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Abstract—Millimeter-wave (mmWave) and Terahertz
(THz) will be used in the sixth-generation (6G) wireless
systems, especially for indoor scenarios. This paper presents
an indoor three-dimensional (3-D) statistical channel model
for mmWave and sub-THz frequencies, which is developed
from extensive channel propagation measurements con-
ducted in an office building at 28 GHz and 140 GHz in 2014
and 2019. Over 15,000 power delay profiles (PDPs) were
recorded to study channel statistics such as the number of
time clusters, cluster delays, and cluster powers. All the pa-
rameters required in the channel generation procedure are
derived from empirical measurement data for 28 GHz and
140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS)
scenarios. The channel model is validated by showing that
the simulated root mean square (RMS) delay spread and
RMS angular spread yield good agreements with measured
values. An indoor channel simulation software is built upon
the popular NYUSIM outdoor channel simulator, which
can generate realistic channel impulse response, PDP, and
power angular spectrum.

Index Terms—Millimeter-Wave; Terahertz; Indoor Of-
fice; Channel Measurement; Channel Modeling; Channel
Simulation; 5G; 6G

I. INTRODUCTION

Driven by ubiquitous usage of mobile devices and
the emergence of massive Internet of Things (IoT),
the sixth-generation (6G) wireless system will offer
unprecedented high data rate and system throughput.
Moving to millimeter-wave (mmWave) and Terahertz
(THz) frequencies (i.e., 30 GHz - 3 THz) is considered
as a promising solution of fulfilling future data traffic
demand created by arising wireless applications such as
augmented/virtual reality (AR/VR) and 8K ultra high
definition (UHD) due to the vast bandwidth [1].

Accurate THz channel characterization for indoor sce-
narios facilitates the designs of transceivers, air interface,
and protocols for 6G and beyond. Standards documents
like IEEE 802.11 ad/ay and 3GPP TR 38.901 proposed
statistical channel models for various indoor scenarios
such as office, home, shopping mall, and factory [2]—[4].
The IEEE 802.11 ad/ay developed a double directional
statistical channel impulse response (CIR) model work-
ing at 60 GHz based on measurements and ray-tracing
results in the conference room, cubical environment, and
living room [2f], [3]. 3GPP TR 38.901 presented a cluster-
based statistical channel model for frequencies from 0.5

to 100 GHz for outdoor and indoor scenarios with differ-
ent values of large-scale parameters such as delay spread,
angular spread, Rician K-factor, and shadow fading [4].
This paper proposes a unified indoor channel model
across mmWave and sub-THz bands based on indoor
channel measurements at 28 GHz and 140 GHz, which
provides a reference for future standards development
above 100 GHz.

There has been some work on channel modeling at
THz bands [S]-[7]. A temporal-spatial statistical channel
model based on ray-tracing results in an office room at
275-325 GHz, which consisted of line-of-sight (LOS),
first- and second-order reflected paths, was developed in
[S]. A generic multi-ray channel model for 0.06-1 THz
constituted by LOS, reflected, diffracted, and scattered
paths generated by ray-tracing simulations was given in
[6]. Due to the hardware constraints such as maximum
transmit power, most of the published channel propa-
gation measurements at THz frequencies were limited
within a few meters [7]. The existing channel mod-
els for THz frequencies are mainly ray-tracing based,
where CIRs are represented as a superposition of LOS,
reflected, and scattered paths based on reflection and
scattering properties of the environment. In this paper,
the presented three-dimensional (3-D) channel model for
mmWave and sub-THz frequencies is statistical and built
upon extensive propagation measurements up to 45 m in
an office building at 28 GHz and 140 GHz.

The remainder of the paper is organized as follows.
Section [[Il describes the indoor measurements at 28 GHz
and 140 GHz performed in 2014 and 2019. Section
introduces the large-scale path loss model. Section [V]
describes the spatial statistical CIR model, and Section
[V] shows statistics of required parameters in the channel
generation procedure. Section [VI] validates the proposed
channel model by showing that simulated and measured
omnidirectional root mean square (RMS) delay spread
(DS) and global RMS angular spread (AS) yield a good
agreement. Section provides concluding remarks.

