

1 Diffusive and Fluidlike Motion of Homochiral Domain Walls in 2 Easy-Plane Magnetic Strips

3 David A. Smith,^{1,*} So Takei,^{2,3,†} Bella Brann,¹ Lia Compton,¹
4 Fernando Ramos-Diaz,¹ Matthew Simmers,⁴ and Satoru Emori^{1,‡}

5 ¹*Department of Physics, Virginia Tech, Blacksburg, VA, 24061, U.S.A.*

6 ²*Department of Physics, Queens College of the City University of New York, Queens, New York, 11367, U.S.A.*

7 ³*Physics Doctoral Program, The Graduate Center of the City University of New York, New York, New York 10016, U.S.A.*

8 ⁴*Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, U.S.A.*

9 (Dated: December 10, 2021)

10 Propagation of easy-plane magnetic precession can enable more efficient spin transport than
11 conventional spin waves. Such easy-plane spin transport is typically understood in terms of a
12 hydrodynamic model, partially analogous to superfluids. Here, using micromagnetic simulations,
13 we examine easy-plane spin transport in magnetic strips as the motion of a train of domain walls
14 rather than as a hydrodynamic flow. We observe that the motion transitions from diffusive to
15 fluid-like as the density of domain walls is increased. This transition is most evident in notched
16 nanostrips, where the the domain walls are pinned by the notch defect in the diffusive regime but
17 propagate essentially unimpeded in the fluid-like regime. Our findings suggest that spin transport
18 via easy-plane precession, robust against defects, is achievable in strips based on realistic metallic
19 ferromagnets and hence amenable to practical device applications.

20 I. INTRODUCTION

21 Transport of spin information via magnetization
22 dynamics is a key area of rapid development within
23 spintronics [1]. To date, much work on micron-scale spin
24 transport has focused on using diffusive spin waves [2, 3].
25 The magnetization precession cone angle in diffusive
26 spin waves is typically $\ll 10^\circ$, and the associated spin
27 flow decays exponentially with decay length inversely
28 proportional to the Gilbert damping parameter α , as
29 illustrated in Fig. 1(a). As a result, efficient spin
30 transport at or beyond the micron scale has been difficult
31 to attain, particularly in typical metallic ferromagnets
32 with $\alpha > 10^{-3}$ that are compatible with industrial device
33 fabrication.

34 An alternative method to achieving long distance spin
35 transport in the form of spin superfluidity [4–10] has
36 gathered interest in recent years. In spin superfluidity
37 the magnetization undergoes easy-plane precession with
38 a cone angle of $\approx 90^\circ$, driven by a current-induced
39 spin-transfer torque [11–13]. The resulting precessional
40 dynamics propagates along the ferromagnet in a spiraling
41 manner, as illustrated in Fig. 1(b), and is protected
42 from unwinding by the strong easy-plane anisotropy
43 preventing phase slips [14]. While true superfluidity (i.e.

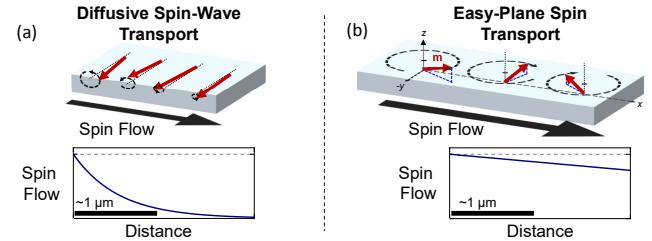


Figure 1. (a) Illustration of small angle precession constituting diffusive spin waves and exponential decay of spin flow. (b) Easy-plane precession constituting superfluid-like spin transport and associated linear decay of spin flow.

44 lossless spin transport) is not possible as a result of ever-
45 present viscous Gilbert damping, this unique form of
46 magnetization dynamics creates a spin flow that decays
47 linearly or algebraically with distance. This easy-plane
48 superfluid-like spin transport – also called “dissipative
49 exchange flow” [9] or “exchange-mediated spin transport”
50 [10] – has been proposed as a means of spin information
51 transport even in metallic ferromagnets [5, 9, 15–17] with
52 moderate damping parameters.

53 Halperin and Hohenberg originally proposed a model
54 to view easy-plane precessional magnetization dynamics
55 from a hydrodynamic perspective [18], in a manner that
56 is analogous to that of superfluidity. This hydrodynamic
57 perspective has been used to analyze easy-plane spin
58 transport in several studies [9, 16, 17, 19]. However,

* Correspondence email address: smithd22@vt.edu

† Correspondence email address: So.Takei@qc.cuny.edu

‡ Correspondence email address: semori@vt.edu

59 these studies have focused on the regime that requires
 60 higher drive current densities, J_c . The requirement
 61 of high current densities ($J_c > 1 \times 10^{12} \text{ A/m}^2$) poses
 62 potential problems in the form of Joule heating as
 63 well as electromigration altering material properties.
 64 While studies have investigated the effects of in-plane
 65 magnetocrystalline anisotropy [9], Gilbert damping [17],
 66 and void defects [16, 19], how the easy-plane spin
 67 transport behaves at lower drive current densities, closer
 68 to the range of experimental feasibility, has yet to be
 69 answered.

70 In this study, we have performed micromagnetic
 71 simulations of easy-plane spin transport in synthetic
 72 antiferromagnet nanostrips, focusing on the low drive
 73 regime. The synthetic antiferromagnet material
 74 parameters mimic those of experimentally measured,
 75 metallic ferromagnets. Instead of taking the conventional
 76 approach from a hydrodynamic perspective, we study the
 77 dynamics as a train of interacting, homochiral domain
 78 walls (DWs) [20]. We find that at low drive current
 79 densities J_c , the DWs can be pinned by a notch defect.
 80 We observe the transition from diffusive motion to fluid-
 81 like motion as J_c is increased and the DW density₁₀₈
 82 increases. The dynamics of the DW train converges to₁₀₉
 83 that of the established hydrodynamic behavior when the₁₁₀
 84 DW spacing becomes comparable to the DW width at₁₁₁
 85 $J_c \simeq 5 \times 10^{11} \text{ A/m}^2$. In this fluid-like regime, the train₁₁₂
 86 of DWs are unimpeded by the notch defect. Our results₁₁₃
 87 suggest that even at moderately low J_c and with deep₁₁₄
 88 notch defects, it is feasible to achieve easy-plane spin₁₁₅
 89 transport in a metallic ferromagnetic system.

90 II. SIMULATION DETAILS

91 We have simulated easy-plane spin transport – i.e.,₁₂₁
 92 motion of a train of spiraling homochiral transverse₁₂₂
 93 Néel DWs – in magnetic nanostrips using Mumax³, an₁₂₃
 94 open-source GPU accelerated micromagnetic simulation₁₂₄
 95 package [21]. In single-layer ferromagnetic strips (see₁₂₅
 96 Appendix A), the moving transverse DWs are unstable₁₂₆
 97 and transform into vortex DWs [22, 23], which effectively₁₂₇
 98 constitute phase slips and breakdown of coherent easy-₁₂₈
 99 plane spin transport. We instead focus here on₁₂₉
 100 simulations of synthetic antiferromagnetic strips, which₁₃₀
 101 are composed of two ferromagnetic layers coupled in₁₃₁
 102 an antiparallel manner [24]. The interlayer-coupled₁₃₂
 103 magnetic moments reduce dipolar fields at the strip₁₃₃
 104 edges via flux closure and stabilize transverse Néel DWs₁₃₄
 105 [25]. Thus, the formation of vortices are suppressed₁₃₅
 106 and easy-plane spin transport, carried by spiraling₁₃₆
 107 transverse DWs, remains far more stable in synthetic₁₃₇

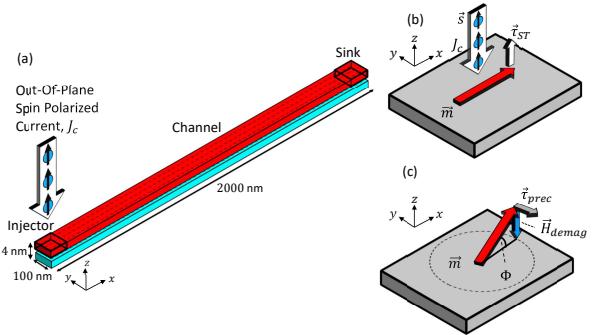


Figure 2. (a) Micromagnetic simulation setup of the synthetic antiferromagnet nanostrip. (b) The resulting torque generated by the out-of-plane spin-polarized electric current J_c , lifting the magnetization out of the plane in the injector region. (c) The out-of-plane component of the magnetization creates a demagnetizing field, generating a precessional torque that drives easy-plane precession.

antiferromagnets than in single-layer ferromagnets. The enhanced stability of easy-plane spin transport in synthetic antiferromagnets has been previously reported in a micromagnetic study by Skarsvåg *et al.* [7].

A depiction of our simulation set-up is shown in Fig. 2(a). The dimensions of an individual ferromagnetic layer are $2000 \text{ nm} \times 100 \text{ nm} \times 2 \text{ nm}$ with a cell size of $2.5 \text{ nm} \times 2.5 \text{ nm} \times 2 \text{ nm}$. The two layers are coupled using an RKKY interaction with strength $J_{RKKY} = -1 \text{ mJ/m}^2$. The initial magnetization states lie completely in plane and are parallel to the long axis of the nanostrip (i.e. $\vec{m}_i \parallel \pm \hat{x}$). To simulate the interaction of easy-plane spin transport with defects, a pair of symmetric, triangular notches with lateral dimensions $60 \text{ nm} \times 30 \text{ nm}$ were introduced at the midpoint of the nanostrip ($x = 1000 \text{ nm}$).

