markers of IPCs (Figure

351 5B). By subsetting the data to look only at 96 cells in the putative IPCs cluster, the

352  neurotransmitters and receptors expressed by these could be analyzed (Figure 5C).
353

354  Previous reports show IPCs are regulated by canonical neurotransmitters. This includes
355 modulation by serotonin through the 5-HT1A receptor and octopamine through the

356  Octbetal receptor (Luo et al., 2012) and by the neuropeptide allatostatin A (Hentze et
357 al., 2015). We confirmed this known expression of 5-HT1A and Octbeta1 receptor. In
358 our atlas, we also see the strong expression of additional (previously unknown for these
359 cells) receptors for dopamine (Dop2R), glutamate (GluClalpha), and Allatostatin C

360 Receptor 2(AstC-R2) in IPCs (Figure 5C).

361

362  To validate the specificity of our scRNAseq approach for identifying AstC-R2 in ICP

363 cells, we probed AstC-R2 mRNA in a HaloTag reporter line for the ICPs. The overlap
364 between the neurons containing the HaloTag and FISH signals confirmed the

365 sequencing result (Figure 5D). The colocalization of AstC-R2 with 14 IPCs suggests
366 that all ICPs are regulated by AstC through AstC-R2. The discovery of regulation by
367 AstC-R2 updates our model of the regulation of IPCs by adding an additional population
368 of cells that are modulating IPC activity.

369

370  Correlating smRNA-FISH and scRNAseq

12
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In order to determine whether scRNAseq could quantitatively capture the dynamics of
expression in a single cell , we compared scRNSeq expression to ground truth
expression levels determined using single-molecule RNA-FISH (smRNA-FISH) (Femino
et al., 1998). To make analyses more prisise and localized, we compared the RNA
levels in a very small population of cells discovered in our atlas that express vesicular
glutamate transporter (VGlut) and the neuropeptide Allatostatin C (AstC). We quantified
the relative expression of these mRNAs using smFISH and compared the result with
scRNAseq (Figure 6).

We used smFISH to probe VGlut and AstC mRNAs simultaneously and obtain
quantitative expression levels. We detected 5 groups of cells that contain AstC FISH
signals, which was consistent with previous reports of AstC localization (Williamson et
al., 2001). We observed 5 pairs of cells that contained both VGlut and AstC. Among the
5 pairs, 1 pair belonged to previously reported SLP1 AstC cells (Figure 6A). We
quantified the VGlut and AstC mRNAs in these cells using a Bessel beam selective
plane illumination microscope (BB-SIM) (Long et al., 2017). Although quantification of
VGlut and AstC mRNAs within individual cell bodies could not be obtained due to the
difficulty of segmenting overlapping cell bodies, we were able to obtain an average
quantification of VGlut and AstC mRNAs within these 5 pair of cells (Figure 6B). The
similarity we obtained for the VGIut and AstC expression ratio between single-molecule
FISH and scRNAseq suggested that the relative quantification from scRNAseq was

compatible with single-molecule FISH (Figure 6C).

Optogenetic sting alters expression globally

To investigate if a change in internal state would alter nervous-system-wide gene
expression, we examined gene expression profiles from animals exposed to repeated
fictive sting. An optogenetic sting was induced by activation of the basin interneurons.
The basins are first order interneurons that receive input from nociceptive (pain) and
mechanosensory (vibration) sensory neurons (Ohyama et al., 2015). Such optogenetic

activation of the brain evokes a rolling escape response (Ohyama et al., 2015), which
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mimics the natural response to wasp sting or nociceptor activation (Hwang et al., 2007).

Of note, no mechanical damage was induced in our protocol.

The basin interneurons were activated for 15 seconds, with a 45 second rest period for
a total of 120 activation periods (Figure 7A). Supervised machine learning was used to
automatically detect behavior (Jovanic et al., 2017). A rolling escape response was

observed at the start of the experiment; by the final activation stimulus, backing up and

turning were the predominate responses (Figure 7B).

Control animals of the same age were collected from the same food plate as
experimental animals and placed on an agar plate in the dark for two hours.
Immediately following the sting protocol, 2-4 animals from each group underwent the
scRNAseq protocol. We were primarily interested in searching for cell state genes which
could drive cell state clustering (Figure 7D). If cells from experimental animals and
controls are analyzed together, will cells cluster together based on cell type
(independent of treatment group) or cell state (dependent on treatment group)? If cell
type clustering is observed, it suggests that any changes in cell state induced by our
protocol are minor compared to cell type-specific features. But if cell state clustering is
observed, it is evidence that experience driven changes are at least of comparable

importance to cell type in determining genetic cell state.