II. WIDEBAND CHANNEL MEASUREMENTS
A. Measurement environment, system, and procedure

28 GHz and 140 GHz channel measurement cam-
paigns were conducted in the NYU WIRELESS re-
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search center on the 9th floor of 2 MetroTech Center
in downtown Brooklyn, New York in 2014 and 2019,
respectively. The 9th floor is a typical office environment
(655 m x 35 m x 2.7 m) with common obstructions
such as cubical partitions, corridors, conference rooms,
walls made of drywall, glass doors, and desks. Five
transmitter (TX) locations and 33 receiver (RX) locations
were chosen for 28 GHz measurements resulting in
10 LOS TX-RX location pairs and 38 NLOS TX-RX
location pairs as seen in Fig. [l The measured TX-RX
separation distance for 28 GHz measurements ranged
from 3.9 m to 45.9 m. Three TX locations (TX1, TX2,
and TX5) were chosen for 140 GHz measurements, and
only 16 out of the 33 RX locations were measured due to
the limited transmit power (0 dBm), resulting in five LOS
TX-RX location pairs and 12 NLOS TX-RX location
pairs. The measured TX-RX separation distance for 140
GHz measurements ranged from 3.9 m to 39.2 m.
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Fig. 1: Floor plan of the 9th floor, 2 MetroTech Center. There
are five TX locations denoted as yellow stars and 33 RX
locations denoted as red dots [8]].

We used a wideband sliding correlation-based channel
sounding system with highly directional horn antennas to
record PDPs using a high-speed oscilloscope [9]. The
channel sounder transmitted pseudorandom sequence
signals with 800 MHz and 1 GHz RF bandwidth at
28 GHz and 140 GHz, respectively. Two identical horn
antennas were used at TX and RX, which had 15 dBi
gain and 30° antenna half power beamwidth (HPBW)
for 28 GHz measurements, and 27 dBi gain and 8° an-
tenna HPBW for 140 GHz measurements. For each TX-
RX location pair, eight unique antenna azimuth sweeps
were performed to obtain spatial statistics for vertical-to-
vertical (V-V) polarization. Overall, at most 96 (= 8 x 12)
at 28 GHz and 360 (= 8 x 45) at 140 GHz directional
PDPs were acquired with V-V polarization configuration
for each TX-RX location pair.

For each antenna azimuth sweep, the RX (TX) horn
antenna was swept in steps of 8° or 30° according
to antenna HPBW, and the pointing direction of TX
(RX) horn antenna was fixed during one sweep. At each
sweeping step, an average PDP over 20 instantaneous
PDPs was recorded by a high-speed oscilloscope for

next-step processing and analysis. By sweeping anten-
nas in the azimuth plane at different elevation levels,
multipath components (MPCs) with energy above the
noise floor that can arrive at RX in the 3-D space were
captured and recorded. More details of the measurement
procedure can be found in [§]], [10].

B. Data processing

Omnidirectional channel modeling is fundamental and
regarded as a basis for directional and multiple input
multiple output (MIMO) channel modeling [[L1]. Thus,
omnidirectional PDPs need to be recovered from mea-
sured directional PDPs with knowledge of absolute time
delays. Note that the channel sounding system was not
able to perform precise synchronization between TX and
RX, thus cannot provide absolute timing information
because the PDP recording was triggered at the first
MPC arrival and only had excess time delay information.
Here we used a ray-tracing tool to provide the actual
time of flight of the first MPC in measured directional
PDPs so that an omnidirectional PDP can be synthesized
by aligning directional PDPs in time at each TX-RX
location pair.

A 3-D mmWave ray-tracing tool, NYURay [12], was
used to predict possible propagating rays for the identical
TX-RX location pairs selected in measurements, which
can provide time of flight of the predicted rays. If the
direction of a measured directional PDP matched the
direction of a predicted ray, the time of flight of this
predicted ray was used as the absolute time delay of the
first MPC in this measured PDP. Due to the beamwidth
of horn antennas, there might be several predicted rays
which were close to the pointing angle of the measured
PDP in space and vice versa. The predicted ray which
was closest to the measured PDP in 3-D space (i.e.,
the minimal sum of the differences of azimuth angle
of departure (AOD) ¢aop, zenith angle of departure
(ZOD) 6z0p, azimuth angle of arrival (AOA) ¢dao0a,
and zenith angle of arrival (ZOA) 6z04) was chosen
to match this measured PDP and provide the absolute
timing information.