The material parameters of our nanostrips were chosen to match those of experimentally measured, 2 nm thick polycrystalline $\text{Fe}_{80}\text{V}_{20}$ (see Appendix B for determination of material parameters): saturation magnetization $M_{sat} = 720 \text{ kA/m}$, in-plane magnetocrystalline anisotropy $K = 0 \text{ J/m}^3$, and Gilbert damping parameter $\alpha = 0.006$. The exchange constant was set to $A_{ex} = 20 \text{ pJ/m}$, in line with typical literature values for Fe [26, 27]. At each end of the nanostrip in a $100 \text{ nm} \times 100 \text{ nm}$ region, we introduce an enhancement to the Gilbert damping parameter, $\alpha' = 0.015$, to simulate the effects of spin pumping into and out of the nanostrip [28]. The total Gilbert damping parameter in these end regions is $\alpha_{total} = \alpha + \alpha'$. All

138 simulations were performed at zero temperature. 186

139 In order to excite dynamics, an out-of-plane spin 187
 140 polarized charge current density J_c was applied to the 188
 141 injection region, as shown in Fig. 2(a). The spin 189
 142 polarized charge current imparts an out-of-plane spin- 190
 143 transfer torque [11] $\vec{\tau}_{ST} \sim \vec{m} \times (\vec{s} \times \vec{m})$, where $\vec{s} \parallel \hat{z}$ 191
 144 is the spin polarization, on the magnetization \vec{m} . This 192
 145 excitation is similar to that in current-perpendicular-to- 193
 146 plane perpendicularly magnetized spin valves [12, 13]. 194
 147 The spin-transfer torque was set to act directly on the top 195
 148 ferromagnetic layer only. This was done to be consistent 196
 149 with previous studies [29, 30] showing that injected spins 197
 150 orthogonal to \vec{m} in a metallic ferromagnet are absorbed 198
 151 within the first ≈ 1 nm. The spin polarization of the 199
 152 current was set to $P = 0.5$. 200

153 The spin-transfer torque creates a finite out-of-plane 201
 154 component of the magnetization, m_z , with an out-of- 202
 155 plane canting angle Φ , shown in Fig. 2(b). The out- 203
 156 of-plane component m_z generates a demagnetizing field 204
 157 \vec{H}_{demag} and a precessional torque $\vec{\tau}_{prec} \sim -\vec{m} \times \vec{H}_{demag}$, 205
 158 as depicted in Fig. 2(c). The torque then causes \vec{m} 206
 159 to rotate in a constant direction (e.g. clockwise in 207
 160 the present case) and thus dictates the chirality of the 208
 161 resulting DWs. The easy-plane magnetization dynamics 209
 162 then propagates along the nanostrip, away from the 210
 163 injector, via exchange coupling. 211

164 III. RESULTS AND DISCUSSION

165 A. Diffusive Motion of an Isolated Domain Wall

166 In this section, we discuss the behavior of an isolated 216
 167 DW in both the perfect and notched nanostrips. Both 217
 168 simulations were performed identically at a charge 218
 169 current density of $J_c = 2.4 \times 10^{11}$ A/m². In order to 219
 170 rotate the magnetization, the energy supplied by the 220
 171 current-induced spin-transfer torque must overcome the 221
 172 energy barrier from the uniaxial shape anisotropy of 222
 173 the nanostrip. This implies a threshold current density 223
 174 required to excite the dynamics, i.e., inject a DW into the 224
 175 channel. Additionally when the drive current density is 225
 176 sufficiently low, only a single DW can be injected into the 226
 177 nanostrip. When the magnetization is rotated by 180°, a 227
 178 180° DW is created at the boundary of the source. The 228
 179 DW is then injected into the nanostrip and driven by the 229
 180 out-of-plane canting angle Φ . 230

181 *Perfect Nanostrip* - We begin with the dynamics 228
 182 of a single DW injected by the spin polarized 229
 183 charge current density mechanism mentioned above. 230
 184 The micromagnetic snapshots in Fig. 3(a) (also see 231
 185 Supplemental Video 1 [31]) show the isolated DW 232

propagating along the nanostrip and coming to rest in the middle of the nanostrip. This is the point at which the total energy of the system with an isolated DW reaches a local minimum; the spin-transfer torque in the injection region is too weak to overcome the magnetostatically favored configuration where the strip is divided into two oppositely magnetized domains of equal size. The velocity of the isolated DW in the micromagnetic simulations, shown in Fig. 3(c), decays in an exponential, diffusive manner. The simulation data shows an exponential decay time scale of $\tau = 0.45$ ns.

This diffusive motion (exponentially decaying velocity) of the isolated DW agrees with our one-dimensional analytical model (details given in Appendix C) in which the DW velocity is given by

$$v(t) = \lambda \gamma_K \Phi_0 e^{-\alpha \gamma_K t}. \quad (1)$$

Here $\lambda \approx 90$ nm is the DW width, $\gamma_K = \frac{K_\perp}{s(1+\alpha^2)}$ is a rate governed by the strength of the easy-plane anisotropy, K_\perp , and the spin density, s ; Φ_0 is the initial out-of-plane canting angle of the DW. Based on our material parameters our model predicts the velocity decays on a time scale $\tau = (\alpha \gamma_K)^{-1} = 0.52$ ns. The DW velocity predicted by our model, shown by the dashed blue curve in Fig. 3(c), is in good qualitative agreement with the simulation results.

Notched Nanostrip - In the notched nanostrip, the isolated DW also experiences exponentially decaying motion. However, the motion is further complicated by an additional attractive force acting on the DW from the notch defect. The isolated DW propagates towards the notches and upon reaching the notch defect, the DW undergoes damped harmonic oscillations, as seen in Fig. 3(d), eventually becoming pinned at the defect in the center of the nanostrip (see Fig. 3(b) and Supplemental Video 2). These oscillations of the DW about the center of a notch potential have previously been observed experimentally [32].

We conclude that both the perfect and notched nanostrips exhibit qualitatively similar behavior in the sense that the isolated DW is unable to propagate beyond the center of the nanostrip, either as a result of diffusive motion or DW pinning.

B. Weakly Interacting Domain Wall Train

Next we consider the motion of a weakly interacting DW train. By increasing the drive charge current density to $J_c = 3.0 \times 10^{11}$ A/m², multiple DWs can now be injected into the nanostrips, shown in Figs. 4(a,b) and Supplemental Videos 3 and 4.

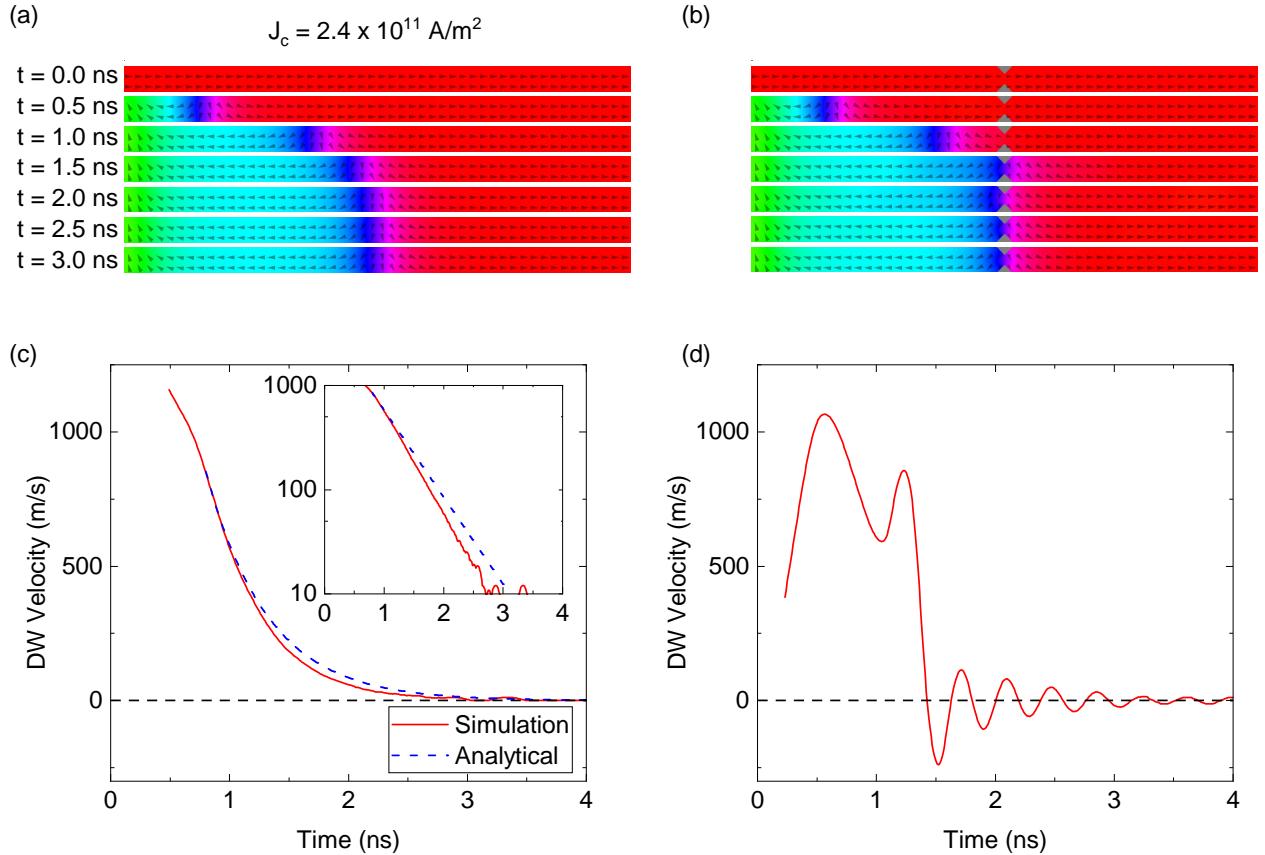


Figure 3. Micromagnetic snapshots of an isolated DW, taken every 0.5 ns from the start of the simulation in the (a) perfect and (b) notched nanostrips. The associated DW velocity as a function of simulation time is shown for the (c) perfect and (d) notched nanostrips. The inset in (c) shows the DW velocity on a logarithmic scale.