The optogenetic sting protocol led to cell state clustering. Transcriptomic data from cells
isolated from activated and control brains were normalized and analyzed in the same
mathematical space, but the clustering that was observed was based on cell state (i.e.,
clustering was driven by whether the cells came from a “stung” animal or an “unstung”
control). Cell state genes that differed between the stung and unstung controls were

discovered (Figure 7F).
Cell state genes were most evident in larval functional and developing neurons,

including motor neurons, cholinergic, and neuropeptidergic cells. Genes that were

upregulated in motor neurons following the sting protocol included non-coding RNA
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(CR40469), carbohydrate metabolic enzymes (lactate dehydrogenase, ImpL3), and the
ethanol-induced apoptosis effector, Drat.

In addition to cell state genes within the nervous system, a large group of immune cells
was sequenced in the sting state, with particularly high expression of neuropeptide-like
precursor 2 (NPLP2), a gene which has been observed in phagocytic immune cells
(Fontana et al., 2012). RNA-FISH in sting and control conditions revealed this transcript
is not higher in the neurons but suggested that the lymph gland is being activated and
ramping up cell numbers in the sting condition (Figure S8). Strong evolutionary
selection pressure exists on the larva to survive predation by parasitic wasps
(Kraaijeveld and Godfray, 1997). Larvae can survive by using their immune system to
encapsulate and prevent the hatching of internalized parasitic wasp eggs. Previous
work has investigated the role of signaling detected by mechanical damage of the sting
and the presence of the foreign body (wasp egg) inside the larva (Sorrentino et al.,
2002). Our transcriptomic data suggest the immune system may also respond to a

currently unknown signal generated directly by the nervous system.

Learning center overactivation alters expression locally

In a second behavior protocol, we activated all higher-order central brain neurons
involved in learning and memory, called Kenyon cells (KCs). Similar to the fictive sting,
we observed a change in behavioral response at the start and end of the training. At the
start of training, animals hunch and arrest movement at the onset of activation and
crawl forward at the offset of activation (Figure 7C). At the end of the training, animals
continue to hunch and stop at the onset, but a larger fraction (~80%) perform a small
motion before turning rather than crawling forward to offset. Also, this protocol not only
altered animals response to the optogenetic activation of KCs but also drastically
altered behavior after activation. Animals greatly increased the probability of stopping

and reduced the probability of crawling.

To discover potential molecular changes that could drive these behavioral changes, we

analyzed the transcriptomes of animals exposed to these optogenetic training protocols
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and compared them to controls. Unlike the global changes in gene expression following
an optogenetic sting, we detected changes in the transcriptomic state of many fewer cell
types following repeated activation of the higher-order brain neurons involved in
learning and memory (Figure 7G-l). We discovered a number of interesting candidate
genes that were upregulated in an activity-dependent way in Kenyon cells and
dopaminergic neurons, which are key cell populations in the learning and memory
center (Figure 7;Table S3,54).

Cell state genes with differential expression between KC activated brains and controls
separated local groups of cells within clusters. Changes were observed in KCs and
dopaminergic neurons (DANSs) (Figure 7H,l). Cell state genes were not limited to
previously described activity-related genes. They included long non-coding RNA (noe,
CR40469), chromatin remodeling (His2AV, mamo), axon guidance (trn, DIP1, fas,
dpri4, fz2), and receptor genes (Dop2R).

Discussion:

This work makes several contributions to the field. First, we present the first full
transcriptomic atlas of the entire central nervous system at the single-cell resolution.
Second, we use super-resolution microscopy to compare single-molecule RNA-FISH
with scRNAseq in the Drosophila larva. By combining these two techniques — the first
providing information about the complete collection of RNA present in a cell and the
second providing full anatomical, subcellular, and absolute quantification of a chosen
RNA(s) — we provide a resource for the field of Drosophila neurobiology and provide an
example of complementary methods for building and validating single-cell molecular
atlases. Third, we provide an experimental paradigm for discovering a molecular
signature of internal state and use this paradigm to uncover drastic gene-expression
changes that accompany a state of stress evoked by repeated “optogenetic” predator
attack. Our atlas is therefore a powerful resource for developmental biology,

neuroscience, and evolutionary biology.
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Separating cell type from cell state is a key challenge for transcriptomic cell atlases. In
order to understand the changes in a specific cell type between health and disease, for
example, it will be necessary to be able to find the same cell type among differing
conditions. Here we show that such a distinction can be discovered in cases where
molecular cell state is significantly altered. Furthermore, we show that even in a
nervous system with drastically different (and unnatural) activity patterns in a sizable
population of highly interconnected neurons (here 200 of 10,000 or 2% of the nervous
system), limited changes may be observed across the entire nervous system but
changes can be observed in specific cell types. We foresee such techniques being
useful to investigate a wide range of internal state and cell state changes, from sleep to

parasitism to circadian rhythms.