III. LARGE-SCALE PATH LOSS MODEL

Path loss models describe the distance-power law that
the received power decreases exponentially with distance
and are commonly used in the prediction of signal
strength and cell range. A popular path loss model, close-
in free space reference distance (CI) path loss model with
1 m reference distance, is given by [8], [13], [14]

PLY(f, d)[dB] =FSPL(f,1m)[dB] + 10nlog,,(d) + X0,
1)
where n is path loss exponent (PLE) and d is the

distance. FSPL(f,1 m) is the free space path loss at 1
m at frequency f. Shadow fading x, is characterized



by a zero mean Gaussian random variable with standard
deviation ¢ in dB.

PLE n indicates that the power decays by 10n dB
per decade of distance beyond 1 m [14]. Fig. 2] shows
that PLE for 28 GHz LOS and NLOS scenarios via
minimum mean square error (MMSE) fitting are 1.2 and
2.8, respectively. 1.2 is derived from 2 MetroTech dataset
for 28 GHz LOS case, which is lower than 1.3-1.9 found
in the literature [15]-[17]]. To verify this low PLE, we
conducted LOS measurements in another office building,
370 Jay, at 28 GHz. The resulting PLE for 370 Jay
dataset is also 1.2, suggesting that the power attenuates
much slower (12 dB per ten meters) than values reported
in the literature, which might be attributed to the strong
waveguide effect of long and narrow corridors in the
indoor environment.
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Fig. 2: 28 GHz indoor omnidirectional path loss scatter plot
and MMSE-fitted CI path loss model with distance for LOS
and NLOS scenarios.

IV. STATISTICAL OMNIDIRECTIONAL CHANNEL
IMPULSE RESPONSE MODEL

Here we presented a 3GPP-like spatial statistical
channel model for indoor scenarios using the NYUSIM
outdoor channel modeling framework [11]. The outdoor
and indoor NYUSIM channel model share the channel
generation procedure and the set of channel parameters,
but have different probabilistic distributions for these
channel parameters such as the number of time clusters
(TCs) and cluster subpaths (SPs) due to the distinct
environment characteristics. The proposed indoor chan-
nel model is built upon the existing NYUSIM outdoor
modeling procedure and developed from 28 GHz and
140 GHz measurements in the office building.

The NYUSIM and 3GPP TR 38.901 channel models
are both 3-D statistical channel models but have several
key differences [4], [18]. The 3GPP channel model
defines a cluster as a group of MPCs closely spaced
jointly in the temporal and spatial domain [4] while
the NYUSIM channel model separately characterizes

temporal and spatial statistics by defining time cluster
and spatial lobe (SL) motivated by the observations from
measurements [8]]. A TC is composed of MPCs traveling
close in time, and that arrive from potentially different
directions in a short propagation time window. An SL
represents a main direction of arrival or departure where
MPCs may arrive over hundreds of ns [[11].

Both modeling methodologies are valid, where the
3GPP model is more widely used and the NYUSIM
model has a simpler and physically-based structure [[19],
[2Q]. Performance evaluation with respect to spectrum
efficiency, coverage, and hardware/signal processing re-
quirements between the 3GPP and NYUSIM channel
models were analyzed in detail [18]].

A received signal can be regarded as a superposition of
multiple replicas of the transmitted signal with different
delays and angles for any wireless propagation channel.
The time cluster spatial lobe (TCSL)-based omnidirec-
tional CIR model is given by

N M,
homni(tu 97 (I)) = Z Z am)ne.ﬁﬂm,n : 5(t - Tm,n) 2)
n=1m=1
5(6 = Op) - 6(B = By ),

where ¢ is the absolute propagation time, 8 =
(_¢>AOD,920D) is the vector of AOD and ZOD, and
® = (¢aoa,bzoa) is the vector of AOA and ZOA.
N and M,, denote the number of TCs and the number
of cluster SPs, respectively. For the mth SP in the nth
—— —

TC, am,n, ©mn> Tmmn> Omn, and &, , represent the
magnitude, phase, absolute propagation time, AOD and
AOA, respectively. The PDP and power angular spectrum
(PAS) can be obtained by integrating the square of the
CIR in space and time domains, respectively.

The measured PDP and PAS were partitioned into time
clusters and spatial lobes to obtain empirical channel
statistics such as the number of TCs and the number
of SLs, respectively [11]. The partition in the temporal
domain was realized by minimum inter-cluster time void
interval (MTI). Two sequentially recorded SPs belong
to two distinct time clusters if the difference of the
excess time delays of these two SPs is beyond MTI. For
example, 25 ns was used as MTI for an outdoor urban
microcell (UMi) environment [[11], while 6 ns was used
as MTI in this paper for an indoor office environment
due to the fact that the width of a typical hallway in
the measured indoor office environment was about 1.8
m (i.e., ~6 ns propagation delay).