Perfect Nanostrip - In the perfect nanostrip the DWs₂₅₃ individually continue to undergo exponentially decaying₂₅₄ motion that is consistent with the behavior predicted by₂₅₅ our model. This is shown by the DW velocity averaged₂₅₆ across multiple DWs in the simulation in Fig. 4(c) (inset₂₅₇ shows average DW velocity on a logarithmic scale).

As multiple DWs are injected into the nanostrip,₂₅₉ they interact in a repulsive manner as a result of₂₆₀ the homochirality of the DWs [33, 34]. These inter-₂₆₁ DW interactions, similar to Coulomb repulsion, become₂₆₂ responsible for the movement of the DW train past the₂₆₃ middle of the nanostrip. Beyond the center point of₂₆₄ the nanostrip, the repulsive interactions are aided by the₂₆₅ DWs being attracted to the end of the nanostrip, where₂₆₆ they are then annihilated at the sink.

Notched Nanostrip - In the notched nanostrip we also₂₆₈ observe repulsive DW interactions, but the dynamics is₂₆₉ now further complicated due to the notch defect. For₂₇₀ $J_c = 3.0 \times 10^{11} \text{ A/m}^2$, the first injected DW propagates₂₇₁ towards and is pinned at the notch defect, similar to that₂₇₂

of an isolated DW. Meanwhile, additional DWs continue to be injected into the nanostrip, allowing for a series of DWs to build up behind the notch defect. This build-up eventually pushes the first DW through the pinning site, as seen in the micromagnetic snapshots in Fig. 4(b).

Once the leading DW has been pushed through the notch defect, it is attracted to the end of the nanostrip and annihilated. The second DW in the train is pushed along via the inter-DW interactions and then pinned at the notch defect. The corresponding DW velocity for this specific DW is shown in Fig. 4(d). At this point, no additional DWs can be injected into the strip for the remainder of the simulation. The system reaches a steady state where the energy barrier to nucleate DWs is higher than the energy provided by current-induced spin-transfer torque.

We emphasize that the results in Figs. 4(b)(d) and Supplemental Video 4 do not show “fluid-like” dynamics – i.e., the spin transport is not hydrodynamic. Rather than flowing past the constriction as a fluid would, the spin

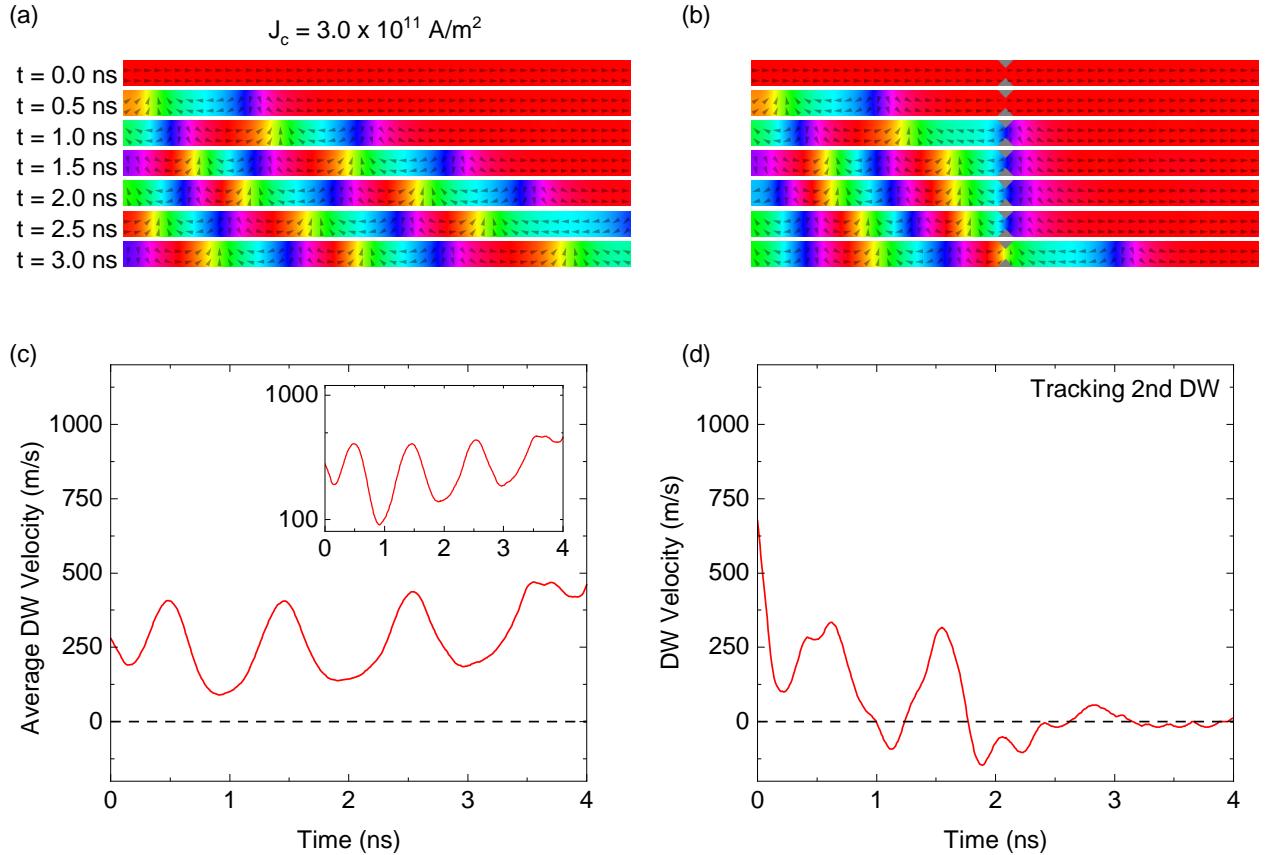


Figure 4. Micromagnetic snapshots of a weakly interacting DW train in the (a) perfect nanostrip and (b) notched nanostrip. In the notched nanostrip, note the momentary pinning of the first DW and the subsequent pinning of the DW train. The average DW velocity as a function of simulation time for the (c) perfect nanostrip and (d) the second DW in the train in the notched nanostrip. The inset in (c) shows the average DW velocity on a logarithmic scale.

273 transport is halted at the defect; the spin-transfer torque²⁸⁹
 274 in the injection region is too weak to nucleate additional²⁹⁰
 275 DWs and propel the train past the defect. Thus, at low²⁹¹
 276 drives, DW pinning provides a natural way to understand²⁹²
 277 the interaction of easy-plane precessional spin transport²⁹³
 278 with defects.

279 C. Moderately Interacting Domain Wall Train

280 We now increase the charge current density to $J_c = 4.0 \times 10^{11} \text{ A/m}^2$
 281 and observe the effect of increased DW³⁰⁰
 282 density on pinning.

283 *Perfect Nanostrip* - The increased current density³⁰²
 284 yields behavior similar to that discussed in Sec. III B³⁰³
 285 for the perfect nanostrip. The density of the DW train³⁰⁴
 286 increases as more DWs can be injected into the nanostrip,³⁰⁵
 287 see Fig. 5(a) and Supplemental Video 5. The average DW³⁰⁶
 288 velocity, shown in Fig. 5(c), shows a periodic behavior as³⁰⁷

294 the DWs are pushed away from trailing walls and slow
 295 down as they approach the next DW in the train. As a
 296 result of the increased density of DWs, and thus stronger
 297 repulsion between neighboring DWs, the average velocity
 298 is higher than in the case where $J_c = 3.0 \times 10^{11} \text{ A/m}^2$ (see
 299 Sec. III B and Figs. 4(a,c)). The continuous motion of the
 300 DW train shown in Fig. 5(a,c) is beginning to approach the
 301 fluid-like regime.

302 *Notched Nanostrip* - At $J_c = 4.0 \times 10^{11} \text{ A/m}^2$,
 303 the pinning of the DW train disappears as a result of
 304 the stronger inter-DW interactions. The DWs are still
 305 impeded by the notch defect (Fig. 5(b), Supplemental
 306 Video 6), evident by the reduction in average DW
 307 velocity in Fig. 5(d) when compared with the perfect
 308 nanostrip in Fig. 5(c). However, they are pushed through
 309 before they can be pinned entirely, allowing for the DW
 310 train to move continuously throughout the nanostrip.