Single-cell transcriptomic atlases are the missing piece required for the combined
analysis of genes, circuits, and behavior. Our work here shows that transcriptomic
atlases can be reliably built for multiple developmental stages of the Drosophila larva.
Furthermore, we show that optogenetic manipulations of internal state can alter gene
expression in a context-dependent manner. By adding a transcriptomic atlas to the
existing atlases of neuron connectivity, neuron activity, and behavior, we have set the
stage for a more complete understanding of the principles that underlie the complex

interplay of genes, circuits, and behavior.
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Figure 1. Schematic of full nervous system scRNA-seq collection and analysis. In
order to develop a central nervous system-wide transcriptomic atlas of the Drosophila
nervous system with single-cell resolution, we developed a protocol to digest the entire
nervous system into single cells, collected the cells using a microfluidic device (10x
Chromium machine, 10x Genomics, Pleasanton, CA), and sequenced the mRNA from

each cell. After barcoding and sequencing, a cell by gene matrix is generated. This cell
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by gene matrix was then analyzed with polyseq, a custom python package. In total,
202,107 neurons and glia were sequenced. The anatomical location of newly defined
molecular cell types were validated and identified using RNA-FISH with confocal
imaging. To push the technique forward, RNA-FISH combined with Bessel beam
selective plane illumination microscope (BB-SIM) was used to obtain the absolute
quantification and subcellular location of transcripts in these new cell types. Optogenetic
manipulations were performed to alter the internal state of the animal, either with two
hours of fictive wasp sting or two hours of overactivation of 10% of brain neurons, and
scRNAseq was used once more to search for a change in molecular cell state between

conditions.
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Figure 2. Polyseq python package performs cell type discovery and batch
correction. A. The same dataset was analyzed in polyseq and Seurat. A confusion
matrix was generated to compare how cells were clustered together. Fifteen clusters
were found in both analyses, with 8 of 15 clusters containing more than 90% of the
same cells. Clusters that disagreed about cell placement were often differing between
two similar clusters (i.e. deciding whether a cell belonged to glia 1 vs glia 2). B. Garnett,
a newly developed unsupervised technique, was used to label cell groups with known
markers (Pliner et al., 2019). This analysis correctly annotated larval functional neurons,
motor neurons, glia, NPCs, and GMCs. It also provides an “unknown” label for cells with
low confidence. D,E. Batch correction performance was compared in Monocle and
polyseq. In the plots, cells are separated by a signature related to small differences in
sample collection rather than cell type signatures. Monocle’s align function correctly
collapses the separated developing neurons (blue and black in “uncorrected” plot) into a
comingled group. The linear regression method we implemented in polyseq also
collapses the sample separations (such as the separation of motor neurons, functional
neurons and developing neurons) in the “uncorrected” plot into a single, mixed group in

the umap plot following linear regression.
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Figure 3. Neural progenitor cell (NPC) atlas reveals gene modules across
developmental time. A. A full atlas of first (1H), second (24H), and third (48H) instar
larval cells was built, and all NPCs were extracted. These NPCs were then analyzed
with Monocle and split into five clusters. B. A pseudotime analysis was performed using
known developmental times and separated the data into early, intermediate, and late
NPCs. A group of cycling neuroblasts was found to the right of the main NPC dataset in
UMAP space. C. Markers for each NPC cluster were extracted and revealed the change
in gene expression over developmental time. D. Gene modules were computed and
characterized early, intermediate, and late NPCs. As the gene modules represented
more developed cells, they were enriched for GO terms (E) which characterized more
developed cells (Table S2).
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Figure 4. Single-cell transcriptomic atlas of the larval central nervous system. A. t-
SNE visualization of high-quality cells colored by cell class. Cells broke into 70 clusters
(Figure S4; Table S1) and were post-hoc identified as adult developing neurons, larval
functional neurons, neural progenitor cells, glia, hemocytes, imaginal disc, salivary
gland, ring gland cells, or subsets of these cells, such as motor neurons, Kenyon cells,
neuroblasts, or ganglion mother cells (Table S1). B. Five subtypes of glia, labeled in
orange, were found comingled in t-SNE space and could be distinguished by age and
function. C. Neural progenitor cells, labeled green in the t-SNE space, split into
recognizable classes, including neuroblasts, ganglion mother cells, and optic lobe
neuroepithelium. D. Diagram of cell classes contained in the atlas (see Figure S1 for
more information). E. Genes that define each cell cluster and cell class were
discoverable (Table S1). Violin plots show exemplar genes from each cell class. F.

Heatmap of all high-quality cells and the top 3 genes that define each cluster.
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Figure 5. Transcriptomic Atlas predicts previously unknown neuropeptide

phenotype for insulin-producing cells and is verified by RNA-FISH. A. Anatomy of

insulin-producing cells (IPCs). The IPCs are a group of 7 bilaterally symmetrical

neurons which receive input through their dendrites (purple) about the nutritional state

of the animal and release insulin-like peptides (ILP2, ILP3, ILP5) through their axons