The partition in the spatial domain was realized by
spatial lobe threshold (SLT). The angular resolution
of the measured PAS depends on the HPBW of horn
antennas. To reconstruct the 3-D spatial distribution of
the received power, linear interpolation in azimuth and
elevation planes with 1° resolution was implemented



using the measured directional received powers. A power
segment was calculated every 1° direction in the 3-D
space using this linear interpolation. Neighboring power
segments above the SLT formed an SL. A -10 dB SLT
below the maximum peak power in the 3-D power
spectrum was applied, which was the same as in [[L1].

V. STATISTICS EXTRACTION OF CHANNEL
PARAMETERS

Temporal and spatial channel parameters are extracted
from the measured PDP and PAS using the TCSL
approach described in Section [Vl Temporal parameters
include the number of TCs (N) and SPs in a TC (M,,),
TC excess delay (7,,) and intra-cluster SP excess delay
(pm,n), TC power (F,) and SP power (II,, ). Spatial
parameters are the number of SLs (L), the mean azimuth
and elevation angle of an SL (¢ and #) and the azimuth
and elevation angular offset of a SP (A¢ and Af) with
respect to the mean angle of the SL. Values of parameters
required in Table [l for 28 GHz and 140 GHz LOS and
NLOS scenarios are given in Table [ where DU stands
for discrete uniform.

A. Temporal Channel Parameters

1) The number of time clusters: The empirical his-
togram of the number of TCs N from 28 GHz and 140
GHz NLOS measurements with a 6 ns MTI is shown
in Fig. Bl which follows a Poisson distribution. Since
Poisson distribution starts from zero while the number
of TCs is at least one, N’ = N —1 is used for distribution
fitting. The generated number of TCs from the Poisson
distribution is added by one to obtain the simulated
number of TCs, which is given by

P(N’:k)zz—%e”\a k=0,1,2,.., 3)
N=N+1.

where ). is the mean of the Poisson distribution. Fig. 3]
shows that there are more time clusters at 28 GHz than
140 GHz which is likely due to the higher partition loss
at 140 GHz (e.g., 4-8 dB higher than 28 GHz) [10]. The
Poisson distribution of the number of TCs for the indoor
NLOS scenario is different from the uniform distribution
for the outdoor scenario [11]].

2) Number of cluster subpaths: The number of cluster
SPs M,, is related to the number of TCs and depends
on the choice of MTI. A larger MTI causes fewer TCs
and more SPs per TC since two SPs might be counted
into one cluster rather than two clusters using a larger
MTI. The empirical histogram of the number of cluster
subpaths from 28 GHz measurements with a 6 ns MTI is
shown in Fig. [ Similar to the number of time clusters,
M) = M, — 1 was used for distribution fitting. We
proposed a composite distribution with a J-function at

0.4

[ 28 GHz histogram
771140 GHz histogram

0.35
| - 28 GHz Poisson (AC 28)
03k ~¢- 140 GHz Poisson (A ;,0)|

o
)
o

NLOS

Probability
o
N

MTI =6 ns
/\0'28 =34

0151

0.1F
0.05[
0
0

Fig. 3: The number of time clusters for 28 GHz and 140 GHz
NLOS scenario follows Poisson distributions with mean 3.4
and 1.3, respectively.
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Fig. 4: The number of cluster subpaths for 28 GHz LOS and
NLOS scenarios follows the composite distribution.

M/ = 0 and a discrete exponential (DE) distribution,
which is given by

P, (k) = (1= B)é(k) + B ; Ee_ﬁd% @)

k=0,1,2,..,

where p5 is the mean of the DE distribution and 3 is the
weight of the DE distribution in the composite distribu-
tion. The maximum likelihood estimation (MLE) of p
and 3 are 4.1 and 0.6 for 28 GHz NLOS measurements,
respectively. The identical composite distribution for the
28 GHz LOS scenario shows that u; = 2.4 and 8 = 0.8,
suggesting that NLOS scenario forms relatively larger
clusters than the LOS scenario. As shown in Table [II] in
terms of the number of TCs (depending on the input
parameter \.) and the number of SPs (depending on
the input parameter y,), the 140 GHz channel is much