311 We observe that as the driving current density is
 312 increased, the density of the DWs increases. The

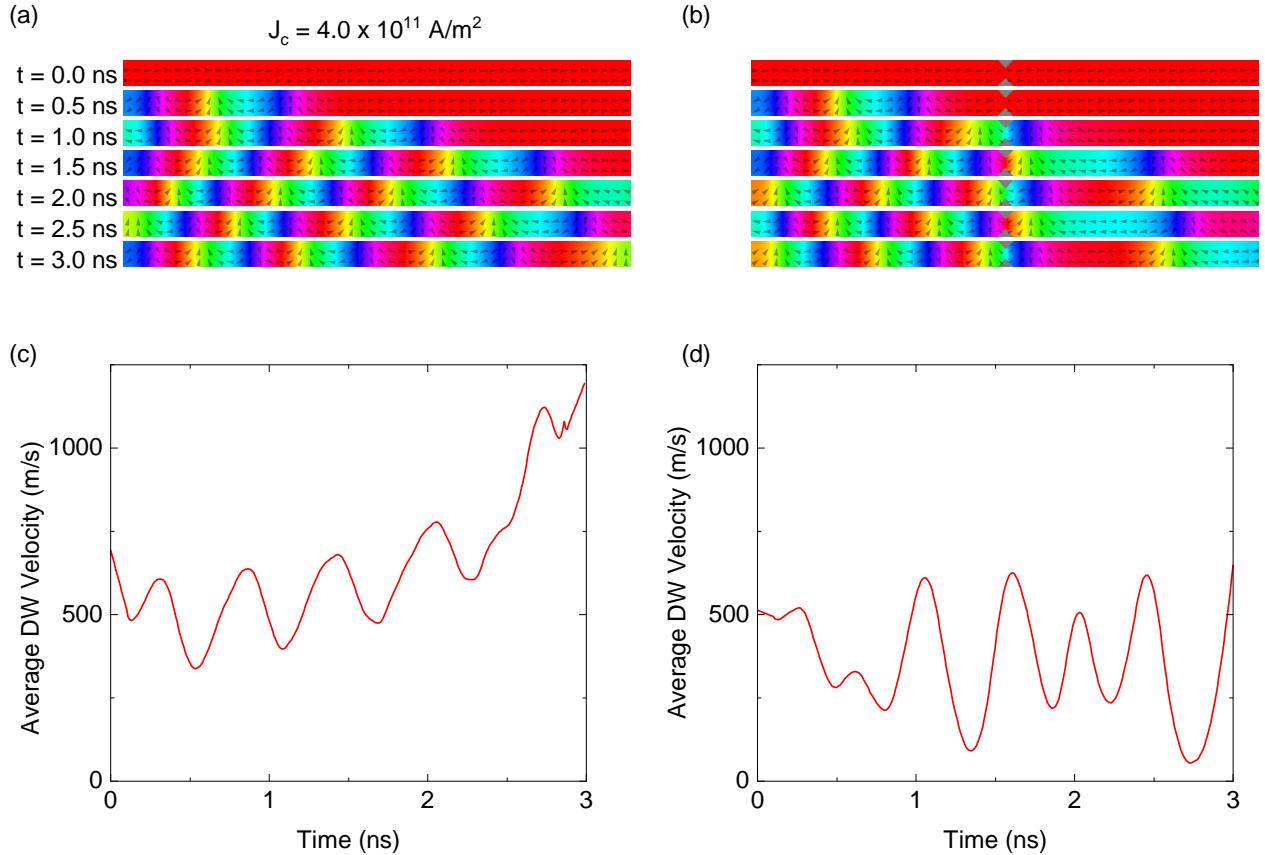


Figure 5. Micromagnetic snapshots of a weakly interacting DW train in the (a) perfect nanostrip and (b) notched nanostrip with the DW interactions are strong enough to overcome the pinning potential. The associated average DW velocity is shown for the (c) perfect and (d) notched nanostrips.

308 increased DW density allows for individual DWs in the 325
 309 train to be less susceptible to pinning as a result of 326
 310 the stronger mutual repulsion between the homochiral 327
 311 DWs. The overall behavior of the magnetization in the 328
 312 nanostrips starts to approach that of fluid-like dynamics. 329
 313 This point is further verified by increasing the current 330
 314 density to higher values, as discussed in the next section. 331

315 D. Strongly Interacting Domain Wall Train

316 Finally, we examine the regime of a strongly 336
 317 interacting, dense DW train at $J_c = 8.0 \times 10^{11} \text{ A/m}^2$. 337
 318 Micromagnetic snapshots are shown in Figs. 6(a,b), 338
 319 as well as Supplemental Videos 7 and 8, for the two 339
 320 geometries.

321 *Perfect Nanostrip* - In the perfect nanostrip, the DW 341
 322 train has condensed to the point that the DW separation 342
 323 distance is comparable to the individual DW width ~ 343
 324 100 nm. At this point, the overall dynamics of the 344

325 nanostrip begins to resemble that of superfluid-like spin
 326 transport [4–10] in the sense that the magnetization at
 327 a fixed position is precessing uniformly with simulation
 328 time. The average DW velocity, shown in Fig. 6(c),
 329 no longer shows signs of the exponential decay of an
 330 individual DW. In fact, the DW velocity continues to
 331 increase as the DW traverses the strip. As they propagate
 332 further, the DW train begins to separate and individual
 333 DWs are attracted to the end of the strip where they are
 334 eventually annihilated.

335 *Notched Nanostrip* - In the notched nanostrip, the
 336 inter-DW interactions of the dense train have become
 337 strong enough to overcome the pinning potential well.
 338 As the DWs impinge on the notch defect, the pinning
 339 potential reduces the speed of the DW train momentarily,
 340 before the DWs are pushed through and become
 341 attracted to the end of the strip and speed up again.
 342 The reduction in DW velocity from the notch defect can
 343 be seen clearly in Fig. 6(d). We also note the remarkable
 344 similarity in average DW velocity between the perfect

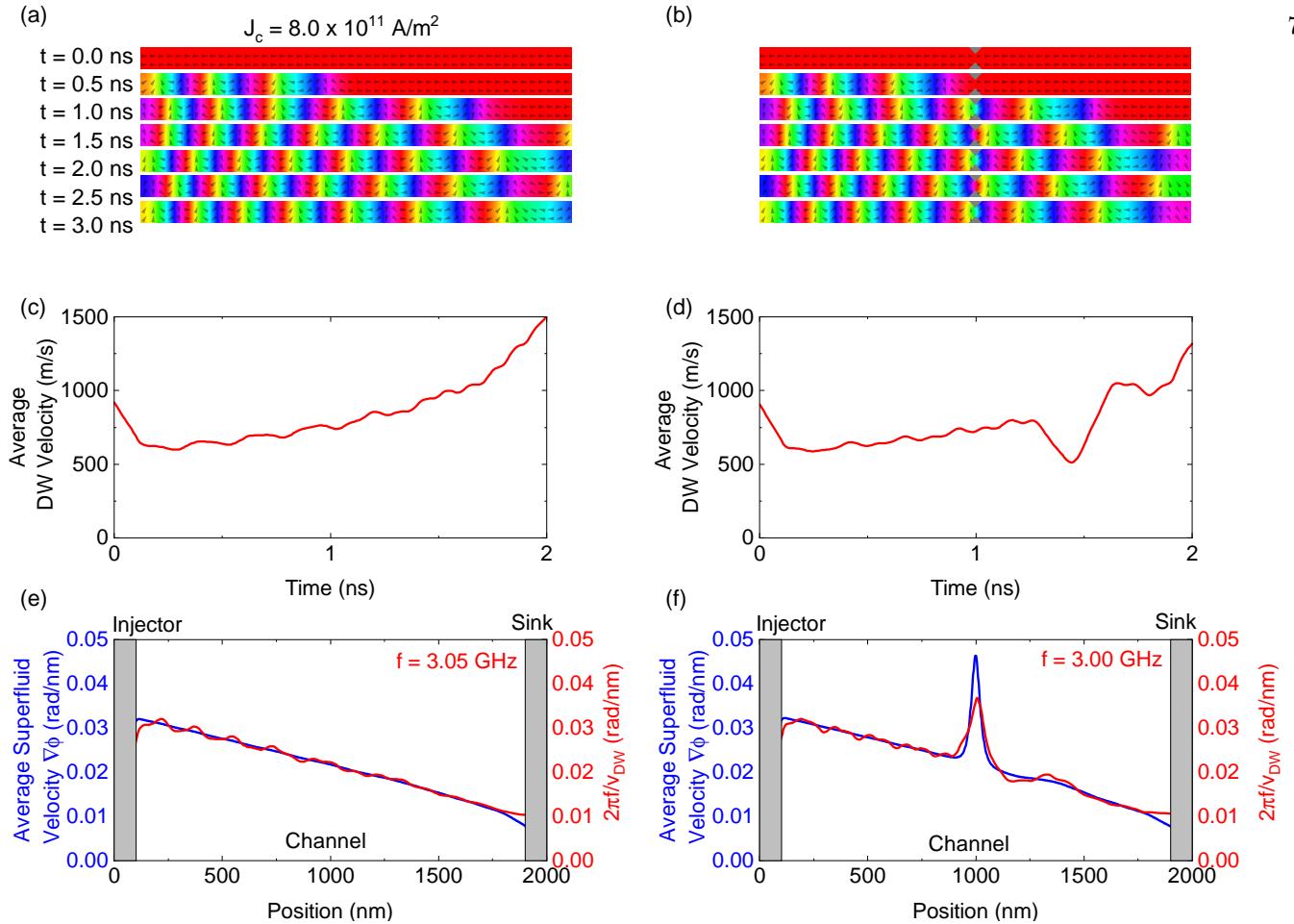


Figure 6. (a), (b) Micromagnetic snapshots of the densely packed DW train that resembles superfluid-like spin transport. (c), (d) The average DW velocity as a function of simulation time for the (c) perfect and (d) notched nanostrips. (e), (f) Time-averaged superfluid velocity and equivalent DW velocity, computed via Eq. 2, as a function of DW position for the (e) perfect and (f) notched nanostrips.