(green), which synapse on the ring gland, to control carbohydrate balance. They are

analogous to the vertebrate pancreatic beta islet cells. B,C. The RNAseq atlas built in

this study discovered the IPCs as a separate cluster (cluster 27 in C) with expression in

the IPCs of receptors for octopamine, serotonin, and allatostatin A, which matched
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previous literature. Surprisingly, the atlas also suggested the presence of a previously
unrecognized receptor in the IPCs for allatostatin C (AstC-R2). D. Detection of AstC-R2
mRNA in IPCs. Maximume-intensity projection of the confocal stack of a brain in which
the IPCs are labeled with a fluorescent HaloTag ligand (Magenta) and AstC-R2 mRNA
is detected by FISH (green), bar 10um. Dashed lines outline area where the single z

plane is shown on the left panels, bar 5um. Movie of D is in the supplement (Movie S1).
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Figure 6. Correlation between single-molecule FISH and scRNAseq. A. Identifying
cells that have coexpression of AstC (green) and vGlut (magenta) in the whole brain B.
Maximume-intensity projections of BB-SIM stack of the AstC and vGlut mRNA FISH
channels, bar 10pum. Dashed lines outline 2 cells that co-express AstC and vGlut
mRNAs are shown on the right panels, bar 1um. Lower panels show individual FISH
channel and the reconstructions obtained using the spot-counting algorithm. C.
Comparison of the quantification of AstC and vGlut mMRNAs between smFISH and
scRNAseq.
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Figure 7. Optogenetic sting and KC activation induce a change in internal state,
which is observable as cell state changes in gene expression. A. High-throughput
behavior assays were performed using previously described equipment (Ohyama et al.,
2013). Fifteen seconds of optogenetic activation were delivered every 60 seconds over
a two-hour period. Larval behavior was recorded and supervised machine learning
techniques were used to classify behavior as one of six behaviors. B. For the
optogenetic sting protocol, animals first respond to basin activation by performing an
escape response, including a fast turning response and rolling as previously described
(Hwang et al., 2007; Ohyama et al., 2013; Ohyama et al., 2015). Over the course of the
experiment, a switch in behavior is observed from rolling to backing up. C. Kenyon cell
activation led to a hunch followed by freezing. At the start of training, animals crawled
forward to offset. After training, the hunch and freezing response remained at the onset,
but the offset response switched to a turn rather than a forward crawl. D. Transcriptomic
atlases were produced from animals that underwent each behavior protocol and
matched controls. We were primarily interested in whether cell state or cell type
clustering would be observed after altering internal state (sting) or overactivating the
memory center (KC activation). Cell type clustering would result in cells from activated
animals and controls mixing in the same clusters while cell state clustering would lead
to separation of cells from activated and control animals. E,F. The optogenetic sting
protocol led to cell state clustering. All cell classes were identifiable for both conditions.
A large immune cell population was specific to the sting condition, suggesting an
immune response to a fictive wasp sting (Figure S8). F. Cell state genes were
discovered with upregulated and downregulated expression that separated all cell
populations. G-I. KC activation led to cell type clustering and local cell state changes.
Even though a larger total number of cells were activated (~200 KCs versus 64 basins),
a less dramatic switch was observed in behavior and in the transcriptome. There were
differentially expressed genes in two key populations of cells in the learning and

memory center: KCs and dopaminergic neurons.
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METHODS:

CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resources and reagents should be directed to and

will be fulfilled by the Lead Contact, Marta Zlatic (zlaticm@janelia.hhmi.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly stocks
Drosophila larvae were grown on standard fly food at 25°C and kept in 12-hour
day/night light and dark cycle. Vials were timed by collecting eggs on a new food plate

over the course of one hour.

Please see Key Resources Table for Drosophila lines used in this study.

METHOD DETAILS

Single cell isolation

Drosophila larvae were dissected at 1 hour, 24 hours, 48 hours, or 96 hours after larval
hatching (ALH). All dissections were performed in a cold adult hemolymph solution
(AHS) with no calcium or magnesium at pH 7.4. Quality of single cell isolation was
investigated by visual inspection with compound and confocal microscopy. Samples
were placed on ice during waiting periods. Samples were isolated and run on the 10x

Chromium Single Cell 3’ immediately after cell dissociation.

First, the complete central nervous system (CNS) was dissected from every animal. The
dissected nervous systems were kept in cold AHS on ice. For those samples where the
brain and the ventral nerve cord (VNC) were sequenced separately, the separation of
the brain from the VNC was performed using fine-tipped forceps and MicroTools (Cat #:
50-905-3315, Electron Microscopy Sciences). The time from digestion (the part of the
protocol most likely to induce cell stress) to on the 10x Genomic instrument was never

longer than 30 minutes.
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After separation of the brain from the VNC, the desired tissue was placed in 18 yL of
AHS on ice. Once all samples were prepared, 2 uL of 10x neutral protease (Cat #:
LS02100, Worthington Biochemical Corp, Lakewood, NJ, USA) was added to a final
volume of 20 uL. The intact brain tissue was digested for 5 minutes. The tissue was
then transferred to a fresh drop of 20 uL of AHS.