TABLE I: INPUT PARAMETERS FOR CHANNEL COEFFICIENT GENERATION PROCEDURE

Step Index Channel Parameters 28 - 140 GHz InH
) DU(1,N,) ,if LOS
tep 1 #T lust N N ~
Step fme clusters {Poisson()\c) ,if NLOS
Step 2 # Cluster subpaths M, My ~ (1 —B)§(Mn) + - DE(us)
Step 3 Intra-cluster delay py, » (ns) Pm,n ~ Exp(pp)
7~ Exp(ir) or Logn(sir, o7)
AT, = sort(1))) — min(7,,
Step 4 Cluster delay 7, (ns) " (7a) (7a)
0 ,n=1
T =
" Tn-1+pM, _yn—1+ AT +MTI ,n=2,..N
P! = Pye” 710710,
P,
Step 5 Cluster power P, (mW) P, ~ n X P.[mW],
k=1 P
Zn, NN(O,O’Z), n=12..,N
_ Pm.,n Um.n
I, , =TI ~ 10710
H/
Step 6 Subpath power II,, ,(mW) o = # X Py [mW],
’ n 1
Zk:l Hk,n
U””a" ~ N(07 UU)7 m= 17 27 ) My,
Step 7 SP phase ¢ (rad) Uniform(0, 27)
Laob ~ DU(L, LaoDm:
Step 8 # Spatial lobes L AOD (1 Laopm)
Laoa ~ DU(1, LaoA max)
i ~ Unifonn((z)mim (z)max),
Step 9 SL mean angle ¢;,0; (°) Gmin = w,(bmx: %,i:l,&...,L
0; ~ N (w1, 01)
1 ~ DU[L, Laop], j ~ DU[L, Laoa]
SP angle offset Ag;, A9 (A¢i)m,n,a0p ~ N (0,04 a0D)
Step 10 an%:n:) (;ie 0, (O;’ v (A0;)m,n,zop ~ N (0,00 z0D)
(A¢j)m,n,a0a ~ N (0,04 404)
(Ab;)m.n,zoa ~ N(0,09.704)

sparser than the 28 GHz channel, which is critical for
channel estimation [21]].

3) Inter- and intra-cluster excess delay: The cluster
excess delay 7, is defined as the time difference between
the first arriving subpath in the PDP and the first arriving
subpath in the nth cluster, as shown in Step 4 of Table
M par, o n—1 is the intra-cluster excess delay of the last
subpath in the former cluster. A7, is the inter-cluster
excess delay without MTI (i.e., 6 ns). Results given in
Table [l show that the inter-cluster delays for 28 GHz
NLOS, 140 GHz LOS, and 140 GHz NLOS datasets are
well characterized by exponential distributions. However,
the inter-cluster delay for 28 GHz LOS dataset is closer
to a lognormal distribution. The peculiar behavior found
in 28 GHz LOS scenario is attributed to two strong MPCs
with large inter-cluster delays observed in the corridor
environment (e.g., TX4 and RX 16).

The intra-cluster excess delay p, ,, is defined as the
time difference between the first arriving subpath and
the mth arriving subpath in the nth time cluster. An
exponential distribution with /., shows a good agreement
with the measured intra-cluster excess delay for 28 GHz

and 140 GHz LOS and NLOS scenarios.

B. Spatial Channel Parameters

1) The number of spatial lobes: An SL represents
a main direction of arrival or departure. The angular
resolution of the measured PAS depends on the antenna
HPBW (30° and 8° for 28 and 140 GHz measurements).
Linear interpolation of the measured PAS with 1° angular
resolution in the azimuth and elevation planes was imple-
mented to investigate the 3-D spatial distribution of the
received power. Measurement results showed that there
are at most two main directions of arrival in the azimuth
plane, except that there are a few NLOS locations having
three main directions of arrival in 28 GHz measurements.

2) Spatial lobe mean angle and subpath angular off-
set: The SL mean azimuth angle ¢; is generated by first
dividing the azimuth plane into a few sectors according
to the number of spatial lobes, then randomly selecting
a direction within that sector. The SL mean elevation
angle 6; is generated by a normal random variable with
the mean ;. The angular offsets of each subpath in both



azimuth and elevation planes are modeled as zero-mean
normal random variables with variances o4 and oy.