345 and notched nanostrips up to the point of the notch³⁵⁹
 346 defect.³⁶⁰

347 *Convergence to Fluid-like Regime* - Our simulation³⁶¹
 348 results on the motion of a train of DWs showed pinning³⁶²
 349 behavior present at lower J_c in notched nanostrips.³⁶³
 350 At sufficiently high J_c , the pinning behavior vanishes³⁶⁴
 351 and the DW perspective begins to converge with the³⁶⁵
 352 hydrodynamic one. To show further agreement with³⁶⁶
 353 the established hydrodynamic model, we relate the³⁶⁷
 354 DW velocity to the conventional superfluid velocity $\nabla\phi$ ³⁶⁸
 355 (where in the hydrodynamic model the spin current³⁶⁹
 356 $J_s \propto \nabla\phi$ [4]) through the following relationship:³⁷⁰

$$\nabla\phi = \frac{2\pi f}{v_{DW}}. \quad (2)$$

357 Here ϕ is the in-plane angle the magnetization makes³⁷³
 358 with the \hat{x} axis, $\nabla\phi$ is the spatial gradient of ϕ (given³⁷⁴

in rad/nm), f is the precessional frequency of the magnetization, and v_{DW} is the average DW velocity.

We compute time-averaged $\nabla\phi$ directly (blue line) at each cell after reaching a steady state and compare it with the equivalent quantity using the average DW velocity (red line) in Fig. 6(e) and Fig. 6(f). We first note the mostly linear decay of $\nabla\phi$ in the channel, indicating that we are indeed simulating easy-plane spin transport in the fluid-like regime at $J_c = 8.0 \times 10^{11} \text{ A/m}^2$. In this fluid-like regime, we find an excellent quantitative agreement between the hydrodynamic and DW perspectives for both the perfect and the notched nanostrips. This agreement confirms that a densely packed DW train behaves as a “fluid” and converges with the hydrodynamic model.

In the notched nanostrips, the rapid increase in $\nabla\phi$ resulting from the constriction created by the notches

375 is recreated well by our DW perspective. This increase
 376 in $\nabla\phi$, akin to throttling of a fluid, is also in great
 377 quantitative agreement with the DW perspective: The
 378 increase in $\nabla\phi$ corresponding with a reduction in DW
 379 velocity as the DWs propagate through the notch defect.

380 E. Consequences for Practical Applications

381 We now comment on the impacts our simulation results
 382 would have on experimental realizations of easy-plane
 383 precessional dynamics. In Fig. 7(a) we compare the time-
 384 averaged superfluid velocity $\nabla\phi$ as a function of charge
 385 current density J_c . The superfluid velocity shown in
 386 Fig. 7(a) was computed at $x = 1500$ nm, beyond the
 387 location of the notch defect, for both the perfect and
 388 notched nanostrips.

389 At low values of J_c ($< 5 \times 10^{11}$ A/m²), we note
 390 a difference in the superfluid velocity between the two
 391 geometries. This is a result of pinning by the notch
 392 defect, impeding individual DWs within the train. The
 393 pinning behavior disappears with increasing J_c and
 394 the superfluid velocities in the two geometries become
 395 indistinguishable. Thus, at sufficiently high J_c , the notch
 396 defect evidently has no effect on the global dynamics of
 397 easy-plane precession. Remarkably the pinning vanishes
 398 despite the rather large size of the defect; at their
 399 deepest point, the pair of notches occupy 60% of the
 400 nanostrip's width, much larger than the typical edge
 401 roughness that results from lithographic patterning [35].
 402 The robust transport, unaffected by such deep notches, is
 403 promising for achieving easy-plane precessional dynamics
 404 in lithographically patterned nanostrips.

405 To determine the equivalent DW velocity using Eq. 2,
 406 the precessional frequency f of the magnetization is
 407 determined using a fast Fourier transform on m_x as
 408 a function of time along the length of the nanostrip.
 409 We limit our determination of f to the fluid-like
 410 regime in which f is uniform throughout the nanostrip.⁴²¹
 411 Precessional frequency and equivalent DW velocity as⁴²⁵
 412 a function of J_c are plotted in Fig. 7(b) and Fig. 7(c),⁴²⁶
 413 respectively. The superfluid velocity $\nabla\phi$ and precessional⁴²⁷
 414 frequency f continuously increase with J_c but the DW⁴²⁸
 415 velocity saturates at ≈ 1500 m/s. This saturation value⁴²⁹
 416 is much higher than the typical experimentally measured⁴³⁰
 417 value in in-plane magnetized strips [22, 25, 36], yet⁴³¹
 418 well below the maximum magnon group velocity in our⁴³²
 419 system of ≈ 8000 m/s (derived from a micromagnetically⁴³³
 420 computed magnon dispersion curve), which has been⁴³⁴
 421 suggested to be the upper limit on DW velocity [37].⁴³⁵
 422 Instead of being limited by the magnon group velocity,⁴³⁶
 423 the upper bound of the DW speed in our case appears to⁴³⁷

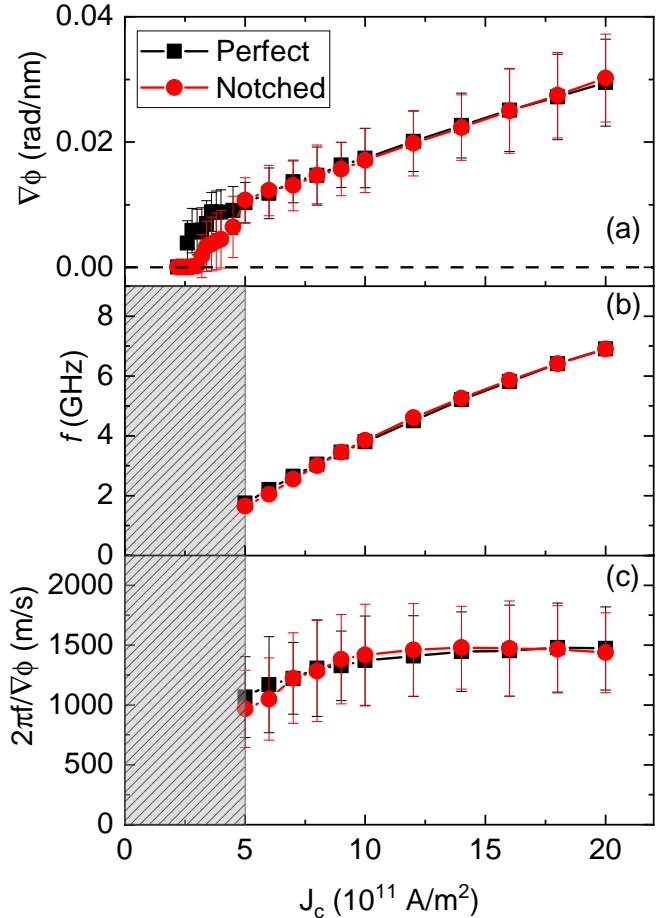


Figure 7. (a) Time-averaged superfluid velocity at $x = 1500$ nm as a function of driving current density J_c for the perfect (black squares) and notched (red circles) nanostrips. The error bars indicate the standard deviation. (b) Precessional frequency of the magnetization. (c) Equivalent DW velocity computed using Eq. 2 at $x = 1500$ nm

be closer to the minimum magnon phase velocity (≈ 2000 m/s), which previously has been shown to restrict the speed of a single transverse Néel DW [38].

Our material parameters were chosen based on experimentally measured thin films of Fe₈₀V₂₀ with $\alpha = 0.006$ (see Appendix B). This choice is in contrast to the typically chosen insulating ferrimagnetic oxide of yttrium iron garnet (YIG) with $\alpha \sim 10^{-5} - 10^{-4}$. However, YIG is notoriously challenging to grow and integrate into practical devices, as it requires fine control of deposition parameters and high processing temperatures. FeV alloys were chosen for their low-loss magnetic properties [39] and compatibility with CMOS-friendly Si substrates when deposited at room

438 temperature [40]. Even though FeV alloys possess a 475
 439 damping parameter an order of magnitude larger than 476
 440 YIG, we were able to simulate fluid-like easy-plane 477
 441 spin transport at moderately achievable current densities 478
 442 (defined as when $\nabla\phi$ is the same for both the perfect and 479
 443 notched nanostrips, via Fig. 7(a)) at $J_c = 5.0 \times 10^{11}$ 480
 444 A/m². At lower current densities, $J_c \approx 3 \times 10^{11}$ A/m²,
 445 the DW train could overcome pinning and was able to
 446 propagate throughout the entirety of the nanostrip. This 481
 447 would still allow for spin transport along the nanostrip
 448 (as a result of the rotating magnetization in the spin 482
 449 sink region) and the possibility of efficient micron-scale 483
 450 transmission of spin-based information. 484

451 Our chosen method of excitation simulates a current-485
 452 perpendicular-to-plane spin valve nanopillar with an 486
 453 out-of-plane polarizer. This is a well established 487
 454 technique in orthogonal spin-torque oscillators [13]. 488
 455 Thus, the simulated dynamics here in principle can be 489
 456 achieved using experimentally proven physics and device 490
 457 structures. Additionally, recent studies have pointed to 491
 458 the possibility of in-plane magnetized films producing an 492
 459 out-of-plane spin torque [41, 42]. This out-of-plane spin- 493
 460 orbit torque could prove to be a viable method of exciting 494
 461 easy-plane precessional dynamics as it would eliminate 495
 462 the need for complicated fabrication of nanopillar spin 496
 463 valves. However, it is unclear at this time if this 497
 464 torque would be strong enough to drive the easy-plane 498
 465 precession dynamics simulated here.