Each sample was triturated with a clean, thinly pulled glass electrode until no tissue was
visible under a dissection scope. All debris (pieces of nerve and undigested neuropile)
was removed. Samples with fluorescent markers were observed under a fluorescence
microscope to approximate cell density. The samples were then loaded onto the 10x

Chromium chip.

10X Genomics

Single cell capture and library construction was performed using the 10x Chromium
machine and the Chromium Single Cell 3’ v2 Library and Gel Bead Kit (10x Genomics,
Pleasanton, CA). Manufacturer's recommendations were followed for cell collection and
library construction. Libraries were sequenced with an Illlumina HiSeq following

manufacturer’s instructions.

MRNA in situ hybridization

FISH probes were designed based on transcript sequences using the online Stellaris
Designer and purchased from Biosearch Technologies. Probe sequences for AstC and
vGlut were previously reported (Long et al,. 2017; Diaz et al., 2019), and probe
sequences for AstC-R2, Hug, NPNL2 are in Table S5. Each probe is 18-22nt long with a
3’ end amine-modified nucleotide that allows directly couple to an NHS-ester dye
according to the manufacturer’s instructions (Life Technologies). Dye-labeled probes
were separated from the excess free dyes using the Qiagen Nucleotide Removal
Columns. FISH protocol was described previously (Long et al,. 2017; Diaz et al., 2019).
The brains of 3rd instar larvae were dissected in 1xPBS and fixed in 2%
paraformaldehyde diluted PBS at room temperature for 55 min. Brain tissues were
washed in 0.5% PBT, dehydrated, and stored in 100% ethanol at 4°C. After exposure to
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738 5% acetic acid at 4 °C for 5 minutes, the tissues were fixed in 2% paraformaldehyde in
739  1xPBS for 55 min at 25 °C. The tissues were then washed in 1x PBS with 1% of NaBH4
740 at 4 °C for 30 min. Following a 2 hour incubation in prehybridization buffer (15%

741  formamide, 2x SSC, 0.1% Triton X-100) at 50 °C, the brains were introduced to

742 hybridization buffer (10% formamide, 2x SSC, 5x Denhardt's solution, 1 mg/ml yeast
743 tRNA, 100 pg/ml, salmon sperm DNA, 0.1% SDS) containing FISH probes at 50 °C for
744 10 h and then at 37 °C for an additional 10 h. After a series of wash steps, the brains
745  were dehydrated and cleared in xylenes.

746

747  Confocal and BB-SIM Imaging

748  For confocal imaging, the tissues were mounted in DPX. Image Z-stacks were collected
749  using an LSM880 confocal microscope fitted with an LD LCI Plan-Apochromat 25x/0.8
750  oil or Plan-Apochromat 63x/1.4 oil objective after the tissue cured for 24 hours. For

751  single-molecule imaging, we use a previous described Bessel beam selective plane
752 illumination microscope (BB-SIM). Detail construction of microscope and the imaging
753  procedure is described previously (Long et al., 2017). Briefly, this BB-SIM is engineered
754  to image in medium matched to the measured refractive index (RI) of xylene-cleared
755  Drosophila tissue with axial resolution of 0.3 um and lateral resolution of 0.2 um. For
756  BB-SIM imaging, the tissues were mounted on a 1.5x3mm poly-lysine coated coverslip
757  attached to a 30mm glass rod. The imaging process requires the objectives and tissues
758 immersed in the imaging medium consist with 90% 1,2-dichlorobenzene, 10% 1,2,4-
759  trichlorobenzene with refractive index = 1.5525. Two orthogonally mounted excitation
760  objectives are used to form Bessel beams, which are stepped to create an illumination
761  sheet periodically striped along x or y, while a third objective (optical axis along the z
762  direction) detects fluorescence. To employ structured illumination analysis, we collect
763  multiple images with the illumination stripe pattern shifted to tile the plane in x, and

764  repeat the process orthogonally to tile the plane in y. The sample is then moved in z,
765  and the imaging repeated, and so on to image the 3D volume.

766

767  High-throughput Automated Optogenetic Behavior Experiments
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For the sting mimic experiments, 72F11-GAL4 males were crossed to UAS-CsChrimson
virgins (stock information in Key Resources Table). For Kenyon cell overactivation,
201Y-GAL4 males were crossed to UAS-CsChrimson virgins. Larvae were grown in the
dark at 25°C. They were raised on standard fly food containing trans-retinal (SIGMA
R2500) at a final concentration of 500 uM. Activation was performed in a high-
throughput optogenetic behavior rig described previously (Ohyama et al., 2013). About

40 animals were placed in a 25 x 25 cm?dish covered with clear 4% agar.