VI. SIMULATION RESULTS

The statistical channel model presented in Section
[V] was implemented as an indoor channel simulator
based on the NYUSIM outdoor channel simulator to
investigate the accuracy of the simulated temporal and
spatial statistics by comparing it with the measured
statistics. Note that the parameters listed in Table [
are primary statistics which are used in the channel
parameter generation procedure. The metrics used in this
section for channel validation are secondary statistics
such as RMS DS and RMS AS which are not explic-
itly used in the channel generation, but the simulated
secondary statistics should yield good agreements with
the measured statistics. 10,000 simulations were carried
out for four frequency scenarios (i.e., 28 GHz LOS, 28
GHz NLOS, 140 GHz LOS, and 140 GHz NLOS) by
generating 10,000 omnidirectional PDPs, and 3-D AOD
and AOA PASs as sample functions of @) using the
NYUSIM indoor channel simulator.

A. Simulated RMS Delay Spreads

The RMS DS describes channel temporal dispersion,
which is a critical metric to validate a statistical channel
model. Fig.l5shows the simulated and measured omnidi-
rectional RMS DS at 28 GHz and 140 GHz in LOS and
NLOS scenarios. As shown in Fig. 3l the empirical and
simulated median RMS DS are 17.9 and 13.9 ns for 28
GHz LOS scenario, 13.5 and 12.5 ns for 28 GHz NLOS
scenario, 3.1 and 3.2 ns for 140 GHz LOS scenario, and
5.7 and 5.9 ns for 140 GHz NLOS scenario, respectively.
The simulated cumulative distribution function (CDF)
yielded good agreements with the empirical CDF for four
frequency scenarios.
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Fig. 5: Measured and simulated omnidirectional RMS DS for
28 and 140 GHz in LOS and NLOS scenarios.
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Fig. 6: Measured and simulated global RMS AOA AS for 28
and 140 GHz in LOS and NLOS scenarios.

B. Simulated RMS Angular Spreads

The omnidirectional azimuth and elevation AS de-
scribe the angular dispersion at a TX or RX over the
entire 47 steradian sphere, also termed global AS. The
AOA and AOD global ASs were computed using the total
(integrated over delay) received power over all measured
azimuth/elevation pointing angles. The measured and
simulated global AOA RMS AS was calculated using
Appendix A-1,2 in [4] and compared in Fig. [6] show-
ing the simulated and measured median global angular
spreads are very close (less than 5°) for 28 GHz LOS, 28
GHz NLOS, and 140 GHz NLOS cases while the limited
number of 140 GHz LOS measurements considerably
skewed the empirical distribution.

VII. CONCLUSION

The paper presented a 3-D spatial statistical channel
model based on the extensive measurements at 28 and
140 GHz in an indoor office building. The statistics of
necessary parameters for the channel generation pro-
cedure were extracted from empirical LOS and NLOS
measurement data. The NYUSIM indoor channel simu-
lator was used to generate thousands of PDPs and PASs
for validating the presented channel model. The simu-
lated channel statistics yielded a good agreement with
the measured channel statistics in terms of secondary
statistics such as omnidirectional RMS DS and global
RMS AS. The omnidirectional statistical channel model
in this work will be used as a basis for further directional
and MIMO channel modeling and facilitates channel
estimation and channel capacity analysis for mmWave
and sub-THz frequencies.



TABLE II: REQUIRED PARAMETERS THAT REPRODUCE THE MEASURED STATISTICS OF OMNIDIRECTIONAL CHANNELS USING
THE PRESENTED STATISTICAL CHANNEL MODEL.

(1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

Input Parameters 28 GHz LOS | 28 GHz NLOS | 140 GHz LOS | 140 GHz NLOS

N¢ 5 NA 4 NA

Ac NA 34 NA 1.3

Bs 0.8 0.6 0.8 1.0

Hs 24 4.1 1.0 1.0

fr [ns] logn(2.7, 1.4) 12.1 18.6 23.5

fip D8] 2.6 15.7 22 22
T'[ns], o [dB] 387, 5.0 20.1, 7.0 6.0, 3.0 13.4, 5.0
~[ns], o1/ [dB] 2.5,7.0 5.0, 8.0 1.4, 5.0 2.0, 6.0

L A0D.max> LAOA max 2,2 2,3 2,2 2,2
11,2001, 71200 [°] 73,38 55,29 -6.8, 4.9 25,27
111,20 7], 71.20a [°] 74,38 55,29 74,45 48,28
opa00, 000007 | 235,160 31.6, 15.6 48,42 5.1, 4.1
o540 1], 70.a04 %) 19.3, 14.5 25.5, 14.6 48,43 54,42
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