466 It is worth pointing out that while our simulations were 498
 467 performed at zero temperature, experimental attempts at
 468 achieving easy-plane precessional dynamics will be done 499
 469 at finite temperatures. Finite temperatures allow for the 500
 470 emergence of diffusive thermal magnon transport, which 501
 471 could couple to the easy-plane spin transport and provide 502
 472 another avenue for dissipation that is not captured by the 503
 473 Gilbert damping parameter [43]. In our zero-temperature 504
 474 simulations, there are no thermal magnons that could 505

give rise to the additional non-Gilbert dissipation. While possible dissipation pathways via thermal magnons are beyond the scope of this present work, future studies employing finite-temperature micromagnetic simulations may give insights into such dissipation in easy-plane spin transport.

IV. CONCLUSION

We performed micromagnetic simulations on the interaction of homochiral DW transport via easy-plane precession in synthetic antiferromagnet nanostrips with and without a notch defect. We observed the diffusive motion of an isolated DW and subsequent pinning at the notch defect at low J_c . With increasing J_c multiple DWs are injected into the nanostrip, and we observed the crossover to a fluid-like, densely packed DW train. The densely packed DW train in notched nanostrips is robust to edge defects and shows no difference to the perfect nanostrips in the fluid-like regime. Our simulations, with material parameters taken directly from experimentally measured metallic ferromagnets, demonstrate promise for an experimental realization of easy-plane precession at reasonable current densities for efficient micron-scale spin transport.

V. ACKNOWLEDGEMENTS

D.A.S., L.C., F.R.-D., and S.E. acknowledge support by NSF Grant No. DMR-2003914. S.T. acknowledges support by CUNY Research Foundation Project # 90922-07 10 and PSC-CUNY Research Award Program # 63515-00 51. M.S. acknowledges support by the Luther and Alice Hamlett Undergraduate Research Support Program.

506 [1] D. Sander, Sergio O. Valenzuela, D. Makarov, C. H. 517
 507 Marrows, E. E. Fullerton, P. Fischer, J. McCord, 518
 508 P. Vavassori, S. Mangin, P. Pirro, B. Hillebrands, A. D. 519
 509 Kent, T. Jungwirth, O. Gutfleisch, C. G. Kim, and 520
 510 A. Berger, “The 2017 Magnetism Roadmap,” Journal of 521
 511 Physics D: Applied Physics **50**, 363001 (2017). 522

512 [2] R. Lebrun, A. Ross, S. A. Bender, A. Qaiumzadeh, 523
 513 L. Baldrati, J. Cramer, A. Brataas, R. A. Duine, and 524
 514 M. Kläui, “Tunable long-distance spin transport in a 525
 515 crystalline antiferromagnetic iron oxide,” Nature **561**, 526
 516 222 (2018). 527

517 [3] Brandon L. Giles, Zihao Yang, John S. Jamison, and 528
 518 Roberto C. Myers, “Long-range pure magnon spin 529
 519 diffusion observed in a nonlocal spin-Seebeck geometry,” 530
 520 Physical Review B **92**, 224415 (2015).

521 [4] E B Sonin, “Spin currents and spin superfluidity,” 531
 522 Advances in Physics **59**, 181 (2010).

523 [5] Hua Chen, Andrew D Kent, Allan H Macdonald, and 532
 524 Inti Sodemann, “Nonlocal transport mediated by spin 533
 525 supercurrents,” Physical Review B **90**, 220401(R) (2014).

526 [6] So Takei, Bertrand I Halperin, Amir Yacoby, and 534
 527 Yaroslav Tserkovnyak, “Superfluid spin transport 535
 528 through antiferromagnetic insulators,” Physical Review

529 B **90**, 94408 (2014). 586

530 [7] Hans Skarsvåg, Cecilia Holmqvist, and Arne Brataas, 587

531 “Spin Superfluidity and Long-Range Transport in Thin-588

532 Film Ferromagnets,” Physical Review Letters **115**, 589

533 237201 (2015). 590

534 [8] Yaroslav Tserkovnyak, “Perspective: (Beyond) spin-591

535 transport in insulators,” Journal of Applied Physics **124**, 592

536 190901 (2018). 593

537 [9] Ezio Iacocca, T. J. Silva, and Mark A. Hoefer, 594

538 “Symmetry-broken dissipative exchange flows in thin-film-595

539 ferromagnets with in-plane anisotropy,” Physical Review 596

540 B **96**, 134434 (2017). 597

541 [10] T Schneider, D Hill, A Kákay, K Lenz, J Lindner, 598

542 J Fassbender, P Upadhyaya, Yuxiang Liu, Kang Wang, 599

543 Y Tserkovnyak, I N Krivorotov, and I Barsukov, “Self-600

544 stabilizing exchange-mediated spin transport,” Physical 601

545 Review B **103**, 144412 (2021). 602

546 [11] Arne Brataas, Andrew D Kent, and Hideo Ohno, 603

547 “Current-induced torques in magnetic materials,” Nature 604

548 Materials **11**, 372 (2012). 605

549 [12] J. C. Slonczewski, “Current-driven excitation of magnetic 606

550 multilayers,” Journal of Magnetism and Magnetic 607

551 Materials **159**, L1 (1996). 608

552 [13] D Houssameddine, U Ebels, B Dela, B Rodmacq, 609

553 I Firastrau, F Ponthier, M Brunet, C Thirion, J-P-610

554 Michel, L Prejbeanu-buda, M-c Cyrille, O Redon, and 611

555 B Dieny, “Spin-torque oscillator using a perpendicular 612

556 polarizer and a planar free layer,” Nature Materials **6**, 613

557 447 (2007). 614

558 [14] Kwon Kim, So Takei, and Yaroslav Tserkovnyak, 615

559 “Thermally activated phase slips in superfluid spin-616

560 transport in magnetic wires,” Physical Review B **93**, 617

561 020402(R) (2016). 618

562 [15] Jürgen König, Martin Chr Bønsager, and A H-619

563 Macdonald, “Dissipationless Spin Transport in Thin 620

564 Film Ferromagnets,” Physical Review Letters **87**, 187202 621

565 (2001). 622

566 [16] Ezio Iacocca, T J Silva, and Mark A Hoefer, “Breaking 623

567 of Galilean Invariance in the Hydrodynamic Formulation 624

568 of Ferromagnetic Thin Films,” Physical Review Letters 625

569 **118**, 017203 (2017). 626

570 [17] Ezio Iacocca and Mark A. Hoefer, “Hydrodynamic 627

571 description of long-distance spin transport through 628

572 noncollinear magnetization states: Role of dispersion, 629

573 nonlinearity, and damping,” Physical Review B **99**, 630

574 184402 (2019). 631

575 [18] B. I. Halperin and P. C. Hohenberg, “Hydrodynamic 632

576 theory of spinwaves,” Physical Review **188**, 898 (1969). 633

577 [19] Ezio Iacocca, “Controllable vortex shedding from 634

578 dissipative exchange flows in ferromagnetic channels,” 635

579 Physical Review B **102**, 224403 (2020). 636

580 [20] Se Kwon Kim and Yaroslav Tserkovnyak, “Magnetic 637

581 Domain Walls as Hosts of Spin Superfluids and 638

582 Generators of Skyrmions,” Physical Review Letters **119**, 639

583 047202 (2017). 640

584 [21] Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik, 641

585 Mathias Helsen, Felipe Garcia-Sanchez, and Bartel Van 642

586 Waeyenberge, “The design and verification of MuMax3,” 643

587 AIP Advances **4**, 107133 (2014).

588 [22] Geoffrey S D Beach, Corneliu Nistor, Carl Knutson, 644

589 Maxim Tsoi, and James L Erskine, “Dynamics of 645

590 field-driven domain-wall propagation in ferromagnetic 646

591 nanowires,” Nature Materials **4**, 741 (2005).

592 [23] A. Mougins, M. Cormier, J. P. Adam, P. J. Metaxas, 647

593 and J. Ferré, “Domain wall mobility, stability and Walker 648

594 breakdown in magnetic nanowires,” Europhysics Letters 649

595 **78**, 57007 (2007).

596 [24] R. A. Duine, Kyung Jin Lee, Stuart S.P. Parkin, and 650

597 M. D. Stiles, “Synthetic antiferromagnetic spintronics,” 651

598 Nature Physics **14**, 217–219 (2018).

599 [25] Serban Lepadatu, Henri Saarikoski, Robert Beacham, 652

600 Maria Jose Benitez, Thomas A. Moore, Gavin Burnell, 653

601 Satoshi Sugimoto, Daniel Yesudas, May C. Wheeler, 654

602 Jorge Miguel, Sarnjeet S. Dhesi, Damien McGrouther, 655

603 Stephen McVitie, Gen Tatara, and Christopher H. 656

604 Marrows, “Synthetic ferrimagnet nanowires with very low 657

605 critical current density for coupled domain wall motion,” 658

606 Scientific Reports **7**, 1640 (2017).

607 [26] F S Ma, H S Lim, Z K Wang, S N Piramanayagam, 659

608 S C Ng, and M H Kuok, “Micromagnetic study of 660

609 spin wave propagation in bicomponent magnonic crystal 661

610 waveguides,” Applied Physics Letters **98**, 153107 (2011).

611 [27] Kodai Niitsu, “Temperature dependence of magnetic 662

612 exchange stiffness in iron and nickel,” Journal of Physics 663

613 D: Applied Physics **53**, 39LT01 (2020).

614 [28] Andrew J Berger, Eric R J Edwards, Hans T 664

615 Nembach, Olof Karis, Mathias Weiler, and T J Silva, 665

616 “Determination of the spin Hall effect and the spin 666

617 diffusion length of Pt from self-consistent fitting of 667

618 damping enhancement and inverse spin-orbit torque 668

619 measurements,” Physical Review B **98**, 244402 (2018).