Neurons were activated using a red LED at 325 uW/cm? illuminated from below the agar
dish for 15 seconds with with a 45 second rest period for a total of 120 activation
periods (Figure 7A). Supervised machine learning was used to automatically detect
behavior (Jovanic et al., 2017). Control animals of the same age were collected from the
same food plate as experimental animals and placed on an agar plate in the dark for
two hours. Immediately following the sting protocol, 2-4 animals from each group were

dissected and cells were collected using the 10X Genomics protocol described above.
QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq analysis

Bioinformatic analysis was performed using Cell Ranger software (Version 1.3.1, 10x
Genomics, Pleasanton, CA, USA), the Seurat R package (Satija et al., 2015) and
custom software in R and Python, including the polyseq Python package developed
here. Software to train classifiers using neural networks was built with TensorFlow. The
polyseq package as well as jupyter notebooks containing code used for analysis in the

study are available on GitHub (https://github.com/jwittenbach/polyseq).

Briefly, Cell Ranger was used to perform demultiplexing, alignment, filtering, and
counting of barcodes and UMIs, with the output being a cell-by-genes matrix of counts.
To further ensure that only high-quality cells were retained, any cell that registered
counts in a unique number of genes below a baseline threshold was removed. To
reduce the dimensionality of the data for computational tractability, any gene that was

not expressed in a baseline number of cells was also dropped.
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To account for the fact that raw counts tended to span many orders of magnitude (~
10°-10°), counts were transformed via log(counts + 1). To control for cell size and
sequencing depth, the sum of the (log-transformed) counts within each cell used as a
regressor for a linear regression model to predict the (log-transformed) counts for each
gene (one linear regression model per gene, with each cell being a sample). “Gene
expression levels” were then quantified as the z-scored residuals from the fitted models
(i.e. standard deviations above/below the predicted log-transformed counts for a

particular gene across all cells).

Next, to further reduce the dimensionality of the data in preparation for downstream
clustering and embedding operations (both of which have computational costs that
scale poorly with the dimensionality of the feature space), principal component analysis
was performed with cells as samples and gene expression levels as features. The top K
principal components (PCs) were retained as features for downstream analyses. For the
lager cell atlas dataset, K was chosen to retain a desired percentage of the total
variance. For the smaller cell state datasets, K was chosen automatically via a shuffle
test — on each shuffle, gene expression levels for each gene were randomly permuted
across all cells and the percent variance explained by the top PC was recorded; the o5
percentile of this value across all shuffles was then used as a threshold to determine the
cutoff point for keeping PCs with respect to percent variance explained by a particular
PC.

Based on these top PCs, cells were clustered using the Louvain-Jaccard graph-based
clustering approach. Briefly, the k-nearest neighbor graph between cells was is
computed. Edge weights are then determined using the Jaccard index, which measures
the fraction of shared neighbors between any two nodes. Finally, the Louvain
community detection algorithm is applied to this graph to partition the nodes into
clusters; this algorithm seeks to optimize weight of connections with each cluster

relative to those between clusters.

36


https://doi.org/10.1101/785931
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/785931; this version posted January 16, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

829
830
831
832
833
834
835
836
837
838
839
840
841

842
843
844
845
846
847
848
849
850

851

852

853
854
855
856

857

aCC-BY-NC-ND 4.0 International license.

In order to visualize the results of the analysis, the PC features were also used to
perform a nonlinear embedding into two dimensions. This was performed via either the
t-SNE or the UMAP algorithm.

Once cluster identities were determined, the original gene expression level data was to
determine important genes for defining each cluster. For each cluster, gene expression
levels were used as features, and a binary indicator of whether or not a cell came from
the cluster in question was used as a target. This data was then used to fit a linear
classifier (viz, a support vector classifier) to separate in-cluster cells from the rest of the
population. The unit normal vector from the linear classifier was then extracted and the
components used to rank order genes in terms of importance for defining that cluster.
This same technique was also used to find important genes for groups defined by

methods other than clustering.

Imaging analysis

To quantify the number of vGlut and AstC mRNAs in cells contain both vGlut and AstC,
we first manually segmented cells from BB-SIM z-stacks that have both vGlut and AstC
FISH signals using the Fiji plugin TrakEM2 (Schindelin et al., 2012; Meissner et al.,
2019). After identifying the individual fluorescent spots in segmented cells used a
previously described Matlab algorithm (Lionnet et al., 2011), we calculate the number of
MRNAs per cell. Reconstructed images were generated using Matlab code that draws

spots centered on each of the detected spots positions (Lionnet et al., 2011).

DATA AND CODE AVAILABILITY

All code and documentation for polyseq is open source and freely available on github
(https://github.com/jwittenbach/polyseq). Jupyter notebooks used for analysis are
available upon request. The scRNA-seq data has been deposited in GEO and is
accessible under the accession code GEO: GSE135810.
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REAGENT or RESOURCE | SOURCE | IDENTIFIER |
Critical Commercial Assays \
RNA-FISH probes Biosearch N/A