620 [29] A. Ghosh, S. Auffret, U. Ebels, and W. E. Bailey, 669

621 “Penetration Depth of Transverse Spin Current in 670

622 Ultrathin Ferromagnets,” Physical Review Letters **109**, 671

623 127202 (2012).

624 [30] Youngmin Lim, Behrouz Khodadadi, Jie-Fang Li, Dwight 672

625 Viehland, Aurelien Manchon, and Satoru Emori, 673

626 “Dephasing of transverse spin current in ferrimagnetic 674

627 alloys,” Physical Review B **103**, 024443 (2021).

628 [31] See Supplemental Material at (URL to be provided by 675

629 publisher) for videos depicting magnetization dynamics 676

630 in the various regimes discussed.

631 [32] Eiji Saitoh, Hideki Miyajima, Takehiro Yamaoka, and 677

632 Gen Tatara, “Current-induced resonance and mass 678

633 determination of a single magnetic domain wall,” Nature 679

634 **432**, 203 (2004).

635 [33] Benjamin Kruger, “The interaction of transverse domain 680

636 walls,” Journal of Physics: Condensed Matter **24**, 024209 681

637 (2012).

638 [34] Youngman Jang, S R Bowden, Mark Mascaro, J Unguris, 682

639 and C A Ross, “Formation and structure of 360 and 540 683

640 degree domain walls in thin magnetic strips,” Applied 684

641 Physics Letters **100**, 062407 (2012).

[35] S Dutta, S A Siddiqui, J A Curryan-Incorvia, C A Ross, and M A Baldo, "Micromagnetic modeling of domain wall motion in sub-100-nm-wide wires with individual and periodic edge defects," *AIP Advances* **5**, 127206 (2015).

[36] Stuart S P Parkin, Masamitsu Hayashi, and Luc Thomas, "Magnetic Domain-Wall Racetrack Memory," *Science* **320**, 190 (2008).

[37] Lucas Caretta, Se-Hyeok Oh, Takian Fakhru, Dong-Kyu Lee, Byung Hun Lee, Kwon Kim, Caroline A Ross, Kyung-Jin Lee, and Geoffrey S D Beach, "Relativistic kinematics of a magnetic soliton," *Science* **370**, 1438 (2020).

[38] Ming Yan, Christian Andreas, Attila Kákay, Felipe García-Sánchez, and Riccardo Hertel, "Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown an Cherenkov-like spin wave emission," *Applied Physics Letters* **99**, 122505 (2011).

[39] David A Smith, Anish Rai, Youngmin Lim, Timothy Q Hartnett, Arjun Sapkota, Abhishek Srivastava, Claudia Mewes, Zijian Jiang, Michael Clavel, Mantu K Hudait, Dwight D Viehland, Jean J Heremans, Prasanna V Balachandran, Tim Mewes, and Satoru Emori, "Magnetic Damping in Epitaxial Iron Alloyed with Vanadium and Aluminum," *Physical Review Applied* **14**, 034042 (2020).

[40] Monika Arora, Erna K Delczeg-Czirjak, Grant Riley, T J Silva, Hans T Nembach, Olle Eriksson, and Justin M Shaw, "Magnetic Damping in Polycrystalline Thin-Film Fe-V Alloys," *Physical Review Applied* **15**, 054031 (2021).

[41] Seung Heon C. Baek, Vivek P. Amin, Young Wan Oh, Gyungchoon Go, Seung Jae Lee, Geun Hee Lee, Kab Jin Kim, M. D. Stiles, Byong Guk Park, and Kyung Jin Lee, "Spin currents and spin-orbit torques in ferromagnetic trilayers," *Nature Materials* **17**, 509 (2018).

[42] D MacNeill, G M Stiehl, M H D Guimaraes, R A Buhrman, J Park, and D C Ralph, "Control of spin-orbit torques through crystal symmetry in WTe₂ /ferromagnet bilayers," *Nature Physics* **13**, 300 (2017).

[43] E B Sonin, "Superfluid spin transport in ferro- and antiferromagnets," *Physical Review B* **99**, 104423 (2019).

[44] Charles Kittel, "On the theory of ferromagnetic resonance absorption," *Physical Review* **73**, 155 (1948).

[45] B. Heinrich, "Spin Relaxation in Magnetic Metallic Layers and Multilayers," in *Ultrathin Magnetic Structures III* (Springer-Verlag, Berlin/Heidelberg, 2005) pp. 143–210.

[46] N L Schryer and L R Walker, "The motion of 180° domain walls in uniform dc magnetic fields," *Journal of Applied Physics* **45**, 5406 (1974).

[47] O A Tretiakov, D Clarke, Gia-Wei Chern, Ya B Bazaliy, and O Tchernyshyov, "Dynamics of Domain Walls in Magnetic Nanostrips," *Physical Review Letters* **100**, 127204 (2008).

Appendix A: Easy-plane Precession Dynamics in Single Layer Systems

We focused on simulating easy-plane spin transport in synthetic antiferromagnets as opposed to single layer nanostrips. In synthetic antiferromagnets, the long-range dipolar fields from one ferromagnetic layer are compensated by an adjacent second layer. This has the effect of stabilizing transverse Néel DWs and suppressing Walker breakdown [25]. Micromagnetic snapshots of phase slips via vortex formation (similar to Walker breakdown) in single layer systems are shown in Fig. 8(a) and Fig. 8(b) for the perfect and notched nanostrips, respectively. Supplemental Videos 9 and 10 complement the micromagnetic snapshots shown in Figs. 8(a,b).

In the perfect nanostrip, a vortex core begins to form at the end of the nanostrip within a DW. The vortex core then propagates against the flow of DWs. In the notched nanostrips, multiple vortex cores begin to form at the edges of the nanostrip, similar to the perfect nanostrip. The vortex fully forms off the tip of the notch defect (see Supplemental Video 10). These vortices stay in the nanostrip until they encounter a vortex with opposite core polarity upon which the pair is annihilated.

The difference between the single layer (Fig. 8) and synthetic antiferromagnet systems (Fig. 4) is striking. The formation of vortices is absent in synthetic antiferromagnet systems up to high drive current densities $J_c \gtrsim 2 \times 10^{12} \text{ A/m}^2$, even in notched nanostrips.

Appendix B: Experimental Determination of Material Parameters

The material parameter chosen for our micromagnetic simulations were similar to those of experimentally measured polycrystalline Fe₈₀V₂₀ thin films. We deposited these films using magnetron sputtering with base pressure $< 5 \times 10^{-8} \text{ Torr}$. The films were deposited on Si/SiO₂ substrates at room temperature with an Ar pressure of 3 mTorr. A Ti/Cu seed layer was initially deposited to promote good adhesion to the substrate and a Ti capping layer was deposited to protect against film oxidation. Fe and V were co-sputtered from two separate targets. All material deposition rates were calibrated using x-ray reflectivity. The sample stack structure is sub./Ti(3)/Cu(3)/Fe₈₀V₂₀(2)/Ti(3) where the values in the parentheses are layer thicknesses in nm.

To determine the magnetic properties of our films, we utilized broadband ferromagnetic resonance (FMR). The thin film sample was placed face-down on a coplanar

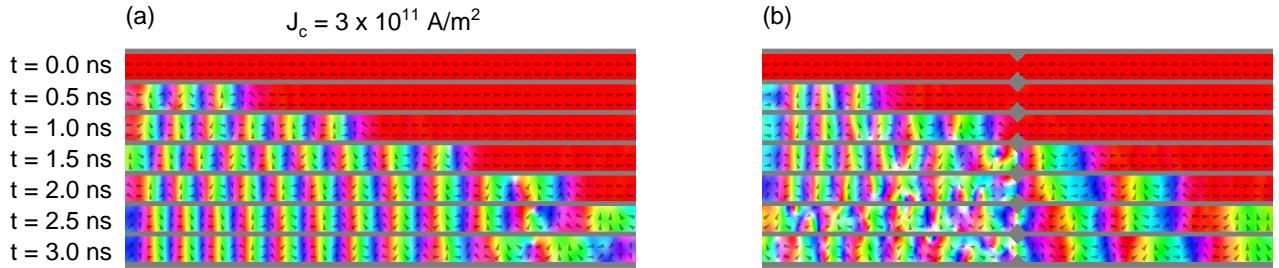


Figure 8. Micromagnetic snapshots of vortex formation in single layer (a) perfect and (b) notched nanostrips

waveguide with a maximum frequency of 36 GHz and magnetized by an external field H generated by a conventional electromagnet. The FMR spectra was acquired by fixing the microwave frequency and sweeping the magnetic field through the resonance condition. The resulting spectra is then fit with a Lorentzian derivative, from which the resonance field H_{res} and half-width-at-half-maximum (HWHM) linewidth ΔH are determined for each frequency.

The resonance field as a function of microwave frequency is plotted in Fig. 9 and fit using the standard Kittel equation [44]

$$f = \mu_0 \gamma' \sqrt{H_{res}(H_{res} + M_{eff})}, \quad (B1)$$

where $\gamma' = \gamma/2\pi$ is the reduced gyromagnetic ratio and M_{eff} is the effective magnetization (here equal to the saturation magnetization M_{sat}). From this fit we determine that $\gamma' \approx 30.5$ GHz/T and $M_{eff} = 720$ kA/m.

The HWHM linewidth, plotted in Fig. 10, gives insight into the magnetic relaxation of a film. By using the linear equation [45]

$$\Delta H = \Delta H_0 + \frac{\alpha}{\mu_0 \gamma'} f \quad (B2)$$

one can determine the Gilbert damping parameter α and zero frequency linewidth ΔH_0 . From the linear fit we deduce $\alpha = 0.006$ in our 2 nm FeV film.

Appendix C: Analytical Model Details

The synthetic antiferromagnet (SAF) consists of two identical ferromagnetic nanostrips coupled antiferromagnetically; the nanostrips are labeled by $i = 1, 2$ and are modeled as quasi-one dimensional spin chains for simplicity. We adopt a coordinate system in which the SAF extends along the x axis with the strip plane oriented normal to the z axis. The SAF Hamiltonian can then be written as

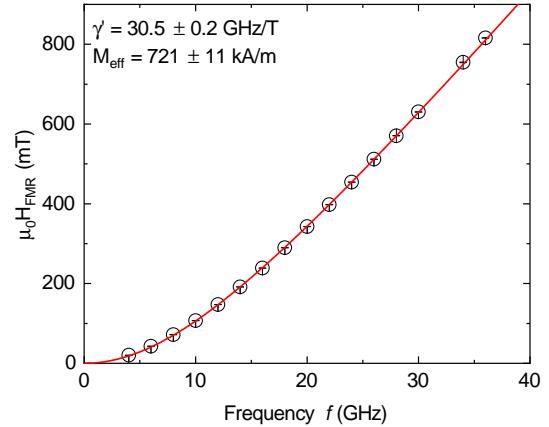


Figure 9. FMR resonance field as a function of microwave frequency. The solid line is a fit according to Eq. B1.

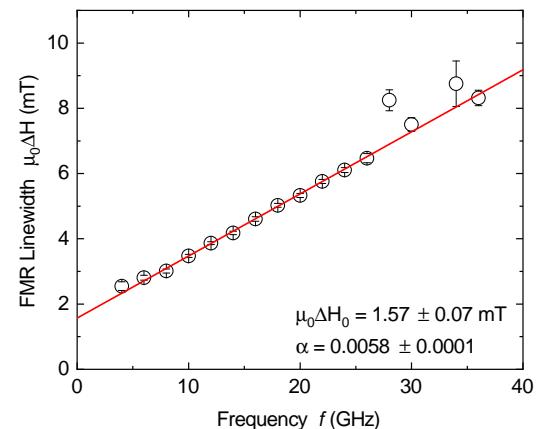


Figure 10. FMR linewidth as a function of microwave frequency. The solid line is a fit according to Eq. B2

$$H_0[\mathbf{n}_i] = \frac{1}{2} \sum_{i=1,2} \int dx [A(\partial_x \mathbf{n}_i(x))^2 + K_{\perp} n_{i,z}^2(x) - K_{\parallel} n_{i,x}^2(x)], \quad (C1)$$

where A is the exchange stiffness, $K_{\perp} > 0$ is the easy-plane anisotropy (with the hard axis along the z axis), $K_{\parallel} > 0$ is the easy-axis anisotropy along the x axis, and the unit vector field $\mathbf{n}_i(x)$ points parallel to the saturated local spin density $\mathbf{s}_i(x) = s\mathbf{n}_i(x)$. Finally, we assume the two ferromagnets couple through an isotropic antiferromagnetic exchange interaction described by the Hamiltonian,

$$H_c[\mathbf{n}_i] = \eta \int dx \mathbf{n}_1(x) \cdot \mathbf{n}_2(x). \quad (C2)$$

For low enough excitation energies, DW dynamics in each layer can be described sufficiently in terms of two “soft” variables: the DW position $X_i(t)$ and the spin canting angle out of the easy (xy) plane $\phi_i(x, t) = \phi_i(t)$, the latter of which is taken to be uniform along the strip. Focusing exclusively on DWs of the Néel type, an appropriate parametrization for \mathbf{n}_i in terms of these soft modes is given by [46],

$$\mathbf{n}_i(x, t) = \begin{pmatrix} b_i \tanh\left(\frac{x-X_i(t)}{\lambda}\right) \\ b_i \chi_i \operatorname{sech}\left(\frac{x-X_i(t)}{\lambda}\right) \cos \phi_i(t) \\ \operatorname{sech}\left(\frac{x-X_i(t)}{\lambda}\right) \sin \phi_i(t) \end{pmatrix}, \quad (C3)$$

where $\lambda = \sqrt{A/K_{\parallel}}$ is the DW width, $b_i = +1$ ($b_i = -1$) corresponds to tail-to-tail (head-to-head) DW, and $\chi_i = \pm 1$ is the chirality of the DW. We hereafter fix $\chi_i = 1$.

Reduced DW dynamics in terms of the soft variables can be obtained by first inserting Eq. (C3) into the Landau-Lifshitz-Gilbert equation,

$$\dot{\mathbf{n}}_i = \frac{1}{s} \mathbf{n}_i \times \left(-\frac{\delta H}{\delta \mathbf{n}_i} \right) - \alpha \mathbf{n}_i \times \dot{\mathbf{n}}_i, \quad (C4)$$

— α is the Gilbert parameter — and integrating out the irrelevant fast-oscillating modes by performing a spatial average over Eq. (C4) [47]. The resulting equations are a coupled dynamics for the DWs in the two ferromagnetic nanostrips,

$$\begin{pmatrix} \dot{X}_1 \\ \dot{\phi}_1 \end{pmatrix} = \frac{1}{2(1+\alpha^2)} \begin{pmatrix} \alpha\lambda & -1 \\ 1 & \frac{\alpha}{\lambda} \end{pmatrix} \begin{pmatrix} F_X \\ F_{\phi} \end{pmatrix}, \quad (C5)$$

$$\begin{pmatrix} \dot{X}_2 \\ \dot{\phi}_2 \end{pmatrix} = \frac{1}{2(1+\alpha^2)} \begin{pmatrix} \alpha\lambda & -1 \\ 1 & \frac{\alpha}{\lambda} \end{pmatrix} \begin{pmatrix} -F_X \\ F_{\phi} \end{pmatrix}, \quad (C6)$$

where the force terms read

$$F_X = \frac{2\eta}{s} \left(\frac{\xi}{\sinh^2 \xi} - \coth \xi \right) + \frac{2\eta}{s} \left(\frac{1 - \xi \coth \xi}{\sinh \xi} \right) \cos(\phi_1 + \phi_2), \quad (C7)$$

$$F_{\phi} = -\frac{\lambda K_{\perp}}{s} \sin(2\phi_1) - \frac{2\lambda\eta}{s} \frac{\xi}{\sinh \xi} \sin(\phi_1 + \phi_2), \quad (C8)$$

with $\xi \equiv (X_1 - X_2)/\lambda$. For zero interlayer coupling, these equations reduce to the dynamics of two decoupled ferromagnetic DWs, as expected.

Let us now consider the dynamics of a single SAF DW following its injection through the above-described spin-transfer torque mechanism. The injection process may result in differences in the positions and/or canting angles of the two constituent ferromagnetic DWs. Here, we focus on the limit of strong interlayer coupling and strong easy-plane anisotropy such that the injected DW obeys $X_1 \approx X_2$ and $\phi_i \ll 1$.

Upon linearizing Eqs. (C5) and (C6) with respect to $\xi \ll 1$ and $\phi_i \ll 1$, the center-of-mass coordinates $[\Xi \equiv (X_1 + X_2)/2\lambda$ and $\Phi \equiv (\phi_1 + \phi_2)/2]$ and the relative coordinates (ξ and $\varphi \equiv \phi_1 - \phi_2$) decouple, and we arrive at

$$\begin{pmatrix} \dot{\Xi} \\ \dot{\Phi} \end{pmatrix} = \begin{pmatrix} 0 & \gamma_K \\ 0 & -\alpha\gamma_K \end{pmatrix} \begin{pmatrix} \Xi \\ \Phi \end{pmatrix}, \quad (C9)$$

$$\begin{pmatrix} \dot{\xi} \\ \dot{\varphi} \end{pmatrix} = \begin{pmatrix} -\alpha\gamma_{\eta} & \gamma_K \\ -\gamma_{\eta} & -\alpha\gamma_K \end{pmatrix} \begin{pmatrix} \xi \\ \varphi \end{pmatrix}, \quad (C10)$$

where

$$\gamma_{\eta} = \frac{2\eta}{s(1+\alpha^2)}, \quad \gamma_K = \frac{K_{\perp}}{s(1+\alpha^2)}. \quad (C11)$$

Equation (C11) are rates determined by the interlayer exchange and easy-plane anisotropy, respectively.

The dynamics of the relative coordinates (C10) shows that small mismatches in DW positions and canting angles between the top and bottom layers at the time of injection decay on a time scale $[\alpha(\gamma_{\eta} + \gamma_K)]^{-1}$. In the limit of very strong interlayer coupling, i.e., $\gamma_{\eta} \gg \gamma_K$, these interlayer mismatches decay on a very short time scale after injection and may effectively be ignored in the DW analysis.

Now focusing on the center-of-mass dynamics (C9), the closed equation for $\Phi(t)$ may be solved straightforwardly giving

$$\Phi(t) = \Phi_0 e^{-\alpha\gamma_K t}, \quad (C12)$$

⁸²² Inserting this result into the equation for the DW ⁸²⁵
⁸²³ velocity, we find that the velocity decays from its initial ⁸²⁶
⁸²⁴ value over the time scale γ_K^{-1} , i.e.,

$$v(t) \equiv \lambda \dot{\Xi}(t) = \lambda \gamma_K \Phi_0 e^{-\alpha \gamma_K t} . \quad (C13)$$

⁸²⁷ The rate of DW velocity attenuation is governed by the
⁸²⁸ easy-plane anisotropy, i.e., γ_K . Therefore, in the limit
⁸²⁹ of strong interlayer coupling $\gamma_\eta \gg \gamma_K$, the velocity
 decays on a time scale much greater than the time scale
 governing the decay of the DW's internal mismatch.