Technologies
RNase-free 1x PBS Fisher Scientific BP2438-4
Acetic Acid, Glacial (Certified ACS), Fisher Chemical Fisher Scientific A38S-500
Sodium borohydride, 99%, VenPure™ SF powder Acros Organics AC448481000
SSC (20X) Fisher AM9763
Hi-Di formamide Applied Biosystems 4311320
Denhardt's solution (50X) Alfa Aesar AAJ63135AD
tRNA from baker's yeast Roche 10109495001
UltraPure™ Salmon Sperm DNA Solution Fisher Scientific 15632011
SDS, 10% Corning 46-040-Cl
Deionizedformamide Ambion AM9O342
Chromium Single Cell 30 Library & Gel Bead Kit v2 10x Genomics PN-120237
Chromium Single Cell A Chip Kit 10x Genomics PN-120236
Chromium i7 Multiplex Kit 10x Genomics PN-120262

Deposited Data

Raw and analyzed scRNAseq data | This paper ' GEO: GSE135810
Experimental Models: Organisms/Strains
D. melanogaster. w[1118]; P{y[+t7.7] Bloomington RRID:BDSC_39171

W[+mC]=GMR57C10-GAL4}attP2

Drosophila Stock
Center

D. melanogaster. pJFRC29-10XUAS-IVS-myr::GFP-p10
in attP40; pJFRC105-10XUAS-IVS-nistdTomato in
VKO00040

Jack Etheredge;
Etheredge, 2017

N/A

D. melanogaster. w[1118]; P{y[+t7.7]
w[+mC]=GMR72F11-GAL4}attP2

Bloomington
Drosophila Stock
Center

RRID:BDSC_39786

D. melanogaster. P{GawB}Tab2[201Y] Bloomington RRID:BDSC_4440
Drosophila Stock
Center

D. melanogaster. w[1118] P{y[+t7.7] w[+mC]=20XUAS- | Bloomington RRID: BDSC_55134

IVS-CsChrimson.mVenus}attP18

Drosophila Stock
Center

Software and Algorithms
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topGO
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/bioc/html/topGO.ht
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Other

Jupyter notebooks of data analysis used in this paper

This paper

https://github.com/j
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871  Figure S1. Single cell transcriptomic atlas of the larval nervous system across
872  developmental stages. A. Scanning electron microscopy (SEM) image of larval

873  anatomy during development. Three developmental stages were sequenced separately
874  to build age specific atlases (Scale bar =10 m for 1H, 20 m for 24H and 40 m for 48
875  H). Larval size and elaboration of mouth hooks continues during this developmental
876  period. B. Distribution of cell classes. Just after hatching (1 hour after larval hatching
877  (ALH)), there is one primary central cluster of neurons. Neuron classes are

878  recognizable, including cholinergic neurons, motor neurons, astrocyte-like glia, and

879  neuroblasts. At 24 hours ALH multiple main groups of neurons are recognizable with
880  markers consistent with an increase in neuroblasts and ganglion mother cells (GMCs).
881 In addition, there are large groups of neurons, here labeled “developing adult neurons”
882  which have neuron markers but few or no genes expressed for synaptic transmitters

883  and receptors. This is consistent with the large burst of neurons born at this point in
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884  development which lay dormant until adult life. At 48 hours ALH the functional larval and

885  developing adult populations are still identifiable.

886

Neural Network

Motor
Neurons

Nerve Cord

Input Hidden Layers Output

Labeled gene Brain or nerve cord
expression profiles classification

G D

Single Nervous System ISNE

R
Mixed Cholinergic, GABAergic and
Dopaminergic Neurons Kenyon cells

S i)

Kenyon Cells

Q Brain

Nerve
cord

e
ISNE_2

. Astracytes

v
>

Epithelial Cells *

1SNE.

eyl .
- w2 " Neuroblasls
Gliag,. 5 ,':';"{;::!é:\"‘,,‘/

887 ) 15NEI_|

888 Fig S2. Machine learning separates brain and VNC neurons.

889  We dissected the brain from the nerve cord and sequenced the RNA from each
890  population separately. This provided ground truth labels which we could then feed into

891 (B) a neural network to train a classifier to predict spatial origin from the brain of the
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892  VNC. C. We then used our classifier (built on separate data) to predict the brain or VNC
893  origin of cells from a nervous system that was sequenced in one sample (no brian or
894  VNC dissection). D. The classifier correctly separated brain from VNC cells in an intact
895  sample. Most clusters were appropriately mixed brain and VNC cells; however, one

896  pure VNC population (motor neurons) and one pure brain population (Kenyon cells)

897  were appropriately labeled by our machine learning classifier.

898
899
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901 Figure S3. Runtime for a typical pipeline to analyze single cell data in Seurat (R)
902 versus polyseq (python).

903  Equivalent analysis pipelines were built in Seurat and polyseq to analyze single cell
904 RNAseq data for datasets of 1,000 cells and 75,000 cells on a single laptop running
905 Mac OS with 16GB RAM and a 2.6 GHz Intel Core i7. Polyseq outperformed Seurat for
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906  both small and medium datasets. Jupyter notebooks used for testing that contain code
907 for Seurat and polyseq is available upon request.
908
909
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911 Figure S4. Labeled atlas of the complete larval nervous system. The atlas split into

912 70 clusters, which are labeled by color and class or more specific name. The top genes
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913  which define each cluster, along with the mean expression within the cluster, the
914  expression outside the cluster, and the p-value can be found in Table S1.
915
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Figure S4. Complete single-cell transcriptomic atlas of the larval central nervous
system colored by structure, cluster, dissection, sample, and developmental
stage. The complete atlas, described in Figures 4 and S4, colored by key
characteristics of the dataset. The first provides an overall structure of the cell classes
and where they are found in t-SNE space. The cluster coloring provides information
about location for each of the 70 clusters. The dissection splits the data into how the
data was collected — whether the sample contained only brain, only VNC, or both. The
sample t-SNE provides information about individual 10X genomics samples. The

developmental stage provides information about the age of the larvae at collection.
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933  Figure S6. Complete nervous system atlas from an individual animal.

934  A. t-SNE of the complete single nervous system with cell clusters colored by gene

935  expression of the top genes in each cluster. For each cluster in A there is a combination
936 of genes which separate the clusters into recognizable molecular cell types and cell

937 classes. B. Lines can be drawn in the t-SNE space that separates each of the cell

938 classes we define here (adult developing neurons, functional larval neurons, neural

939 stem cells, and glia). C. Violin plot of characteristic genes which separate each of the 8
940  top level clusters.
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946 Figure S7. Unsupervised clustering separates recognizable serotonergic,
947 dopaminergic, octopaminergic neurons into subclusters with known validated
948 markers and novel markers. A cluster of cells was discovered using unsupervised
949  machine learning techniques with markers indicative of dopaminergic cells. This cluster
950 was separated and clustered once more, revealing three separate clusters with gene
951  markers indicating a serotonergic subcluster, a dopaminergic subcluster, and an
952  octopaminergic subcluster. The top genes that separate these clusters from one
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another were then computed and violin plots were generated. Known markers were the
top genes for each subcluster and gave them recognizable identity — for example,
tryptophan hydroxylase (Trh), which is used to synthesize serotonin from tryptophan,
and serotonin transporter (SerT) were the top genes for the first subcluster, which could
then be appropriately labeled containing serotonergic cells. In addition to known gene

markers, new makers were also discovered for each group of cells.

A Control NPLP2 expression B NPLP2 expression after fictive sting

A g

proventriculus
o, . 7
pray_gtﬂ'riculus

4

sedondary lobe

Figure S8: NPLP2 expression is increased in the proventriculus and the brain
after fictive sting. An RNA-FISH probe was designed for NPLP2 and pale (ple) to
investigate the strong increased signal of NPLPZ2 following the fictive sting. In the brain
lobes, the size of the NPLP2-positive cells is much larger. In the proventriculus, where
immune cells emerge, there appear to be more NPLP2 positive cells emerging in the
case after fictive sting, suggesting an immune reaction releated to the activation of

neurons alone.
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Table S1. Atlas of cell types in the complete larval nervous system.

The top genes for the 70 cell type clusters are provided with the mean expression inside
the cluster, mean expression outside the cluster, and p-value. These clusters

correspond to Figure 4 and Supplementary Figure S4.

Table S2. Gene modules that characterize neural precursor cells over
development. Differential gene expression was used to compute gene modules in the
Monocle3 R package. The modules characterize early, intermediate, and late neural

precursor cell populations (Figure 3).

Table S3. Fictive sting full nervous system atlas.

The top genes for the 14 cell type clusters obtained from animals that were fictively
stung and controls. Tables include the top genes for each cluster, the mean expression
inside the cluster, the mean expression outside the cluster, and the p-value. These

clusters correspond to Figure 7E-F.

Table S4. KC overactivation full nervous system atlas.

The top genes for the 14 cell type clusters obtained from animals that had KCs
repeatedly activated and controls. Tables include the top genes for each cluster, the
mean expression inside the cluster, the mean expression outside the cluster, and the p-

value. These clusters correspond to Figure 7G-l.

Table S5: RNA-FISH probe sequences. RNA sequeces of probes built to label AstC-
R2, Hug, and NPLP2 transcripts.

Movie S1. Z-stacks through RNA-FISH of AstC in insulin-producing cells.

Z stacks are shown through the confocal stack of a brain in which the IPCs are labeled
with a fluorescent HaloTag ligand (Magenta), and AstC-R2 mRNA is detected by FISH
(green), bar 10um. This movie corresponds to Flgure 5 in the main text.

50


https://doi.org/10.1101/785931
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/785931; this version posted January 16, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

997

998
999

1000
1001
1002
1003
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

aCC-BY-NC-ND 4.0 International license.

Movie S2. Single-molecule imaging to correlate between single-molecule FISH

and scRNAseq.

Cells were identified with coexpression of AstC (green) and vGlut (magenta) in the
whole brain. This movie corresponds to Figure 6 in the main text and shows a view
through z-stacks of BB-SIM images of AstC and vGlut mRNA FISH channels.
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